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ABSTRACT (<250 words, now=250?)

We report the results of the ‘UM-TBM’ and ‘Zheng’ groups in CASP15 for protein monomer 
and complex structure prediction.  These prediction sets were obtained using the D-I-TASSER 
and  DMFold-Multimer  algorithms,  respectively.  For  monomer  structure  prediction,  D-I-
TASSER  introduced  four  new  features  during  CASP15:  (i)  a  multiple  sequence  alignment 
(MSA)  generation  protocol  that  combines  multi-source  MSA  searching  and  a  structural 
modeling-based MSA ranker; (ii) attention-network based spatial restraints; (iii) a multi-domain 
module containing domain partition and arrangementassembly for domain-level templates; (iv) 
an optimized I-TASSER-based folding simulation system for full-length model creation guided 
by  a  combination  of  deep  learning  restraints,  threading  alignments,  and  knowledge-based 
potentials. For 47 FM targets and 47 TBM targets in CASP15, the first models predicted by D-I-
TASSER  showed  average  TM-scores  19%  and  4%  higher  than  the  standard  AlphaFold2 
program, respectively. We thus showed that traditional Monte Carlo-based folding simulations, 
when appropriately coupled with deep learning algorithms, can generate models with improved 
accuracy  over  end-to-end  deep  learning  methods.  For  protein  complex  structure  prediction, 
DMFold-Multimer  generated  models  by  integrating  a  new  MSA  generation  algorithm 
(DeepMSA2)  with  the  end-to-end  modeling  module  from AlphaFold2-Multimer.  For  the  38 
complex targets,  DMFold-Multimer generated models with an average TM-score of 0.83 and 
Interface  Contact  Score  of  0.60,  both significantly  higher  than  those  of  competing  complex 
prediction  tools.  Our  analyses  on  complexes  highlighted  the  critical  role played  by  MSA 
generating, ranking, and pairing in protein complex structure prediction. We also discuss future 
room for improvement in the areas of viral protein modeling and complex model ranking.



1. INTRODUCTION
Protein structure prediction is  a long-studied fundamental  problem in structural  biology. The 
template-based  modeling  method  I-TASSER  (Iterative  Threading  ASSEmbly  Refinement)1-4 
was designed to address this problem, and has proven to provide a highly robust and versatile 
framework  for  ongoing advances  in  protein  structure  prediction.  ‘Zhang-Server’,  which  was 
based on the I-TASSER algorithm, joined the Critical Assessment of Protein Structure Prediction 
(CASP) experiments5-9 from CASP7 to CASP1110-14.  During this period, I-TASSER predicted 
protein  structure  mainly  based  on  threading  template  information  and  knowledge-based 
potentials. Since the introduction of co-evolution and deep learning techniques, two versions of 
contact-guided I-TASSER (C-I-TASSER)15 were developed by introducing the direct coupling 
analysis  (DCA)-based  and  deep  learning-based  residue-residue  contact  prediction16-18 into  I-
TASSER folding.  These two versions of C-I-TASSER were used in CASP1219 and CASP1320, 
respectively.  Subsequently,  a  more  comprehensive  deep-learning  guided  I-TASSER  (D-I-
TASSER) was developed using predicted contacts, distances, and hydrogen-bonds21,22 to guided 
I-TASSER Replica Exchange Monte Carlo (REMC) simulation, as applied in CASP1423.  All 
these  I-TASSER-based  protein  structure  prediction  methods  followed  a  similar  two-step 
workflow: first, collecting geometric restraints either from templates or deep learning predictors; 
second,  converting  those features  into  energy potentials  that  are  combined with the inherent 
knowledge-based  potentials  to  guide  the  REMC  folding  simulations.  This  workflow  shows 
strong  robustness  and  versatility,  because  new  restraint  features  from  new  algorithms  and 
techniques  can  be  conveniently  introduced  to  the  pipeline  and  result  in  improved  modeling 
quality. This is evident by the fact that the overall accuracy of the TASSER series algorithms has 
consistently increased from CASP11 to CASP14, as improved deep learning-based constraints 
were incorporated into the underlying I-TASSER modelling framework. 

CASP14 saw a remarkable shift in the field, due to the fact that the end-to-end deep learning 
pipeline AlphaFold224 generated excellent models for most targets. Different from our two-step 
protein folding strategy, AlphaFold2 feeds the raw multiple sequence alignment (MSA) into  a 
deep neural network and directly creates the structure models by the network learning. It must be 
noted  that  AlphaFold2  still  has  difficulties  in  modeling  some  proteins,  such  as  those  with 
multiple  domains and  those  with  no  homologous  sequences25.  However, the  success  of 
AlphaFold2 marked a solution to the structure prediction problem through pure machine learning 
from the  large  pool  of  experimentally  solved  structures  in  the  Protein  Data  Bank  (PDB)26. 
Meanwhile,  it  also  prompted  us  to  ask  several  fundamental  questions:  (i)  Is  the  end-to-end 
learning  method  the  only  way  to  solve  the  protein  structure  prediction  problem?  (ii)  Are 
knowledge-based potentials  useless in the era of AI and deep learning? (iii)  How can multi-
domain  protein modeling  best  incorporate  the power of  deep learning methods?  These were 
central  questions  in  protein  monomer  structure  prediction  that  we  wanted  to  address  since 
CASP14.

After  CASP14,  the  AlphaFold2  framework  was  subsequently  extended  to  AlphaFold2-
Multimer27 for  predicting  the  structures  of  multi-chain  protein  complexes.  The  AlphaFold2-
Multimer pipeline has been demonstrated to have the ability to produce high-quality models for 
numerous instances. The quality of input MSAs largely decides the modeling performance of 
AlphaFold2-Multimer27-29. However, the shallow MSAs produced by its default MSA pipeline, 
and the mechanism of combining MSAs without optimal diversity, had restricted the predictive 
power of AlphaFold2-Multimer in terms of complex structure predictions. Thus, addressing the 



MSA generation  and pairing  problems in  protein  complex structure  predictions  was another 
central topic that we wanted to address.  

In CASP15, we used two methods, D-I-TASSER (group name ‘UM-TBM’) and DMFold-
Multimer (group name ‘Zheng’),  to participate  in the protein monomer and protein complex 
structure prediction categories, respectively. 

Compared  with  the  D-I-TASSER  pipeline  used  in  CASP1423,  four  newly  developed 
components were integrated into the D-I-TASSER version used in CASP15. First, a new MSA 
construction pipeline, DeepMSA2, has been created. This pipeline searches large-scale whole-
genome  and  metagenome  databases  for  generating  multi-source  MSAs,  and  utilizes   deep 
learning structure modeling for scoring MSAs.  Second, two new attention-based deep neural 
network  predictors,  AttentionPotential  and  AlphaFold2,  have  been  developed  or  introduced. 
These two methods as well as our previous method, DeepPotential22, are combined to  predict 
residue-to-residue  spatial  restraints,  including  contact  maps,  distance  maps,  inter-residue 
orientations, and hydrogen-bond networks. Third, a domain partition and arrangement assembly 
module has been developed for handling multi-domain targets. For domain partition, the contact-
based  method  FUpred30 and  threading-based  method  ThreaDom31 were  utilized  for  non-
homologous and homologous targets, respectively. In the domain  arrangement  assembly stage, 
DEMO232 was  employed  to  merge  assemble domain-level  templates  and  extract  spatial 
restraints.  The  merged  assembled features  were subsequently used in the folding simulation. 
Fourth, the D-I-TASSER REMC folding system has been optimized to predict protein structures 
with  the  combined  guidance  of  deep  learning-based  restraint  potentials,  template-based 
potentials, and knowledge-based potentials. With the developments outlined above, the qualities 
of  models  obtained  using  D-I-TASSER  are  significantly  improved  when  compared  with 
AlphaFold2.  The success  of D-I-TASSER in CASP15 demonstrates  that  an end-to-end deep 
learning pipeline may not be a unique solution to the protein structure prediction problem. A 
two-step modeling strategy can also achieve this goal (with higher performance) by appropriately 
combining  highly  accurate  deep  learning-based  spatial  restraints  with  knowledge-based 
potentials,  and  potentially  carries  the  additional  benefit  of  more  easily  and  transparently 
incorporating  ongoing advances  in  the field through its  ability  to  combine  information  from 
several different deep learning pipelines. 

