
KIT: Testing OS-Level Virtualization
for Functional Interference Bugs

Congyu Liu
Purdue University

West Lafayette, Indiana, USA

Sishuai Gong
Purdue University

West Lafayette, Indiana, USA

Pedro Fonseca
Purdue University

West Lafayette, Indiana, USA

ABSTRACT
Container isolation is implemented through OS-level virtualization,
such as Linux namespaces. Unfortunately, these mechanisms are ex-
tremely challenging to implement correctly and, in practice, su�er
from functional interference bugs, which compromise container se-
curity. In particular, functional interference bugs allow an attacker
to extract information from another container running on the same
machine or impact its integrity by modifying kernel resources that
are incorrectly isolated. Despite their impact, functional interfer-
ence bugs in OS-level virtualization have received limited attention
in part due to the challenges in detecting them. Instead of causing
memory errors or crashes, many functional interference bugs in-
volve hard-to-catch logic errors that silently produce semantically
incorrect results.

This paper proposes KIT, a dynamic testing framework that
discovers functional interference bugs in OS-level virtualization
mechanisms, such as Linux namespaces. The key idea of KIT is
to detect inter-container functional interference by comparing the
system call traces of a container across two executions, where it
runs with and without the preceding execution of another con-
tainer. To achieve high e�ciency and accuracy, KIT includes two
critical components: an e�cient algorithm to generate test cases
that exercise inter-container data �ows and a system call trace
analysis framework that detects functional interference bugs and
clusters bug reports. KIT discovered 9 functional interference bugs
in Linux kernel 5.13, of which 6 have been con�rmed. All bugs are
caused by logic errors, showing that this approach is able to detect
hard-to-catch semantic bugs.

CCS CONCEPTS
• Security and privacy! Virtualization and security; • Soft-
ware and its engineering! Software testing and debugging.

KEYWORDS
OS-level virtualization, software testing

ACM Reference Format:
Congyu Liu, Sishuai Gong, and Pedro Fonseca. 2023. KIT: Testing OS-Level
Virtualization for Functional Interference Bugs. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’23), March 25–29,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9916-6/23/03.
https://doi.org/10.1145/3575693.3575731

2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3575693.3575731

1 INTRODUCTION
Kernel resource isolation is vital for reliable and secure container
isolation. In particular, correct kernel resource isolation must pre-
vent functional interference across containers running on the same
machine. In practice, Linux containers are implemented using ker-
nel namespaces, which prevent a container from accessing (i.e., read-
ing or modifying) resources from other containers, except through
authorized means (e.g., valid communication channels). Since func-
tional interference bugs compromise the integrity and con�dential-
ity of containers, they are a major security concern.

Incorrect or insu�cient kernel resource isolation can seriously
impact container security, especially in multi-tenant environments.
In fact, cloud providers are often hesitant to use containers in multi-
tenant situations for security reasons [83]. For instance, incorrect
isolation might let attackers learn the credentials of another con-
tainer running on the same machine, which could further lead to
cascading attacks on other network-accessible systems [34]. Fur-
thermore, applications critically make assumptions about the ser-
vices provided by the kernel. Hence, even when incorrect isolation
only allows attackers limited resource control, it can enable the
exploitation of application bugs that further aggravate the attack
impact.

Unfortunately, implementing resource isolation is particularly
challenging for kernel developers. This challenge arises from the
myriad of kernel resources available (e.g., sockets, �les, and timers),
which are accessible through the notoriously extensive system call
interface [48], and the huge kernel code base. Implementing kernel
resource isolation requires adding logical checks, often deep inside
the kernel and on each resource access instance, to verify whether
the container is allowed to access a resource. This challenge com-
pounds with the complexity of more traditional kernel mechanisms,
such as processes, users, and groups. Crucially, a single missed or
incorrect check can compromise container security. Thus, it is not
surprising that many functional interference bugs have been re-
cently discovered in Linux namespaces, leading to cross-container
information leakage [15, 19], denial of service [13, 16, 17], and
privilege escalation attacks [14, 21].

Unlike more traditional kernel bugs, such as crashes, functional
interference bugs are particularly challenging to detect automati-
cally. In fact, functional interference bugs are often caused by hard-
to-catch logic errors [14, 15, 17, 19, 21] that do not cause immediate
failures, such as missing results or producing error/warning mes-
sages. Thus, traditional kernel fuzzing tools, such as Syzkaller [39],
which mainly target bugs involving memory errors [40, 58] (e.g.,

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

427

https://doi.org/10.1145/3575693.3575731
https://doi.org/10.1145/3575693.3575731
https://doi.org/10.1145/3575693.3575731
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by/4.0/

https://github.com/rssys/kit
https://github.com/rssys/kit

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

when receiver container is running without the sender program ex-
ecution (). We further found that this is because /proc/net/ptype

enables a container to read the dump of the structures packet_type
that are registered by packet sockets in other net namespaces. This
leaks not only the packet_type contents but also its corresponding
packet socket liveness.

This bug cannot be found by prior approaches. Triggering this
bug requires executing certain system calls, such as those used to
create a packet socket, that is not supported by the prior dynamic
testing [34] or resource exhaustion detection [83] approaches.

2.3 Functional Interference Detection
Our goal is to �nd kernel isolation bugs that allow information
leaks and integrity attacks—the most serious container bugs. Simply
detecting memory errors or obvious kernel failures (e.g., crashes)
may detect some of these bugs, but it would leave out the most
evasive container bugs—i.e., those that occur because of missing or
incorrect logical checks.

Hence, this work explores the idea of using functional interfer-
ence as a detector for container bugs. Instead of looking for internal
errors during kernel execution, this approach aims to detect evi-
dence that the kernel produced the wrong output. Besides detecting
logical errors, this approach has the bene�t of simplifying result
analysis; it allows developers to reason about the kernel implemen-
tation and compare it against the speci�cation (i.e., documentation).
However, using functional interference detection as the basis for
an e�ective kernel testing tool involves several challenges.
Challenges. Systematically discovering functional interference
bugs is challenging for two reasons. First, e�ciently triggering
functional interference—i.e., catching the kernel red-handed—is
di�cult because it requires two system call sequences, where one
can a�ect the other when running in two containers. Given the
huge and complex kernel interface, such test cases are particularly
ine�cient to generate through brute-force approaches. Compared
with traditional kernel testing approaches (e.g., traditional kernel
fuzzers) where only one system call sequence serves as the test case,
the search space functional interference testing is quadratic. Second,
e�ectively detecting functional interference bugs is challenging be-
cause of false positives and non-determinism. Linux namespaces
protect many kernel resources, but not all. Thus, functional inter-
ferences detected on unprotected kernel resources are not bugs and
such results should be �ltered out to make result analysis practical.

3 PRACTICAL FUNCTIONAL INTERFERENCE
TESTING

This section proposes functional interference testing, a method that
uses functional interference as a strategy for �nding container
bugs. It addresses two challenges: e�cient test case generation and
e�ective functional interference bug detection.

3.1 E�cient Test Case Generation
KIT’s test case generation relies on the key observation that the root
cause of functional interference is inter-container communication
over the shared kernel memory. In other words, a container (sender)
can only interfere with another if it modi�es a kernel shared mem-
ory region that is used to process a request by a process of another

Table 1: Linux namespace types. Di�erent namespaces pro-
tect di�erent classes of kernel resources.

Namespace type Kernel resource isolated

PID Process ID
Mount Mount point
UTS Hostname
IPC System V IPC; POSIX message queue
Net Network stack
User UID; GID; capabilities
Cgroups Cgroups root directory
Time System time

container (receiver). For example, in the ptype information leakage
bug discussed in §2.2, the culprit inter-container kernel data �ow
involves two processes: (1) One process creates a packet socket in its
net namespace, causing the packet_type shared in the kernel to be
updated; (2) another process in another net namespace reads the �le
/proc/net/ptype, causing the kernel to read the shared packet_type

list. Thus, e�ective test cases that trigger functional interference
must trigger some form of inter-container communication.

3.2 E�ective Functional Interference Bug
Detection

Functional interference testing detects the functional interference
from a sender program to a receiver program. This is achieved
by analyzing the execution trace of the receiver program when
it executes with and without a preceding execution of the sender
program. In particular, functional interference testing analyzes the
system call traces of the receiver program between two executions.
Intuitively, if the preceding execution of the sender program causes
functional interference on the receiver program, the receiver will
have a di�erent system call trace if it runs without the sender
program.

Detecting bugs that trigger functional interference requires a
strategy to mitigate false positives caused by two factors. First,
functional interference occurs on resources not protected by names-
paces (§2.3). Hence, functional interference testing uses an inter-
active strategy where the user incrementally provides a partial
speci�cation for the framework to �lter system calls that access
resources not protected. Furthermore, it uses this information to
inform test case generation. Second, some system call trace di-
vergences across executions are caused by non-determinism. To
address non-determinism and avoid false positives, functional in-
terference testing uses a systematic execution environment that
executes tests from a stable machine state and reruns the receiver
program multiple times to identify and ignore non-deterministic
system call results.

4 KIT DESIGN
KIT uses a pipelined architecture (Figure 3) with four stages to test
kernels for functional interference bugs. First, KIT generates test
cases, which consist of pairs of system call sequences designed to
trigger functional interference bugs across containers. Inspired by
Snowboard [38], KIT implements a pro�le-based data �ow analysis

430

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

and a clustering strategy to generate and distill e�ective test cases.
Second, KIT executes the test cases in two containers to exercise
the kernel namespace implementation and traces the system call
results. Third, KIT performs a systematic analysis on the system
call trace results to help developers accurately identify functional
interference bugs. Finally, KIT aggregates test reports caused by the
same or similar functional interference so that users can investigate
unique functional interference cases e�ciently.

4.1 Test Case Generation
KIT takes a set of kernel test programs—sequences of system calls—
as input, which can be generated by external tools such as fuzzers.
Then KIT generates test cases to trigger functional interference.
Each test case conceptually consists of a sender and a receiver pro-
gram, which execute in di�erent containers. Intuitively, the sender
aims to modify kernel resources that are supposed to be isolated and
the receiver aims to detect modi�cations to those kernel resources.

