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Abstract—Isolating application components is crucial to limit
the exposure of sensitive data and code to vulnerabilities in
the untrusted components. Process-based isolation is the de
facto isolation used in practice, e.g., web browsers. However,
it incurs significant performance overhead and is typically in-
feasible when frequent switches between isolation domains are
expected. To address this problem, many intra-process memory
isolation techniques have been proposed using novel kernel
abstractions, recent CPU extensions (e.g., Intel® MPK), and
software-based fault isolation (e.g., WebAssembly). However,
these techniques insufficiently isolate kernel resources, such as
file descriptors, or do so by incurring high overheads when
resources are accessed. Other work virtualizes the kernel con-
text inside a privileged user space domain, but this is ad-hoc,
error-prone, and provides only limited kernel functionalities.

We propose µSWITCH, an efficient kernel context isolation
mechanism with memory protection that addresses these lim-
itations. We use a protected structure, shared by the kernel
and the user space, for context switching and propose implicit
context switching to improve its performance by deferring
the kernel resource switch to the next system call. We apply
µSWITCH to isolate libraries in the Firefox web browser and an
HTTP server, and reduce the overhead of isolation by 32.7%
to 98.4% compared with other isolation techniques.

Index Terms—Systems security, operating systems security.

1. Introduction
Modern software involves large and complex codebases,
which significantly benefit from isolation techniques that
protect sensitive data and code. Using isolation techniques,
it is possible to contain the impact of vulnerabilities within
application sub-components. For example, popular web
browsers, such as Chromium and Firefox, have recently
introduced site isolation [1, 2] to isolate tabs according to
the site origin using independent processes. This prevents at-
tackers from exploiting vulnerabilities in libraries and other
components that could otherwise compromise the entire
browser; hence, isolation prevents attackers from stealing
sensitive user data associated with other websites. Isolation
limits the damage to potentially vulnerable applications.

Process-based isolation is one of the strongest isola-
tion techniques for applications because it isolates kernel
resources across domains and user-level resources (e.g.,
process memory). However, process-based isolation incurs
a significant performance overhead that can exceed several
microseconds [3]. This overhead is due to expensive traps to

the kernel that arise from the inter-process communication
and context switches. In practice, this approach is infeasi-
ble when frequent switches between isolation domains are
expected. [4] Hence, process isolation is generally used at a
coarse granularity. In contrast, lightweight context switching
techniques [5, 6] aim to provide similar security guarantees
but with less overhead. However, the performance overhead
of these techniques is still high (the median overhead re-
ported by lwC [6] is 2.01µs), preventing their wide-scale
adoption for fine-grained isolation.

Taking advantage of recent CPU extensions [4, 7], such
as Intel® MPK, and software-based isolation (SFI) tech-
niques [8], several systems implement intra-process memory
isolation. Unfortunately, memory isolation techniques are
insufficient to isolate generic applications because it is also
necessary to isolate the kernel context across domains [9].
Isolating the kernel context across domains ensures that a
domain cannot read the files written by another or execute
other system calls that could interfere with the process
execution. Hence, WebAssembly (or Wasm) and other tech-
niques often rely on virtualizing the kernel context inside
a privileged userspace domain. However, this approach is
ad-hoc and error-prone, given the complexity of the system
call interface. Furthermore, this approach only provides very
limited coverage of the system call interface in practice.

To address the limitations of prior techniques, we pro-
pose µSWITCH, a novel approach to efficiently isolate se-
lected kernel resources of a process and application memory
into multiple fine-grained domains (µContexts). Isolating
kernel resources with µSWITCH ensures security guarantees
similar to those of process isolation but with a signifi-
cantly lower performance overhead. In particular, µSWITCH
achieves sandboxed function invocation in 129ns, which is
55× faster than process isolation.

The novelty of µSWITCH lies in the safe use of a
protected data structure shared between the process and the
kernel, which allows the user space application to initiate
a µContext-switch from user space, without trapping into
the kernel. This constitutes an implicit system call—an
elegant kernel abstraction that does not require major kernel
changes. The actual switching of the kernel resources is
deferred till the next system call. Protecting this shared data
structure only requires light-weight memory protection tech-
niques that enforce authorized updates to this structure. In-
deed, we opted to use Intel’s®’s Memory Protection Keys [7]
to provide memory protection, but µSWITCH’s approach is
compatible with any memory protection technique.

Isolating intra-process µContexts poses multiple chal-





In-process Kernel Context Virtualization. One approach
to isolating kernel context consists of virtualizing kernel
resources [18, 19] inside a trusted domain of the appli-
cation. For instance, the WebAssembly System Interface
(WASI) [18] is typically used to manage the interactions
of WebAssembly domains with the operating system. WASI
provides a set of POSIX-like system calls to WebAssembly
domains and sanitizes the call arguments. In addition, it
ensures that kernel resources, such as file descriptors, are
isolated among sandboxes through trusted usermode logic in
a trusted domain that interposes between the kernel and un-
trusted domains. Unfortunately, this approach is redundant
with the kernel isolation mechanisms, and it is impractical to
fully apply it to the extensive and complex kernel interface.
Process Isolation. A straightforward approach to isolating
kernel contexts is to split the application across processes,
such that each domain runs in a different process. In prac-
tice, this approach tends to be particularly effective because
kernels traditionally rely on process isolation to ensure se-
curity in multi-tenant environments. For instance, containers
(e.g., Docker [20]) typically use process isolation in addition
to other kernel mechanisms that limit kernel resource scope
(Linux namespaces [21]) and usage (Linux cgroups [22]).