The  DMFold-Multimer  pipeline  used  a  three-stage  process  for  multi-chain  complex 
prediction.   First,  monomer MSAs were constructed by DeepMSA2. Second,  the top-ranked 
monomer MSAs were combinatorically paired to generate a diverse set of joint MSAs. Third, the 
end-to-end modeling module from AlphaFold2-Multimer was used to generate models using the 
paired  MSAs  as  input.  The  advancements  in  DMFold-Multimer  have  led  to  a  substantial 
enhancement  in  the  model  qualities  when  compared  with  AlphaFold2-Multimer  and  other 
competing methods.

2. METHODS
2.1  Overview of ‘UM-TBM’ server and ‘Zheng’ human group in CASP15
The ‘UM-TBM’ server group, utilizing the D-I-TASSER algorithm (Fig. 1), participated in the 
protein monomer modeling category in CASP15. Meanwhile, the 'Zheng' human group, based on 
the DMFold-Multimer method (Fig. 2), participated in the protein complex modeling category. 
Although the ‘Zheng’ group pipeline is fully automated, the extensive running time required for 
large protein complexes prevented participation in categories other than the human group. Below 
we describe the components of the D-I-TASSER monomer pipeline in sections 2.2-2.5, with a 



final summary of how the methods connect in section 2.6; DMFold-Multimer’s components are 
described in sections 2.2 and 2.7.

2.2 Multiple sequence alignment construction for protein monomers by DeepMSA2 
We utilized  DeepMSA2 (Fig.  2A)  to  generate  the  multiple  sequence  alignments  required  in 
subsequent stages of both of our pipelines. DeepMSA2 contains two stages: (i) MSA generation 
using  three  sub-pipelines,  and  (ii)  MSA ranking  based  on  the  structure  model-associated 
confidence score.

During  the  MSA construction  step,  three  sub-methods  (dMSA,  qMSA,  and  mMSA) are 
employed to generate a maximum of ten potential multiple sequence alignments (MSAs). The 
first  sub-method,  dMSA,  is  a  prior  MSA construction  program  (DeepMSA33)  created  for 
CASP13.  dMSA utilizes  three  stages  (labeled  stage  1-3)  where  HHblits34,  Jackhmmer35,  and 
HMMsearch35 are  used  to  query  the  input  sequence  against  Uniclust3036,  Uniref9037,  and 
Metaclust38 databases, respectively. qMSA is an extended version of dMSA with a new search 
added between stages 2 and 3, utilizing HHblits to explore the BFD39 metagenomics database. 
Additionally,  qMSA employs  UniRef3036 as  the  database  used  in  stage  1,  and  adds  a  new 
iteration stage (stage 4) to search through the Mgnify40 metagenomics database. The construction 
of both dMSA and qMSA will terminate at any searching stage where the number of effective 
sequences (Neff) value (Eq. 1) is greater than 128, yielding a maximum of seven distinct MSAs 
generated by stages 1-3 of dMSA and stages 1-4 of qMSA. Here, Neff is defined as:

Neff =
1

√L
∑
n=1

N
1

1+ ∑
m=1 , m≠n

N

I [ Sm, n≥ 0.8 ]

(1 )

where L is the length of the query sequence, N is the number of sequences contained in the MSA, 
Sm, n is the sequence identity between the m-th and n-th sequences, and I[ ] represents the Iverson 
bracket, which takes the value I [ Sm, n≥ 0.8 ]=1 if Sm , n≥ 0.8, and 0 otherwise.

The mMSA pipeline subsequently uses the MSA obtained from stage 3 of qMSA, generated 
from  the  BFD  database,  as  the  starting  point  for  HMMsearch  to  explore  three  in-house 
metagenome  databases  (IMG/M41,  TaraDB42,  and  MetaSourceDB43),  which  contain  more 
sequences compared to the Metaclust, BFD, and Mgnify databases. The resulting sequence hits 
are converted into a sequence database, which is used as the target database for stage 3 of dMSA, 
stage 3 of qMSA, or stage 4 of qMSA to generate additional three MSAs.

In the MSA ranking step, the ten MSAs generated by DeepMSA2 are utilized as inputs for 
separate AlphaFold2 runs, where the template detection module is turned off and the embedding 
parameter  is  set  to one to  enable rapid model  generation.  The MSA linked with the highest 
pLDDT score among the AlphaFold2 models is selected as the final output of DeepMSA2.

Based on benchmarking of 73 protein monomer targets, the time complexity for DeepMSA2 
scales  roughly  linearly  with  sequence  lengths;  run  times can  be  estimated  by 0.003L+2.055 
hours, where L is the length of the protein (Fig. S1A). The benchmarking is based on ten CPU 
cores and four GPU A40 cards.

2.3 Template detection by LOMETS3
The templates used for D-I-TASSER simulation are detected by the LOMETS344 pipeline (Fig. 
1), which contains two steps: (i) template detection by individual threading programs, and (ii) 
template re-ranking by the LOMETS3 scoring function. 



In the template detection step, two groups of threading algorithms, profile-based threading 
and contact-based threading methods, are employed to gather the initial templates. The MSA that 
was generated  in  the  previous  step  is  utilized  to  create  sequence  profiles  or  profile  Hidden 
Markov  Models  (HMMs)  for  six  profile-based  threading  methods  including  FFAS3D45, 
HHpred46,  HHsearch47,  MRFsearch48,  MUSTER49,  and  SparksX50.  For  these  six  profile-based 
threading methods, a template re-ranking algorithm is implemented based on a scoring function, 
Zscore ( i , j),  which  combines  the  original  profile-based  alignment  score  (Prof),  contact  map 
overlapping  score  (CMO),  and  mean  absolute  distance  error  of  the  template  (MAET).  The 
Zscore ( i , j), where i represents i-th template and j represents j-th threading program, is defined 
as following:

Zscore ( i , j)=w1 Zscore MAET
( i , j )+w 2 ZscoreCMO

(i , j )

+w 3 ZscoreProf
(i , j )(2)

Here, ZscoreX
(i , j ) could be calculated as:

 ZscoreX
(i , j )=

X (i , j )−⟨ X ( j ) ⟩

σ ( X ( j ) )
(3 )

where ⟨ X ( j )⟩ and σ ( X ( j))are the average and standard deviation of the scoring function X, and 
X represents for CMO, MAET and Prof. Here, CMO is defined as:

CMO=
N (CM query ,CM template

)

N (CMquery
)

(4)

where N (CMquery ,CM template
) is the number of overlapping contacts between the predicted query 

contact  map and the contact  map derived from the aligned template,  and  N (CMquery
) is  the 

number of predicted contacts. MAET is defined as:

MAET=

∑
m

ali

∑
n>m

ali

¿dm, n
query

−dm,n
template

∨¿

∑
m

ali

∑
n>m

ali

1

(5)¿

where dm , n
query is the predicted distance between residue m and n in the query structure, dm , n

template is 
the corresponding distance between the residue in the template structure that aligned to position 
m and n of the query, and ali means the length of alignment. The contact map and distance map, 
obtained from the top-ranked AlphaFold2 model using the MSA generated by DeepMSA2, are 
utilized  by  five  contact-based  threading  methods.  These  methods  include  CEthreader51, 
DisCovER52, Map_align53, EigenThreader54, and Hybird-CEthreader51. To increase the efficiency 
of  the contact-based threading approaches,  we choose the top 1,000 templates  identified  by 
HHsearch,  and  then  re-rank  these  templates  using  each  of  the  five  contact-based  threading 
methods.

For the final template re-ranking step, the top 20 ranked templates will be selected from each 
individual threading method, resulting in 220 templates. Those templates are re-ranked based on 
the  following  scoring  function  that  integrates  Zscore  and  sequence  identity  between  the 
identified template and query sequence55:

score ( i , j )=conf
( j)∗Zscore ( i , j )

Zscore0 ( j )
+seqid ( i , j ) (6 )

where seqid (i , j ) is the sequence identity between the query and the i-th template  from the j-th 
program, conf ( j ) is the confidence score for the j-th program, and Zscore0 ( j ) is the Zscore cut-



off for defining good/bad templates for the j-th program. The target will be defined as ‘Easy’ or 
‘Hard’  based  on  the  number  of  high-quality  threading  alignments  (Zscore(i , j)>Zscore0 ( j )) 
detected by LOMETS3, where the ‘Easy’ target is roughly corresponding to CASP ‘TBM-easy’ 
(and ‘TBM-hard’) target, and ‘Hard’ target is roughly corresponding to CASP ‘FM/TBM’ (and 
‘FM’) target.   For  the different  type  of  targets,  the  modeling  strategy in  later  steps  will  be 
different. 

2.4 Spatial restraint prediction by the deep learning module
Three deep learning algorithms (Fig. 1), AlphaFold224 (8-embedding), AttentionPotential,  and 
DeepPotential22,  are  applied  to  accurately  predict  residue-residue  contact  maps,  distance 
distributions,  inter-residue  torsion  angles,  and  hydrogen-bond  networks  for  D-I-TASSER, 
utilizing the DeepMSA2 final MSAs.

