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coverage [23, 30, 46]. In fact, even sequential test input gener-
ation, which generally has a smaller search space, is haunted
by e�ciency challenges. For example, Syzkaller, a mature
feedback-based kernel fuzzing tool, may need to execute
thousands of random sequential inputs before �nding one
that increases coverage [53, 61]. Moreover, the chance of
�nding tests that increase the overall coverage drops sig-
ni�cantly throughout a fuzzing campaign, making the test
execution stage even more wasteful [30, 53, 61].

Thus, there is an opportunity to prioritize interesting con-
currency tests and �lter out less interesting ones to curtail the
large waste in CPU and wall-clock times from fruitless dy-
namic executions. Instruction schedules likely to exercise
previously uncovered code blocks can be prioritized over
schedules that exercise previously observed blocks. This is
the quest we embark on in this work. In prior work, one plan
of attack is to choose likely-to-be-fruitful concurrency tests
at construction, and another is to estimate a reward metric
for a test after construction but before execution to �lter
appropriately. We summarize examples of each.
Since it is known that e�ective concurrent inputs should

exercise diverse kernel inter-thread data �ows [19, 36, 42,
68], static analysis is sometimes used to reason about data
�ows that would be triggered by an input. Unfortunately,
because real-world kernels are complex, traditional analysis
approaches face limitations in either accuracy [12, 25, 44, 60]
or scalability [7, 23, 30, 37, 48, 70].
Thus, heuristics that do not require heavy analysis are

used [19, 34, 68]. For example, Snowboard [19], our previous
system, prioritizes the tests of concurrent test inputs whose
two constituent sequential inputs both touched the same
memory when executing single-threaded, as those are likely
to exhibit inter-thread data �ow when run together. Finding
e�ective schedules is also challenging due to the massive
interleaving space [39, 41, 42]. A kernel concurrent test can
run concurrently tens of thousands of instructions from each
thread [17], making it infeasible to enumerate all possible
interleavings. Hence, a targeted approach is necessary that
�nds and prioritizes interleavings exercising unique concur-
rent behaviors. Exhaustively analyzing the consequences
(e.g., coverage, data �ows, etc.) of interleaved instructions
from multiple threads requires formal approaches, such as
model checking [33, 58, 67]. However, these approaches do
not scale well to low-level, complex systems, such as the ker-
nel. In practice, constrained random schedulers [6, 17, 18]
that only invoke a �xed number of thread switches per ex-
ecution are commonly used. The limit on thread switches
helps prune the interleaving space, enabling more systematic
exploration.

Our work is inspired by the dramatic advances of machine
learning (ML) towards code understanding. We propose gen-
eral and automatic techniques that estimate whether a con-
currency test is likely to be fruitful. ML approaches have been
used before for software and hardware testing. Neuzz [50]

showed that neural networks can learn and predict appli-
cation edge coverage given the test input. Given the byte
sequences of the test input, Neuzz identi�es promising bytes
that should be mutated for higher coverage. Design2vec [56]
further shows that the control and data �ow graph of the
testing target (hardware in Verilog RTL [66]) can be used
by a model to predict test coverage. The success of Neuzz
and Design2vec on hardware designs and small-scale applica-
tions suggests that ML models may accurately and e�ciently
predict the execution of concurrent kernels.

However, new challenges arise when applying an ML ap-
proach to analyze concurrent kernels. First, representing ker-
nel test inputs—recall, these are userspace programs invok-
ing sequences of system calls—in byte sequences, as Neuzz
and Design2vec do, would make it hard for the model to
learn because of the extremely long execution paths of ker-
nel APIs. Before analyzing the consequences of interleaved
instructions, the model would have to infer the system call
speci�cation [22], entry points of di�erent APIs [1, 8, 30],
execution paths of system calls [4, 30, 67], and then poten-
tial interactions between threads [19], among others, exclu-
sively from the plain input byte sequence. Every task in this
pipeline is known to be notoriously challenging and often
requires specialized approaches to address; it is unrealistic to
expect current ML techniques to solve them all in one shot.
Second, presenting the whole kernel’s control and data

�ow graph, which contains millions of code blocks1, to a
model, as Design2vec does, will incur severe scalability and
latency problems. As shown previously [69], when the input
graph is large (e.g., over 2M nodes), one model inference can
take almost 3 seconds. This time cost is already close to the
time of a dynamic execution, which takes about 2.8 seconds
per run (§5.2.2), and would cancel most of the bene�ts of a
predictive technique. These two challenges motivate a new
design of both input representation and model to target the
unique case of kernel concurrency testing.

This paper proposes S������, a kernel concurrency test-
ing framework that prioritizes schedules and test inputs us-
ing a learned kernel coverage predictor. The predictor uses a
graph neural network model trained to predict whether cer-
tain concurrency-sensitive kernel blocks will execute, if the
kernel runs a concurrent test input under a given schedule.
Importantly, the predictor is designed to be e�cient so that it
can perform many predictions in the time it takes to execute
a single concurrency test, and can, therefore, yield higher
end-to-end testing e�ectiveness than state-of-art tools, even
when considering the model training cost.

S������ identi�es a set of concurrency-sensitive code
blocks that are particularly interesting to predict. Our key
observation is that traditional analysis approaches usually
struggle to analyze uncovered reachable blocks when a con-
current test input runs under di�erent interleavings. These

1A compiled 6.1 kernel has 2.7M blocks
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two scheduling hints marked by thread-switch-point instruc-
tions�.G and ⌫.~. The concurrent-test execution system will
(try to) enforce these two hints by starting with the �rst
instruction of �, executing � up to instruction G , and then
yielding to thread ⌫. Thread ⌫ will then execute from its
�rst instruction up until it reaches instruction ~, at which
point it will yield back to �. � will then continue from the
instruction following G . It is meaningful to have more than
two scheduling hints, but we con�gure S������ to set two
scheduling hints per CT because they are su�cient for dis-
covering most concurrency bugs [42]. A similar setting is
also used in related work [15, 17, 25].
We call these scheduling instructions “scheduling hints”

because the actual interleaving exercised might be di�erent
from what was hinted. For example, SKI [17] will skip a
thread switch if the thread-switch-point is not encountered,
or will invoke additional switches if it detects deadlocks (e.g.,
a thread switch happens in the critical section).
Our graph representation captures the scheduling hints

in the above example, by connecting a scheduling hint edge
from the block containing instruction �.G to the �rst block
of ⌫, and a second edge from the block containing ⌫.~ back
to the block containing �.G ; note that this is a simpli�cation
of the case where the successor instruction of �.G lies in a
di�erent block from �.G , and it essentially tells the model to
“�nish the block it was executing before the yield”.

3.2 PIC Model Architecture
The goal of the per-interleaving coverage (PIC) predictor is to
predict which, if any, of the URBs and SCBs of the two threads
are covered. The model is trained using actual dynamic tests
and their observed coverage upon completion. Speci�cally,
training examples consist of input/target pairs < G8 ,~8 >,
where G8 is the CT graph (§3.1), and ~8 is an assignment of
COVERED/UNCOVERED to the vertices of G8 .

More precisely, G8 is a graph (+8 , ⇢8 ), where the vertices are
+8 = ⇠8 [*8 (the SCBs and URBs, respectively), and the edges
are ⇢8 = (8[%8[⇡8[�8[�8 (the sequential control �ow edges,
the intra-thread data �ow edges, the possible control �ow
edges to uncovered blocks, the inter-thread possible data �ow
edges, and the scheduling hint edges, respectively). Similarly,
8E 2 +8 ,~8 [E] 2 {COVERED, UNCOVERED} (covered/uncovered
under the concurrent execution).
S������ uses a model architecture that consists of two

major modules. First, a sequence model (BERT) [11] that is
responsible for generating embeddings of code blocks based
on their assembly code. Second, a graph neural network
(GNN) [49] that takes the graph as input, learns relationships
between embeddings of code blocks and performs a binary
classi�cation on every node (code block) in the graph.
Since the graph neural network architectures we use are

standard, we just outline the GNN “interface” here. It can be
seen as a parametric function that predicts targets ~̂ from
input graphs G , GNN(G ; Emb(.);\GNN) = ~̂, where \GNN are

the learnable parameters of the model, and Emb is an input
embedding function of the graph features into vectors of
�oating-point numbers, so that they can be used readily by
the GNN. Recall that our graph features (besides the graph
structure itself) are the vertex and edge types, and the text
representation of a vertex (block) as assembly.

To embed vertex and edge types, we use a simple learnable
embedding matrix that maps types to learnable parameters
\Emb, one per type (2 types of vertices, 5 types of edges).