Finding the right pair of sender and receiver programs that mod-
ify and fetch the same namespace-protected kernel resources is
crucial for triggering functional interference bugs. However, this
is challenging due to the complex kernel interface and quadratic
test space (i.e., a pair of programs as opposed to a single program).
KIT uses two techniques to improve search e�ectiveness and e�-
ciency. First, KIT �nds test program pairs that are likely to have
kernel inter-container data �ows, which are necessary for func-
tional interference to happen. It uses a dynamic data �ow analysis
that pro�les the memory accesses trigger by each test program and
then �nds pairs of programs that trigger write and read accesses to
the same memory location. Second, KIT prioritizes test cases that
trigger unique kernel behaviors as testing similar behaviors is less
rewarding than testing unique ones. KIT uses several heuristics to
cluster test cases that may trigger the same kernel behavior, and
only executes one test case from each cluster to improve e�ciency.

4.1.1 Find Inter-container Communication. To �nd inter-container
data �ows that can be triggered by each pair of sender and receiver
programs, KIT pro�les and analyzes the kernel memory accesses
triggered by each test program. If it �nds that two test programs
separately trigger a write and read memory access to a shared
memory region, then it deems that the two programs may have an
inter-container data �ow.

The kernel behavior, such as the memory access pattern trig-
gered by a test program, largely depends on its execution environ-
ment including the container con�guration and initial kernel state.
Therefore, pro�ling programs in di�erent and arbitrary execution
environments would make it challenging to accurately analyze the
test programs. Instead, inspired by other works [30, 38], KIT always
uses the same execution environment when pro�ling each test pro-
gram. Speci�cally, it boots the target kernel in a VM and creates
two user-level processes. KIT con�gures the two processes to run
in two di�erent namespaces (i.e., containers) and then creates a
virtual machine snapshot. This snapshot is always reloaded before
KIT pro�les a test program.

During the test program execution, KIT relies on kernel instru-
mentation to collect information about the kernel memory accesses,
such as the memory addresses accessed, whether it is a write or
read, the address of the instruction that causes the memory access,

and the current call stack. To avoid collecting memory accesses
that are irrelevant to the test program (e.g., made by background
threads), KIT identi�es the kernel thread handling system calls
made by the test program and only traces memory accesses made
by this kernel thread.

Once KIT pro�les the execution of every test program, it ana-
lyzes the memory accesses to generate functional interference test
cases. A pair of test programs that has potential inter-container data
�ows is promising, but it will only trigger functional interference if
the data �ow happens over a namespace-protected resource. Thus,
KIT only generates a functional interference test case when the
read memory access involved in the data �ow is caused by a system
call that accesses namespace-protected resources (§4.3.1). This is
because if the reader is not a system call that accesses namespace-
protected resources, then the reader system call cannot be used to
detect namespace functional interference bugs. KIT ignores ker-
nel data �ows that do not involve namespace-protected resources
because exercising them would not be e�ective at functional inter-
ference testing.

4.1.2 Cluster Test Cases. Next, KIT clusters test cases that may
trigger similar namespace behavior (e.g., the same functional in-
terference bug) to reduce the testing workload and improve the
e�ciency of �nding functional interference bugs. The main idea
is to cluster similar test cases based on the properties of potential
inter-container kernel data �ows triggered by test cases. If two test
cases can cause similar inter-container kernel data �ows, they are
likely to trigger the same functional interference bug. KIT provides
two heuristics as data �ow similarity criteria for users to choose:
DF-IA and DF-ST.

DF-IA de�nes data �ow that involves the same write and read
kernel instructions as similar. DF-ST extends DF-IA in that it also
considers the call stacks in which the write and read instructions
are executed. In particular, DF-ST only considers two data �ows
similar if they (1) involve the same write and read instructions
and (2) execute the instructions involved under the same call stack
context, which is de�ned as the sequence of function IDs (§5) in
the call stack. To avoid cluster explosion, the call stack depth can
be limited with a con�gurable constant.

4.2 Test Case Execution
KIT executes the generated test cases to exercise the potential inter-
container data �ow and �nd functional interference. KIT iterates
over all test case clusters (§4.1.2) and only chooses one test case to
execute from each cluster. KIT uses the VM snapshot to run each
test program in a di�erent container so that it can exercise the
inter-container data �ows and trace the system call results.

KIT executes a test case twice. As shown in Figure 1, in one
execution, it �rst executes the sender program in the sender con-
tainer, and then executes the receiver program, during which it
collects the system call trace of the receiver. In another execution,
KIT skips the sender program execution and only executes the
receiver program, in which another system call trace is collected.
The system call trace contains the execution results of the system
calls, including arguments, return value, and error number. The
two receiver system call traces are then used to detect functional
interference (§4.3).

431

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

Container
program

Container
program

Test Case
Execution

§4.2

Test Case
Generation

§4.1

sysca
ll

sysca Test Report
Aggregation

§4.4

Functional
interference bug

Test case
Attacker
program

Victi
m

progr
am

Test case
Attacker
program

Victim
progr

am

Test case

Sender
program

Receiver
program

Function Interference
Bug Detection

§4.3

ASPLOS camera-ready version - fixed

Test
program

Syscall
trace

Functional
interference bug

Figure 3: Design overview of KIT.

Algorithm 1 Compare two system call trace abstract syntax trees.
Input:)0 ,)1 : Two system call trace abstract syntax tree nodes.
Output: ⇡ : List of di�erent tree nodes.
1: function S������T����C��()0 ,)1)
2: if)0 .34C and)1 .34C then
3: ;0, ;1 L��()0 .2⌘), L��()1 .2⌘)
4: if)0 .E0; <)1 .E0; or ;0 < ;1 then
5: ⇡ ⇡ [()0 ,)1)
6: else
7: for 8 0 to ;0 � 1 do
8: ⇡ ⇡[S������T����C��()0 .2⌘ [8],)1 .2⌘ [8])
9: return ⇡

4.3 Functional Interference Bug Detection
KIT compares the system call traces of receiver program when it
runs with and without the preceding execution of the sender pro-
gram. To reduce false positive functional interference,KIT identi�es
and excludes the system calls results that are non-deterministic or
unrelated to namespace-protected resources.

4.3.1 Identify System Call Accessing Protected Resources. KIT ana-
lyzes the test program to identify system calls that access namespace
protected resources. The identi�cation algorithm relies on a partial
input speci�cation, which is provided by the KIT user.

The speci�cation supports two encoding formats. First, users
can write callback checker functions to select system calls by com-
paring call signatures (e.g., call name). Second, users can specify
�le descriptor types to select system calls that either use or return
them. It is e�cient to select system calls that access namespace-
protected resources that require speci�c �le descriptors as the sys-
tem call parameter. For instance, when accessing system V message
queues [49], the queue ID is generally a system call parameter (e.g.,
msgget(id,flag)). Thus, to test system V message queue, one can
provide the queue ID �le descriptor as a rule to KIT, which will then
select all system calls that either use or return the queue ID. In this
way, manually collecting all corresponding system calls that access
certain kernel resources and writing callback checker functions to
select each of them is no longer necessary.

4.3.2 Identify Non-deterministic Results. Some system calls can
produce non-deterministic results, which vary across runs. KIT
needs to identify such results in the receiver program so that
it does wrongly �ag such cases as functional interference. Even
worse, some system calls have part of their results that are non-
deterministic and parts that are deterministic. For instance, the
fstat system call produces not only the non-deterministic results,
such as timestamps, but also deterministic results, such as the �le
size. Naively ignoring all results produced by such system calls
would prevent KIT from �nding important classes of functional

interference bugs. Thus, KIT needs a �ne-grained trace comparison
algorithm that can ignore non-deterministic results during com-
parison and an automatic approach to identify non-deterministic
system call results.

KIT employs a �ne-grained system call trace comparison al-
gorithm (Algorithm 1), which compares the abstract syntax trees
(AST) of two system call traces and reports the tree di�erences.
Comparing AST di�erences instead of comparing plain system call
trace text enables identifying or ignoring �ne-grained system call
result di�erences. A similar approach has also been applied to detect
�ne-grained source code changes between di�erent versions [28].
To compare two traces, the algorithm recursively traverses two
ASTs (lines 6–8), and reports di�erences when two tree nodes do
not match (lines 4–5). Speci�cally, each node has a det �ag, which
speci�es if the system call results represented by the current node
and its sub-tree are deterministic. This �ag is set to true by default.
During the comparison, if one of the two tree nodes contains a det

�ag set to false, the di�erence between the two nodes is ignored
and their sub-tree traversal halts (line 2).

Many non-deterministic system call results are caused by timing.
For instance, the output of certain system calls (e.g., timestamp
in the fstat system call) depends on the system call invocation
time and varies across runs. To systematically identify such cases,
KIT re-runs the receiver program multiple times with di�erent
starting times, so that system call results that are sensitive to timing
vary between di�erent executions. KIT then compares all system
call trace ASTs, and sets the det �ag to false for the nodes that
vary between di�erent executions. KIT saves this non-determinism
information to disk for each test program to reduce the need to
rerun the test program in future testing campaigns.

4.4 Test Report Aggregation
An important task for KIT is to aggregate test reports caused by the
same type of functional interference such that only the unique ones
are examined by users. KIT’s core insight to identify similar test re-
ports is that a speci�c functional interference case can usually only
be triggered and detected by a speci�c sender and receiver system
call. Thus, given a set of test reports, KIT �rst identi�es the pair
of system calls responsible for the functional interference in each
test report and then aggregates test reports based on the system
call pair identi�ed, as they are likely due to the same functional
interference.

To �nd the root-cause sender system calls, KIT uses a di�erential
testing approach — for every system call in the sender program,
KIT checks whether skipping this sender call during execution will
mask the functional interference. Intuitively, a sender system call is
responsible for functional interference if the functional interference
does not manifest anymore without this sender call.