DeepPotential22 is a computational tool that we developed during CASP14 to predict residue-
residue  contact  maps,  distance  distributions,  inter-residue  torsion  angles,  and hydrogen-bond 
networks for both Cα-Cα and Cβ-Cβ residues. The DeepPotential pipeline utilizes a combination 
of  two-dimensional  co-evolutionary  features  and one-dimensional  sequence-based features  as 
machine learning inputs. The co-evolutionary features consist of raw coupling parameters from 
the 22-state Potts model optimized through pseudo-likelihood maximization (PLM), and the raw 
mutual  information  (MI)  matrix  derived  from the  co-evolutionary  information  of  the  given 
multiple sequence alignment (MSA). Sequence features include Potts model field parameters, 
Hidden Markov Model (HMM) features, self-mutual information, and one-hot representation of 
the  MSA.  These  features  are  then  input  separately  into  deep  convolutional  residual  neural 
networks, where they are passed through sets of one-dimensional and two-dimensional residual 
blocks, respectively, before being tied together. The resulting tiled feature representations serve 
as inputs to another fully residual neural network that contains 40 2-D residual blocks, which is 
trained using cross-entropy loss and outputs several types of spatial restraints.

AttentionPotential  is an advanced computational pipeline derived from DeepPotential  that 
leverages  an  MSA  transformer56 and  AlphaFold2  Evoformer24.  Unlike  DeepPotential, 
AttentionPotential extracts co-evolutionary information directly through an attention mechanism 
that can more accurately capture the interactions between residues. Starting from a MSA msi

init, 
with  S aligned sequences and  L positions,  the ‘InputEmbedder’ module is applied to get the 
embedded MSA representation  msi and the pairwise representation  z ij. Additionally, the MSA 
embeddings and attention maps from MSA transformer, i.e., msi

esm and z ij
esm, are linearly projected 

and added to msi and z ij respectively. The representations obtained are subsequently input into the 
Evoformer model, which consists of 48 Evoformer stacks used to predict residue-residue contact 
maps, distance distributions, inter-residue torsion angles, and hydrogen-bond networks.

In addition to DeepPotential and AttentionPotential, the Cβ-Cβ distance distribution derived 
from AlphaFold2  is  also  utilized  to  guide  the  D-I-TASSER simulation.  The  final  MSA  of 
DeepMSA2 is input into AlphaFold2, where the default templates are replaced by LOMETS3 
templates and the embedding parameter is set to eight. Other parameters (e.g., modeling recycles, 
dropout rate, number of sampling decoys, etc.) of AlphaFold2 as utilized were left at their default 
values. Finally, AlphaFold2 generates five models, and the distance output from the model with 
the highest pLDDT score is selected as the final output.



To assess the accuracy of the distance predictions relative to experimental results, the mean 
absolute distance error (MAE) of the top 5L (L is the protein length, in amino acids) long-range (
¿ i− j∨≥ 24) predicted distances is considered:

MAE=
1

5 L ∑
( i, j )

5 L

|d i , j
pred

−di , j
exp|(7 )

where d i , j
exp is the distance between residue i and j in the experimental structure, and d i , j

pred is the 
predicted distance between residue i and j from prediction, the latter is estimated as the middle 
value of the bin with the highest probability.

2.5 Domain partition and arrangement assembly by the multi-domain handling module 
A novel domain partition and arrangement assembly module (Fig. 1) has been incorporated 

into D-I-TASSER to tackle the complex issue of multi-domain protein modeling.  Unlike our 
earlier domain handling module employed in CASP14, which attempted to merge assemble the 
final  predicted  domain-level  models,  the  new module  strives  to  assemble reconstruct  a  full-
length  model  from  the  domain-level  inputs,  i.e.,  the  templates  and  spatial  restraints,  for 
subsequent D-I-TASSER folding simulation.

The new domain partition  module  integrated  into D-I-TASSER incorporates  two domain 
boundary  prediction  algorithms,  ThreaDom31 and  FUpred30.  ThreaDom  is  a  template-based 
approach utilized for ‘Easy’ targets, whereas FUpred is designed for ‘Hard’ targets and predicts 
domains based on deep learning predicted contact maps. ThreaDom predicts domain boundaries 
by relying on LOMETS3 threading alignment  coverage,  where a  domain  conservation score 
(DCS) is calculated for each residue by combining information from template domain structures, 
terminal and internal  gaps, and insertions. The domain boundary information is then derived 
from the DCS profile distribution. On the other hand, FUpred uses a recursive strategy to detect 
domain boundaries based on predicted contact maps and secondary structure information. This 
algorithm  retrieves  domain  boundary  locations  by  maximizing  the  number  of  intra-domain 
contacts while minimizing the number of inter-domain contacts from the contact maps. For a 
full-length sequence, LOMETS3 and the deep learning module are first used to collect whole 
chain-based templates and predicted contact maps, respectively, which are subsequently utilized 
by ThreaDom and FUpred to predict domain boundaries. Each individual predicted domain is 
then input  again to LOMETS3 for domain-level template  detection and to the deep learning 
module for domain-level spatial restraint prediction.

The final templates for the domains are merged assembled into a ‘full-length’ template using 
DEMO232. DEMO2 first identifies ten global templates that cover as many domains as possible 
from  a  non-redundant  multi-domain  protein  library  by  aligning  each  domain  model  to  the 
template using TM-align57. A Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) 
optimization is then performed starting from each initial global template to detect each domain's 
optimal translation vectors and rotation angles for domain-level templates. The optimization is 
guided  by  a  comprehensive  energy  function  that  includes  the  knowledge-based  potential, 
template-based potential, and inter-domain spatial restraints from the deep learning module. The 
translation vectors and rotation angles with the lowest energy are selected to construct the final 
‘full-length’ template. In addition to merging assembling the full-length templates, the domain-
level  predicted spatial  restraints  are also  merged  assembled into full-length spatial  restraints. 
Finally, the  merged  assembled full-length templates, the  merged  assembled full-length spatial 
restraints, and the whole chain-based full-length spatial restraints are all used as inputs for the D-



I-TASSER simulation  (see  below),  with  the  whole  chain-based  full-length  spatial  restraints 
primarily used for providing inter-chain restraints during the modeling process.

2.6 D-I-TASSER folding pipeline for protein monomers
The full D-I-TASSER pipeline (Fig. 1) includes five steps: (i) MSA construction by DeepMSA2, 
(ii)  template  detection  by  LOMETS3,  (iii)  spatial  restraints  prediction  by  the  deep  learning 
module, (iv) domain partition and arrangement assembly by the multi-domain handling module, 
and (v) full-length atomic model generation by D-I-TASSER folding simulation.

Steps (i)-(iv) have been introduced in sections 2.2-2.5 above, while step (v) involves the D-I-
TASSER folding simulation, which includes three sub-stages. Firstly, initial conformations are 
generated based on LOMETS3 templates and deep learning-based models. Next, full-length Cα 
models are  arranged  assembled using D-I-TASSER Replica Exchange Monte Carlo (REMC) 
simulation,  which is guided by template-based restraints,  deep learning spatial  restraints, and 
knowledge-based potentials. Finally, a full-length atomic model is generated and refined. 

In the initial conformation generation step, a total of 15 full-length models are created by 
AlphaFold2 or  DeepFold58 L-BFGS folding  system utilizing  spatial  restraints  collected  from 
LOMETS3 templates (see section 2.3) and predicted by the deep learning module (see section 
2.4). To provide further details on the DeepFold system, it should be noted that the probabilities 
of distance terms for each pair of residues are converted into smooth potentials for the gradient-
descent  based protein folding system. The negative log of raw probability  histogram is  then 
interpolated by cubic spline as potentials. For distance probability histogram of residue pair i and 
j,  the  probability,  P(i , j)dis,  is  a  fusion  probability  combining  the  raw  probability  P(i , j)dis

dp  

predicted from DeepPotential (or AttentionPotential) and statistical probability P(i , j)dis
tem derived 

from LOMETS3 top  N ranked templates  with alignment  coverages  > 0.5  for  ‘Easy’  targets 
(alignment coverages >0.6 for ‘Hard’ targets). Here, N is 50 for an ‘Easy’ target, while 30 for a 
‘Hard’ target. The fusion probability P(i , j)dis can be calculated as
P(i , j)dis=℘(i , j )dis

dp
+(1−w)P(i , j)dis

template
(8)

where w is a weight and equals to 0.8. Five models were generated using DeepFold, with varying 
random seeds, utilizing restraints from either DeepPotential or AttentionPotential combined with 
LOMETS3  templates.  Along  with  five  models  from AlphaFold2,  a  total  of  15  models  are 
collected  from the  deep  learning  module.  These  15  models  are  ranked  as  five  AlphaFold2 
models, five AttentionPotential-based models, and five DeepPotential-based models. They will 
be then employed as initial  conformations,  together  with 220 LOMETS3 templates,  for D-I-
TASSER REMC folding simulations.