To embed the assembly text asm, we use a standard BERT-
like encoder (an instance of a Transformer [57]), pre-trained
on all assembly code in the Linux kernel. We treat all assem-
bly as text, but elide any numerical tokens, such as register
o�sets, since they do not provide much useful signal to the
model, and their semantics (e.g., memory accesses) are cap-
tured by other features in our graphs already. We then pre-
train BERT with this preprocessed assembly text, to learn a
BERTasm (asm;\BERT) function in the standard way [11] (i.e.,
training on a masked language model objective). We use this
BERT-on-assembly encoder as the embedding function for
the assembly feature of every vertex in the graph.
In summary, the learnable parameters of our model are

\GNN for the GNN itself, \BERT for the Assembly encoder, and
\Emb for the 2 vertex and 5 edge types. Note that \BERT is
pre-trained once, since what looks like “natural” assembly
code does not change much from kernel version to version.
However, we do �ne-tune these parameters during the train-
ing of the GNN whenever a new PIC model is trained on a
new kernel version.

We train the GNN by minimizing the binary cross-entropy
loss between the predicted coverage ~̂8 and the ground truth
~8 of all blocks. We compute the binary cross entropy be-
tween target and prediction in each graph example �rst, and
the model minimizes it across the examples of the training
population.

3.3 Predicted-Coverage-Guided Concurrency Testing
Once the PIC model is trained, S������ can use it to predict
the block coverage of new CT candidates that consist of new
CTIs and schedules. This section introduces how S������
selects interesting schedules and CTIs for dynamic execu-
tions based on the predicted block coverage.
S������ can use an external interleaving exploration

tool to propose new schedules (scheduling hints) and then
S������ generates the graph CT of these new candidates to
get the predicted block coverage from the PIC model. Finally,
S������ applies a prioritization strategy on the predicted
coverage and only executes the CT if it is interesting under
the strategy.

S������ uses one of three strategies to select interesting
CT candidates based on the predicted SCB and URB coverage.
Their e�ectiveness in �nding e�ective schedules and CTIs is
evaluated in §5.3 and §5.6.2.
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S1: New set of positive blocks. Under this strategy, a
CT is interesting if it can trigger a new predicted coverage
bitmap (sequence of block-coverage Booleans) that has not
been observed before. The intuition is that new coverage
roughly determines a control�ow change, even if it does not
necessarily cover any new individual blocks. To avoid future
CTs that produce the same coverage, S������ remembers
the predicted block coverage of each previously chosen CT.

S2: New positive blocks. Under this strategy, a CT is in-
teresting and selected if the predicted URB and SCB coverage
contains at least one code block that has not been observed
before. Similar to S1, S������ remembers predicted-to-be-
covered code blocks of every CT it selects, so future CTs can
be evaluated.
S3: Positive blocks with limited trials. This strategy

limits the number of executions that each positive code block
can be attempted. On the one hand, a trial limit higher than
1 can encourage a code block to be attempted several times
(e.g., in di�erent calling stacks). On the other hand, the trial
limit will prevent S������ from trying too many CTs on
blocks that might be false positives produced by the model.

4 Implementation
Concurrent test candidate representation. S������
uses Syzkaller to generate and execute sequential test inputs
(STIs). During the STI execution, S������ collects neces-
sary information such as the SCB control �ow. S������ uses
Angr [52] to build the kernel CFG, which is necessary for
URBs identi�cation. In total, we wrote ⇠2.5K LOC in Python
for converting a concurrent test candidate to an input graph
to the model.
Graph dataset collection. To label graphs for training and
evaluation, S������ modi�es SKI—a customized QEMU
emulator that applies PCT [6] interleaving exploration on
the guest kernel—to dynamically execute and pro�le the
concurrent test candidates, so the block coverage can be
collected and used for labeling all nodes in the graph. ⇠0.5K
LOC in C is added to SKI to instrument the guest kernel
executions for trace collection. Around 1K Python code and
0.2K LOC Bash scripts are implemented for automating and
distributing data collection.
Model training and evaluation. The assembly code em-
bedding module is a RoBERTa model trained using the frame-
work fairseq [45]. The GNNmodule is a GCN [32] implemen-
tation from the Pytorch Geometric framework [14]. In total,
about 1K LOC in Python is implemented for training the PIC
model; 5K LOC Python code and 0.5K LOC Bash scripts for
the evaluation.
Kernel concurrency testing. The evaluation of S������
uses existing kernel concurrency testing tools including SKI,
Razzer and Snowboard. About 1K LOC Python code and

500 LOC C code are implemented to integrate the coverage
predictor and perform concurrent test candidates selection.

5 Evaluation
The section evaluates the e�ectiveness and e�ciency of
S������ in kernel concurrency testing with respect to ex-
isting testing tools. Speci�cally, it seeks to answer four ques-
tions:
RQ1: Can the PIC model accurately predict the coverage of

URBs in concurrent kernel executions? (§5.2)
RQ2: Can S������ identify more e�ective test candidates

given a budget by using the coverage predictor? (§5.3)
RQ3: Can the cost of S������ amortize well as kernels

evolve? (§5.4)
RQ4: Is the PIC model bene�cial to existing testing work-

�ows? (§5.6)

Setup overview. We evaluated S������ on Linux kernels
5.12, 5.13, and 6.1. First, we focus on Linux kernel 5.12 for
the initial proof of concept. We train, tune, and evaluate PIC
models on Linux 5.12 data. Second, Linux kernels 6.1 and 5.13
are used to study the generalization ability of PIC, in which
di�erent retraining trade-o�s are studied. The experimental
platform details are described in §A.1.

5.1 PIC Model Training
We now describe our training methodology, given the PIC
architecture (§3.2).

5.1.1 Dataset Construction. Although it is important to
produce datasets to evaluate RQ1 (a typical ML microbench-
mark evaluation), we are also interested in how S������
can be used in “practical” settings, as per the remaining RQs.
This means that the “test” period for the model is signi�-
cantly longer than the training and validation period. We
have therefore constructed training/validation/evaluation3
datasets that deviate from the typical 90%/5%/5% example
mix in ML research.
Speci�cally, we collected 44,686 concurrent test inputs

(CTIs) (i.e., random pairs of sequential test inputs (STIs))
from SKI, on Linux kernel 5.12, and we split them into 21,621
training CTIs, 2,702 validation CTIs, and 20,363 evaluation
CTIs. We then produced 64 interleavings for the training
and validation CTIs, and 1000 for the evaluation CTIs; the
much higher number of interleavings for evaluation CTIs
was meant to facilitate experiments where we want to give
S������ the ability to search for good schedules for a long
time, beyond what a typical tool like SKI might do. When
projected to our block-oriented graphs, this resulted in, on
average, 64 unique interleavings per CTI for training and
validation, and 953 unique interleavings for evaluation, for

3Note that we use the term evaluation for what is typically called the test
split in ML research, because all our examples are “tests” and it would be
confusing to use the same term for two concepts.
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a total of 1.37M, 0.17M, and 19.05M graphs across the three
dataset splits. A CT graph contains, on average, 9.7K vertices
(2.4KURBs and 7.3K SCBs), and 14.1K edges (8.4K SCB control
�ow, 4.2K URB control �ow, 1K intra-thread data �ow, 0.6K
inter-thread data �ow, and always 2 scheduling hint edges).

We also augmented our graphs with shortcut edges—edges
that connect vertices that are : sequential control-�ow edges
apart—which is a common “densi�cation” technique that
improves model performance on code GNNs [56].

5.1.2 Model Tuning. To train PIC, we explored 80 di�er-
ent sets of hyperparameters (see §A.2), trained for 5 epochs.
We then chose the model training checkpoint with the high-
est Average Precision (AP) [63]; AP computes the mean pre-
cision (true positive predictions divided by all positive pre-
dictions) over all recall values.4 This gives a metric of the
“goodness” of a model across all tuning points. The model
with the highest AP is called PIC-5. To favor positive pre-
dictions on “surprising” blocks, we computed AP over URBs
only when selecting hyperparameters.

One interesting observation from this hyperparameter ex-
ploration is that PIC models that have deeper GNN modules
can achieve higher performance; the number of layers of a
GNN is roughly equivalent to from “how far” in the graph
information is gathered before making a decision about a
vertex. In our case, this observation indicates that analyzing
concurrent executions requires considering broader control
and data �ows.
PIC-5 was then tuned to choose a threshold for the pre-

dicted classi�cation probability. We chose the threshold with
the highest mean F2 score [64] on graph URBs over the vali-
dation dataset. We chose F2 because it favors a higher recall
over a higher precision.

5.2 PIC Model Performance
5.2.1 Model accuracy. The performance of PIC-5, under
the tuned threshold, is evaluated using several binary clas-
si�cation metrics [64, 65] on the evaluation dataset (§5.1.1).
Due to the lack of advanced analysis approaches that are
comparable to the PIC model, several baseline approaches
are proposed and used for comparison:

• All blocks as positive predictor (All pos) predicts
every node in the graph as positive. This predictor
represents a simple static analysis approach.