432

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Algorithm 2 Identify system call pairs that trigger functional in-
terference in a given test report.
Input: %(: Sender program; %' : Receiver program; �': Indices of the
system calls in %' that are interfered by %(.
Output: (: System call pair list.
1: function D�������(%(,%', �')
2: (q
3: for 8 C���L��(%() �1 to 0 do
4: %(R�����C���(%(, 8)
5: �'0 T���F���I(%(,%')
6: ��' �' � �'0
7: if ��' is q then continue
8: (([(8, M��(��'))
9: �' �' � ��'
10: if �' is q then break
11: return (

Once the sender system call is found, KIT continues to �nd
the interfered receiver system calls that produce di�erent results
with and without the sender call. Because of the control and data
dependency in the receiver program, multiple interfered calls can
be found often. For instance, a sender system call might cause a
receiver system call to fail to create a �le descriptor, which will
further a�ect the �le descriptor value of the following receiver
system calls. In this case, KIT only considers the �rst interfered
receiver system call because the functional interference can already
be detected by running it after the sender program.

KIT implements Algorithm 2 to identify the system call pairs
that trigger functional interference in a given report, which works
as follows. It takes three arguments as input: a sender test program
(%(), a receiver test program (%'), and the indices of %' system
calls interfered by %(during functional interference testing (�').
It returns a list (containing pairs of sender and receiver system
calls where the sender call is responsible for functional interference
on the receiver system call. The algorithm removes each sender
system call in inverse order (lines 3–4), runs the new test case, and
identi�es the receiver system calls that are interfered (�'0) in the
new test case (line 5). As explained above, by comparing �' and �'0,
the algorithm �nds the receiver system calls (��') interfered by the
removed sender system call 8 (lines 6–8). As illustrated previously,
the algorithm will only add the sender system call 8 and the �rst
receiver system call in ��' to (. The algorithm will then remove
the receiver system call indices in ��' from �' (line 9) since it has
found the sender system call that interferes with the calls in ��'.
If the algorithm has found the culprit sender system call for all
interfered receiver system calls in �' (line 10), then it returns ((line
11).

KIT aggregates test reports based on the identi�ed system call
pairs that trigger and detect the functional interference. KIT �rst
aggregates test reports by grouping them by the interfered receiver
system call (AGG-R). In each AGG-R group, KIT further aggregates
test reports by grouping them on the culprit sender system call
(AGG-RS) that interferes with this receiver system call. The system
call is represented using its name and the �le descriptors used by
the system call.

5 IMPLEMENTATION
The implementation of KIT is divided into memory tracing and test-
ing components. KIT memory tracing component is implemented
with about 200 lines of code in the kernel and 50 lines of code in
the compiler. KIT testing component is implemented with about
7400 lines of Go, C/C++, and shell code, excluding the dependent
third-party code.

5.1 Test Case Generation
Kernel memory access tracing. KIT pro�les kernel memory ac-
cess using compiler instrumentation. The compiler instrumentation
is implemented based on GCC 9.3 and KASAN’s GIMPLE [33] pass.
Due to GIMPLE’s limitations, memory accesses made by inline as-
sembly kernel code are not instrumented automatically. Instead,
KIT relies on existing annotations to instrument such kernel code.
In particular, KIT leverages the hook functions used by KASAN and
KCSAN. In addition, KIT implements a system call for user-space
programs to control pro�ling and collect the pro�ling data.

To avoid tracing memory accesses irrelevant to test case execu-
tion, several implementation choices are made. First, some kernel
subsystems are not instrumented since they are less relevant to
OS-level virtualization implementation (e.g., scheduler, memory
management, tracing hooks, and debugging modules). Second, dur-
ing run-time, most memory accesses made during interrupt context
(e.g., nmi, hardirq, and softirq) are ignored with the help of the ker-
nel’s in_task() check function, since they do not usually result from
the test program’s system call and often lead to non-deterministic
traces. Lastly, memory accesses to the kernel stack are ignored since
the stack is not shared by containers.

KIT also instruments before and after each kernel function call-
site. During runtime, the instrumentation produces an execution
trace in chronological order. The trace contains entries of three
types: function entry, function exit, and memory access, so that KIT
can analyze the current call stack for every memory access entry.
The function enter-entry also contains a unique function ID, which
is assigned to each kernel function during compiler instrumentation.
To recover the call stack for each memory access, when processing
the traces, KIT maintains a simulated call stack. KIT pushes the
function ID into the simulated call stack when it sees the function
call enter-entry and pops the simulated call stack when it sees the
function call exit-entry. In this way, the call stack of each kernel
memory access trace can be obtained by referring to the simulated
call stack. Note that this approach assumes that kernel function
calls eventually return. Thus, KIT does not instrument functions
that do not return exactly once (e.g., functions with GCC noreturn

attribute).
Test cases generation and clustering. Similar to Snowboard,
KIT uses a multi-dimensional map to process the kernel memory
accesses made by test programs. The keys of the map include width,
read/write �ag, memory address, instruction address, and call stack
hash. The value of the map is a list of test programs. To generate
the map, KIT processes the kernel memory access trace sequence
for each test program and updates the map accordingly. For each
kernel memory access trace, the call stack hash is generated with
the SHA-1 value of the function ID sequence of the simulated call
stack. To generate and cluster test cases, KIT iterates over kernel

433

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

memory regions in the map, �nds the overlapped kernel memory
regions, pairs the test programs to generate test cases, and clusters
them based on the speci�ed keys.

5.2 Test Case Execution
Virtual machine. KIT uses QEMU-KVM for test program pro�ling
and test case execution. A test manager on the host interacts with
QEMU using the QMP protocol [5] to create and reload a VM
snapshot. To avoid introducing non-determinism into the guest OS
network stack, which might a�ect test case execution results, the
host test manager communicates with the guest machine through
virtio-serial.
Test case executor. The KIT test case executor is implemented
based on the Syzkaller executor, which interprets the Syzkaller
test program and issues system calls. During the VM snapshot
creation, KIT �rst spawns two Syzkaller executors, which set up
their containers and block on waiting for test input. After that,
KIT takes the VM snapshot. Before executing each test case, KIT
resumes from the VM snapshot, and then feeds the test case to the
two executors, which then synchronize with each other to execute
the sender and receiver test programs in order (i.e., run the sender
program �rst, then run the receiver program).
Container setting. KIT sets up containers to avoid reproducing
documented functional interference over protected resources so
that it can focus on �nding new ones. Hence, KIT tunes a few
container settings, which are determined by referring to the doc-
umentation or existing container settings. For instance, KIT uses
ulimit to prevent resource contention on message queues (a re-
source protected by IPC namespaces) across namespaces, which
could cause false positive reports.
System call result decoding library. KIT decodes the system
call results to text with a system call decoding library, which we
customize from strace [9]. In particular, we customize the strace’s
internal functions umoven and umovestr, which are used to copy data
from the ptrace tracee address space, by changing them to directly
copy data from the current process’s address space.
Distributed testing. KIT can run distributed tests, so it operates in
either the client or server mode. When running in server mode, KIT
exposes several RPC services to clients to distribute VM snapshots,
transfer test cases, and collect test results.

5.3 Functional Interference Bug Detection
The system call identi�cation is implemented using Syzlang —
Syzkaller’s system call description framework. KIT allows users to
describe a �le descriptor using a Syzlang resource identi�er, which
uniquely represents the �le descriptor type (e.g., UNIX socket has
a resource identi�er sock_unix). As Syzlang only assigns unique
resource identi�ers to a limited of kernel �le descriptors, KIT can
also select system calls based on user-provided seed system calls.
For instance, if the user highlights a seed system call in the program
(e.g., open(�/proc/net/*�,...)), KIT will automatically select any
system call that has explicit data dependency on the seed system
call.

We create a speci�cation that describes the system calls that
access resources protected by namespaces. The process is relatively

static int ptype_seq_show(...) {
...
else if (pt->dev == NULL ||

dev_net(pt->dev) == seq_file_net(seq)) {
if (pt->type == htons(ETH_P_ALL))
seq_puts(seq, "ALL ");

else
seq_printf(seq, "%04x", ntohs(pt->type));

...
}
...

}

1
2
4
5
6
7
8
9
10
11
12
13

Miss ns check

Figure 4: Code snippet of bug #1.

simple since most of the kernel resources we tested can be spec-
i�ed by describing the �le descriptor type with Syzlang resource
identi�ers. The system call signature checker function can be easily
written since most of them simply check the system call name and
require less than 30 lines of code. In total, we wrote 17 system call
checker functions and 57 �le descriptor types, in roughly 3 person-
hours. The resources we selected span across the PID, mount, net,
IPC, and user namespaces, and involve the bulk of the namespace
system.

6 EVALUATION
Experimental setup.We ran all evaluation experiments on ma-
chines with an AMD EPYC 7402P CPU, 128 GB of memory, and
Ubuntu 22.04. We generated test cases using a program corpus cre-
ated by Syzkaller, consisting of 98853 test programs, and we applied
KIT to the stable Linux kernel 5.13 release to �nd new bugs.

6.1 Finding Functional Interference Bugs
In total, KIT found 9 functional interference bugs in Linux 5.13.
To save developers’ time, we reported 7 bugs, which, to our best
knowledge, were not documented. 6 of them were con�rmed and 3
were �xed already as of this writing, with 2 patches merged into
the mainline kernel. 4 of the bugs found by KIT cause information
leakage and 3 others cause denial of service. Both of these classes
can a�ect the security of containers. Given that containers have
been massively deployed and thus namespace code is extensively
exercised and scrutinized [43], we believe this result demonstrates
the e�ectiveness of KIT.

During our interactions with developers, we found that some
bugs were caused by incomplete support for namespaces instead
of incorrect checks. For instance, the namespace support for the
RDS socket stopped halfway and the consequent incomplete imple-
mentation causes bug #3. Bug #6 shares the same property. In the
discussion on SCTP namespace support patch, the kernel developer
acknowledged that SCTP association ID space “ought to be” per
net namespace, but the bug is not �xed due to the high amount of
implementation e�ort.
Case Study: Bug #1. As discussed in §2.2, this bug allows a user
to read the dump of the packet_type structure in other net names-
paces via /proc/net/ptype. The sender program, which creates a
packet socket, interferes with the /proc/net/ptype content in the
other container. Our analysis indicates that this bug is due to the
mishandling of the packet_type structure in the kernel function

434

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 2: Linux namespace functional interference bugs found by KIT.