During the D-I-TASSER REMC folding simulation stage, three different types of REMC 
simulations (labeled as ‘A’, ‘M’ and ‘F’) are carried out based on the target’s category. The ‘A’ 
simulation retains all Cα atoms on a 0.87Å lattice and the Cα atoms move along the lattice, with 
REMC simulation  conformations  initiated  from  LOMETS3  templates  and  15  deep  learning 
models and gaps filled from random conformations. On the other hand, ‘M’ freely rotates and 
translates fragments excised from the threading alignments; and ‘F’ keeps the threading-aligned 
fragments frozen with changes only to the unaligned regions. ‘M’ and ‘F’ are conducted only for 
‘Easy’  targets  whose template  alignments  have  a  higher  confidence.  For  each pipeline,  five 
REMC simulations  are  performed,  and the  decoy structures  from eight  (or  three  for  ‘Hard’ 
targets) low-temperature replicas are subjected to structural clustering. The REMC simulation is 
guided by knowledge-based potentials, template-based restraints, and deep learning-based spatial 
restraints  potentials.  The  deep  learning-based  spatial  restraints  potentials  consist  of  residue-



residue contact maps15,59 (described in Eq. 9), distance distributions23 (described in Eq. 10), inter-
residue torsion angles, and hydrogen-bond networks potentials, with the first two terms being the 
primary energy terms during the folding simulation.
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where, i and j are a residue pair, U ijU ij is the depth of the potential,  d ij is the C-C or Cα-Cα 
distance between residue i and j in the simulation decoys, and D is a hyper parameter to control 
the well width of the contact potential function term. In distance energy potential, Pij (d ij) is the 
probability of the distance d ij, and Pij

N  is the probability of the last distance bin. 
In the structure refinement stage, the 10,000 decoy conformations obtained from the REMC 

simulation are subjected to clustering using SPICKER60, which yields five clusters. These five 
cluster  centers  are  then  subjected  to  fragment-guided  molecular  dynamics  (FG-MD61) 
simulations,  leading to  the  generation  of  five  full  atomic  models.  Subsequently,  FASPR62 is 
employed for repacking the side-chain rotamer structures of these models, while locPREFMD63

and Amber64 refinement techniques, which were used in AlphaFold2, are applied sequentially to 
refine the models further. The models are ranked by a confidence score that is calculated based 
on  the  significance  of  threading  template  alignments,  contact  map  satisfaction  rate,  mean 
absolute  error  between  model  distances  and  predicted  distances,  and  convergence  of  D-I-
TASSER simulations.

Based on benchmarking of 85 protein monomer targets, the time complexity of D-I-TASSER 
is linear with protein length, and can be estimated by 0.172L-3.822 hours, where L is the length 



of the protein (Fig. S1B).  The benchmarking is based on ten CPU cores and four GPU A40 
cards.

2.7 DMFold-Multimer folding pipeline for protein complexes
The DMFold-Multimer (DeepMSA-based Folding for protein Multimer) pipeline (Fig. 2B) 

is designed for modeling protein complexes using the DeepMSA2 method for multiple sequence 
alignment  (MSA)  generation  and  the  AlphaFold2-Multimer  algorithm  for  protein  complex 
modeling. The DeepMSA2 pipeline generates ten ranked MSAs for each individual protein. As a 
result, for a protein complex, each constituent protein sequence is linked with ten ranked MSAs. 
In the case of homomer (homo-oligomer)  complexes,  all  ten MSAs are utilized in DMFold-
Multimer for the purpose of generating paired MSAs, as the same MSA can be used for all 
monomers (simply tiled the correct number of times). However, in the instance of heteromer 
(hetero-oligomer) complexes, an additional selection process is implemented to generate an ideal 
set of paired MSAs based on the combinations of the individual constituent MSAs. For each 
constituent protein, we select the top N ranked MSAs based on monomeric pLDDT scores. These 
MSAs are  then  used  to  generate  potential  paired  MSAs,  where  each  selected  MSA for  one 
constituent protein can be paired with the MSA of another constituent. Thus, for a heteromeric 
complex containing M different constituent proteins, NM distinct paired MSAs are generated and 
evaluated. To guarantee that modeling with NM set of paired MSAs could be completed within a 
reasonable  time,  N is  selected  as  the  maximal  value  to  satisfy  NM≤100.  For  example,  if  a 
complex  contains  three  unique  protein  components  (A2B2C1),  then  N would  be  set  to  4 
(64=43≤100). In other word, for each protein components in this complex, we will select best 
top 4 MSAs, and build a set of MSAs for the complex with 64 different combinations, using 
every possible combinatorial pairing of those four MSAs for each of the constituents. After the 
MSAs for M different constituent proteins are paired, for example for paired MSAs (MSA-P1 i1, 
MSA-P2i2, MSA-P3i3, … , MSA-PMiM) (1≤ik≤ N; 1≤k≤ M), the sequences within each MSA are 
concatenated  using  the  AlphaFold2-Multimer  default  sequence  connection  pipeline27.  This 
pipeline  initially  groups  the  sequences  by  the  UniProt annotated  species  and  subsequently 
connects the sequences in each group based on their  order of sequence identity to the query 
sequence. In the final step of complex model generation, the selected  NM (or 10 for homomer) 
sets  of  MSAs  are  used  as  input  to  a  modified  AlphaFold2-Multimer  pipeline.  The  major 
difference between DMFold-Multimer and AlphaFold2-Multimer is the MSA pipeline, so other 
parameters of AlphaFold2-Multimer folding engine utilized by DMFold-Multimer (i.e. modeling 
recycles, dropout rate, number of sampling decoys, etc.) were left at their default values during 
modeling. For each set of MSAs, 25 models are generated. Finally, the resulting 25NM (or 250 
for homomer) complex models are ranked by the predicted TM-scores65 (a linear combination of 
protein  monomer  TM-score  and  protein  interface  TM-score  with  weight  0.2  and  0.8, 
respectively), and the top five complex models are selected as the final set of models. Based on 
the benchmarking of 32 protein complex targets, the time complexity of DMFold-Multimer is 
linear with sequence length and  could be estimated by 0.059L-1.179 hours (Fig. S1C), where L 
is  the  sum length  of  the  component  proteins  in  the  protein  complex.  The  time  complexity 
benchmarking is based on ten CPU cores and four GPU A40 cards.

3. RESULTS
Using official CASP15 definition, 94 domains (Table S1) from 68 full-length monomer targets 
were assessed for protein regular modeling category by D-I-TASSER, and 38 multimer targets 



(Table S2) were assessed for protein complex modeling category by DMFold-Multimer. Based 
on the difficulty of modeling, these 94 domains were categorized as 36 ‘TBM-easy’ targets, 11 
‘TBM-hard’ targets, 8 ‘FM/TBM’ targets, and 39 ‘FM’ targets by the official CASP definitions. 
To simplify the terminology in the following analysis, ‘TBM-easy’ and ‘TBM-hard’ targets were 
labeled as TBM targets, while ‘FM’ and ‘FM/TBM’ targets were labeled as FM targets. Of the 
38 multimer targets, based on chemical stoichiometry information, the protein complexes include 
19  hetero-oligomer  (heteromer)  targets  and  19  homo-oligomer  (homomer)  targets.  In  the 
following discussions, the analyses were made on the datasets mentioned above, if there is no 
specific explanation.