• Random binary predictor (Fair coin) predicts every
node in the graph as positive with a probability of 50%.

• Biased random binary predictor (Biased coin) pre-
dicts nodes in the graph as positive with a probability
of 1.1%. This is the average frequency of positive URBs
in our training graphs.

4A classi�er typically predicts a probability of positive result. A tunable
threshold determines when a prediction is reported as positive. The thresh-
old can be tuned to output fewer but higher-con�dence positive predictions,
trading o� precision and recall.

Predictor F1 Precision Recall Accuracy BA
PIC-5 55.13% 48.34% 69.18% 99.01% 84.47%
All pos 2.17% 1.11% 99.55% 1.11% 49.77%
Fair coin 2.14% 1.10% 49.76% 49.99% 50.00%
Biased coin 1.02% 1.11% 1.17% 97.74% 50.22%

Table 1.URBs predictor performance. Averagemetrics across
all graphs. BA stands for balanced accuracy.

Table 1 presents results on URBs in each graph. All pos has
extremely low accuracy while Fair coin and Biased coin have
much trouble with precision. The root cause of their bad
performance is that positive/negative labels are extremely
skewed for URBs. In other words, most URBs are actually not
covered during the concurrent executions, so naive baselines
cannot predict accurately.
PIC-5 achieves much better performance across metrics.

First, its accuracy is satisfying. Considering the accuracy is
now dominated by the true negative rate due to the skewed
label distribution, the high accuracy indicates that PIC-5 has
a high true negative rate—it can accurately identify URBs
that are actually not-covered during concurrent executions.
Second, PIC-5 outperforms the baselines by two-digit mar-
gins on precision and recall. It is expected that the precision
and recall are a bit lower than accuracy because the former
two metrics re�ect how well the predictor can correctly iden-
tify the actually-covered URBs, which is more challenging
than identifying the actually-not-covered ones.
We show results here for just URBs, because they are a

harder target subpopulation, but we also show results on the
full set of blocks in §A.3, and they look similar.

5.2.2 Inference cost. The PIC model can make predic-
tions fast once trained and deployed for inference. On our
inference machines, it takes on average 0.015 seconds to
predict the coverage for one CT candidate. In contrast, one
dynamic execution of a candidate takes 2.8 seconds because
of the heavy instrumentation for thread serialization and
bug detection. In other words, S������ is able to predict
coverage for 190 test candidates in the same time it takes
to run one dynamic execution. This favorable performance
asymmetry, balanced with reasonable precision and recall
of PIC, explains our positive end-to-end e�ciency results in
the rest of this section.

5.3 Selecting Interesting Schedules with PIC
S������ integrates the PIC model into SKI, which uses the
PCT algorithm to explore interleavings. By combining PCT
with PIC to select promising interleavings according to our
selection strategies (§3.3), we build the MLPCT exploration
algorithm. The e�ectiveness of S������ hinges both on the
predictive power of PIC, and on the choice of the selection
strategy. This section studies the impact of MLPCT towards
achieving high coverage, compared to SKI using PCT. Two
metrics are proposed:
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• Data-race-coverage measures the number of unique
possible data races found by a data race detector (an
implementation of DataCollider [13]) in explored in-
terleavings.

• Schedule-dependent block coverage measures the num-
ber of unique code blocks under concurrent executions
excluding all SCBs of the concurrent test. Higher block
coverage implies both that more kernel behaviors are
explored, but also that concurrency-dependent behav-
iors are being explored, which is the goal of this work.

We study both kinds of exploration goodness under two
scenarios: (a) given a CTI, what is the maximum cover-
age metric we can get (§5.3.1), and (b) given a stream of
CTIs, what is the maximum cumulative coverage we can get
(§5.3.2). Both experiments focus on testing Linux kernel 5.12
and PIC-5 is used by MLPCT .

5.3.1 Coverage Improvement Per CTI. For this exper-
iment, we choose a random CTI, and then explore it using
SKI as well as our MLPCT /SKI variants. We use a budget of
50 dynamic executions for both, but also cap the number of
PIC inferences to 1,600. We do this for 1.3K CTIs, and we
report coverage increase averaged over all inputs.
Most MLPCT strategies perform better than PCT (10% to

20%more data races and 6.5% to 25.8%more covered schedule-
dependent code blocks), showing that MLPCT can identify
more fruitful interleavings for actual dynamic executions.
We have also studied how increasing this budget all the

way to 200 a�ects the MLPCT bene�t. As the original PCT
now executes more dynamic tests, it gets closer to a satu-
ration point, so MLPCT has less headroom to shine. This is
consistent with observations in the original SKI work [17]
about the number of useful unique schedules for a single
CTI. Appendix A.4 shows more detail.

5.3.2 Cumulative Coverage Improvement. In this ex-
periment, we seek to achieve the highest coverage by run-
ning SKI and our ML-enabled variants on a stream of PCT-
generated CTIs, each receiving a budget of 50 dynamic test
executions. Unlike the experiment in §5.3.1, earlier CTIs have
a larger “unexplored” coverage map, but as more CTIs and
their interleavings are tested, that coverage saturates.
As shown in Figure 5a, most MLPCT strategies reach

higher coverage in terms of unique data races sooner than
SKI (up to 10%). As an illustrative example, SKI took 304
hours to reach 3,500 unique possible data races, whereas
the best S������ strategy S1 took only 155 hours. Strategy
S2 seems to be overly conservative: it only selects sched-
ules that are predicted to execute at least one uncovered
code block (§3.3), but because we cap inferences at 1,600, it
runs out before it reaches all 50 dynamic executions. This
is understandable considering the skewed distribution of

(a) Testing Linux kernel 5.12
using PIC-5

(b) Testing Linux kernel 6.1
using PIC-5

(c) Testing Linux kernel 6.1
using PIC-6.ft.sml

(d) Testing Linux kernel 6.1
using PIC-6.ft.med

(e) Testing Linux kernel 6.1
using PIC-6.fs.med

(f) Testing Linux kernel 5.13
using PIC-5 and PIC-5.13.ft.sml

Figure 5. Data-race-coverage history comparison between
PCT andMLPCT . Varied total numbers of data races between
�gures are due to the non-deterministic random CTI and
schedule generation.

positive URBs. Other strategies explore new, unexplored cov-
erage maps (i.e., combinations of covered URBs and SCBs),
achieving higher coverage faster.

Generally, SKI/PCT requires 100–200 more hours to reach
the sameData-race-coverage size asMLPCT . While this result
is very encouraging, it comes with a high start-up cost: PIC-
5 took 240 hours of data collection and training to achieve
its performance. We next turn to understanding how this
start-up cost can be amortized as the kernel evolves.

5.4 Adapting to Newer Kernels
If every time a new Linux kernel comes out, we have to
spend 240 hours training to save 100 hours from data-race
discovery, the cost/bene�t balance would not be favorable.
In this section we seek to understand how little (re)training
we can get away with, as we move from kernel version to
kernel version, hoping to achieve an amortization point.
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Name Retrain
method

Data
Collection (h) Training (h) Total

Adaptation (h)

PIC-6.ft.sml �ne tune 15.4 12.7 28.1
PIC-6.ft.med �ne tune 61.7 50.3 112.0
PIC-6.fs.sml from scratch 15.4 12.5 27.9
PIC-6.fs.med from scratch 61.7 49.3 111.0
PIC-5 None 0.0 0.0 0.0
PIC-5.13.ft.sml �ne tune 15.1 12.5 27.6

Table 2. Retraining time cost (hours) of PIC models that are
used to test Linux kernel 6.1 and 5.13.

We conduct an experiment that tests a new kernel—Linux
kernel 6.1 (released about 18 months after version 5.12 with
numerous changes)—using 4 new PIC models. These 4 mod-
els are trained on newly collected training data. We collect
such data by generating new CTIs for Linux kernel 6.1, se-
lecting a number of those, exploring their interleavings, and
running dynamic executions, as we did to get the original
training dataset. However, the new datasets are collected in
a smaller scale than the dataset for Linux kernel 5.12 since
full-sized data collection and training are not favorable in
incremental training settings. We use the same hyperparame-
ters as for PIC-5. The validation performance of the retrained
models is analyzed in §A.5. Speci�cally, we select the vari-
ants detailed in the top part of Table 2 (we show PIC-5 for
comparison). Those include two �ne-tuned variants, but also
two from-scratch variants, where PIC-5 is discarded and a
fresh model for Linux 6.1 is trained.

Several interesting observations are made. First, Figure 5c
and Figure 5d show that �ne-tuning PIC-5 with modest new
6.1 data and training time is a feasible and e�cient approach
to increase the testing e�ectiveness on the new kernel. In
fact, considering that MLPCT is faster than PCT by 50–100
hours, S������ does not only �nd more data races in 6.1
than PCT—17% more races after a week, but also incurs a
similar (with PIC-6.ft.med) or even lower (with PIC-6.ft.sml)
end-to-end time cost. What’s more, this amortization scales
with further kernel versions and �ne-tuning.