Unfortunately, process isolation has notoriously high
domain switching overhead, since the application has to
make explicit calls to the kernel to switch between domains.
For example, when using shared memory to synchronize
the processes, the futex system call is often used, which
operates on the wait queue of the scheduler and can cause
multiple context switches for one domain switch in some
cases. Other IPC methods such as pipes can also be used,
which may cause even higher overhead. This process incurs
in more than 7µs for a sandboxed function invocation (Ta-
ble 2), which is 55× slower than our system with MPK and
3238× slower than a standard function call. Hence, process
isolation is infeasible for fine-grained isolation in which high
domain switch frequency is expected.
Lightweight Context Switching. To address this problem,
recent work has proposed lightweight context switching
techniques, such as lwC [6], SMV [5], SeCage [23], and
Virtines [24]. These approaches generally switch faster be-
tween domains than process isolation. However, they still
require trapping to the operating system kernel and manip-
ulating the page tables or flushing TLB on each domain
switch, which is expensive. The high overhead of these
methods motivates us to propose a faster kernel isolation
technique that relies on implicit context switches.

3. Implicit Context Switching
Our approach relies on the observation that the main cost
of process isolation arises from the explicit system calls
required to perform context switches. Because process iso-
lation requires two explicit calls to context switch for each
back-and-forth interaction (domain A to B, and B to A),
fine-grained sandboxing results in significant overhead. Fur-
thermore, since the switching cost is fixed, it has to be paid
even if no system call is invoked by a domain in a given
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Figure 2: Process and µSWITCH isolation comparison.
µSWITCH switches between domains without invoking ex-
plicit system calls (or interrupts), whereas process isolation
requires explicit system calls.

transition, which further increases the relative overheads.
Note that because untrusted domains can be compromised,
we cannot assume that domains do not make system calls
in a given transition even when they are expected to make
no system calls. Hence, it is necessary to ensure a kernel
context change for every domain switch.

This work proposes implicit context switching to address
this problem (Figure 2). Our key insight is that the kernel
does not need to be aware of the kernel context switch until
the domain makes its first system call (since the last domain
switch). This provides an opportunity to defer the context
switch to the first system call; in particular, it allows us to
batch the context switching system call with the first system
call made by the domain. Our approach is particularly useful
in fine-grained sandboxing where the average number of
system call invocations per domain transition is very low.

Implicit context switching has another key advantage:
when an application switches from domain A to B and back
to A without B invoking a system call, this approach entirely
avoids kernel context switching. The idea is to selectively
context switch when and only if a domain makes a system
call.

For implicit context switching to work there are two
challenges that need to be addressed. First, it is necessary
to ensure that batching of the context switch system call with
the first system call occurs, even when the domain making
the call is compromised. Second, it is necessary to integrate
the implicit context switch, which operates asynchronously,
with efficient memory protection techniques such that both
the memory and kernel context are consistently isolated.

4. µSWITCH Design
µSWITCH creates multiple lightweight execution contexts
within the same process to isolate kernel resources and
process memory. We call these µContexts or simply con-
texts. Each µContext is represented by a unique context
descriptor. The kernel context for each µContext is con-
trolled by a context-descriptor that is shared between user
and kernel space. Switching between the different contexts
involves simply updating this shared context-descriptor to
that of the new µContext. µSWITCH depends on memory



TABLE 1: Core µSWITCH API interface.
Method Description

int init(int flags) Initializes µSWITCH and creates the privileged µContext.
int newContext(uswctx_t *ctx, int flags) Creates an unprivileged µContext.
int destroyContext(uswctx_t ctx) Destroys an unprivileged µContext.
int sandboxCall(uswctx_t ctx, SandboxFunc f, ...) Calls sandboxed function f in µContext ctx.
int registerPrivCall(uswctx_t ctx, Handler handler) Registers a privcall with the given handler and returns the privcall-id.
int privCall(int id, ...) Calls privileged function id with the given arguments.
int dupFileDescriptor(uswctx_t ctx, int fd) Duplicate the file fd from µContext ctx to the prvileged µContext.

protection mechanism that isolates the in-memory data of
each µContext as well as µSWITCH metadata including the
shared context-descriptor, for which we use Intel® MPK
as explained in §5. As discussed in §3, we use implicit
context switch to avoid unnecessary expensive switches to
kernel space. This section elaborates on µSWITCH’s design
in detail.

4.1. System Model
A µSWITCH-enabled program consists of privileged func-
tions and sandboxed functions. The program always begins
with the privileged functions in the privileged context. The
privileged functions dynamically create an isolated context
(µContext) for each sandbox. This divides the program into
multiple isolated contexts, each of which has a set of kernel
resources and a memory domain. The privileged functions
run in the privileged context allowing arbitrary memory
accesses and system call invocations, while a sandboxed
function is limited to its own kernel resources and memory
domain as defined during context creation. For example,
each µContext independently opens files and network sock-
ets and the privileged context may opt in to set a Seccomp
filter [25] controlling access to system calls and system
resources. In the extreme case, for instance, µSWITCH can
deny the invocation of any system call to a specific function,
while allowing another function to execute any system call.

Invocations between privileged and sandboxed functions
are mediated by the µSWITCH API. A privileged function
can invoke a sandboxcall, which switches to an unprivi-
leged context, and executes the sandboxed function. After
the function finishes, the execution switches back to the
privileged context and continues to execute after the sand-
boxed function call. In the reverse direction, in order to
support callback functions, a sandboxed function can invoke
a privcall, which switches to a privileged context, executes
a privileged function and switches back to the unprivileged
context after the call. Similar to invoking a system call, the
sandboxed function needs to provide a privcall id and the
arguments. Then, the previously registered privcall handler
for the privcall id is executed.

The sandboxed functions can not invoke arbitrary func-
tions in the privileged context. For a function to be callable
from the unprivileged sandboxes it has to be explicitly
registered as a privcall handler. A trusted entrypoint marks
the single entry gate into the privileged context. All en-
tries into the privileged context including privcalls from
the unprivileged contexts and returns from sandboxcalls are
mediated through this trusted entrypoint. In case of a privcall

from the unprivileged context, the trusted entrypoint simply
dispatches the privcall to the pre-registered privcall handler
depending on the privcall id specified by the sandbox con-
text. In case of a return from the sandboxcall, it resumes
control within the privileged context.