3.1 The evolution of a series of I-TASSER algorithms after introducing more accurate deep 
learning-based spatial restraints 

The protein monomer modeling pipeline in CASP15 was based on the D-I-TASSER algorithm, 
which  is  an extended method from our  classic  template-based I-TASSER algorithm and the 
contact-associated C-I-TASSER algorithm. Fig. 3A and 3B show the protein monomer modeling 
results of a series of I-TASSER algorithms from CASP11 to CASP15. Since some experimental 
structures in CASP11 to CASP14 are still  not released,  we directly downloaded the ‘Zhang-
Server’ results from the CASP official website, and all analyses in Fig. 3A and 3B were based on 
TM-scores  from those  official  results.  I-TASSER, which  is  a  pure fragment  assembly-based 
method, took part in the CASP11, and only folded two FM targets with an average TM-score of 
0.335 (Table S3).  In CASP12 and CASP13, two versions of C-I-TASSER algorithms, using 
DCA-based contacts or deep learning-based contacts to guide the folding simulation,  showed 
better folding abilities, where C-I-TASSER folded (TM-score>0.566) over 45% and 54% of the 
FM targets in CASP12 and CASP13, with average TM-scores of 0.470 and 0.486, respectively. 
After  deep learning-predicted  distances were introduced,  D-I-TASSER in CASP14 generated 
models with an average TM-score of 0.610 for FM targets. In CASP15, the new version of D-I-
TASSER,  which  hybridizes  distance  predictions  from  AlphaFold2,  AttentionPotential,  and 
DeepPotential, generated substantially better models with an average TM-score of 0.833 for FM 
targets, increasing around 36% compared with CASP14. For TBM targets, since the modeling 
performance highly depends on the template quality, the tendency was slightly different from 
FM targets.

Since the target  difficulties in the past five CASP experiments were slightly different,  to 
make  a  more  fair  comparison  between  these  I-TASSER-based  algorithms  and  highlight  the 
advantages  of  the  new  version  of  the  D-I-TASSER  algorithm,  we  re-ran  I-TASSER,  C-I-
TASSER, and CASP14 version of D-I-TASSER algorithm on 65 CASP15 full-length targets 
with the same domain boundary predictions we used in CASP15, and all templates released after 
May 1 2022 excluded. Fig. 3C-E shows the resulting head-to-head comparisons between the D-
I-TASSER  algorithm  and  these  three  previous  I-TASSER  methods.  Overall,  D-I-TASSER 
generated models for FM and TBM targets with average TM-scores of 0.840 and 0.925, which 
were  152% (121%)  and  23% (23%)  better  than  the  models  generated  by  I-TASSER  (C-I-
TASSER) method, with p-values of 2.13E-14 (7.11E-15) and 1.42E-14 (7.11E-15), respectively 
(Table  S4).  Most  notably,  when  compared  with  previous  D-I-TASSER  pipeline  (CASP14 
version)  that  solely  utilized  the  DeepPotential  spatial  restraints,  the  updated  D-I-TASSER 
pipeline generated 98% (=46/47) and 98% (=46/47) models with better TM-scores for TBM and 
FM targets on the CASP15 dataset, respectively. 



One reason why the new D-I-TASSER pipeline outperformed the previous version used in 
CASP14 was the introduction of AlphaFold2-derived distance restraints.  To test  whether the 
improvement of D-I-TASSER arises only from the advantage of AlphaFold2, we made a direct 
comparison  between  D-I-TASSER and  AlphaFold2 on 94 CASP15  domains  (Fig.  3F).  The 
AlphaFold2 models were taken from the CASP standard AlphaFold2 server (the  ‘NBIS-AF2-
standard’ group in CASP15, which used the public release AlphaFold2 at that time with default 
parameters  run by the Elofsson Lab).  Overall,  D-I-TASSER generated 39 (31) models with 
better  TM-scores  than  AlphaFold2 models  for  47 FM (47 TBM) targets.  Especially  for  FM 
targets, the average TM-score of D-I-TASSER model was 19% better than AlphaFold2 with a p-
value of 4.02E-06 (Table S5). It was notable that D-I-TASSER constructed correct folds (TM-
score>0.566) for 12 targets (10 FM targets and 2 TBM targets) on which AlphaFold2 failed in 
generating correct models. Fig. 3G lists five such FM targets (T1125-D1, T1125-D2, T1125-D5, 
T1130-D1, and  T1169-D1), for which D-I-TASSER predicted correct models, while the other 
five of these FM targets formed a protein complex (H1137) by a simple helix-strand fold, and 
thus are not listed here. For these five targets, D-I-TASSER predicted models with TM-scores 
that were all above 0.7, while AlphaFold2 models had TM-scores that were all below 0.45. The 
better performance of D-I-TASSER showed its folding ability already went beyond the premier 
end-to-end deep learning method, AlphaFold2.

In  summary,  D-I-TASSER outperformed  the  previous  I-TASSER-based  algorithms  after 
incorporating AlphaFold2 (and other deep learning-derived) distances. The result comparison of 
a series of I-TASSER algorithms, both in historical CASP data and re-analysis of CASP15 data, 
showed the improvement of D-I-TASSER folding system by including more state-of-the-art deep 
learning methods within the I-TASSER simulation framework.

3.2 Contributions of DeepMSA2 MSA and threading template information to D-I-TASSER 
To  investigate  why  D-I-TASSER  performed  better  than  AlphaFold2  (‘NBIS-AF2-standard’ 
group),  we performed a comparative analysis  on modeling results  from the standard version 
AlphaFold2, AlphaFold2 with LOMETS3 templates (shortened as ‘AlphaFold2-L’), AlphaFold2 
with LOMETS3 templates and DeepMSA2 MSA (shortened as ‘AlphaFold2-LD’), and the full 
D-I-TASSER method (Fig. 4A). Overall, AlphaFold2-L performed slightly better than standard 
AlphaFold2 in both FM and TBM targets. Especially for FM targets, the average TM-score was 
0.725 against 0.707 (Table S5), demonstrating the usefulness of LOMETS3-detected templates. 
Furthermore,  after  giving  Alphafold2-L  the  improved  DeepMSA2-derived  MSA  as  input, 
AlphaFold2-LD could generate much better models, with the average TM-scores increasing 7% 
and 1% for FM and TBM targets, respectively. These results showed the power of integrating 
deeper MSA to AlphaFold2 pipeline, especially for FM targets. As we mentioned in section 2.4, 
in the full D-I-TASSER pipeline the models from AlphaFold2-LD would be used as the initial 
conformations for D-I-TASSER folding simulation and the derived distances from those models 
would be used to guide the folding simulation. Thus, the LOMETS3 threading templates and 
DeepMSA2 MSA contributed to the final D-I-TASSER modeling performance.  Finally,  there 
was a substantial jump in quality between the models from AlphaFold2-LD and D-I-TASSER, 
i.e., TM-scores were 0.775 vs. 0.840 for FM targets and 0.913 vs. 0.925 for TBM targets, arising 
from the contributions of other components in the D-I-TASSER pipeline, such as multi-domain 
handling module and folding simulation with the comprehensive force field. 

Based on the above analysis, it  is clear that deep learning-based spatial  prediction was a 
critical  feature  for  generating  successful  predicted  models.  However,  the  usefulness  of  the 



template  information  still  could  not  be  ignored.  For  example,  T1110 (T1110-D1)  is  an 
isocyanide hydratase with 227 residues. It is a single-domain TBM target with 8 α-helices and 8 
β-strands forming a α/β fold (Fig. 4B). T1109 (T1109-D1) is the same protein as T1110 with a 
single site mutation D183A (highlighted in red color in Fig. 4B). Both T1109 and T1110 form a 
homo-dimer  complex  (targets  T1109o and  T1110o in  complex  modeling  category)  in  their 
crystal  structure.  The structures of the main region (residues 1-205) of these two targets are 
almost  identical,  while  the  C-terminus  loop  regions  (residues  206-227)  have  different 
orientations. In T1110, the C-terminus loop forms intra-chain contacts to the N-terminus main 
region, while for T1109, the C-terminus loop shifts to the opposite direction almost without any 
contacts  to  N-terminus main body region.  For the wild type protein (T1110),  all  component 
threading methods of LOMETS3 detected a good template, 3nooA, with an average TM-score of 
0.80 (Fig. 4C). All residues from the template that aligned to the key residue D183 of the query 
sequence were all observed as aspartate (Fig. S2). Thus, the C-terminus loops of the templates 
also showed the same orientation pattern as the experimental structure of T1110. In addition, the 
predicted distances indicated the C-terminus loop had contact with the main region, which was 
consistent with the threading templates (Fig. S3). The conserved and high-quality templates from 
LOMETS3 helped D-I-TASSER construct a high-quality model with a TM-score of 0.97 that 
was nearly identical to the experimental structure (Fig. 4E). In contrast, for the mutated target 
T1109, LOMETS3 detected a template, 3b38A (Fig. 4C), which has a similar main region to the 
experimental structure with a TM-score of 0.74, but without the C-terminal region. Thus, when 
D-I-TASSER built models for T1109, the C-terminus loop was constructed ab initio guided by 
spatial  restraints  from  the  deep  learning  pipelines.  D-I-TASSER  generated  a  very  accurate 
predicted distance map (Fig. 4D) with the mean absolute distance error (MAE, see Eq. 7) of 
0.28Å. It clearly showed that the distances between the C-terminus loop and the main region 
were greater than 20Å in the predicted distance map. As a result, the final D-I-TASSER model 
(Fig. 4E) achieved a very high TM-score of 0.96. In contrast,  for the wild-type T1110, The 
success  of  modeling  both  the  wild-type  T1110  and  the  mutated  T1109,  and  particularly  in 
identifying different templates and distance restraints on the basis of the mutation, showed the 
benefits of correct template information to protein structure prediction, especially for predicting 
some single site mutation targets.  