ID Container S (⇠() action Container R (⇠') action ⇠' syscall trace di� Resource Status

1 Create a packet socket Read /proc/net/ptype Show the ptype from⇠(ptype Fixed
2 Create an exclusive �ow label Transmit data with an unregistered �ow label Transmission fails IPv6 / �ow label Fixed
3 Bind an RDS socket Bind an RDS socket Binding fails RDS / address Con�rmed
4 Create an exclusive �ow label Connect with an unregistered �ow label Connection fails IPv6 / �ow label Fixed
5 Create a TCP socket Read /proc/net/sockstat Counter in �le increases proto / socket Con�rmed
6 Generate a socket cookie Generate a socket cookie Cookie changes socket / cookie Known
7 Request an association ID Request an association ID Association ID changes SCTP / assoc_id Known
8 Allocate protocol memory Read /proc/net/sockstat Counter in �le increases proto / memory Con�rmed
9 Allocate protocol memory Read /proc/net/protocols Counter in �le increases proto / memory Con�rmed

static inline struct ip6_flowlabel *fl6_sock_lookup(...) {
...
if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key))
return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);

...
}
static struct ip6_flowlabel *fl_create(...) {
...
if (fl_shared_exclusive(fl) || fl->opt)
static_branch_deferred_inc(&ipv6_flowlabel_exclusive);

...
}

1
2
4
5
6
7
8
9
10
11
12
13

Shared by all ns

Figure 5: Code snippet of bug #2.

ptype_seq_show(): this function does not check the packet socket’s
net namespace to determine if the packet_type should be displayed
or hidden (Figure 4). After KIT found this bug, we submitted a patch
to �x this bug, which was merged into the mainline kernel within
a week.

This bug allows attackers to infer information about other con-
tainers’ workloads. Moreover, since an attacker can easily manip-
ulate the content of this �le by creating a packet socket, this bug
could be used to construct covert channels [53]. It could also be used
to �ngerprint hosts to co-locate attacker containers and orchestrate
power attacks [34].

Surprisingly, we noticed afterward that another patch had been
submitted previously for the same function trying to address a
similar information leakage bug. Although the developers �xed the
case where this �le leaks networking device information, another
case where it leaks packet socket information was overlooked. This
shows the di�culty in correctly implementing and �xing resource
isolation: the complex interactions between di�erent networking
layers make it hard to reason about the code even for experienced
kernel developers. KIT systematically explores kernel execution
paths to automatically help developers identify such bugs.
Case Study: Bug #2. The �ow label is an essential �eld in the
IPv6 packet header, which is used to represent packet �ows at the
networking layer. In Linux, the IPv6 protocol stack, including the
�ow label, is protected by the net namespace [47]. Hence, di�erent
net namespaces can use the same �ow labels without collisions.

Linux adopts a two-stage �ow label management model. When
no exclusive �ow label (e.g., a �ow label exclusively owned by a
user) is registered in the kernel, the kernel allows processes to use
any �ow labels without explicit registration, skipping expensive

exclusive �ow label collision checks for connections and data trans-
missions. Once an exclusive �ow label is registered in the kernel, the
kernel will use a more strict yet expensive �ow label management
model. A process must register the desired �ow label before usage,
otherwise, the data transmission and connection will be rejected.

During testing, KIT found a functional interference bug because
the �ow label management model was not originally implemented
with the namespace isolation in mind, i.e., registering an exclusive
�ow label should only change the �ow label management model
in its namespace instance, not others. However, this bug allows
a sender container to enable the strict and expensive �ow label
management for all net namespace instances, by registering one
exclusive �ow label. Thus, a sender container can decrease the
performance of other receiver containers that use the IPv6 �ow
label, such as QUIC [67], a connectionless networking protocol
that multiplexes �ows [23]. More importantly, this bug breaks the
property that each net namespace has its own �ow label namespace,
where �ow collisions across containers are not possible. Hence,
developers might implement the container application without
handling the strict �ow label management model, assuming that
the net namespace will isolate the �ow label management models
between di�erent net namespace instances. In this case, an attacker
could cause a denial-of-service in these containers by registering
colliding exclusive �ow labels. We reported this bug to the kernel
developers, who submitted a patch in two days.

The root cause of this bug is that the state of the �ow label man-
agement model, ipv6_flowlabel_exclusive, is not per net names-
pace (Figure 5). Note that this variable is implemented with a jump
label optimization, where the jump is implemented by code patch-
ing instead of making a normal memory access. This optimization
prevents our pro�ling-based data �ow analysis from predicting the
inter-container data �ow over this variable, as it is not instrumented.
However, our random test case generation approach found this bug.
Resetting the CONFIG_JUMP_LABEL when compiling the kernel will
disable this optimization and allows KIT to identify this bug with
the data �ow analysis. Furthermore, a more comprehensive data
�ow instrumentation could add support for these cases.

6.2 Detecting Known Isolation Bugs
We evaluated the e�ectiveness of KIT in detecting known Linux
namespace isolation bugs. To collect bugs, we searched through
the Linux git commit log and the CVE vulnerability list [20]. We
chose silent bugs that are caused by logic errors (i.e., bugs that

435

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

Table 3: Known Linux namespace bugs reproduced by functional interference testing.

ID Container S (⇠() action Container R (⇠') action ⇠' syscall trace di� Resource Kernel NS

A [72] Change prio using PRIO_USER Read prio of the current process Value changes prio 4.4 pid
B [11] Create network devices Listen on kobject uevent Receive queue uevents netdev/queue 3.14 net
C [79] Setup IPVS Read /proc/net/ip_vs Read IPVS information from⇠(IPVS 4.15 net
D [19] Set nf_conntrack_max Read nf_conntrack_max Value changes nf_conntrack 5.13 net
E [18] (Host) Create �les in /tmp Read unmounted /tmp via io_uring Observe newly created �les mount 5.6 mnt

Table 4: Evaluation of di�erent test case generation and clus-
tering strategies. KIT skips redundant test cases across clus-
ters.

Gen Test cases (M) E�ectiveness

DF-IA 1.13 9/9
DF-ST-1 3.32 9/9
DF-ST-2 6.61 9/9
RAND 8.66 5/9
DF 234.63

do not crash or hang the kernel), which are the hardest-to-�nd by
users and the main focus of KIT. In fact, all these bugs were found
manually instead of by an automated testing tool. All bugs analyzed
are recent bugs with reports that include the reproduction steps, so
that we can write the test case in C.

In total, we collected 7 known bugs, and KIT was able to repro-
duce 5 of them (Table 3), showing its e�ectiveness in detecting
severe functional interference bugs. The reproduced bugs were
found in di�erent namespaces, including the net, mount, and PID
namespaces. Moreover, some of them have been shown to intro-
duce security vulnerabilities. For instance, bug D allows directly
changing the global nf_conntrack sysctl parameter from any net
namespace created by privileged users, which can cause a denial of
service; while bug E allows a user in a mount namespace to escape
to the host mount points. Both bugs D and E have assigned security
advisory reports (CVEs).

Additionally, we found that 2 known Linux namespace isolation
bugs can not be detected by functional interference testing. For
instance, one bug [85] causes functional interference over a kernel
resource that has non-deterministic system call results evenwithout
any functional interference, so this bug is ignored by KIT. Another
bug [81] requires the receiver test program to know the exact re-
source ID created by the sender program during runtime, which
is not supported by our functional interference testing approach.
Although it would be desirable to support such bugs, exploiting
them is typically more di�cult because attackers cannot determin-
istically retrieve information from the receiver in one shot, so they
are typically less serious.

6.3 Test Case Generation
We further analyzed the e�ectiveness of di�erent test case genera-
tion approaches. We de�ne e�ectiveness as the ability to discover
new functional interference bugs. To see how the inter-container
data �ow analysis improves test case generation, we implement a

Table 5: Test report �ltering e�ectiveness. “After non-det +
resource �ltering” represents the �nal number of �ltered
reports before aggregation.

Number Percentage

Tests executed 1,132,761
Initial reports 15,353 100%
After non-det �ltering 891 5.80%
After non-det + resource �ltering 808 5.26%

Table 6: Test report aggregation results. Results include false
positives (FP) and cases still under investigation (UI).

Bug ID FP UI Total

1 2 3 4 5 6 7 8 9

Filtered reports 12 22 7 4 3 2 679 2 5 61 11 808
AGG-RS groups 7 12 1 3 1 2 13 1 2 19 10 71
AGG-R groups 5 7 1 2 1 2 2 1 1 4 6 32

random test case generation (RAND) as a baseline approach for com-
parison. This approach randomly chooses the sender and receiver
program from the input corpus to build one test case. Furthermore,
we compared two test case clustering strategies that are applied
upon inter-container data �ows to improve test case e�ectiveness,
namely the instruction address strategy (DF-IA), and the call stack
strategy (DF-ST). We evaluated DF-ST with the call stack depth
set to one (DF-ST-1) and two (DF-ST-2). When evaluating each
clustering strategy, we executed enough test cases so that every
cluster was exercised, i.e., at least one of its test cases was executed.

As shown in Table 4, DF-IA, DF-ST-1, and DF-ST-2 are equally
e�ective, as they can detect all new functional interference bugs
after exercising all clusters. Furthermore, they signi�cantly distill
the number of test cases generated based on data �ow analysis (DF).
However, RAND is much less e�ective as it only discovers bugs #1,
#2, #5, #7, and #9. This shows the e�ectiveness of KIT data �ow
based test case generation.

6.4 Distilling Test Reports
To understand how KIT helps users e�ciently diagnose bug reports,
we evaluated how KIT �lters out false positive reports and then
aggregates reports by the same functional interference. The bug
reports used in this section were gathered from the DF-IA test case
generation strategy, which is representative of the other strategies
as well.
Filter test reports. Table 5 shows how KIT �ltered the false posi-
tive test reports with non-deterministic result identi�cation (§4.3.2)

436

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

and by identifying system calls that access protected resources
(§4.3.1). Recall that KIT �rst �lters non-deterministic candidate
reports where the functional interference is not reproducible, and
then it �lters reports where the functional interference happens
over resources not protected by namespaces.