Table 1 shows the core API interface of the µSWITCH
user space library. The API covers the functions for the
µContext creation and destruction, sandboxcall invocation,
and privcall registration and invocation.

4.2. Threat Model
µSWITCH makes no assumption about sandboxed functions.
These functions execute arbitrary code and may contain
memory corruption or control flow hijack vulnerabilities that
an attacker could try to exploit.

We assume privileged functions, µSWITCH, the oper-
ating system, and hardware to not include vulnerabilities
violating µSWITCH’s security guarantees, directly leak sen-
sitive information to sandboxed functions, or switch into
sandboxes functions while still in a privileged context. In
particular, we assume that the privileged function sets up
µSWITCH correctly. Similarly to the approach used in pro-
cess isolation, concerns with the kernel attack surface can be
mitigated by filtering system calls with Seccomp. Because
each µContext has its own kernel context, the system call
filters can be better fitted to implement the principle of least
privilege with µSWITCH.

µSWITCH relies on memory protection to isolate the
memory of individual µContexts and ensure the integrity
of the shared context-descriptor. Hence, µSWITCH inherits
the assumptions made by the memory protection used. Our
implementation uses Intel® MPK (see §5 and §6.2).

Like other intra-process isolation techniques, we con-
sider side-channel and hardware attacks, such as row-
hammer, out of the scope of this paper. µSWITCH is compat-
ible with existing defenses [26] and can be extended to pre-
vent such attacks. Finally, we assume the kernel is correct,
which can be achieved through formal verification [27–30],
testing [31–33], and hardening techniques [34].
Security and Liveness Guarantees. µSWITCH provides
a similar security guarantee to process-based isolation for
memory and all the isolated kernel resources. When ac-
cessing those resources, the privileged functions and the
sandboxed functions run as if they were different processes.

µSWITCH also provides the liveness guarantee that the
unprivileged contexts can not crash the process by faulting,
such as throwing exceptions or performing unauthorized
operations. Such faults generate signals such as SIGSEGV







µSWITCH-related data. This structure stores the pointer
to the uswitch_context_table for a process, the
current-descriptor, along with a pointer to the shared-
descriptor stored in the shared page.

The Linux kernel represents each Process Control Block
(PCB) as an instance of the task_struct object. There-
fore, we modify this structure to store a pointer to the
uswitch_data. The task_struct structure also con-
tains the pointer to the process file-descriptor table and a
Seccomp structure which contains the mode, reference count
and a pointer to the filter. By updating these pointers to
refer to the per-context file-descriptor table and the Seccomp
filter, we isolate these resources.
Multi-threading. To support multi-threading, an object of
type uswitch_context_table is shared per process
(or more precisely, a thread group in the kernel). Each
thread in the process has its own uswitch_data ob-
ject and can thus switch to a different µContext indepen-
dently of other threads in the process. We add spin locks
and atomic reference counts to the uswitch_data and
uswitch_context_table structures and carefully deal
with them as well as the locks and reference counts of other
kernel data structures including the file descriptor tables, the
Seccomp filters, and the memory management structures.
System Call Entry. For every µSWITCH-enabled process,
we set the SYSCALL_WORK_ENTER flag to one. Then, the
Linux kernel will invoke the syscall_trace_enter()
function for all system call invocations from that pro-
cess, and we can modify this function to perform the
implicit context switch. We compare the shared-descriptor
with the current-descriptor to see if shared-descriptor has
been changed since last time the process entered the ker-
nel. The shared-descriptor is stored in a page that is
mapped in both the kernel virtual address and the user
virtual address, so it can be directly accessed in either
mode. If the shared-descriptor has been changed by the
user space, we first update the current-descriptor in the
uswitch_context_table for the process, and then,
we update the files_sturct pointer and the seccomp
structure in the process’s task_struct to refer to the
resources of the current µContext.
Cross-µContext File Access. Often the privileged context
needs to access the files of the unprivileged contexts. To sup-
port this, we provide the dupFileDescriptor API func-
tion and a corresponding system call that duplicates a file
descriptor from another context. This system call copies a
file descriptor from another µContext’s file descriptor tables
to the current one, which is similar to the pidfd_getfd
system call for copying files between processes. To prevent
the unprivileged contexts from accessing other µContexts’
files, this system call should be blocked in the unprivileged
contexts.

6.2. µSWITCH User Space Components
Our implementation ensures that the heap, stack, and global
memory are correctly protected using MPK. In addition, it
ensures that no security-critical user space data is overwrit-

ten during the µSWITCH operations, even when there are
multiple levels of nested µSWITCH invocations.
Stack Isolation. To protect the sensitive data on the stack
and prevent attackers from modifying the return addresses
and hijacking the control flow, we isolate both the stacks
of the privileged context and the sandboxes. Each context,
including the privileged context and the unprivileged con-
texts, has its own stacks in its own memory domain. The
challenge lies in securely switching between these stacks
for privcalls and sandboxcalls. When the program execu-
tion performs a sandboxcall, it must push its current state
consisting of contents of all registers including %rsp and its
return address to a tamper-proof, precomputed address. To
achieve this, in addition to the privileged program stack, we
also maintain a Privileged Register Stack that is located in
memory, per-thread, at a fixed offset from the %fs segment.
This fixed offset is decided at compile time and hardcoded in
the program. Similarly, the base address of the %fs segment
itself can only be updated via the system call arch_prctl,
which we disable inside the sandbox contexts, or via the
WRFSBASE instruction, which we disable by binary inspec-
tion discussed later.

On a return from a sandboxcall, the trusted entrypoint
first updates the MPK domain via the WRPKRU instruction
and then pops and restores the privileged state from the Priv-
ileged Register Stack. Restoring the %rsp register results in
the restoration of the privileged stack, thus re-establishing
the execution environment for the privileged context.