Current deep learning-based protein structure prediction protocols are highly dependent on 
the  quality  of  MSAs.  To  further  investigate  the  impact  of  DeepMSA2  on  D-I-TASSER 
modeling, we highlight one single-domain FM target, T1179 (T1179-D1). T1179-D1 is an all β 
protein with 261 residues (Fig. 4G). AlphaFold2 generated a relatively good model for this target 
with a TM-score of 0.76, as its MSA pipeline detected 136 homologous sequences with a Neff of 
6.84. However, the D-I-TASSER model had a much better  quality with a TM-score of 0.93, 
since DeepMSA2’s MSA had 324 homologous sequences with a slightly higher Neff of 8.84. To 
provide further insight into the relationship between MSA depth and model quality on T1179, we 
separately considered the models generated by D-I-TASSER using each of the component MSAs 
created by the DeepMSA2 pipeline. As expected, we saw a strong correlation between deeper 
MSAs (higher  Neff) and increasing quality of D-I-TASSER. For example, when only genome 
sequence databases were used (dMSA and qMSA stage 1&2), numbers of sequences in MSAs 
were approximately 140, resulting in D-I-TASSER models with TM-scores lower than 0.7. After 
giving  DeepMSA2  the  third-party  metagenomics  sequence  databases  (Metaclust,  BFD  and 
Mgnify), models from D-I-TASSER achieved slightly better TM-scores due to more homologous 
sequences detected. Finally, if in-house metagenomics sequence database was utilized, two of 



three  D-I-TASSER models  achieved  TM-scores  greater  than  0.9,  since  the  MSAs contained 
around 300 homologous sequences with Neffs greater than 8.0. The case of T1179-D1 where D-
I-TASSER with different MSAs generated different quality of models showed again MSA is an 
important feature of the success of D-I-TASSER. 

Overall, the newly developed MSA generation pipeline, DeepMSA2, provides deeper MSAs 
which helped D-I-TASSER produce more reliable protein structure prediction results, especially 
for  FM  targets.  Although  the  modeling  performance  improvement  obtained  by  introducing 
threading templates was relatively small, the template information still showed its usefulness to 
correctly pick up the correct folds for some TBM targets. 

3.3 A case study to highlight the advantage of optimized D-I-TASSER folding system to 
model domains from large multi-domain targets

As  noted  above,  both  threading  templates  and  MSAs  were  important  features  for  the  D-I-
TASSER modeling  pipeline.  However,  it  is  difficult  to  determine  whether  solely  using  one 
feature could lead to the success of D-I-TASSER on any particular target. The optimized D-I-
TASSER folding system which integrates threading template information, high quality MSAs, an 
efficient multi-domain handling module, and REMC folding simulation with the comprehensive 
force  field,  results  in  high  overall  prediction  performance.  Especially  when modeling  multi-
domain  targets,  this  optimized  folding  system  showed  remarkable  superiority  over  other 
methods,  demonstrating  the  importance  of  the  improved  domain-level  handling  in  the  most 
recent iteration of D-I-TASSER. In the 94 CASP15 domain targets, 48 came from the single-
domain targets, while 46 domains came from 20 multi-domain targets.  Fig. S4 compared the 
modeling  performance  of  D-I-TASSER  for  domains  from  single-domain  targets  vs.  multi-
domain targets. It was interesting to see that D-I-TASSER modeling quality for these two groups 
of  domains  were  comparable  for  both  FM and  TBM  targets,  where  average  TM-scores  of 
domains from single-domain targets were 0.840 and 0.926 for FM and TBM targets, and average 
TM-scores  of  domains  from multi-domain  targets  were  0.840  and  0.924  for  FM and  TBM 
targets, respectively (Table S6). 

Here we use the case of T1125-D2 to highlight the advance of D-I-TASSER in modeling 
large multi-domain targets, by combining multi-domain handling module and combining multi-
source distances for the folding simulation.  T1125 is a large multi-domain target with 1,200 
residues (Fig. 5A). The solved experimental structure covers only residues 327-1162, whereas 
the N-terminus and C-terminus are disordered regions. The solved region could be split into six 
domains, T1125-D1 to T1125-D6, with domain boundaries defined by the CASP organizers as 
‘327-460;  461-608;  609-797;  798-946;  947-1096;  1097-1162’  (with  each  pair  of  numbers 
denoting the residue range for a single domain).  Since the entire T1125 was defined as a ‘Hard’ 
target by LOMETS3, FUpred (see  section 2.5) was utilized to predict the domain boundaries. 
The entire T1125 was predicted as a seven domain targets where the last five domains covered 
the  equivalent  regions  in  the  experimental  structures  of  T1125-D1  to  T1125-D6,  with  the 
predicted domain boundaries as ‘331-460; 461-610; 611-810; 811-925; 926-1200’. T1125-D2 is 
an all β protein with 148 residues. FUpred almost perfectly predicted the domain boundary (461-
610 vs. 461-608). The standard AlphaFold2 predicted a model for the T1125-D2 domain with a 
very low TM-score of 0.38 if modeling T1125 as a whole target without any domain partitions 
(Fig.  3G).  Interestingly,  with the MSAs from DeepMSA2, even the same modeling strategy 
utilized in AlphaFold2, it could generate a much better model for the T1125-D2 domain, with a 
TM-score of 0.75, associated with a derived distance map with an MAE of 0.53Å (Fig. 5B and 



5C). However, due to the excellent domain boundary prediction for T1125-D2 and the deeper 
domain-level MSA with more homologous sequences, the domain-level distance map provided 
by domain-level  AlphaFold2 modeling,  had a lower error with an  MAE of  0.49Å (Fig. 5D), 
associated with model with a better TM-score of 0.79 (Fig. 5E). Furthermore, as we mentioned 
in multi-domain handling module (section 2.5), the D-I-TASSER folding system combined the 
whole  chain-level  distance  map  and  domain-level  distance  map,  resulting  in  an  even  better 
distance map for T1125-D2 with an MAE of 0.48Å (Fig. 5F). Guided by this combined distance 
map, and initial conformation from the high-quality AlphaFold2 model with DeepMSA2 MSA 
(Fig. 5E), the D-I-TASSER folding simulation generated a more accurate final model with a 
TM-score  of  0.83  (Fig.  5G).  The  modeling  results  of  T1125-D2  again  demonstrated  the 
advantage of D-I-TASSER folding system in modeling domains from large-size multi-domain 
proteins  by  combining  deep  learning,  threading  template,  MSA  information,  multi-domain 
handling module, and REMC folding simulation with the comprehensive force field, which taken 
together yields both improved intra-domain conformations and inter-domain orientations.  

3.4 Overall performance of DMFold-Multimer for protein complex structure prediction
The ‘Zheng’ group protein complex modeling pipeline in CASP15 was based on the DMFold-
Multimer method, which is an algorithm that combines DeepMSA2 multi-MSAs strategy and 
AlphaFold2-Multimer structure modeling module. In CASP15, four types of measures were used 
to assess the complex modeling quality,  including TM-score, LDDT score, Interface Contact 
Score (ICS), and Interface Patch Score (IPS). The first two measures were used for assessing the 
global  fold  modeling  quality,  while  ICS  and  IPS  were  used  for  quantifying  the  interface 
modeling performance. Fig. 6A summarizes the TM-scores of the DMFold-Multimer models vs. 
the target lengths for 38 CASP15 protein complex targets. Overall, DMFold-Multimer generated 
models for 36 complex targets with TM-scores greater than 0.50, and models for 30 targets with 
TM-scores greater than 0.70. In particular, for 63% of the complex targets, DMFold-Multimer 
models had a comparable quality with the experimental structures (TM-score>0.90). For all 38 
complex targets, the DMFold-Multimer models achieved an average TM-score of 0.83, where 
for  heteromer  and homomer  targets,  average  TM-scores  were  0.869 and 0.792,  respectively 
(Table S7). The reason why the average TM-score of homomer targets was slightly lower than 
heteromer targets was that for a homomer complex, given a residue i, the inter-chain distance to 
residue j in another chain or intra-chain distance to residue j in the same chain was more difficult 
to distinguish23. In contrast, the intra-chain vs. inter-chain distance problem was relatively rare in 
heteromer complexes. It was notable that DMFold-Multimer modeling quality was independent 
of the size of protein complex. As a proof, the average TM-score of the targets with residues 
greater than 1,500 was 0.881, which was even higher than the average TM-score (0.814) for 
targets  with  residues  less  than  1,500.  For  complex  interface  modeling,  DMFold-Multimer 
generated models for 29 complex targets with ICS greater than 0.50, and for 17 targets with ICS 
greater than 0.70. For all 38 complex targets, the DMFold-Multimer models achieved an average 
ICS  of  0.60,  where  for  heteromer  and  homomer  targets,  average  ICS  were  0.61  and  0.59, 
respectively (Table S7). In Fig 6B, we presented the DMFold-Multimer models associated with 
the experimentally solved structures for 7 large-size complex targets (>1,500 residues) for which 
the predictions had a TM-score >0.8. These include H1111, H1114, H1137, T1170o, H1171, 
H1172, and T1181o, the sequences of which contain 8,460, 7,988, 4,592, 1,908, 1,956, 2,004, 
and  2,064  residues.  For  these  7  targets,  DMFold-Multimer  constructed  impressive  complex 
models with TM-scores (interface contact scores) of 0.98 (0.48), 0.91 (0.82), 0.94 (0.79), 0.93 