In total, the two �ltering methods removed 14,545 false positive
reports from 15,353 test report candidates, showing KIT can signi�-
cantly reduce the manual e�orts for investigation by identifying
false positive reports automatically. The non-deterministic �lter
was more e�ective than the protected resource �lter. We believe
that this is due to KIT’s test case generation algorithm (§4.1.2). It en-
sures that the receiver program always contains at least one system
call that accesses resources protected by namespaces. Thus, fewer
system calls that do not access protected resources are exercised,
which leads to fewer false positives.
Aggregate test reports. Recall that KIT uses two report aggre-
gation strategies to simplify analysis: AGG-R, which aggregates
reports with the same receiver system call, and AGG-RS, which
aggregates reports with the same sender and receiver system call
pair. Table 6 includes the number of AGG-R and AGG-RS groups
that contain the test cases triggering the functional interference for
each bug found. We also counted the number AGG-R and AGG-R
groups that contain false positives (FP) reports or reports under
investigation (UI). As shown in Table 6, the total number of AGG-R
and AGG-RS groups is much smaller than the total number of test
reports, and most bugs only involved a couple of clusters, which
signi�cantly simpli�es the analysis.

Test report aggregation greatly reduced the analysis time of re-
dundant test reports. In total, we spent around 30 person-hours
on diagnosing the reports. In particular, we spent approximately
20 person-hours on diagnosing test reports of functional interfer-
ence bugs in Table 2 and 10 person-hours on the remaining test
reports. Diagnosing a test report is inevitably time-consuming, as
it involves correctly understanding the namespace implementation,
diagnosing the root causes, analyzing past kernel mailing and com-
mit history, and writing patches. As an AGG-RS group aggregates
test reports that trigger the same functional interference, we only
need to examine one test report from an AGG-RS group. For in-
stance, KIT generated 684 test reports that triggered bug #7 but it
was able to aggregate similar reports together and only output 13
AGG-RS groups, therefore we only need to analyze 13 test reports.
False positives. We identi�ed 4 AGG-R and 19 AGG-RS groups as
false positives (61 test reports).We observed that all these caseswere
caused by incomplete test report �ltering, where tested resources
are not protected by namespaces. For instance, 11 AGG-RS (46 test
reports) groups involve functional interference in the minor device
number of procfs, ramfs, and others, which is returned by the stat

and fstat system calls. These are false positives because the minor
device number is not protected by namespaces.

Handling false positive test reports with report aggregation is
relatively easy. Once the user con�rms one false positive test report,
the entire AGG-RS group it belongs to can be dropped to avoid other
similar false positive reports. Users can even drop the entire AGG-R
group to exclude all test reports where the functional interference
happens on the same receiver system call. For instance, we dropped
an AGG-R group containing 14 test reports, where the interfered

receiver system call reads /proc/crypto, which is not protected by
namespaces.

6.5 Performance
Test case generation. KIT executes each test program four times
to get the system call trace and kernel execution trace when run-
ning it in the sender and receiver containers. KIT executes each
test program twice in both the sender and receiver container. In
one execution KIT collects the system call trace and in another
execution it collects the execution trace, which includes informa-
tion about call stacks and kernel memory accesses of the kernel
thread. Two trace collections have to run separately as collecting
execution traces using instrumentation may a�ect the system call
trace. For instance, executing the instrumentation code slows down
the performance and may cause a timeout error for some system
calls.

KIT takes less than 9 hours to pro�le the entire corpus on a single
server. This is signi�cantly faster than other approaches to pro�le
memory accesses. For instance, Snowboard takes 80 hours to pro�le
129,876 test programs with 10 machines running in parallel [38].
Two factors contribute to the higher pro�ling performance: (1) KIT
leverages compiler instrumentation to collect memory access traces
and e�ciently pro�les test program by taking advantage of hard-
ware virtualization (e.g., running with KVM enabled) instead of
collecting memory accesses through software emulation; (2) Instead
of pro�ling every kernel memory access, KIT avoids instrumenting
the kernel memory accesses that are irrelevant to namespace iso-
lation. KIT analyzes memory traces and generates test cases in a
single machine within 30 minutes.
Test case execution. By spawning 110 VMs in total, across 4
servers, this test setting allows KIT to achieve 31.3 test case exe-
cutions per second. In total, KIT executes 1.13M test cases within
10 hours. The performance of KIT could further bene�t from exist-
ing fast snapshot mechanisms, such as on-demand-fork [87] and
others [68, 70].

7 DISCUSSION
Initial test programs. KIT relies on external kernel testing tools
(e.g., Syzkaller) to generate the initial kernel test programs. Un-
doubtedly, the quality of these test programs is crucial for �nding
functional interference bugs. For instance, if triggering a certain
functional interference bug requires a data �ow over a kernel shared
variable, but all initial test programs either do not write to or write
the original value (i.e., a write that does not change the state) to this
kernel shared variable, then KIT cannot detect this functional inter-
ference bug. Hence, we expect that KIT’s e�ectiveness will improve
with future advances in the thriving �eld of feedback fuzzers.
Applications to other isolation mechanisms. Although we
focus on container bugs due to their popularity and security impact,
KIT could be applied to test other isolation mechanisms, such as
hypervisor and TEE-based approaches [1, 8, 31, 42, 71, 88]. By
design, KIT is able to detect functional interference bugs for the
majority types of Linux namespace functional interference bugs,
even though all bugs found by KIT are in the network namespace,

437

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

possibly due to the complexity of this particular subsystem and the
focus of Syzkaller test program generation.
Bug detection. Functional interference testing ignores non-deter-
ministic resources during trace divergence analysis. One drawback
of this design is that KIT cannot e�ciently test the time namespace
since the protected resources (e.g., systems clocks) are non-deter-
ministic. A possible solution is to learn the valid bounds of resource
values, caused by non-determinism, through dynamic pro�ling
and detecting inter-container resource interference by identifying
bound violations. A similar approach has been formalized in prior
work [10], which detects timing side channels. Plus, the current
implementation does not support detecting bugs that only expose
under complex kernel thread interleavings. However, our study on
known functional interference bugs indicates that most bugs can
be exposed or even exploited without concurrency. In addition, KIT
can be combinedwith concurrency testing tools [2, 29, 30, 38, 44, 82]
to detect concurrency functional interference bugs. We leave this
as future work.
False positives. KIT �lters system calls that do not access pro-
tected resources to reduce false positives. Nevertheless, given the
complex system call interface, some system calls that access pro-
tected resources may contain states of the resources that are not
protected, which could result in false positives. With the test report
aggregation (§4.4), KIT reduces the users’ e�ort spent on analyz-
ing redundant false positive functional interference bug reports.
Furthermore, we believe a more detailed document of kernel re-
source isolation could better assist users to identify and diagnose
these cases. Additionally, KIT can reduce the non-deterministic
test reports with the help of prior works in deterministic execu-
tion [22, 57, 64].

8 RELATEDWORK
OS-level virtualization testing. Dynamic testing approaches [7,
30, 31, 36, 38, 39, 41, 45, 51, 66, 69, 76] have been proposed to dis-
cover general crashes, memory bugs, concurrency bugs, and hy-
pervisor bugs in kernels. However, few works target functional
interference bugs in OS-level virtualization implementation. Kernel
regression testing [3, 24, 52] relies on test cases written by kernel
developers to test OS-level virtualization, but these test cases mainly
focus on exercising well-known patterns of functional interference
bugs rather than �nding new ones. There are a few prior works
that look at testing OS-level virtualization. For instance, a recent
work [83] proposes a static analysis framework to discover resource
exhaustion bugs in OS-level virtualization. Another work [34] aims
at discovering information leakage in Linux containers. Pex [86]
uses static analysis to identify permission check errors in the Linux
user namespace. Nevertheless, none of them targets general re-
source isolation bugs as KIT does for Linux namespaces.
OS-level virtualization security. One line of work in OS-level
virtualization security focuses on the security of container run-
time and orchestration toolchains [6, 12, 74, 78, 84]. For instance,
one work [78] studies the security implications of using container
images in the production cloud. KIT is more related to another
line of work that focuses on the security of resource isolation and
access control mechanisms provided by the kernel. For example,

Gao et al. [35] explore using out-of-band workloads to escape the
control group resource limit. Lin et al. [55] study existing attacks
against Linux security mechanisms and proposed defense solutions.
CNTR [80] reduces the container attack surface by reducing the con-
tainer image size without compromising functionality. Baston [63]
hardens Linux container network stacks via restricted visibility
and network tra�c isolation. Sun et al. [77] propose the security
namespace to enable autonomous security policy con�gurations
for containers. SCONE [4] is a container with Intel SGX support to
encrypt I/O data. X-Containers [73] leverages the exokernel and
libOS [25] to enforce the inter-container resource isolation with
small attack surfaces.
Kernel data �ow analysis. Identifying possible container interfer-
ence requires data �ow analysis on the kernel. Recent work in this
domain can be divided into two categories. One category, such as
Razzer [44], uses static analysis (e.g., points-to analysis) to identify
potential data races. By contrast, Krace [82] and Snowboard [38]
rely on dynamic executions. Krace executes many random kernel
test inputs and monitors data �ows by instrumenting every shared
kernel memory access. Snowboard takes a set of system call se-
quences as inputs and dynamically pro�les the shared memory
access triggered by each sequence. Then it identi�es overlapped
shared memory accesses between two sequence pro�les as possible
data �ows. KIT adopts a data �ow analysis framework that is similar
to Snowboard, but introduces new test case clustering strategies
and leverages compiler instrumentation to e�ciently pro�le kernel
memory accesses.
Non-interference. Non-interference has been used in OS veri�ca-
tion [27, 54, 61, 75] and model checking [26] to prove information
�ow security for critical kernel subsystems. Li et al. [54] prove non-
interference for a retro�tted Linux KVM hypervisor that ensures
the con�dentiality and integrity of VM data. Although veri�cation
can provide strong correctness guarantees, it struggles to scale
to large and complex systems, such as Linux, and still relies on
assumptions that need to be tested [32]. Hence, some prior test-
ing frameworks [10, 65] check non-interference for bug detection,
but mainly focus on discovering side-channel vulnerabilities in
user-space software. KIT focuses instead on testing the isolation of
OS-level virtualization.