Second, the from-scratch variants (Figure 5e and Figure 10
in §A.5) do not perform well, since they do not have the
knowledge already gleaned from many hours of training
on Linux kernel 5.12, which do instruct the model usefully
about the structure and semantics of kernel code, no matter
what the version. In fact, PIC-5 performs better without the
bene�t of Linux 6.1 data (Figure 5b) than the from-scratch
6.1 models (Figure 5e), �nding 300 more possible data races;
this is a reminder that dataset size trumps all other scaling
factors with large deep models [26].

Motivated by the promising results achieved by PIC-5 on
Linux 6.1, we later conduct another experiment to test Linux
kernel 5.13 (released about 2 months after 5.12) to verify the
e�ectiveness of PIC-5 on a third kernel using two models.
One is PIC-5 and another one is PIC-5.13.ft.sml (Table 2),
which is trained by �ne-tuning PIC-5 with a small amount

of new data collected on Linux 5.13, under the same data
collection and training settings as PIC-6.ft.sml. We con�gure
MLPCT to use the S1 strategy, which shows the best overall
results in the previous exploration, and run MLPCT under
the guidance of PIC-5 and PIC-5.13.ft.sml separately but on
the same CTI stream.
Figure 5f compares the Data-race-coverage history be-

tween MLPCT , using the two models, and PCT. First, both
models enable MLPCT to outperform PCT, strengthening
the advantage of the model-guided approach. Second, PIC-
5.13.ft.sml helps MLPCT �nd possible data races faster than
PIC-5 by up to 40 hours. However, they achieve a similar
coverage level in the end. This result reveals that, when test-
ing a new kernel that has fewer changes since Linux kernel
5.12, PIC-5 remains highly e�ective—it reaches a similar level
of overall Data-race-coverage as the �ne-tuned model while
�ne-tuning PIC-5 is more useful in terms of increasing the
data race discovery speed.

5.5 Finding New Concurrency Bugs
To see if MLPCT helps discover new kernel concurrency
bugs, we analyzed all data races found by MLPCT in Linux
kernel 6.1. We manually pruned benign data races [42] that
are annotated [28] or commented as tolerable by developers
in the source code or commit messages, data races caused
by synchronization primitives (e.g., locks), and data races
involving only kernel variables that are not sensitive to cor-
rectness (e.g., timers). We spent about 100 person-hours total
on manual inspection and reproduction.
We arrived at 14 new data races that are likely to be con-

currency bugs and reported them to developers. Of those, 9
are con�rmed to be bugs (3 patched), 3 are considered to be
harmless and 2 are pending con�rmation, as shown in Ta-
ble 3a. These new bugs reside in di�erent subsystems of the
kernel and can cause data loss, wrong system-call return
values, inconsistent kernel state, etc. All 9 con�rmed new
concurrency bugs are only found by MLPCT—PCT alone
could not expose any of them in the time allotted to it, which
shows that testing random schedules is not e�ective in �nd-
ing new kernel concurrency bugs. A possible reason is that
mainstream kernels, such as Linux, are already extensively
tested under random schedules by existing fuzzing tools such
as Syzkaller, which can perform basic concurrency testing
by invoking system calls simultaneously in di�erent threads.
Moreover, the e�ectiveness of MLPCT implies that pri-

oritizing the testing of interleavings that trigger new URB
control �ows is helpful in �nding new bugs. Taking bug #7 as
an example (shown in Figure 6), this bug onlymanifests when
two kernel threads run functions vivid_fop_release() and
vivid_ratio_rx_read() concurrently under very complex
interleavings. First, vivid_fop_release() must acquire and
release a shared mutex lock before vivid_ratio_rx_read()

grabs this lock (  › À). If the lock is acquired in the oppo-
site order (À ›  ), the lock-protected code in vivid_ratio_
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Razzer Razzer-Relax Razzer-PIC

ID # CTIs # TP CTIs
Hours to
reproduce

(avg / worst)
# CTIs # TP CTIs

Hours
to reproduce
(avg / worst)

# CTIs # TP CTIs
Hours to
reproduce

(avg / worst)
A 0 0 Na / Na 73 1 17.8 / 35.8 4 1 1.2 / 2.0
B 2 0 Na / Na 76 43 0.9 / 16.7 21 21 0.5 / 0.5
C 0 0 Na / Na 139 1 34.2 / 68.1 7 1 2.0 / 3.4
D 0 0 Na / Na 195 36 2.7 / 78.4 96 22 2.1 / 36.8
E 10 0 Na / Na 322 2 52.4 / 157.4 22 1 5.7 / 10.8
F 430 1 103.8 / 210.8 1119 3 136.1 / 547.5 435 2 72.1 / 212.7

Table 4. Data race reproducing results when using Razzer, Razzer-Relax and Razzer-PIC. "# CTIs " shows the number of
CTIs selected by each approach. "# TP CTIs " shows the number of true positive inputs. Worst case to identify a true positive
happens if it is at the end of the schedule queue. Average time to reproduce is computed by shu�ing the CTI execution queue
1000 times and averaging the time taken to reach the true positive.

547 hours to reproduce data race #F in the worst case. In con-
trast, Razzer-PIC can reproduce all races as Razzer-Relax but
incurs a much lower time cost. In the worse case, Razzer-PIC
can �nd all 6 bugs 15x faster than Razzer-Relax on average.
On the most challenging races #C, #D, #E, and #F, Razzer-
PIC can reduce the time by 22%–94%, saving hundreds of
hours in total. Such results show the potential of the PIC
model in �nding error-inducing CTIs and Razzer-PIC would
assist developers with bug reproduction, where the latency
is crucial [9, 27, 42].

Additionally, we observe thatmanyCTIs selected by Razzer-
PIC actually trigger the two data race instructions to run
in dynamic executions, which means PIC-5 does correctly
predict the execution of their corresponding blocks. How-
ever, the target data race is not reproduced by these inputs
because the two instructions triggered by them do not access
the same memory, which is another requirement for the two
concurrent memory accesses being a data race. This observa-
tion suggests the opportunity of training PIC to predict the
inter-thread data �ows between code blocks (§6). PIC trained
on this task can further reduce the time for concurrency bug
reproduction and possibly assist points-to-analysis on the
Linux kernel, which is of limited use in practice due to the
high false positive rate.

5.6.2 Better Clustering of Similar CTIs in Snowboard.
Snowboard [19] is a kernel concurrency testing framework
that builds on SKI by clustering CTIs that trigger “similar“
kernel behaviors using various heuristics, and then only sam-
pling a �xed number (1 as published) of exemplar CTIs from
each cluster for dynamic executions, assuming the remain-
ing CTIs trigger similar kernel executions and therefore are
unnecessary to test. Here we explore if choosing exemplars
from a cluster can be improved using PIC. In contrast to
§5.6.1, we seek to use PIC to only select CTIs that trigger
di�erent kernel executions, rather than CTIs that trigger a
speci�c data race.
We �rst study if the amount of CTIs sampled per clus-

ter would a�ect the e�ectiveness of Snowboard. We run
Snowboard twice to test Linux kernel 6.1 with di�erent CTI
sampling sizes but the same INS-PAIR clustering strategy,

which clusters CTIs by whether the two constituent STIs
separately trigger a kernel instruction to respectively read
from and write to a shared kernel memory region in their
single-thread executions. In the �rst run, we use the default
CTI sampling size in Snowboard—1 CTI per cluster—and �nd
1 new bug in Linux kernel 6.1 after testing 322,570 unique
clusters. In the second run, we disable CTI sampling so that
Snowboard will execute all CTIs in each cluster and we �nd 6
new bugs (Table 3b) after testing the same number of clusters,
demonstrating that the choice of cluster exemplars might
determine whether exploration will bear fruit in a fertile
cluster. We call the 6 INS-PAIR clusters where the exhaustive
application of Snowboard �nds bugs the 6 buggy clusters.
We consider an application of test candidate selection

strategies (§3.3) on choosing exemplar CTIs from a CTI clus-
ter, by relaxing Snowboard’s one-exemplar-per-cluster pol-
icy to allow multiple samples. Speci�cally, whereas Snow-
board chooses exemplars from the cluster at random, we
invoke PIC for each CTI in the cluster, with a single sched-
uling hint that enforces the write instruction from the in-
struction pair to yield to the read instruction of the pair.
By passing the CTI with a synthetic scheduling hint to PIC,
we predict the coverage, and select CTIs that, cumulatively,
exercise unique block coverage (S1) or increase total block
coverage (S2). The selected exemplars from the two sampling
approaches are then tested by the regular interleaving ex-
ploration mechanism of Snowboard. We call these sampling
approaches SB-PIC (S1) and SB-PIC (S2), and use PIC-6.ft.med
(Table 2) for them. We compare SB-PIC to a relaxed Snow-
board sampling approach we call SB-RND, which samples a
�xed percentage of CTIs from the cluster.
We seek to compare how likely the two sampling ap-

proaches are to �nd bugs, and the amount of CTIs they
need to execute using the 6 buggy INS-PAIR clusters we
found above. On each buggy cluster, we run SB-PIC and SB-
RND separately con�gured with 25%, 50% and 75% sampling
percentages. If the CTIs sampled by each sampler lead Snow-
board to uncover the bug, we call it a bug-�nding run. Since
this experiment is non-deterministic, we run 1000 trials for
each buggy cluster and each sampling approach. We report
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Bug
ID