Similarly, we also maintain a Sandbox Register Stack
inside the protected memory at a precomputed fixed-offset
from the %fs segment. When a sandbox performs a priv-
call, its register state is pushed into it to protect it from
corruption by other concurrently executing sandboxes. The
entire process of pushing and popping the Privileged and
Sandbox Register Stacks for a sequence of privcalls and
sandboxcalls are shown in Figure 5. With the help of these
stacks, sandboxcalls can potentially be nested as denoted
by #.
Protection Key Virtualization. Intel® MPK only supports
up to 16 memory domains. Fortunately, prior work, such
as libmpk [15], demonstrate how to virtualize Intel® MPK
beyond 16 keys. This allows µSWITCH to support more than
16 µContexts at the cost of slower context switches when
the working set of active contexts is larger than 16.
Binary Inspection. As discussed in §5.2, µSWITCH must
ensure that there are only safe occurrences of the WRPKRU
and XRSTOR instructions. To check that, our implementation
uses a binary inspection technique inspired by ERIM[4].
When initializing the program and loading the sandboxes,
we scan the whole address space to find the executable pages
and search for byte sequences corresponding to WRPKRU
and XRSTOR instructions in those pages. If unsafe occur-
rences of WRPKRU and XRSTOR are found, the program
will abort or rewrite the instructions. In practice, our im-
plementation aborts except for some simple cases where we
can easily rewrite them, which are discussed later. Also, we
disable WRFSBASE to prevent the attacker from tampering





or threads, such as a malicious PHP script, can execute
arbitrary code with root privileges. Therefore, fine-grained
isolation across the HTTP server components is critical for
security. To this end, we applied µSWITCH to a simple HTTP
web server, which is based on the sample web server [46]
provided by the libevent library, an event-driven network
library that provides asynchronous event notification based
on the kernel functions such as select or epoll and is
used in many applications such as Google Chrome and Tor.
Protecting the web server based on libevent thus shows the
generality and production-readiness of our system.

To apply µSWITCH to the HTTP server, we split the
program into two components. One of them contains the
sandboxed libevent including its event loop, and is allowed
to use the network kernel interfaces including accept,
read and epoll. The other component resides in the
privileged context, and reads files from the file system to
send them to the client via the libevent sandbox. Following
the principle of least privilege [47], we use Seccomp filters
on the HTTP server that minimize the system calls it can
invoke. This use case uses and isolates multiple kernel
resources, including file descriptors and Seccomp filters.
Also, it uses system calls such as select and epoll,
that other sandboxing techniques, such as WASM’s WASI
interface, do not support. This shows µSWITCH’s advantage
of wider kernel function coverage than WASI.

8. Evaluation
To evaluate the effectiveness of our system, we evaluate
µSWITCH with both microbenchmarks and real world use-
cases. In particular, we measure the performance overhead
of our system and compare it with pure MPK-, lwC-,
WebAssembly- and process-based isolation techniques. The
results show that our system can achieve low performance
and memory overhead despite higher security guarantees.
Evaluation Methodology. We use a server with two Intel®
Xeon Platinum 8380 CPUs (with microcode 0xd000331)
and 512 GiB RAM. We disable Turbo Boost to keep the
CPU at the constant frequency of 2.3 GHz (e.g., no power
throttling). To run our experiments in a reproducible way,
we run a virtual machine using KVM on the server. For
the guest machine, we allocate 4 cores and 32 GiB RAM
for the page load experiments, and 16 cores and 32 GiB
RAM for other experiments. We run Ubuntu 18.04 with
our modified Linux kernel version 5.15.2. Kernel page-table
isolation (KPTI) is disabled by default for the CPU. All
our experiments use Glibc version 2.27, Musl version 1.2.2,
Firefox 57, and WASI SDK 14 which compiles the libraries
to WebAssembly. For the experiments with Firefox, we use
the RLBox code released with its paper [43]. The libraries
we isolate are also from the source code tree of Firefox
57. We compare µSWITCH throughout the evaluation to
native execution without isolation as baseline and a pure
MPK, lwC, WebAssembly, and process isolation technique,
as follows:
Pure MPK To evaluate the additional overhead caused by
kernel resource isolation, we remove kernel resource switch-

TABLE 2: Sandboxcall invocation latency.

Type Latency (ns)

w/o Syscall w/ 1 Syscall w/ 2 Syscalls

Native Function 2.2 227 437
µSWITCH 129 380 943
elwC 921 1175 1402
MPK 128 364 584
WebAssembly 2.2 233 468
Process 7124 9284 7801

ing from µSWITCH to get an unsafe, pure MPK version.
Light-Weight Contexts (lwC). As lwC is implemented on
FreeBSD, we cannot directly compare with it. Instead, we
implement an approximation on Linux with explicit context
switch, i.e., a system call that explicitly switches kernel
resources. Since lwC switches page tables when switching
kernel resources, we also add page table flushing to that
system call to take this overhead into account. Since lwC en-
ables the Process Context Identifier (PCID) [48] feature on
modern CPUs to prevent TLB flushes on context-switches,
our implementation of lwC enables PCID too. We refer to
this approximated version of lwC as elwC (explicit-context-
switch lwC) for simplicity. A single switch of elwC takes
about 0.45µs, which is smaller than 2.01µs reported in [6],
so elwC is a conservative approximation for comparison.
WebAssembly and Process Isolation For both isolation
methods, we use the original implementation of RLBox.
However, for the WebAssembly version, we had to backport
the WebAssembly isolation of the deployed RLBox version,
to its original implementation, which only used process
isolation (and the obsolete NaCL). This ensures the same
renderer and other Firefox components across experiments.

8.1. Microbenchmarks
8.1.1. Sandboxcall Invocation Latency
We evaluate the sandboxcall invocation overhead of
µSWITCH (Table 2). To this end, we write a simple function
that returns the sum of two integers, and sandbox it using
five techniques: µSWITCH, WebAssembly-based SFI, MPK
without resource isolation, elwC, and process isolation.