9 CONCLUSION
This work introduces KIT, a framework to �nd functional interfer-
ence bugs in OS-level virtualization. KIT uses a general method,
functional interference testing, that tackles two major challenges in
�nding functional interference bugs. First, to generate e�ective test
cases that can trigger functional interference, KIT uses a dynamic
data �ow analysis to identify possible inter-container data �ows
in the test case and prioritize test cases that exercise unique and
untested functional interference. Second, KIT automatically identi-
�es classes of false-positive functional interference that are caused
by kernel non-determinism and namespace-irrelevant kernel re-
sources so that KIT can accurately report functional interference
bugs. KIT has found 9 new functional interference bugs and many
of them have serious impact on container security. Additionally,KIT

438

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

can detect many known severe functional interference bugs, show-
ing its e�ectiveness in detecting vulnerable functional interference
bugs.

ACKNOWLEDGMENTS
This work was funded in part by NSF under grants CNS-2140305
and CNS-2145888 and Google. We thank all anonymous review-
ers for their feedback, which greatly improved the paper. We also
thank Adil Ahmad for his helpful suggestions on the design and
evaluation.

A ARTIFACT APPENDIX
A.1 Abstract
KIT is a dynamic testing tool to systematically discover functional
interference bugs in OS-level virtualization. Currently, the KIT
artifact supports testing Linux namespaces.

A.2 Artifact check-list (meta-information)
• Program: kit-artifact
• Compilation: The required compilers include gcc, g++, go, and a
customized gcc. They can be installed via the script provided.

• Data set: A test program corpus generated by Syzkaller. It can be
downloaded via the script provided.

• Run-time environment: Linux systems; root access required.
• Hardware: x86-64 CPU; 128GB memory
• Output: Bug reports.
• Experiments: Find the new functional interference bugs; Repro-
duce the known functional interference bugs.

• How much disk space required (approximately)?: 256GB
• How much time is needed to prepare work�ow (approxi-
mately)?: 1 hour

• How much time is needed to complete experiments (approxi-
mately)?: 1 day

• Publicly available?: Yes
• Code licenses (if publicly available)?: GPL-3.0 license.
• Data licenses (if publicly available)?: GPL-3.0 license.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.7240401

A.3 Description
A.3.1 How to access. The source code of this artifact is available
at Zenodo [56] and GitHub: https://github.com/rssys/kit-artifact

A.3.2 Hardware dependencies. The artifact evaluation requires a
machine with x86-64 CPU, 128GB memory, and 256GB storage.

A.3.3 So�ware dependencies. The artifact evaluation requires Linux
systems with QEMU and KVM support and root access. Some op-
tional experiments require Docker.

A.3.4 Data sets. The artifact will generate the test cases using a
test program corpus generated by Syzkaller as input. The dataset
can be downloaded via the script provided in the artifact.

A.4 Installation
Please see the README.md �le in https://github.com/rssys/kit-artifact.
First, install the dependencies required to build KIT. Next, follow
the instructions to run a script, which will (1) install the go compiler;
(2) patch the Syzkaller code used by the artifact; (3) build the whole

artifact, which includes the main testing framework, Syzkaller, a
system call trace decoding library, and a customized gcc compiler.
Then, prepare the test input required for the artifact evaluation.
Run a script to set up the environment to �nd new functional
interference bugs, which will (1) build the instrumented Linux
kernel; (2) build a VM image; (3) download a Syzkaller test program
corpus. Run another script to set up the environment to reproduce
known functional interference bugs, which will download the pre-
built old Linux kernel and VM images to test.

A.5 Evaluation and expected results
The artifact evaluation will cover the following aspects that serve
as the key results of this paper: (1) the discovery of 9 functional
interference bugs with DF-IA test case generation strategy (Table 2,
Table 4); (2) the e�ectiveness evaluation of test report �ltering
(Table 5); (3) the statistics on test report aggregation (Table 6); (4)
reproducing known functional interference bugs (Table 3). The
artifact provides several scripts to automatically run the whole
pipeline and reproduce the results. For more details regarding the
evaluation, please read the README.md �le in https://github.com/
rssys/kit-artifact. Due to di�erences in test settings or randomness,
there might be slight di�erences between the results in the paper
and those from the artifact evaluation.

REFERENCES
[1] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca, and Byoungy-

oung Lee. 2021. CHANCEL: E�cient Multi-client Isolation Under Adversar-
ial Programs. In 28th Annual Network and Distributed System Security Sympo-
sium (NDSS ’21). The Internet Society. https://www.ndss-symposium.org/ndss-
paper/chancel-e�cient-multi-client-isolation-under-adversarial-programs/

[2] Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungyoung Lee. 2021. Kard:
Lightweight Data Race Detection with per-Thread Memory Protection. In Pro-
ceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’21) (Virtual, USA).
Association for Computing Machinery, New York, NY, USA, 647–660. https:
//doi.org/10.1145/3445814.3446727

[3] Linux Kernel Archives. 2022. Linux Kernel Selftests. https://www.kernel.org/
doc/Documentation/kselftest.txt.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Kee�e, Mark L.
Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
’16). USENIX Association, Savannah, GA, 689–703. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/arnautov

[5] Fabrice Bellard. 2022. Documentation/QMP. https://wiki.qemu.org/
Documentation/QMP.

[6] Thanh Bui. 2015. Analysis of docker security. arXiv preprint arXiv:1501.02967
(2015).

[7] Alexander Bulekov, Bandan Das, Stefan Hajnoczi, and Manuel Egele. 2022. Mor-
phuzz: Bending (Input) Space to Fuzz Virtual Devices. In 31st USENIX Secu-
rity Symposium (Security ’22). USENIX Association, Boston, MA, 1221–1238.
https://www.usenix.org/conference/usenixsecurity22/presentation/bulekov

[8] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. 2020. SoK:
Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE
Systems. In 2020 IEEE Symposium on Security and Privacy (S&P ’20). 1416–1432.
https://doi.org/10.1109/SP40000.2020.00061

[9] Vitaly Chaykovsky. 2022. strace. https://strace.io.
[10] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise Detection of Side-Channel

Vulnerabilities Using Quantitative Cartesian Hoare Logic. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security (CCS
’17) (Dallas, Texas, USA). Association for Computing Machinery, 875–890. https:
//doi.org/10.1145/3133956.3134058

[11] Weilong Chen. 2014. net: �x "queues" uevent between network names-
paces. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=82ef3d5d5f3�d757c960693c4fe7a0051211849.

[12] Theo Combe, Antony Martin, and Roberto Di Pietro. 2016. To Docker or Not
to Docker: A Security Perspective. IEEE Cloud Computing 3, 5 (2016), 54–62.

439

https://doi.org/10.5281/zenodo.7240401
https://github.com/rssys/kit-artifact
https://github.com/rssys/kit-artifact
https://github.com/rssys/kit-artifact
https://github.com/rssys/kit-artifact
https://www.ndss-symposium.org/ndss-paper/chancel-efficient-multi-client-isolation-under-adversarial-programs/
https://www.ndss-symposium.org/ndss-paper/chancel-efficient-multi-client-isolation-under-adversarial-programs/
https://doi.org/10.1145/3445814.3446727
https://doi.org/10.1145/3445814.3446727
https://www.kernel.org/doc/Documentation/kselftest.txt
https://www.kernel.org/doc/Documentation/kselftest.txt
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://wiki.qemu.org/Documentation/QMP
https://wiki.qemu.org/Documentation/QMP
https://www.usenix.org/conference/usenixsecurity22/presentation/bulekov
https://doi.org/10.1109/SP40000.2020.00061
https://strace.io
https://doi.org/10.1145/3133956.3134058
https://doi.org/10.1145/3133956.3134058
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=82ef3d5d5f3ffd757c960693c4fe7a0051211849
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=82ef3d5d5f3ffd757c960693c4fe7a0051211849

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Congyu Liu, Sishuai Gong, and Pedro Fonseca

https://doi.org/10.1109/MCC.2016.100
[13] The MITRE Corporation. 2018. CVE-2018-14646. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2018-14646.
[14] The MITRE Corporation. 2018. CVE-2018-18955. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2018-18955.
[15] The MITRE Corporation. 2018. CVE-2018-6559. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2018-6559.
[16] The MITRE Corporation. 2019. CVE-2019-11815. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-11815.
[17] The MITRE Corporation. 2019. CVE-2019-20794. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-20794.
[18] The MITRE Corporation. 2020. CVE-2020-29373. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2020-29373.
[19] The MITRE Corporation. 2021. CVE-2021-38209. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-38209.
[20] The MITRE Corporation. 2022. CVE - CVE. https://cve.mitre.org.
[21] The MITRE Corporation. 2022. CVE-2022-0492. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2022-0492.
[22] Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng Yang,

Garth A. Gibson, and Randal E. Bryant. 2013. Parrot: A Practical Runtime for
Deterministic, Stable, and Reliable Threads. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP ’13) (Farminton, Penn-
sylvania). Association for Computing Machinery, New York, NY, USA, 388–405.
https://doi.org/10.1145/2517349.2522735

[23] Willem de Bruijn. 2019. ipv6: elide �owlabel check if no exclusive leases exist.
https://lists.openwall.net/netdev/2019/07/07/50.

[24] LTP developers. 2022. LTP - Linux Test Project. http://linux-test-project.github.
io.