Cluster
Size

Bug �nding
probability

# executed CTIs/
(sampling rate)

SB-PIC
(S1)

SB-PIC
(S2)

SB-RND
(25%)

SB-RND
(50%)

SB-RND
(75%)

SB-PIC
(S1)

SB-PIC
(S2)

SB-RND
(25%)

SB-RND
(50%)

SB-RND
(75%)

15 50 100% 95% 27% 53% 76% 45 (90%) 29 (58%) 12 (25%) 25 (50%) 37 (75%)
16 40 100% 66% 26% 50% 77% 40 (100%) 20 (50%) 10 (25%) 20 (50%) 30 (75%)
17 207 100% 55% 24% 48% 75% 207 (100%) 86 (41%) 51 (25%) 104 (50%) 155 (75%)
18 100 100% 100% 48% 77% 93% 100 (100%) 24 (24%) 25 (25%) 50 (50%) 75 (75%)
19 50 100% 100% 25% 50% 76% 50 (100%) 38 (76%) 12 (25%) 25 (50%) 37 (75%)
21 754 100% 50% 27% 50% 74% 743 (98%) 154 (20%) 188 (25%) 377 (50%) 565 (75%)

Table 5. Results of �nding bugs using di�erent sampling methods in Snowboard. Each Snowboard instance is repeated for
1000 times on every buggy INS-PAIR cluster. "Bug �nding probability" is the number of runs in which the bug was found
divided by 1000, "# executed CTIs" is the average amount of sampled/executed CTIs, and "sampling rate" is the percentage of
CTIs sampled from the cluster. "Bug ID" refers to the bugs listed in Table 3b.

the percentage of bug-�nding runs out of 1000 trials as bug
�nding probability. Additionally, we report the number of
executed CTIs per cluster and the percentage of executed
CTIs as sampling rate.

As reported in Table 5, SB-PIC (S1) shows the perfect bug
�nding probability. However, it is not a useful sampling
approach because it often executes all CTIs in the cluster,
which will incur signi�cant testing costs. Fortunately, SB-PIC
(S2) produces promising results. On average, it �nds each
of the 6 bugs with a probability of 77.6% but only needs to
execute 44.8% CTIs per cluster. In contrast, SB-RND (25%)
and SB-RND (50%) sample 25% and 50% CTIs per cluster but
only achieve bug �nding probabilities of 29.5% and 54.6% on
average—SB-PIC (S2) is respectively 2.6x and 1.4⇥ better.
Furthermore, when compared with SB-RND (75%) that

has an average bug �nding probability of 78.5%, SB-PIC (S2)
requires fewer dynamic executions—only 44.8% CTIs per
cluster—to achieve a similar bug �nding capability (77.6%).
This high e�ciency is valuable as a low sampling rate can
save signi�cant testing resources in a real-world testing cam-
paign where abundant clusters need to be tested to uncover
a few buggy ones. For instance, testing 322,570 clusters us-
ing SB-RND (50%) and SB-RND (75%) would take about 5,662
and 8,443 hours, respectively, on a 30-vCPU VM. Therefore,
sampling CTIs using SB-PIC (S2) can signi�cantly improve
the e�ectiveness and e�ciency of Snowboard.

6 Discussion
Useful prediction tasks for concurrency testing. S����
��� chooses to predict the coverage of 1-hop URBs and SCBs
for the concurrent test candidate. However, there might be
other prediction tasks that can improve concurrency test-
ing, such as predicting the inter-thread data �ows and inter-
rupt handler coverage. In particular, predicting the coverage
of multi-hop URBs (e.g., 5-hop URBs) may provide S����
��� more details about the concurrent test execution. How-
ever, it is unlikely that this extension would yield signi�cant
improvements. First, 1-hop URB coverage is already su�-
cient to identify test candidates that trigger diverging kernel
executions—any control �ow changes during the concurrent

execution will trigger 1-hop URBs. Second, adding multi-hop
URBs to the concurrent test graph will greatly increase the
graph size and consequently decrease the e�ciency of the
coverage predictor (e.g., higher training and inference cost).
Thus, extending S������ to support new prediction tasks
should be motivated by a study that compares the concur-
rency testing e�ectiveness of di�erent coverage metrics.
CTgraph enhancements.Addingmore concurrency-related
information to test graphs could help S������ train more
accurate PIC models. For instance, information about data
races that might happenwhen the concurrent test is executed
and special code blocks that belong to kernel synchroniza-
tion primitives can be encoded in the graph by adding edges
of new types and adding new node types.
Guide test input and schedule generation using PIC.
Neuzz and Design2vec use the trained model to perform
input mutation. A similar algorithm can be applied on the
PIC model to identify promising test candidates that trigger
new URBs. For instance, the PIC model can suggest that
certain SCB control �ows are needed to trigger a speci�c
URB. However, it is still challenging to generate sequential
test inputs that can trigger arbitrary SCB control �ows.
Predict concurrent executions on weak memory mod-
els. The PIC model is trained using kernel concurrent exe-
cution traces collected under the sequential memory model.
While it is possible to train new PIC models using traces
under weak memory models, it is unclear how the hardware
optimization (e.g., out-of-order execution) can be represented
in the concurrent test graph.

7 Related work
Kernel concurrency testing. SKI [17] takes a CTI as input
and executes CTs that explore various interleavings of the
CTI using the PCT algorithm [6]. Snowboard [19] gener-
ates e�ective CTIs by predicting the inter-thread data �ows
that could happen when running two STIs concurrently and
prioritizes the testing of CTIs that trigger less-tested data
�ows. Then Snowboard exercises di�erent interleavings of
the predicted data �ows to test their impact on the kernel.
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Razzer [25] uses static analysis [54] to identify possible
kernel data races. Razzer �lters out the false positive data
races using dynamic executions. It uses a fuzzing tool to �nd
CTIs that may trigger the possible data race and executes
those CTIs to check if the data race can actually happen.
Krace [68] proposes a new coverage metric called alias cov-
erage for �lesystem concurrency fuzzing, which measures
the pairs of instructions that touch the shared memory dur-
ing the execution. It executes every randomly-generated CTI
under random interleavings and then measures the alias cov-
erage. If a CTI increases the overall alias coverage, Krace will
further mutate it to generate new CTIs.

S������ di�ers from the aforementioned tools in that it
introduces a new work�ow for concurrency testing. Given
the CT candidates, S������ e�ciently evaluates their po-
tential in exercising new kernel behaviors using the cover-
age predictor and only selects the more promising CTs for
dynamic executions. As shown in §5.3 and §5.6, the new
work�ow helps S������ outperform SKI, Snowboard and
Razzer with higher testing e�ectiveness and e�ciency.
Kernel testing. Feedback-based fuzzing has been shown
to be e�ective in generating STIs and �nding kernel bugs.
Syzkaller [20] tries to maximize the code/edge coverage of
the kernel using a feedback-based mechanism—it keeps mu-
tating STIs that can increase the coverage. Moonshine [46]
improves Syzkaller by extracting system call sequences from
real-world applications. HFL [30] uses symbolic executions
to guide the mutation of STIs. S������ bene�ts from the
development of such tools in that more e�ective CTIs can
be generated from better STIs.
Machine learning for software testing.NEUZZ [50] trains
a neural network model to predict the application edge cov-
erage given a test input. Then NEUZZ uses the trained model
to guide input mutation—it computes the model gradients
to �nd out which part of the test input needs to be mutated
to increase the coverage. FuzzGuard [72] explores the use of
ML for directed fuzzing, in which only a speci�c set of code
blocks (target blocks) are interested rather than all blocks.
FuzzGuard trains a model to learn the reachability of target
blocks given a test input and then uses the model to predict
and skip inputs that cannot hit target blocks.

Design2vec [56] uses a GCNmodel to predict the coverage
of the hardware. In addition to the test input, Design2vec
inputs the whole control data �ow graph of the hardware
in RTL. Along a similar vein, ProGraML [10] uses a graph
representation of LLVM IR, at a �ner granularity (individual
instructions) including data- and control-�ow edges, towards
predicting static properties of code. S������ uses a simi-
lar model architecture as Design2vec, and a little coarser-
granularity than ProGraML (basic blocks). However, S����
��� can take the scheduling information of the concurrent
test into consideration and predict the coverage of the test
input when it is executed under a speci�c interleaving.