Each experiment invokes the sandboxed function
1,000,000 times and reports the average runtime. Each sand-
box invocation causes two domain switches (privileged →
sandbox → privileged).

As expected, compared to the heavyweight process isola-
tion technique, the sandbox invocation latency of µSWITCH
is significantly lower. In particular, µSWITCH is 55× faster
(7124ns vs 129ns) when no system calls are performed by
the sandbox, which is a common case in many fine-grained
sandboxes (e.g., image decompression).

Interestingly, we observed that process isolation with
two system calls has a lower latency than with a single
system call. After tracing the kernel scheduler events, we
could attribute this behavior to the different scheduler pat-
terns exhibited by the Linux kernel’s Completely Fair Sched-
uler [49]. In contrast, the WebAssembly based sandbox, does
not involve any additional operations upfront at domain-
switch time, and thus its overhead in this experiment is



TABLE 3: µSWITCH sandboxcall inv. latency breakdown.
Locks MPK Others Total

Time (ns) 30 48 51 129

closer to that of a native function invocation. However,
unlike µSWITCH and process isolation, due to the instru-
mentation costs, SFI techniques encounter very significant
overheads inside the execution of the sandbox functions (i.e.,
during user-level instruction execution).

To understand the overhead of function invocation intro-
duced by µSWITCH and pinpoint the source of this overhead,
we also measure the function invocation latency of several
different variants of µSWITCH. We derive this decomposi-
tion by gradually removing each component of µSWITCH,
that could potentially cause a performance overhead, and
measuring the overhead without that component. First, we
remove the locks for synchronization in the implementation
of µSWITCH. Then, we further remove MPK memory pro-
tection from our implementation. By comparing the time of
different variants, we get a decomposition of the invocation
latency to show where the overhead comes from. The results
are in Table 3. This experiment shows that 23% of the
overhead stems from lock primitives required to synchronize
memory accesses to the internal data structures. 37% stems
from MPK’s memory protection.
System Call Cost. Next, we evaluate the sandbox invocation
overhead when the sandboxed function invokes system calls.
We sandbox a function invoking the clock_gettime
syscall and then returns the sum of two integers. We first
measure the invocation latency of only invoking this func-
tion, which we denote as 1 Syscall in Table 2. Then, we mea-
sure the invocation latency of invoking system calls, both,
in the sandboxed function and the privileged function by
invoking another clock_gettime system call on return
to the privileged context, which we denote as 2 Syscalls.
As a result, every system call switches the µContext in the
kernel. Even when every system call requires switching the
kernel resources, the performance of implicit switching is
still better than explicit switching, since each context switch
additionally needs a system call to switch the kernel context.
Implicit context switching batches both the system call and
the context switch into the next actual system call.

8.2. Use Case: Firefox
8.2.1. Media Decoding and Gzip Decompression
We isolated four important libraries used by Firefox, libjpeg,
libpng, zlib and libvpx, into their own sandboxes and depict
the results in Figure 6. Each of these libraries are addi-
tionally guarded with Seccomp filters, similar to how they
are used in Firefox’s sandboxed render processes. These li-
braries perform image decoding and data decompression. To
compare with RLBox, we adapted RLBox to use µSWITCH.
RLBox’s original implementation uses NaCl [44], requiring
us to backport Firefox’s WebAssembly to RLBox’s original
implementation. For both the image decoding experiments,
we use varying image resolutions (240x160, 480x320, and
1920x1280) with file sizes of 24, 72, 523 KiB for JPEG

Figure 6: Decoding and decompression time for four li-
braries used by Firefox. In VP9, WebAssembly does not
support beyond 1 worker thread.

images, and 57, 171, 1223 KiB, for PNG images, respec-
tively. We measure the performance of Gzip decompressing
three different file sizes (256 KiB, 1 MiB and 4 MiB).
µSWITCH causes significantly less overhead (4.7% at max-
imum and 1.6% on average over native) when isolating
libjpeg, libpng, and zlib when compared to other isolation
techniques. In contrast, the overhead for the WebAssembly
and the process-based isolation techniques range from 8.1%
to 255%.

We evaluate µSWITCH’s multithreading performance by
isolating libvpx, a VP9 video decoding library. libvpx de-
codes a video file (4096x1714, 2.52 MiB) while varying
the number of worker threads (1, 2, 4, 6 and 8). Since
the WebAssembly runtime does not support multi-threading,
we cannot report results beyond 1 worker thread. During
our initial experiments (not reported here), we found that
the memcpy() used in Musl causes a substantial perfor-
mance degradation. As a result, we switched the memcpy()
implementation to the one used by glibc. Compared to
native, µSWITCH has low overhead compared with the native
throughout all for different isolated libraries and always out-
performs its competitor isolation techniques, WebAssembly-
and process-based isolation.

We record and show the number of sandboxcalls, priv-
calls, and system calls invoked during decoding or decom-
pression in Table 4. While most libraries perform a high
number of sandboxcalls or privcalls, they perform only
a handful system calls. In these cases, µSWITCH skips
switching the kernel contexts and incurs no additional over-
head apart from the MPK domain switches. This use case
highlights the benefits of implicit context switching. Since
these libraries use a limited set of kernel resources, unlike



the browser rendered running in the privileged domain,
we can apply a nearly deny-all Seccomp filter policy to
the libraries. However, we note that applying this deny-
all Seccomp filter policy requires fine-grained system call
isolation. In particular, µSWITCH is crucial to switch the
Seccomp filter efficiently. µSWITCH applies this fine-grained
system call isolation by setting such filter per µContext.
Other MPK-based systems, such as ERIM or Endokernel,
cannot achieve this.