(0.58), 0.93 (0.51), 0.91 (0.55), and 0.85 (0.60), respectively. Notably, the three largest targets 
are  all  heteromeric  complexes  with  stoichiometry  variable  of  ‘A9B9C9’,  ‘A4B8C8’,  and 
‘A1B1C1D1E1F1G2H1I1’, respectively; DMFold-Multimer constructed high-accuracy models 
with average TM-score (ICS) of 0.94 (0.70) for them. These results demonstrated the ability of 
DMFold-Multimer to model large-size protein complexes. 

Since the DMFold-Multimer method integrated the AlphaFold2-Mulitmer structure modeling 
module as its model generator, it was important to examine if DMFold-Multimer provided an 
improvement over the standard version of AlphaFold2-Multimer  with default parameters.  Fig. 
6C shows a head-to-head comparison of the modeling quality between DMFold-Multimer and 
the  standard  version  AlphaFold2-Multimer  on  CASP15  targets,  where  AlphaFold2-Multimer 
models  came from ‘NBIS-AF2-multimer’  as  operated  by  the  Elofsson lab  (using  the  public 
release  of  AlphaFold2-Multimer  at  that  time  with  default  parameters).  Overall,  DMFold-
Multimer models outperformed AlphaFold2-Multimer for most targets both in terms of global 
quality  and  interface  quality.  Taking  the  TM-score  and  ICS  score  as  examples,  DMFold-
Multimer models performed 15.6% and 29.1% better than AlphaFold2-Multimer models (both 
significant improvements, with  p-values of 1.6E-02 and 3.4E-04, respectively; see  Table S8). 
Furthermore, for heteromer and homomer targets, the DMFold-Multimer generated models with 
TM-scores  (ICSs)  of  0.869 (0.61)  and 0.792 (0.59),  which  were 20.2% (41.9%) and 10.9% 
(18.0%) higher  than  those  of  AlphaFold2-Multimer  models  (0.723 (0.43)  and 0.714 (0.50)), 
respectively. These results showed that the combination of improved MSAs and enhanced MSA 
pairing  allowed  DMFold-Multimer  to  substantially  improve  upon  AlphaFold2-Multimer  in 
predicting protein complex structures. 

3.5 Contributions of MSA combination strategy and large-scale metagenomics database to 
DMFold-Multimer 

Since DMFold-Multimer mainly focused on optimizing the input MSAs given to AlphaFold2-
Multimer  method (all  other  parameters  during the modeling stage  of  DMFold-Multimer and 
AlphaFold2-Multimer are set same), it was important to investigate what MSA strategy led to the 
success of DMFold-Multimer. Compared to the default MSA pipeline in AlphaFold2-Multimer, 
two factors may contribute to the quality improvement: One is the integrated MSA creation and 
pairing  mechanism,  and  the  second  is  the  inclusion  of  the  additional  huge  in-house 
metagenomics  databases  used  in  DeepMSA2.  To  assess  the  relative  contributions  of  these 
factors,  in  Fig.  7A  and Table  S9,  we  compared  the  complex  modeling  performance  of 
AlphaFold2-Multimer and DMFold-Multimer using different sequence databases. Here H1111, 
H1114 and H1137 were excluded from the analysis, since the standard AlphaFold2-Multimer 
server  (‘NBIS-AF2-multimer’  group)  did  not  generate  the  full-length models  for  those three 
targets, which may affect the contribution analysis of MSA strategy. It was observed that even 
with  the  same  sequence  databases  (from  genomic  sequences,  BFD  and  Mgnify),  DMFold-
Multimer still outperformed AlphaFold2-Multimer with the average TM-score (ICS) increasing 
from 0.753 (0.48)  to  0.769 (0.53),  indicating the  usefulness  of  MSA generating and pairing 
methods. After using the full version DMFold-Multimer including our expanded metagenome 
databases, the global fold modeling quality (TM-score) could be further increased by 6.6% from 
0.769 to 0.820,  and the interface modeling quality (ICS) could be further increased by 11.3% 
from 0.53 to 0.59, showing that the large metagenome databases were also beneficial for protein 
complex modeling.



To further check the importance  of  MSAs to protein  complex structure  prediction,  three 
Nano-body antigen complexes,  H1140,  H1141 and  H1144 are shown in  Fig. 7B. For all three 
complex targets, AlphaFold2-Multimer could only generate models with TM-scores lower than 
0.7 and ICS nearly 0.  However,  DMFold-Multimer could create  models that have very high 
quality global folds with all TM-scores greater than 0.9, and good interfaces with all ICS greater 
than 0.5. Taking H1144 as an example to analyze why DMFold-Multimer produced high-quality 
models, we found that DMFold-Multimer could generate 2,500 decoys with TM-scores ranging 
from 0.62 to 0.99, and ICS ranging from 0.00 to 0.74 for this target (Fig. 7C), and thus most of 
the decoys had better quality than AlphaFold2-Multimer models. Furthermore, the predicted TM-
score correctly  selected one of  those high-quality  models  as the first  model  (i.e.,  the model 
ranked as best by the predictor) for DMFold-Multimer, resulting in a very good final model with 
a TM-score of 0.99 and an ICS of 0.74 (Fig. 7D). It was notable that we observed that for H1144, 
all decoys with predicted TM-scores greater than 0.8 had very high-quality global fold with TM-
score  greater  than  0.98,  and  good interface  with  ICS greater  than  0.50. The  quality  of  the 
DeepMSA2 paired MSA largely affected the accuracy of the protein complex modeling.  For 
H1144, the number of sequences in DeepMSA2 paired MSAs ranged from 38 to 414, and the 
corresponding  Neffs  for  those  paired  MSAs  ranged  from  1.8  to  16.3.  Fig.  7E-F show  the 
relationship between TM-score/ICS  and Neffs of DeepMSA2 paired MSAs for H1144. It clearly 
indicated the first model of DMFold-Multimer came from the paired MSA with the highest Neff. 
It  is  understandable  because  the  paired  MSA with  a  high  Neff could  provide  more  co-
evolutionary information, and thus lead to a better interface modeling quality. Interestingly, when 
giving DMFold-Multimer the same databases as AlphaFold2, it could still generate models with 
TM-scores greater than 0.9, and ICS roughly close to or greater than 0.5 for all three Nano-body 
antigen complex targets. Those results indicated that the enhanced MSA generating, ranking, and 
pairing used in DMFold-Multimer was critical for building correct models of those targets.

3.6 What went wrong in protein monomer and complex modeling using D-I-TASSER and 
DMFold-Multimer? 

Although the D-I-TASSER and DMFold-Multimer  have received excellent  results  in  protein 
monomer and complex modeling, there are still some problems needed to be improved. 