Machine learning for kernel testing. SyzVegas [62] uses
reinforcement learning to schedule di�erent kernel fuzzing
tasks (e.g., test generation/mutation/selection), which oth-
erwise would be scheduled under �xed manually-written
policies. It proposes a reward assessment model to learn the
costs and bene�ts of di�erent fuzzing tasks over time and
then makes better arrangements of tasks in the following
runs. S������ is in general orthogonal to SyzVegas as it
predicts the concurrent kernel executions and improves the
test selection using the predicted coverage.
Healer [55] proposes an algorithm to learn the system

call in�uence relations—the in�uence of a system call A on
the execution path of another system call B. It �nds such
relations by running STIs in which system call B is called
right after A or without A and comparing the coverage of
these STIs. The system call A is concluded to have in�u-
ence on the call B if A helps B trigger new coverage. Healer
keeps learning in�uence relations and generating new STIs
that encourage learned in�uence relations to test more ker-
nel execution paths. Compared to Healer, S������ learns
the in�uence between interleaved instructions triggered by
concurrently-running system calls and predicts their cover-
age, which is more challenging and requires more e�cient
and accurate approaches such as deep learning.

8 Conclusion
This work introduces S������, a kernel concurrency testing
framework that uses a kernel code block coverage predic-
tor for identifying and prioritizing interesting concurrent
test candidates. The coverage predictor is achieved via a
GNN model named PIC that takes the concurrent test input
and scheduling hints and predicts if certain concurrency-
sensitive blocks would be executed or not. The coverage
predictor enables S������ to use a new testing work�ow in
which new concurrency test candidates are evaluated based
on the predicted coverage and only executed dynamically if
they are interesting (e.g., cover a new set of code blocks). The
evaluation of S������ shows that this work�ow is both
e�ective and e�cient. S������ can �nd more potential data
races, reproduce known bugs quickly and �nd new bugs with
high probabilities. More importantly, the coverage predic-
tor can generalize across di�erent kernel versions, showing
S������ can scale well to rapidly-evolving kernels.

Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd, Shan Lu, for their insightful feedback. We also
thank Stefan Bucur, David Culler, Franjo Ivancic, Phil Levis,
Je�Mogul, and the Reliable and Secure System Lab members
for their detailed and helpful comments on this work and
earlier drafts. This work was funded in part by the National
Science Foundation (NSF) under grants CNS-2140305 and
CNS-2145888, Google, and Intel.

48



References
[1] Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and Dongyan Xu.

2021. SHARD: Fine-Grained Kernel Specialization with Context-Aware
Hardening. In 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, 2435–2452. h�ps://www.usenix.org/conference/
usenixsecurity21/presentation/abubakar

[2] Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungyoung Lee. 2021.
Kard: Lightweight Data Race Detection with per-Thread Memory Pro-
tection. In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(Virtual, USA) (ASPLOS ’21). Association for Computing Machinery,
New York, NY, USA, 647–660. h�ps://doi.org/10.1145/3445814.3446727

[3] Darrell Anderson. 2002. Fstress: A Flexible Network File Service Bench-
mark. Technical Report.

[4] David Bieber, Charles Sutton, Hugo Larochelle, and Daniel Tarlow.
2020. Learning to Execute Programs with Instruction Pointer Atten-
tion Graph Neural Networks. In Proceedings of the 34th International
Conference on Neural Information Processing Systems (Vancouver, BC,
Canada) (NIPS’20). Curran Associates Inc., Red Hook, NY, USA, Article
723, 12 pages.

[5] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are
Graph Attention Networks? arXiv:2105.14491 [cs.LG]

[6] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and San-
tosh Nagarakatte. 2010. A Randomized Scheduler with Probabilistic
Guarantees of Finding Bugs. In Proceedings of the Fifteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Pittsburgh, Pennsylvania, USA) (ASPLOS XV).
Association for Computing Machinery, New York, NY, USA, 167–178.
h�ps://doi.org/10.1145/1736020.1736040

[7] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests for Complex
Systems Programs. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (San Diego, California)
(OSDI’08). USENIX Association, USA, 209–224.

[8] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. 2017. DIFUZE:
Interface Aware Fuzzing for Kernel Drivers. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(Dallas, Texas, USA) (CCS ’17). Association for Computing Machin-
ery, New York, NY, USA, 2123–2138. h�ps://doi.org/10.1145/3133956.
3134069

[9] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma,
RuoyuWang, and Insu Yun. 2018. REPT: Reverse Debugging of Failures
inDeployed Software. In 13th USENIX Symposium onOperating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad,
CA, 17–32. h�ps://www.usenix.org/conference/osdi18/presentation/
weidong

[10] Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoe�er,
Michael F P O’Boyle, and Hugh Leather. 2021. ProGraML: A Graph-
based Program Representation for Data Flow Analysis and Compiler
Optimizations. In Proceedings of the 38th International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 139),
Marina Meila and Tong Zhang (Eds.). PMLR, 2244–2253. h�ps://
proceedings.mlr.press/v139/cummins21a.html

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers).

[12] Dawson Engler and Ken Ashcraft. 2003. RacerX: E�ective, Static
Detection of Race Conditions and Deadlocks. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles (Bolton
Landing, NY, USA) (SOSP ’03). Association for Computing Machinery,
New York, NY, USA, 237–252. h�ps://doi.org/10.1145/945445.945468

[13] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. 2010. E�ective Data-Race Detection for the Kernel. In Pro-
ceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation (Vancouver, BC, Canada) (OSDI’10). USENIX As-
sociation, USA, 151–162.

[14] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation
Learning with PyTorch Geometric. In ICLRWorkshop on Representation
Learning on Graphs and Manifolds.

[15] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. 2011. Finding Com-
plex Concurrency Bugs in Large Multi-Threaded Applications. In Pro-
ceedings of the Sixth Conference on Computer Systems (Salzburg, Aus-
tria) (EuroSys ’11). Association for Computing Machinery, New York,
NY, USA, 215–228. h�ps://doi.org/10.1145/1966445.1966465

[16] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. 2010.
A study of the internal and external e�ects of concurrency bugs. In
2010 IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 221–230. h�ps://doi.org/10.1109/DSN.2010.5544315

[17] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Brandenburg. 2014.
SKI: Exposing Kernel Concurrency Bugs through Systematic Schedule
Exploration. In Proceedings of the 11th USENIX Conference on Operat-
ing Systems Design and Implementation (Broom�eld, CO) (OSDI’14).
USENIX Association, USA, 415–431.

[18] Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan. 2023.
Probabilistic Concurrency Testing for Weak Memory Programs. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2
(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing
Machinery, New York, NY, USA, 603–616. h�ps://doi.org/10.1145/
3575693.3575729

[19] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and Petros Maniatis.
2021. Snowboard: Finding Kernel Concurrency Bugs through Sys-
tematic Inter-Thread Communication Analysis. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles (Virtual
Event, Germany) (SOSP ’21). Association for Computing Machinery,
New York, NY, USA, 66–83. h�ps://doi.org/10.1145/3477132.3483549

[20] Google. 2015. Syzkaller-kernel fuzzer. h�ps://github.com/google/
syzkaller

[21] Google. online. Kernel Thread Sanitizer (KTSAN). h�ps://github.
com/google/ktsan/wiki Accessed: 7 May 2021.

[22] Sun Hao, Shen Yuheng, Liu Jianzhong, Xu Yiru, and Jiang Yu. 2022.
KSG: Augmenting Kernel Fuzzing with System Call Speci�cation Gen-
eration. In 2022 USENIX Annual Technical Conference (USENIX ATC
22). USENIX Association, Carlsbad, CA, 351–366. h�ps://www.usenix.
org/conference/atc22/presentation/sun

[23] Yu Hao, Hang Zhang, Guoren Li, Xingyun Du, Zhiyun Qian, and
Ardalan Amiri Sani. 2022. Demystifying the Dependency Challenge in
Kernel Fuzzing. In Proceedings of the 44th International Conference on
Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association
for Computing Machinery, New York, NY, USA, 659–671. h�ps://doi.
org/10.1145/3510003.3510126

[24] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang,
Vijay Pande, and Jure Leskovec. 2020. Strategies for Pre-training Graph
Neural Networks. arXiv:1905.12265 [cs.LG]

[25] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung
Lee, and Insik Shin. 2019. Razzer: Finding Kernel Race Bugs through
Fuzzing. In 2019 IEEE Symposium on Security and Privacy (SP). 754–768.
h�ps://doi.org/10.1109/SP.2019.00017

[26] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Je�rey Wu, and
Dario Amodei. 2020. Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361 (2020).