[25] D. R. Engler, M. F. Kaashoek, and J. O’Toole. 1995. Exokernel: An Operating Sys-
tem Architecture for Application-Level Resource Management. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems Principles (SOSP ’95) (Copper
Mountain, Colorado, USA). Association for Computing Machinery, New York,
NY, USA, 251–266. https://doi.org/10.1145/224056.224076

[26] Roya Ensa�, Jong Chun Park, Deepak Kapur, and Jedidiah R. Crandall. 2010. Idle
Port Scanning and Non-interference Analysis of Network Protocol Stacks Using
Model Checking. In 19th USENIX Security Symposium (Security ’10). USENIX Asso-
ciation, Washington, DC. https://www.usenix.org/conference/usenixsecurity10/
idle-port-scanning-and-non-interference-analysis-network-protocol-stacks

[27] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017.
Komodo: Using Veri�cation to Disentangle Secure-Enclave Hardware from Soft-
ware. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP
’17) (Shanghai, China). Association for Computing Machinery, New York, NY,
USA, 287–305. https://doi.org/10.1145/3132747.3132782

[28] Beat Fluri, Michael Wursch, Martin PInzger, and Harald Gall. 2007. Change
Distilling:Tree Di�erencing for Fine-Grained Source Code Change Extraction.
IEEE Transactions on Software Engineering 33, 11 (2007), 725–743. https://doi.
org/10.1109/TSE.2007.70731

[29] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. 2011. Finding Complex Con-
currency Bugs in Large Multi-Threaded Applications. In Proceedings of the
Sixth Conference on Computer Systems (Eurosys’ 11) (Salzburg, Austria). As-
sociation for Computing Machinery, New York, NY, USA, 215–228. https:
//doi.org/10.1145/1966445.1966465

[30] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Brandenburg. 2014. SKI: Exposing
Kernel Concurrency Bugs through Systematic Schedule Exploration. In 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
’14). USENIX Association, Broom�eld, CO, 415–431. https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/fonseca

[31] Pedro Fonseca, Xi Wang, and Arvind Krishnamurthy. 2018. MultiNyx: A Multi-
Level Abstraction Framework for Systematic Analysis of Hypervisors. In Pro-
ceedings of the Thirteenth EuroSys Conference (Eurosys ’18) (Porto, Portugal).
Association for Computing Machinery, New York, NY, USA, Article 23, 12 pages.
https://doi.org/10.1145/3190508.3190529

[32] Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. 2017. An
Empirical Study on the Correctness of Formally Veri�ed Distributed Systems.
In Proceedings of the Twelfth EuroSys Conference (Eurosys ’17). Belgrade, Serbia.
https://dl.acm.org/doi/10.1145/3064176.3064183

[33] Inc. Free Software Foundation. 2022. GIMPLE (GNU Compiler Collection (GCC)
Internals). https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html.

[34] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis, and Haining
Wang. 2017. ContainerLeaks: Emerging Security Threats of Information Leakages
in Container Clouds. In 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’17). 237–248. https://doi.org/10.1109/
DSN.2017.49

[35] Xing Gao, Zhongshu Gu, Zhengfa Li, Hani Jamjoom, and Cong Wang. 2019. Hou-
dini’s Escape: Breaking the Resource Rein of Linux Control Groups. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’19) (London, United Kingdom). Association for Computing Machinery,
New York, NY, USA, 1073–1086. https://doi.org/10.1145/3319535.3354227

[36] Xinyang Ge, Ben Niu, Robert Brotzman, Yaohui Chen, HyungSeok Han, Patrice
Godefroid, and Weidong Cui. 2021. HyperFuzzer: An E�cient Hybrid Fuzzer for
Virtual CPUs. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’21) (Virtual Event, Republic of Korea). Association
for Computing Machinery, New York, NY, USA, 366–378. https://doi.org/10.
1145/3460120.3484748

[37] J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In
1982 IEEE Symposium on Security and Privacy. 11–11. https://doi.org/10.1109/SP.
1982.10014

[38] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and Petros Maniatis. 2021. Snow-
board: Finding Kernel Concurrency Bugs through Systematic Inter-Thread Com-
munication Analysis. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP ’21) (Virtual Event, Germany). Association
for Computing Machinery, New York, NY, USA, 66–83. https://doi.org/10.1145/
3477132.3483549

[39] Google. 2022. google/syzkaller: syzkaller is an unsupervised coverage-guided
kernel fuzzer. https://github.com/google/syzkaller.

[40] Google. 2022. The Kernel Address Sanitizer (KASAN). https://www.kernel.org/
doc/html/v4.14/dev-tools/kasan.html.

[41] Jesse Hertz. 2022. TriforceLinuxSyscallFuzzer. https://github.com/nccgroup/
TriforceLinuxSyscallFuzzer.

[42] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2016.
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
’16). USENIX Association, Savannah, GA, 533–549. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/hunt

[43] Docker Inc. 2022. Docker security | Docker Documentation. https://docs.docker.
com/engine/security/#kernel-namespaces.

[44] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and
Insik Shin. 2019. Razzer: Finding Kernel Race Bugs through Fuzzing. In 2019
IEEE Symposium on Security and Privacy (S&P ’19) (San Francisco, CA). 754–768.
https://doi.org/10.1109/SP.2019.00017

[45] Dave Jones. 2022. Trinity: Linux system call fuzzer. https://github.com/
kernelslacker/trinity.

[46] Michael Kerrisk. 2022. namespaces(7) — Linux manual page. https://man7.org/
linux/man-pages/man7/namespaces.7.html.

[47] Michael Kerrisk. 2022. network_namespaces(7) — Linux manual page. https:
//man7.org/linux/man-pages/man7/network_namespaces.7.html.

[48] Michael Kerrisk. 2022. syscalls(2) — Linux manual page. https://man7.org/linux/
man-pages/man2/syscalls.2.html.

[49] Michael Kerrisk. 2022. sysvipc(7) — Linux manual page. https://man7.org/linux/
man-pages/man7/sysvipc.7.html.

[50] Michael Kerrisk. 2022. veth(4) — Linux manual page. https://man7.org/linux/man-
pages/man4/veth.4.html.

[51] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In 27th
Annual Network andDistributed System Security Symposium (NDSS ’20) (SanDiego,
California, USA). The Internet Society. https://www.ndss-symposium.org/ndss-
paper/h�-hybrid-fuzzing-on-the-linux-kernel/

[52] KUnit. 2022. KUnit - Unit Testing for the Linux Kernel. https://kunit.dev/third_
party/kernel/docs/.

[53] Butler W. Lampson. 1973. A Note on the Con�nement Problem. Commun. ACM
16, 10 (oct 1973), 613–615. https://doi.org/10.1145/362375.362389

[54] Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. 2021. A
Secure and Formally Veri�ed Linux KVM Hypervisor. In 2021 IEEE Symposium
on Security and Privacy (S&P ’21) (San Francisco, CA). 1782–1799. https://doi.
org/10.1109/SP40001.2021.00049

[55] Xin Lin, Lingguang Lei, YuewuWang, Jiwu Jing, Kun Sun, andQuan Zhou. 2018. A
Measurement Study on Linux Container Security: Attacks and Countermeasures.
In Proceedings of the 34th Annual Computer Security Applications Conference
(ACSAC ’18) (San Juan, PR, USA). Association for Computing Machinery, New
York, NY, USA, 418–429. https://doi.org/10.1145/3274694.3274720

[56] Congyu Liu, Sishuai Gong, and Pedro Foseca. [n. d.]. Artifact of KIT: Testing
OS-Level Virtualization for Functional Interference Bugs. https://doi.org/10.
5281/zenodo.7240401

[57] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2011. Dthreads: E�cient
Deterministic Multithreading. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP ’11) (Cascais, Portugal). Association for
Computing Machinery, New York, NY, USA, 327–336. https://doi.org/10.1145/
2043556.2043587

[58] LOCKDEP 2006. ANNOUNCE: Lock validator. http://lwn.net/Articles/185605/.
[59] Canonical Ltd. 2022. Linux Containers. https://linuxcontainers.org/.
[60] Dirk Merkel. 2014. Docker: lightweight Linux containers for consistent develop-

ment and deployment. Linux Journal 2014 (2014), 2.
[61] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy Bourke,

Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. 2013. seL4: From General
Purpose to a Proof of Information Flow Enforcement. In 2013 IEEE Symposium
on Security and Privacy (S&P ’13) (San Francisco, CA). 415–429. https://doi.org/

440

https://doi.org/10.1109/MCC.2016.100
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14646
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14646
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18955
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18955
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6559
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11815
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20794
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-20794
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-29373
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-29373
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38209%20
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38209%20
https://cve.mitre.org
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0492%20
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0492%20
https://doi.org/10.1145/2517349.2522735
https://lists.openwall.net/netdev/2019/07/07/50
http://linux-test-project.github.io
http://linux-test-project.github.io
https://doi.org/10.1145/224056.224076
https://www.usenix.org/conference/usenixsecurity10/idle-port-scanning-and-non-interference-analysis-network-protocol-stacks
https://www.usenix.org/conference/usenixsecurity10/idle-port-scanning-and-non-interference-analysis-network-protocol-stacks
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1145/1966445.1966465
https://doi.org/10.1145/1966445.1966465
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/fonseca
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/fonseca
https://doi.org/10.1145/3190508.3190529
https://dl.acm.org/doi/10.1145/3064176.3064183
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://doi.org/10.1109/DSN.2017.49
https://doi.org/10.1109/DSN.2017.49
https://doi.org/10.1145/3319535.3354227
https://doi.org/10.1145/3460120.3484748
https://doi.org/10.1145/3460120.3484748
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/3477132.3483549
https://doi.org/10.1145/3477132.3483549
https://github.com/google/syzkaller
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
https://docs.docker.com/engine/security/#kernel-namespaces
https://docs.docker.com/engine/security/#kernel-namespaces
https://doi.org/10.1109/SP.2019.00017
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man7/network_namespaces.7.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man7/sysvipc.7.html
https://man7.org/linux/man-pages/man7/sysvipc.7.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://man7.org/linux/man-pages/man4/veth.4.html
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://kunit.dev/third_party/kernel/docs/
https://kunit.dev/third_party/kernel/docs/
https://doi.org/10.1145/362375.362389
https://doi.org/10.1109/SP40001.2021.00049
https://doi.org/10.1109/SP40001.2021.00049
https://doi.org/10.1145/3274694.3274720
https://doi.org/10.5281/zenodo.7240401
https://doi.org/10.5281/zenodo.7240401
https://doi.org/10.1145/2043556.2043587
https://doi.org/10.1145/2043556.2043587
http://lwn.net/Articles/185605/
https://linuxcontainers.org/
https://doi.org/10.1109/SP.2013.35
https://doi.org/10.1109/SP.2013.35
https://doi.org/10.1109/SP.2013.35

KIT: Testing OS-Level Virtualization for Functional Interference Bugs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

10.1109/SP.2013.35
[62] Nagarathnam Muthusamy. [n. d.]. ipc/msg: Fix msgctl(..., IPC_STAT,

...) between pid namespaces. https://github.com/torvalds/linux/commit/
39a4940eaa185910bb802ca9829c12268fd2c855.