8.2.2. Page Loading
We measure the page load latency and resources utilization
of µSWITCH and related techniques. For each web page, we
define the page load latency as the total time of rendering
since loading it. We isolate the same three libraries (libjpeg,
libpng, and zlib) in each technique.
Page Load Latency. In web browser experiments most of
the latency stems from the network and highly depends
on network latency and contention. For reproducibility,
we avoid depending on the unstable network by creating
clones of each page locally and load the local, cloned
pages during our benchmarks. We use four popular websites
as our test cases: bbc.com, amazon.com, getty.com
and nytimes.com. We additionally create three synthetic
pages with a varying number of JPEG images (1, 10, or
100). Each experiment loads the page 200 times with the
Talos testing framework of Firefox [50] Since Firefox reuses
the same renderer process when reloading a page, sandboxes
would be reused lowering the number of sandbox creations.
Instead, we ensure all created sandboxes are destroyed be-
fore Firefox reloads the page. We report the median and the
standard deviation of the measured page load latency.

In our evaluation we differentiate between a per-origin
and a per-component isolation policy. As described in §7.1,
the per-origin isolation policy reuses sandboxes for each net-
work origin, and the per-component isolation policy assigns
a dedicated sandbox for each web component (e.g., image).
The results, shown in Figure 7, illustrate that µSWITCH
outperforms the other isolation techniques for most work-
loads, incurring an average overhead of 1.5% for per-origin
isolation and 5.5% for per-component isolation. For compar-
ison, the average overhead of per-origin isolation and per-
component isolation is 23.2% and 18.9% for WebAssembly-
based sandbox and 61.7% and 346.4% for process-based
sandbox. For getty.com with per-component isolation
µSWITCH performs worse than the WebAssembly-based
sandbox with 27.1% and 2.5% page load overheads, respec-
tively. We notice that WebAssembly performs better with
per-component isolation because it does not support multi-
threading and requires mutual exclusion for all sandboxcalls
in the case of per-origin isolation where multiple threads
may invoke the same sandbox.
Number of Calls. We record the numbers of sandboxcalls,
privcalls, and syscalls in Table 5 for each page load to illus-
trate the inner workings of µSWITCH. In case of µSWITCH
per-origin isolation, we find that the frequency of system
calls invoked by the sandboxed function is extremely low
and are mainly performed by the per-origin heap allocator

TABLE 4: Media decoding and gzip decompression statis-
tics. Sandboxcalls are invoked from the main program. Priv-
calls and Syscalls are invoked from the sandboxed functions.

libjpeg
(Large)

libpng
(Large)

zlib
(Large)

libvpx
(8 cores)

Sandboxcalls 1295 15 11 2188
Privcalls 0 1282 0 16
Syscalls 0 0 0 10

TABLE 5: Page loading statistics. All the numbers are
measured in one page loading cycle. Sandboxes is the times
of creating a new sandbox or resetting the memory of an
old sandbox. Each cell contains numbers for the per-origin
/ per-component setting.

Sandboxcalls Privcalls Syscalls Sandboxes

bbc.com 4578 / 4714 210 / 210 9 / 3 4 / 75
amazon.com 13441 / 13521 1024 / 1018 10 / 0 4 / 246
getty.com 3345 / 5132 158 / 200 10 / 0 2 / 70
nytimes.com 6488 / 16347 2459 / 3783 10 / 0 4 / 134
JPEG100 8412 / 7583 319 / 310 8 / 0 3 / 121
JPEG10 4128 / 4173 124 / 124 2 / 0 3 / 29
JPEG1 697 / 708 79 / 79 1 / 0 3 / 11

for synchronization across multiple renderer threads. In case
of the per-component isolation, each component has its
own sandbox with its own heap allocator, thus eliminating
the need for any synchronization. Therefore, the number
of system calls in per-component isolation is zero for all
websites, but bbc.com. On the other hand, we observe
between 3.5 to 61 times more sandbox creations, up to 2.5
times more sandboxcalls, and up to 1.5 times more privcalls.
Memory Usage. We evaluate the memory usage for each
websites. We start a fresh Firefox instance for each ex-
periment and load the web page then collect the peak
memory usage with cgmemtime of Firefox and all its
child processes in terms of RSS and cache memory, and
report the median and the standard deviation as error bars
in Figure 8 over 10 runs. µSWITCH additionally uses 4.9%
more memory during peak memory load compare to the
baseline. This is similar to process-based isolation or elwC
and higher than WebAssembly or pure MPK, which are
4.7%, 11.9%, 0.8% and 0.4% respectively.

8.3. Use Case: HTTP Server
We evaluate the performance overhead of µSWITCH on the
HTTP server to measure the efficiency of µSWITCH over
other isolation techniques on applications that extensively
use kernel resources. As WASI does not support this use
case because it does not support network system calls, we
only compare µSWITCH with the native baseline, process
isolation, pure MPK, and elwC.

We use the HTTP performance benchmark tool
bombardier to measure the requests the the server han-
dles per second with different file sizes and isolation mecha-
nisms. The results are shown in Figure 9. µSWITCH causes
significantly less overhead (14.3% at maximum and 5.8%
on average over native) than both elwC (39.0%, 19.4%) and



Figure 7: Web Page loading latency for the three isolation techniques, for per-origin and per-component configurations.

Figure 8: Memory utilization for web page loads.

Figure 9: Throughput of the HTTP server with different file
sizes and isolation techniques. (Higher is better.)

process isolation (85.5%, 63.3%), and is close to pure MPK
(10.7%, 4.1%). When the file size is 1 KiB, the throughput
with µSWITCH is 1.40× the one with elwC and 5.91× the
one with process isolation respectively. Hence, µSWITCH
achieves both high coverage of kernel services, unlike WASI
or other in-process kernel context virtualization, and low
overhead.

9. Security Analysis
We analyze µSWITCH’s security guarantee in this section
to understand how µSWITCH achieves similar isolation as
process-based isolation.