[27] Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. 2017. Lazy
Diagnosis of In-Production Concurrency Bugs. In Proceedings of the
26th Symposium on Operating Systems Principles (Shanghai, China)

49

https://www.usenix.org/conference/usenixsecurity21/presentation/abubakar
https://www.usenix.org/conference/usenixsecurity21/presentation/abubakar
https://doi.org/10.1145/3445814.3446727
https://arxiv.org/abs/2105.14491
https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1145/3133956.3134069
https://www.usenix.org/conference/osdi18/presentation/weidong
https://www.usenix.org/conference/osdi18/presentation/weidong
https://proceedings.mlr.press/v139/cummins21a.html
https://proceedings.mlr.press/v139/cummins21a.html
https://doi.org/10.1145/945445.945468
https://doi.org/10.1145/1966445.1966465
https://doi.org/10.1109/DSN.2010.5544315
https://doi.org/10.1145/3575693.3575729
https://doi.org/10.1145/3575693.3575729
https://doi.org/10.1145/3477132.3483549
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/google/ktsan/wiki
https://github.com/google/ktsan/wiki
https://www.usenix.org/conference/atc22/presentation/sun
https://www.usenix.org/conference/atc22/presentation/sun
https://doi.org/10.1145/3510003.3510126
https://doi.org/10.1145/3510003.3510126
https://arxiv.org/abs/1905.12265
https://doi.org/10.1109/SP.2019.00017


(SOSP ’17). Association for Computing Machinery, New York, NY, USA,
582–598. h�ps://doi.org/10.1145/3132747.3132767

[28] Linux Kernel. online. The Kernel Concurrency Sanitizer (KCSAN).
h�ps://www.kernel.org/doc/html/latest/dev-tools/kcsan.html Ac-
cessed: 7 May 2021.

[29] Michael Kerrisk. online. syscalls(2) — Linux manual page. h�ps:
//man7.org/linux/man-pages/man2/syscalls.2.html Accessed: 7 May
2021.

[30] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik
Shin, and Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux
Kernel. In 27th Annual Network and Distributed System Security Sympo-
sium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The
Internet Society. h�ps://www.ndss-symposium.org/ndss-paper/hfl-
hybrid-fuzzing-on-the-linux-kernel/

[31] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Sto-
chastic Optimization. arXiv:1412.6980 [cs.LG]

[32] Thomas N. Kipf andMaxWelling. 2017. Semi-Supervised Classi�cation
with Graph Convolutional Networks. In International Conference on
Learning Representations. ICLR. h�ps://openreview.net/forum?id=
SJU4ayYgl

[33] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Vik-
tor Vafeiadis. 2017. E�ective Stateless Model Checking for C/C++
Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (dec 2017),
32 pages. h�ps://doi.org/10.1145/3158105

[34] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan
Padhye. 2019. E�cient Scalable Thread-Safety-Violation Detection:
Finding Thousands of Concurrency Bugs during Testing. In Proceedings
of the 27th ACM Symposium onOperating Systems Principles (Huntsville,
Ontario, Canada) (SOSP ’19). Association for Computing Machinery,
New York, NY, USA, 162–180. h�ps://doi.org/10.1145/3341301.3359638

[35] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004.
CP-Miner: A Tool for Finding Copy-paste and Related Bugs in Op-
erating System Code. In 6th Symposium on Operating Systems De-
sign & Implementation (OSDI 04). USENIX Association, San Fran-
cisco, CA. h�ps://www.usenix.org/conference/osdi-04/cp-miner-tool-
finding-copy-paste-and-related-bugs-operating-system-code

[36] Congyu Liu, Sishuai Gong, and Pedro Fonseca. 2023. KIT: Testing OS-
Level Virtualization for Functional Interference Bugs. In Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 427–441. h�ps://doi.org/10.1145/3575693.3575731

[37] Jian Liu, Lin Yi, Weiteng Chen, Chengyu Song, Zhiyun Qian, and
Qiuping Yi. 2022. LinKRID: Vetting Imbalance Reference Count-
ing in Linux kernel with Symbolic Execution. In 31st USENIX Secu-
rity Symposium (USENIX Security 22). USENIX Association, Boston,
MA, 125–142. h�ps://www.usenix.org/conference/usenixsecurity22/
presentation/liu-jian

[38] Ilya Loshchilov and Frank Hutter. 2016. Stochastic Gradient Descent
with Warm Restarts (SGDR): Communication E�cient Distributed
Optimization using Quantization. arXiv preprint arXiv:1608.03983
(2016).

[39] Shan Lu, Weihang Jiang, and Yuanyuan Zhou. 2007. A Study of
Interleaving Coverage Criteria. In The 6th Joint Meeting on Euro-
pean Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering: Companion Pa-
pers (Dubrovnik, Croatia) (ESEC-FSE companion ’07). Association
for Computing Machinery, New York, NY, USA, 533–536. h�ps:
//doi.org/10.1145/1295014.1295034

[40] Shan Lu, Weihang Jiang, and Yuanyuan Zhou. 2007. A Study of Inter-
leaving Coverage Criteria. In Proceedings of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering (Dubrovnik,
Croatia) (ESEC-FSE ’07). Association for Computing Machinery, New

York, NY, USA, 533–536. h�ps://doi.org/10.1145/1287624.1287703
[41] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhen-

min Li, Raluca A. Popa, and Yuanyuan Zhou. 2007. MUVI: Auto-
matically Inferring Multi-Variable Access Correlations and Detecting
Related Semantic and Concurrency Bugs. In Proceedings of Twenty-First
ACM SIGOPS Symposium on Operating Systems Principles (Stevenson,
Washington, USA) (SOSP ’07). Association for Computing Machinery,
New York, NY, USA, 103–116. h�ps://doi.org/10.1145/1294261.1294272

[42] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learn-
ing from Mistakes: A Comprehensive Study on Real World Concur-
rency Bug Characteristics. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and
Operating Systems (Seattle, WA, USA) (ASPLOS XIII). Association
for Computing Machinery, New York, NY, USA, 329–339. h�ps:
//doi.org/10.1145/1346281.1346323

[43] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. 2006. AVIO:
Detecting Atomicity Violations via Access Interleaving Invariants.
In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose,
California, USA) (ASPLOS XII). Association for Computing Machinery,
New York, NY, USA, 37–48. h�ps://doi.org/10.1145/1168857.1168864

[44] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christo-
pher Kruegel, and Giovanni Vigna. 2017. DR. Checker: A Soundy
Analysis for Linux Kernel Drivers. In Proceedings of the 26th USENIX
Conference on Security Symposium (Vancouver, BC, Canada) (SEC’17).
USENIX Association, USA, 1007–1024.

[45] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross,
Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A Fast,
Extensible Toolkit for Sequence Modeling. In Proceedings of NAACL-
HLT 2019: Demonstrations.

[46] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine:
Optimizing OS Fuzzer Seed Selection with Trace Distillation. In 27th
USENIX Security Symposium (USENIX Security 18). USENIX Associa-
tion, Baltimore, MD, 729–743. h�ps://www.usenix.org/conference/
usenixsecurity18/presentation/pailoor

[47] Benedek Rozemberczki, Peter Englert, Amol Kapoor, Martin Blais,
and Bryan Perozzi. 2021. Path�nder Discovery Networks for Neural
Message Passing. arXiv:2010.12878 [cs.LG]

[48] Nicola Ruaro, Kyle Zeng, Lukas Dresel, Mario Polino, Ti�any Bao, An-
drea Continella, Stefano Zanero, Christopher Kruegel, and Giovanni
Vigna. 2021. SyML: Guiding Symbolic Execution Toward Vulnerable
States Through Pattern Learning. In Proceedings of the 24th Interna-
tional Symposium on Research in Attacks, Intrusions and Defenses (San
Sebastian, Spain) (RAID ’21). Association for Computing Machinery,
New York, NY, USA, 456–468. h�ps://doi.org/10.1145/3471621.3471865

[49] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. 2009. The Graph Neural Network Model.
IEEE Transactions on Neural Networks 20, 1 (2009), 61–80. h�ps:
//doi.org/10.1109/TNN.2008.2005605

[50] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi
Ray, and Suman Jana. 2019. NEUZZ: E�cient Fuzzing with Neural
Program Smoothing. In 2019 IEEE Symposium on Security and Privacy
(SP). 803–817. h�ps://doi.org/10.1109/SP.2019.00052

[51] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wen-
jin Wang, and Yu Sun. 2021. Masked Label Prediction: Uni-
�ed Message Passing Model for Semi-Supervised Classi�cation.
arXiv:2009.03509 [cs.LG]

[52] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SOK: (State
of) The Art of War: O�ensive Techniques in Binary Analysis. In 2016
IEEE Symposium on Security and Privacy (SP). 138–157. h�ps://doi.
org/10.1109/SP.2016.17