[63] Jaehyun Nam, Seungsoo Lee, Hyunmin Seo, Phil Porras, Vinod Yegneswaran,
and Seungwon Shin. 2020. BASTION: A Security Enforcement Network Stack
for Container Networks. In 2020 USENIX Annual Technical Conference (ATC
’20). USENIX Association, 81–95. https://www.usenix.org/conference/atc20/
presentation/nam

[64] Omar S. Navarro Leija, Kelly Shiptoski, Ryan G. Scott, Baojun Wang, Nicholas
Renner, Ryan R. Newton, and Joseph Devietti. 2020. Reproducible Contain-
ers. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’20) (Lau-
sanne, Switzerland). Association for Computing Machinery, New York, NY, USA,
167–182. https://doi.org/10.1145/3373376.3378519

[65] Shirin Nilizadeh, Yannic Noller, and Corina S. Păsăreanu. 2019. DifFuzz: Di�er-
ential Fuzzing for Side-Channel Analysis. In Proceedings of the 41st International
Conference on Software Engineering (ICSE ’19) (Montreal, Quebec, Canada). IEEE
Press, 176–187. https://doi.org/10.1109/ICSE.2019.00034

[66] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Opti-
mizing OS Fuzzer Seed Selection with Trace Distillation. In 27th USENIX Se-
curity Symposium (Security ’18). USENIX Association, Baltimore, MD, 729–743.
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor

[67] The Chromium Projects. 2022. QUIC, a multiplexed transport over UDP. https:
//www.chromium.org/quic/.

[68] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wör-ner, and
Thorsten Holz. 2021. Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots
and A�ne Types. In 30th USENIX Security Symposium (Security ’21). USENIX
Association, 2597–2614. https://www.usenix.org/conference/usenixsecurity21/
presentation/schumilo

[69] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel,
and Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS
Kernels. In 26th USENIX Security Symposium (Security ’17). USENIX Association,
Vancouver, BC, 167–182. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/schumilo

[70] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi, and
Thorsten Holz. 2022. Nyx-Net: Network Fuzzing with Incremental Snapshots. In
Proceedings of the Seventeenth European Conference on Computer Systems (EuroSys
’22) (Rennes, France). Association for Computing Machinery, New York, NY, USA,
166–180. https://doi.org/10.1145/3492321.3519591

[71] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
Data Analytics in the Cloud Using SGX. In 2015 IEEE Symposium on Security and
Privacy (S&P ’15). 38–54. https://doi.org/10.1109/SP.2015.10

[72] Ben Segall. 2022. pidns: �x set/getpriority and ioprio_set/get in PRIO_USER
mode. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=8639b46139b0e4ea3b1ab1c274e410ee327f1d89.

[73] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina De-
limitrou, Robbert Van Renesse, and Hakim Weatherspoon. 2019. X-Containers:
Breaking Down Barriers to Improve Performance and Isolation of Cloud-Native
Containers. In Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS
’19) (Providence, RI, USA). Association for Computing Machinery, New York, NY,
USA, 121–135. https://doi.org/10.1145/3297858.3304016

[74] Rui Shu, Xiaohui Gu, and William Enck. 2017. A Study of Security Vulnera-
bilities on Docker Hub. In Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy (CODASPY ’17) (Scottsdale, Arizona,
USA). Association for Computing Machinery, New York, NY, USA, 269–280.
https://doi.org/10.1145/3029806.3029832

[75] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Bornholt, Em-
ina Torlak, and Xi Wang. 2018. Nickel: A Framework for Design and Veri�-
cation of Information Flow Control Systems. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’18). USENIX Association,
Carlsbad, CA, 287–305. http://www.usenix.org/conference/osdi18/presentation/
sigurbjarnarson

[76] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting Chen, and
Aiguo Cui. 2021. HEALER: Relation Learning Guided Kernel Fuzzing. In Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP
’21) (Virtual Event, Germany). Association for Computing Machinery, New York,
NY, USA, 344–358. https://doi.org/10.1145/3477132.3483547

[77] Yuqiong Sun, David Sa�ord, Mimi Zohar, Dimitrios Pendarakis, Zhongshu Gu,
and Trent Jaeger. 2018. Security Namespace: Making Linux Security Frame-
works Available to Containers. In 27th USENIX Security Symposium (Security
’18). USENIX Association, Baltimore, MD, 1423–1439. https://www.usenix.org/
conference/usenixsecurity18/presentation/sun

[78] Byungchul Tak, Canturk Isci, Sastry Duri, Nilton Bila, Shripad Nadgowda, and
James Doran. 2017. Understanding Security Implications of Using Containers
in the Cloud. In 2017 USENIX Annual Technical Conference (ATC ’17). USENIX
Association, Santa Clara, CA, 313–319. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/tak

[79] KUWAZAWA Takuya. 2017. net�lter: ipvs: Fix inappropriate output
of procfs. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=c5504f724c86ee925e7�b80aa342cfd57959b13.

[80] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci. 2018. Cntr:
Lightweight OS Containers. In 2018 USENIX Annual Technical Conference (ATC
’18). USENIX Association, Boston, MA, 199–212. https://www.usenix.org/
conference/atc18/presentation/thalheim

[81] Andrei Vagin. 2017. net/unix: don’t show information about sockets from other
namespaces. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=0f5da659d8f18.

[82] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. 2020. Krace:
Data Race Fuzzing for Kernel File Systems. In 2020 IEEE Symposium on Security
and Privacy (S&P ’20) (San Francisco, CA). 1643–1660. https://doi.org/10.1109/
SP40000.2020.00078

[83] Nanzi Yang, Wenbo Shen, Jinku Li, Yutian Yang, Kangjie Lu, Jietao Xiao, Tianyu
Zhou, Chenggang Qin, Wang Yu, Jianfeng Ma, and Kui Ren. 2021. Demons in the
Shared Kernel: Abstract Resource Attacks Against OS-Level Virtualization. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’21) (Virtual Event, Republic of Korea). Association for Computing
Machinery, 764–778. https://doi.org/10.1145/3460120.3484744

[84] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M. Gonzalez-Barahona.
2019. On the Relation between Outdated Docker Containers, Severity Vulnera-
bilities, and Bugs. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER ’19). 491–501. https://doi.org/10.1109/
SANER.2019.8668013

[85] Liping Zhang. 2022. net�lter: conntrack: do not dump other netns’s conntrack
entries via proc. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=e77e6�502ea3d193872b5b9033bfd9717b36447.

[86] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M. Azab,
and Ruowen Wang. 2019. PeX: A Permission Check Analysis Framework for
Linux Kernel. In 28th USENIX Security Symposium (Security ’19). USENIX As-
sociation, Santa Clara, CA, 1205–1220. https://www.usenix.org/conference/
usenixsecurity19/presentation/zhang-tong

[87] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. 2021. On-Demand-Fork: A
Microsecond Fork for Memory-Intensive and Latency-Sensitive Applications. In
Proceedings of the Sixteenth European Conference on Computer Systems (EuroSys
’21) (Online Event, United Kingdom). Association for Computing Machinery, New
York, NY, USA, 540–555. https://doi.org/10.1145/3447786.3456258

[88] Wenjia Zhao, Kangjie Lu, Yong Qi, and Saiyu Qi. 2020. MPTEE: Bringing Flexible
and E�cient Memory Protection to Intel SGX. In Proceedings of the Fifteenth
European Conference on Computer Systems (EuroSys ’20) (Heraklion, Greece).
Association for Computing Machinery, New York, NY, USA, Article 18, 15 pages.
https://doi.org/10.1145/3342195.3387536

Received 2022-07-07; accepted 2022-09-22

441

https://doi.org/10.1109/SP.2013.35
https://doi.org/10.1109/SP.2013.35
https://github.com/torvalds/linux/commit/39a4940eaa185910bb802ca9829c12268fd2c855
https://github.com/torvalds/linux/commit/39a4940eaa185910bb802ca9829c12268fd2c855
https://www.usenix.org/conference/atc20/presentation/nam
https://www.usenix.org/conference/atc20/presentation/nam
https://doi.org/10.1145/3373376.3378519
https://doi.org/10.1109/ICSE.2019.00034
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://www.chromium.org/quic/
https://www.chromium.org/quic/
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://doi.org/10.1145/3492321.3519591
https://doi.org/10.1109/SP.2015.10
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8639b46139b0e4ea3b1ab1c274e410ee327f1d89
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8639b46139b0e4ea3b1ab1c274e410ee327f1d89
https://doi.org/10.1145/3297858.3304016
https://doi.org/10.1145/3029806.3029832
http://www.usenix.org/conference/osdi18/presentation/sigurbjarnarson
http://www.usenix.org/conference/osdi18/presentation/sigurbjarnarson
https://doi.org/10.1145/3477132.3483547
https://www.usenix.org/conference/usenixsecurity18/presentation/sun
https://www.usenix.org/conference/usenixsecurity18/presentation/sun
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tak
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c5504f724c86ee925e7ffb80aa342cfd57959b13
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c5504f724c86ee925e7ffb80aa342cfd57959b13
https://www.usenix.org/conference/atc18/presentation/thalheim
https://www.usenix.org/conference/atc18/presentation/thalheim
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0f5da659d8f18
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=0f5da659d8f18
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1145/3460120.3484744
https://doi.org/10.1109/SANER.2019.8668013
https://doi.org/10.1109/SANER.2019.8668013
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e77e6ff502ea3d193872b5b9033bfd9717b36447
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e77e6ff502ea3d193872b5b9033bfd9717b36447
https://www.usenix.org/conference/usenixsecurity19/presentation/zhang-tong
https://www.usenix.org/conference/usenixsecurity19/presentation/zhang-tong
https://doi.org/10.1145/3447786.3456258
https://doi.org/10.1145/3342195.3387536

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Linux Namespaces
	2.2 Testing Kernel Resource Isolation
	2.3 Functional Interference Detection

	3 Practical Functional Interference Testing
	3.1 Efficient Test Case Generation
	3.2 Effective Functional Interference Bug Detection

	4 KIT Design
	4.1 Test Case Generation
	4.2 Test Case Execution
	4.3 Functional Interference Bug Detection
	4.4 Test Report Aggregation

	5 Implementation
	5.1 Test Case Generation
	5.2 Test Case Execution
	5.3 Functional Interference Bug Detection

	6 Evaluation
	6.1 Finding Functional Interference Bugs
	6.2 Detecting Known Isolation Bugs
	6.3 Test Case Generation
	6.4 Distilling Test Reports
	6.5 Performance

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results

	References