Memory Isolation. In our current implementation,
µSWITCH uses Intel® MPK for memory isolation. Intel®
MPK provides hardware-guaranteed memory protection. If
a sandboxed function tries to access the memory of the priv-
ileged context or other unprivileged contexts, the SIGSEGV
signal will be raised and the process will be terminated.
We analyze several possible methods of bypassing memory
protection. First, the attacker can make use of the WRPKRU
or XRSTOR instructions. However, as discussed in §5.2,
only safe occurrences of them are allowed. We will later
show that even if the attacker can jump to these instructions
it is impossible to escape from the isolation. Second, the
attacker can make use of system calls [9]. However, we
will later show that the problem can be addressed by fine-
grained system call filtering. Finally, the attacker may use
transient execution attacks such as Spectre and Meltdown. In
recent Intel® CPUs, Intel® MPK prevents certain transient
execution attacks [51]. These attacks are out of the scope
of this paper, and we expect that existing defenses [26] can
be applied here.
Safe Occurrences of WRPKRU and XRSTOR. We first
show that the WRPKRU instructions for switching from the
privileged contexts to the unprivileged contexts are safe. If
the attacker jumps to WRPKRU with %eax being a mali-
cious value, the instructions after WRPKRU will immediately
compare %eax with the correct PKRU value stored in a
trusted read-only variable and terminate the program if they
do not match. As the attacker does not have the permission
to overwrite this variable, any attempt to overwrite PKRU
in this case will cause termination of the program. In our
implementation, the trusted read-only variable is stored in
a fixed offset of the %fs segment. To prevent the attacker
from tampering with the base address of the %fs segment,
we forbid the WRFSBASE instruction when doing binary
inspection. Also, we disable the system call arch_prctl
as it can be used to overwrite the base address. Then,
we show that WRPKRU instructions for switching from the
unprivileged contexts to the privileged context are safe. The
attacker jumping to WRPKRU will be forced to jump to the
trusted entrypoint. Then, the control flow will continue as
if a normal exit or privcall happens, which is not harmful.
Finally, if the attacker tries to use XRSTOR to overwrite
PKRU, the bit flag for restoring PKRU should be one in
%eax. However, the instructions following XRSTOR will



defensively terminate the program in this case.
Kernel Context Isolation. Now we discuss the security
guarantee of µSWITCH for the isolated kernel resources.
When the sandboxed function enters the kernel by in-
voking a system call, all isolated kernel resources will
be updated and only the resources in the current kernel
context are visible to the program. Thus, we can prevent
the sandboxed function from accessing the kernel resources
of other µContexts if we can protect the shared-descriptor,
which is guaranteed by MPK. One important kernel resource
µSWITCH isolates is the Seccomp filter. By filtering system
calls in a fine-grained manner, we ensure that the attacker
cannot exploit some system calls to escape isolation while
the privileged context can use those system calls normally.

10. Discussion
Supported Resources. µSWITCH can isolate all kernel re-
sources that can only be accessed via system calls. For
example, file descriptors fall in this category while process
memory layout does not. Hence, our implementation can be
extended to other kernel resources.
Number of Memory Domains. A limitation of µSWITCH
with MPK is the number of concurrent µContext’s per
address space as Intel® MPK only supports a maximum of
16 different memory domains in one address space, though
our experiments with Firefox and the HTTP server did
not run into this limitation. µSWITCH can be applied on
architectures other than x86-64, which have more protection
keys [40]. Also, µSWITCH can be used with other memory
protection techniques that do not have this limitation, such
as WebAssembly.
Refactoring Effort. µSWITCH assumes a refactoring effort
from the developers . The problem of automatically applying
sandboxes orthogonal to µSWITCH. µSWITCH provides a
secure and fast isolation mechanism and can be combined
with prior work to automatically isolate applications as
demonstrated with our RLBox integration.
Use Cases. µSWITCH provides an efficient and prac-
tical intra-process isolation system that benefits various
workloads. For instance, compared with process isola-
tion, µSWITCH safely co-locates untrusted libraries and the
program within the same address space, improving the
fork-based snapshotting [52, 53] performance. Moreover,
µSWITCH can be extended to support workloads where IPC
overhead is non-trivial, e.g., serverless computing [52, 54–
57]. We leave this as future work.

11. Related Work
In-process Memory Isolation. Different in-process memory
isolation mechanisms have been adopted for sandboxing.
SFI [8, 44, 57–59] enforces memory isolation by instru-
menting memory operations. Recently, WebAssembly [13]
has gained much attention as a general sandboxing platform.
Hardware-assisted enforcement is often used to provide
secure and efficient memory isolation. Such approach in-
cludes traditional memory management [5] and emerging
hardware extensions, such as Intel® VT-x [23, 60, 61], Intel®

MPK [4, 39, 62–67], ARM memory domains [68], Intel®
SGX [69, 70], Intel® CET [71], and special hardware [72–
74].

Many works study the safe usage of memory protection
keys [4, 9, 39, 40, 75–77]. ERIM [4] proposes the design
of call gates and binary rewriting to ensure the safe update
of the PKRU register. PKU pitfalls [9] explores several at-
tacks on Intel® MPK-based memory isolation mechanisms.
Endokernel [19], Jenny [41], and Cerberus [42] add the
isolation of kernel resources apart from MPK-based mem-
ory protection. Different from Endokernel or Jenny, which
achieves the safe usage of MPK by auditing system calls
with in-process trusted domain or other special handling,
µSWITCH leverages fine-grained system call filtering by
isolating kernel contexts, which is conceptually simpler and
less error-prone.
Kernel Context Isolation. Intra-process isolation [68, 78]
provides different views over memory or kernel resources
for code and data within the same process. For instance,
lwC [6] proposes light-weight context, an isolation unit that
is fully decoupled from the scheduling unit. Orthogonal to
our work are techniques to automatically defining isolation
boundaries [79]. µSWITCH isolates a series of kernel re-
sources and optimizes intra-process context switch latency
by proposing implicit context switch.
Fast Kernel Context Switch. Process isolation could pro-
vide strong isolation but suffers from high overhead due
to context switching. Providing new user space primitives
to optimize process/thread scheduling is an active research
field [80–83]. Prior work mainly focuses on reducing the
process context switch overhead, but it still involves an
explicit context switch, while µSWITCH proposes implicit
context switching.