50

https://doi.org/10.1145/3132747.3132767
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3341301.3359638
https://www.usenix.org/conference/osdi-04/cp-miner-tool-finding-copy-paste-and-related-bugs-operating-system-code
https://www.usenix.org/conference/osdi-04/cp-miner-tool-finding-copy-paste-and-related-bugs-operating-system-code
https://doi.org/10.1145/3575693.3575731
https://www.usenix.org/conference/usenixsecurity22/presentation/liu-jian
https://www.usenix.org/conference/usenixsecurity22/presentation/liu-jian
https://doi.org/10.1145/1295014.1295034
https://doi.org/10.1145/1295014.1295034
https://doi.org/10.1145/1287624.1287703
https://doi.org/10.1145/1294261.1294272
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1168857.1168864
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://arxiv.org/abs/2010.12878
https://doi.org/10.1145/3471621.3471865
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/SP.2019.00052
https://arxiv.org/abs/2009.03509
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17


[53] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim, Brent ByungHoon
Kang, Jean-Pierre Seifert, and Michael Franz. 2020. Agamotto: Ac-
celerating Kernel Driver Fuzzing with Lightweight Virtual Machine
Checkpoints. In 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, 2541–2557. h�ps://www.usenix.org/conference/
usenixsecurity20/presentation/song

[54] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-
Flow Analysis in LLVM. In Proceedings of the 25th International Con-
ference on Compiler Construction (Barcelona, Spain) (CC 2016). As-
sociation for Computing Machinery, New York, NY, USA, 265–266.
h�ps://doi.org/10.1145/2892208.2892235

[55] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting
Chen, and Aiguo Cui. 2021. HEALER: Relation Learning Guided Ker-
nel Fuzzing. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (Virtual Event, Germany) (SOSP ’21). As-
sociation for Computing Machinery, New York, NY, USA, 344–358.
h�ps://doi.org/10.1145/3477132.3483547

[56] Shobha Vasudevan, Wenjie (Joe) Jiang, David Bieber, Rishabh Singh,
hamid shojaei, C. Richard Ho, and Charles Sutton. 2021. Learning
Semantic Representations to Verify Hardware Designs. In Advances
in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran
Associates, Inc., 23491–23504. h�ps://proceedings.neurips.cc/paper/
2021/file/c5aa65949d20f6b20e1a922c13d974e7-Paper.pdf

[57] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All you Need. In Advances in Neural Information Pro-
cessing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran As-
sociates, Inc. h�ps://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[58] Martin Vechev, Eran Yahav, and Greta Yorsh. 2009. Experience with
Model Checking Linearizability. In Proceedings of the 16th Interna-
tional SPIN Workshop on Model Checking Software (Grenoble, France).
Springer-Verlag, Berlin, Heidelberg, 261–278. h�ps://doi.org/10.1007/
978-3-642-02652-2_21

[59] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Net-
works. arXiv:1710.10903 [stat.ML]

[60] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: Static
Race Detection on Millions of Lines of Code. In Proceedings of the
the 6th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering (Dubrovnik, Croatia) (ESEC-FSE ’07). Association
for Computing Machinery, New York, NY, USA, 205–214. h�ps:
//doi.org/10.1145/1287624.1287654

[61] Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V.
Krishnamurthy, and Nael Abu-Ghazaleh. 2021. SyzVegas: Beating
Kernel Fuzzing Odds with Reinforcement Learning. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association,
2741–2758. h�ps://www.usenix.org/conference/usenixsecurity21/
presentation/wang-daimeng

[62] Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V.
Krishnamurthy, and Nael Abu-Ghazaleh. 2021. SyzVegas: Beating
Kernel Fuzzing Odds with Reinforcement Learning. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association,
2741–2758. h�ps://www.usenix.org/conference/usenixsecurity21/
presentation/wang-daimeng

[63] Wikipedia contributors. 2020. Average Precision — Wikipedia,
The Free Encyclopedia. h�ps://en.wikipedia.org/w/index.php?title=
Information_retrieval&oldid=793358396#Average_precision.

[64] Wikipedia contributors. 2020. F-score — Wikipedia, The Free Encyclo-
pedia. h�ps://en.wikipedia.org/wiki/F-score.

[65] Wikipedia contributors. 2020. Precision and recall — Wikipedia,
The Free Encyclopedia. h�ps://en.wikipedia.org/wiki/Precision_and_
recall.

[66] Wikipedia contributors. 2022. Register-transfer level —Wikipedia, The
Free Encyclopedia. h�ps://en.wikipedia.org/wiki/Register-transfer_
level.

[67] Thomas Witkowski, Nicolas Blanc, Daniel Kroening, and Georg Weis-
senbacher. 2007. Model Checking Concurrent Linux Device Drivers.
In Proceedings of the 22nd IEEE/ACM International Conference on Au-
tomated Software Engineering (Atlanta, Georgia, USA) (ASE ’07). As-
sociation for Computing Machinery, New York, NY, USA, 501–504.
h�ps://doi.org/10.1145/1321631.1321719

[68] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. 2020.
Krace: Data Race Fuzzing for Kernel File Systems. In 2020 IEEE Sympo-
sium on Security and Privacy (SP). 1643–1660. h�ps://doi.org/10.1109/
SP40000.2020.00078

[69] Peiqi Yin, Xiao Yan, Jinjing Zhou, Qiang Fu, Zhenkun Cai, James Cheng,
Bo Tang, and Minjie Wang. 2022. DGI: Easy and E�cient Inference
for GNNs. arXiv:2211.15082 [cs.LG]

[70] Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song,
Zhiyun Qian, Mohsen Lesani, Srikanth V. Krishnamurthy, and Paul
Yu. 2020. UBITect: A Precise and Scalable Method to Detect Use-
before-Initialization Bugs in Linux Kernel. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Virtual Event,
USA) (ESEC/FSE 2020). Association for Computing Machinery, New
York, NY, USA, 221–232. h�ps://doi.org/10.1145/3368089.3409686

[71] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. 2021. On-Demand-
Fork: A Microsecond Fork for Memory-Intensive and Latency-
Sensitive Applications. In Proceedings of the Sixteenth European Con-
ference on Computer Systems (Online Event, United Kingdom) (Eu-
roSys ’21). Association for Computing Machinery, New York, NY, USA,
540–555. h�ps://doi.org/10.1145/3447786.3456258

[72] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang,
and Kai Chen. 2020. FuzzGuard: Filtering out Unreachable Inputs in
Directed Grey-box Fuzzing through Deep Learning. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association,
2255–2269. h�ps://www.usenix.org/conference/usenixsecurity20/
presentation/zong

51

https://www.usenix.org/conference/usenixsecurity20/presentation/song
https://www.usenix.org/conference/usenixsecurity20/presentation/song
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/3477132.3483547
https://proceedings.neurips.cc/paper/2021/file/c5aa65949d20f6b20e1a922c13d974e7-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c5aa65949d20f6b20e1a922c13d974e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1007/978-3-642-02652-2_21
https://doi.org/10.1007/978-3-642-02652-2_21
https://arxiv.org/abs/1710.10903
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1145/1287624.1287654
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-daimeng
https://en.wikipedia.org/w/index.php?title=Information_retrieval&oldid=793358396#Average_precision
https://en.wikipedia.org/w/index.php?title=Information_retrieval&oldid=793358396#Average_precision
https://en.wikipedia.org/wiki/F-score
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Register-transfer_level
https://en.wikipedia.org/wiki/Register-transfer_level
https://doi.org/10.1145/1321631.1321719
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP40000.2020.00078
https://arxiv.org/abs/2211.15082
https://doi.org/10.1145/3368089.3409686
https://doi.org/10.1145/3447786.3456258
https://www.usenix.org/conference/usenixsecurity20/presentation/zong
https://www.usenix.org/conference/usenixsecurity20/presentation/zong

	Abstract
	1 Introduction
	2 Motivation
	3 Design
	3.1 CT Data Representation
	3.2 PIC Model Architecture
	3.3 Predicted-Coverage-Guided Concurrency Testing

	4 Implementation
	5 Evaluation
	5.1 PIC Model Training
	5.2 PIC Model Performance
	5.3 Selecting Interesting Schedules with PIC
	5.4 Adapting to Newer Kernels
	5.5 Finding New Concurrency Bugs
	5.6 PIC Integration Case Studies

	6 Discussion
	7 Related work
	8 Conclusion
	Acknowledgments
	References
	A Appendix (not peer-reviewed)
	A.1 Experimental setup
	A.2 PIC model parameter tuning
	A.3 PIC performance of predicting both SCBs and URBs
	A.4 Per-CTI Coverage Improvement
	A.5 Adapting PIC models to Newer Kernels
	A.6 Cost/Benefit of a Candidate Evaluator