12. Conclusion
This paper presents µSWITCH, a system to efficiently isolate
kernel resources and application memory into fine-grained
µContexts. Using a lightweight MPK-based memory iso-
lation technique, µSWITCH is able to perform an implicit
switch of the kernel resources from user space, thus achiev-
ing high security guarantees with minimum performance
overhead. We used µSWITCH to isolate libraries in the
Firefox web browser and an HTTP server, and reduced the
overhead of isolation by 32.7% to 98.4% compared with
other isolation techniques.
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To address this problem, we add a next-descriptor, which
stores the value that the shared-descriptor must be updated to
when the signal returns. This next-descriptor is also stored in
the protected shared page between the kernel and user space.
Our signal trampoline epilogue performs two tasks. It (1)
updates the next-descriptor with the unprivileged value and
(2) updates the shared-descriptor with the privileged value.
Then, at the next system call (in this case sigreturn), the
kernel updates the shared-descriptor with the value of next-
descriptor, after validation, i.e., only when next-descriptor
is not -1. The -1 value means that shared-descriptor will not
be updated at the next system call, which is the typical case
for the system calls other than sigreturn. This allows
the shared-descriptor to be updated with the correct value.
Securing the Signal Frame. When a signal occurs, the
signal frame, which contains security-critical register infor-
mation, must be stored on a dedicated per-thread secure
signal stack until the sigreturn system call restores the
frame. However, when the signal occurs in an unprivileged
context, additional steps must be taken to ensure the integrity
of the signal frame. As the original call stack is writable by
the unprivileged context, we cannot directly set the secure
signal stack in the protected memory domain as the signal
stack using the sigaltstack system call. Instead, we
need to switch to the secure signal stack in the the signal
trampoline prologue. After switching to the secure signal
stack, the signal trampoline prologue also copies the signal
frame from the original call stack to the secure signal stack.
Fault Isolation. Fault isolation for sandboxes can be imple-
mented by handling signals such as SIGSEGV, SIGILL, and
SIGSYS. Instead of simply terminating the process when a
fault occurs, µSWITCH forces the execution to return from
the sandboxcall that invoked the µContext. µSWITCH installs
signal handlers for these faults. These signal handlers run
in the privileged context, and manipulate the signal frame
to force a return from the sandboxcall. This ensures the
liveness of the program. In other words, if these faults
happen in the unprivileged contexts, the privileged function
can trap and handle them without terminating the program.
We support handling all faults that can be caught by signals
including unauthorized memory access or system call, bus
error, illegal instruction and floating point error.

To guarantee that the unprivileged functions cannot
block the program by a Denial-of-service attacks such as
running a infinite loop, we allow the privileged context to
set an interval timer and handle the SIGALRM signal to
implement timeouts for sandboxcalls. Similarly, transpar-
ent system call interception can be implemented by using
Seccomp filters and handling SIGSYS signals. This allows
µSWITCH to sandbox the binary code containing syscall
instructions without rewriting the binary.

Appendix D.
C Library Isolation
Isolating sandbox functions from privileged functions also
requires isolating any library that is shared by both the
privileged and sandbox code. While it is possible to isolate

most of the libraries into its own sandbox, sandboxing
Libc presents further challenges as it is shared by most
libraries and our current prototype does not support sharing
a sandbox with other sandbox contexts. Therefore, instead
of sandboxing the Libc library, we provide each sandbox its
own copy of the Libc library, thus isolating its global and
static variables, and thread local storage.

We link each sandbox with its own copy of the
lightweight Musl C library [84]. To allow the different
copies of the same functions to reside in the same address
space and isolate the GOT table, PLT section and global
variables, we use dlmopen to load each sandbox in its
own namespace. Providing each sandbox with its own copy
of the C library also simplifies the task of separating the
heap memory for each sandbox into its own MPK protection
domain. We simply preallocate 1 GiB of memory for each
sandbox, protected by its own MPK protection key, and
use a dlmalloc-based pool allocator to create heap objects
within it. Alternatively, we support a virtualized memory
management API, which is discussed later.
Multi-threading. µSWITCH allows a sandbox context to
create threads, but it must first switch to the privileged
context to do so. We modify the implementation of
pthread in Musl to achieve this. We replace the function
pthread_create() with a function that calls a privcall.
The privcall handler in the privileged context will then
create a thread and run the given thread routine inside the
sandbox on that thread. In this way, all thread creations
happen inside the privileged context, and we do not need
to expose the clone syscall to the unprivileged contexts.
For other pthread functions that manipulate threads such as
pthread_join(), the handling is similar.

However, for multi-threaded programs that use locks or
other synchronization mechanisms, trapping to the privi-
leged context constantly can significantly affect the perfor-
mance. To address this problem, we allow the unprivileged
context to freely invoke the pthread functions manipu-
lating mutexes and condition-variables, and also allow the
sandboxes to invoke the futex system call.
Virtualized Memory Management API As µSWITCH de-
pends on memory protection, the system calls for memory
management that may break the memory protection need
handling. In our system, the privileged context controls
the memory management of unprivileged contexts. The
unprivileged contexts are not allowed to make any direct
system calls for memory management, and can only request
the privileged context to allocate memory via privcalls.
We modify Musl’s implementation of mmap, munmap,
mremap, and mprotect to achieve this. For security
reasons, we block features that can break memory isolation,
such as mapping fixed, shared, or executable memory. Upon
the invocation of each of these privcalls, the privileged
context will first audits the request, before performing the
system call on behalf of the unprivileged context. For file-
backed mappings, we first duplicate the file from the un-
privileged contexts using the dupFile method, then map
it in the privileged context and finally close it.