For D-I-TASSER protein monomer modeling pipeline, the prediction performance is highly 
reliant  on the MSA quality  and the  targets  with  better  MSA quality  usually  result  in  better 
structure models. Hence, we analyzed the relationship between the MSA Neff values and TM-
scores of the D-I-TASSER models for different taxonomic categories on the 94 domains from 68 
full-length monomer targets. As shown in Fig. 8A, DeepMSA2 is able to generate high-quality 
MSAs for most bacterial and eukaryotic targets, but relative low-quality MSAs for archaea and 
viruses. In particular, the virus-derived targets had low-quality MSAs with the lowest Neff of 13, 
and thus  resulted  in  relatively  low-performance  models  with  an  average  TM-score  of  0.801 
(0.916 and 0.883 for  bacterial  and eukaryotic  targets,  respectively;  see  Table  S10).  This  is 
mainly because there are fewer virus sequences in databases. Therefore, in the future, we plan to 
collect more virus data into our DeepMSA2 databases based on some virus specific databases 
such as  Virus-Host  DB67 and  NCBI Virus68.  Although the  overall  modeling  performance  of 
eukaryotic targets was good (TM-score=0.883), for some targets, such as  T1130-D1 (Fig. S5), 
we observed relatively poor performance with a TM-score=0.754 compared with the best model 
from other  groups with a  TM-score=0.971.  It  appears  that  this  failure  was again due to  the 
shallow MSA (Neff=0.16) created by DeepMSA2.



For our DMFold-Multimer protein complex modeling method, the  predicted TM-score can 
distinguish high-quality models from low-quality models for most of the cases. However, we still 
found that the predicted TM-score sometimes was not sufficiently sensitive to rank high-quality 
models for some targets. For example, target  H1172 contains six copies of the ‘A’ protein and 
two copies of the ‘B’ proteins (A6B2 heterooctamer), where the two copies of ‘B’ proteins are in 
the neighboring positions in the experimental structure (Fig. 8B).  DMFold-Multimer actually 
predicted all three possible states of this A6B2 complex (ortho, meta, or para orientations of the 
‘B’  proteins).  However,  the  first  ranked  model  has  the  wrong  relative  positions  of  the  ‘B’ 
proteins because it has a slightly higher  predicted TM-score of 0.746 compared with Model3 
with  the  correct  positions  (0.733)  (Fig.  8C).  Another example  is the  target  H1129,  which 
contains one copy of the ‘A’ protein and one copy of the ‘B’ protein (A1B1 heterodimer) (Fig. 
8D). The models predicted by DMFold-Multimer all had  predicted TM-scores lower than 0.4. 
Thus, the correct models cannot be picked out by the  predicted TM-scores. In fact, DMFold-
Multimer is able to predict a model (Model542) with a TM-score as high as 0.91. However, the 
best  model  has  a  predicted  TM-score  of  only  0.335,  which  is  14% lower  than  the  highest 
predicted TM-score of 0.388, and thus the correct structure could not be properly identified (Fig. 
8E). Similarly, DMFold-Multimer predicted a model (Model79) with the highest ICS of 0.33. 
However,  this  model  has  a  predicted  TM-score of  0.371,  which  is  still  lower than  the  best 
predicted TM-score of 0.388, and thus the model showing the best ICS could not be picked out 
either (Fig. 8E).  One reason for the failure of H1129 modeling is the poor predicted interface 
(ICS=0.01) between component  protein ‘A’ and ‘B’.  This is  due to the very shallow paired 
MSAs generated by DeepMSA2, which only contains two paired sequences (including the query 
sequences) with a Neff of 0.05. We noticed several groups built high-quality models for H1129 
during CASP15, including the ‘Wallner’ group that utilized massive sampling with AlphaFold2-
Multimer  as  their  prediction  strategy.  To  investigate  whether  the  performance  of  DMFold-
Multimer could be improved by combing the massive sampling with the DeepMSA2 multi-MSA 
strategy, we tested use of the same parameter settings as the Wallner group during the complex 
model  generation  stage  for  H1129.  In  detail,  the  settings  include:  using  templates  or  not, 
increasing the modeling recycles, and turning on/off the dropout rate, resulting in a total of xx 
candidate  structures  as  opposed to  the  yy generated  by our  standard  pipeline.  Overall,  after 
applying massive sampling in  DMFold-Multimer,  the TM-score of the first  model  had been 
significantly improved to 0.96, and the ICS had also been largely improved to 0.72 (Table S11). 
Furthermore, we also tried this massive sampling strategy using DMFold-Multimer on other five 
dimer targets (H1142, T1121o, T1160o, T1161o, and T1187o) where we built relatively poor 
models with TM-scores <0.7 in the CASP15 evaluation. For all six targets, DMFold-Multimer 
produced better  first  models  with  average  TM-score  and ICS increased  26.4% and 120.0%, 
respectively, indicating that by combining the massive sampling with DeepMSA2 multi-MSAs 
strategy,  the  capability  of  DMFold-Multimer  could  be  largely  extended.  However,  we  also 
noticed  that  the  best  models  produced by DMFold-Multimer  for  those  six  targets  were  still 
substantially better than the first models according to our scoring, especially for T1121o and 
T1161o. Again, the ranking issue of the predicted TM-score prevents successfully selected those 
high-quality models. These findings suggest that improvements in massive sampling and model 
ranking have the potential to make major contributions to future performance enhancement for 
DMFold-Multimer,  and that further improvements can be made through improved ranking to 
identify the best structures from an expanded ensemble of candidates.



4. CONCLUSIONS
We report  two  of  our  algorithms,  D-I-TASSER and  DMFold-Multimer,  that  participated  in 
CASP15 as  ‘UM-TBM’ server  group for  protein  monomer  structure  prediction  and ‘Zheng’ 
human group for protein complex structure prediction, respectively. The CASP15 version of D-I-
TASSER  includes  four  major  developments  compared  with  the  previous  version  used  in 
CASP14, including: a deep learning structure modeling ranking-based MSA generation method; 
new attention deep neural network-based spatial restraints predictors; a new domain partition and 
recombination assembly module; and a newly optimized folding system including balanced deep 
learning  spatial  energy  potentials,  template-based  energy  potentials,  and  knowledge-based 
potentials.  The DMFold-Multimer  pipeline  combines  the newly developed MSA constructor, 
DeepMSA2, for searching homologous sequences from large-scale genomic and metagenomics 
databases, with the structure model generator used in AlphaFold2-Multimer. 

Based  on  analysis  of  the  CASP15  targets,  one  important  reason  why  D-I-TASSER and 
DMFold-Multimer generated high quality protein monomer and complex models was that the 
deeper and diverse MSAs generated by DeepMSA2. In particular, the large-scale metagenomics 
databases and the MSA pairing mechanism were key factors that helped improve the accuracy of 
protein complex structure predictions by DMFold-Multimer. On the other hand, by introducing 
more accurate geometric spatial restraints from new deep learning predictors, the D-I-TASSER 
method also showed its excellent performance compared with a series of previous I-TASSER 
methods. In addition, the newly designed domain handling module, associated with an optimized 
folding  system that  balanced  deep  learning  spatial  energy  potentials,  template-based  energy 
potentials, and knowledge-based potentials, were major contributors for D-I-TASSER to produce 
high-quality models for multi-domain proteins. Finally, direct comparison between D-I-TASSER 
and standard AlphaFold2 control method in modeling protein monomer structures demonstrates 
that end-to-end deep learning is not the unique solution to achieve the goal of solving the protein 
folding problem.

Despite  the  success  of  D-I-TASSER  and  DMFold-Multimer,  there  are  still  significant 
challenges for the current pipelines. One was that shallow MSAs were still encountered for a few 
targets even though the DeepMSA2 and large-scale metagenomics databases had been utilized. 
Especially for some viral targets, due to rapid speed of evolution and the massive taxonomic 
spread of viruses, the number of homologous sequences was much fewer than other taxonomic 
groups,  leading  to  a  relatively  lower  performance  of  structure  predictions.  The  other  major 
challenge that we encountered was that the current model ranking score,  predicted TM-score, 
produced by the AlphaFold2-Multimer structure module was not sensitive enough to distinguish 
models  in  some  cases,  especially  when  predicted  TM-scores  were  very  close,  while  model 
conformations were quite different. Those two issues probably could be solved by constructing a 
virus-specific sequence database67,68, and developing a new model quality assessment tool that 
combines predicted TM-scores and decoys structure consensus, which will be the subject of our 
future efforts.   
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FIGURES

Figure 1. The pipeline of the ‘UM-TBM’ server (D-I-TASSER). The full D-I-TASSER pipeline 
is  designed  for  modeling  protein  monomers  through  five  steps:  (i)  MSA construction  by 
DeepMSA2, (ii) template detection by LOMETS3, (iii) spatial restraints prediction by the deep 
learning module, (iv) domain partition and arrangement assembly by the multi-domain handling 
module  (yellow box),  and (v)  full-length  atomic  model  generation  via  D-I-TASSER folding 
simulation (green box). 



Figure 2.  The  pipelines  of DeepMSA2 and ‘Zheng’ human group (DMFold-Multimer). (A) 
DeepMSA2 for  generating  the  multiple  sequence  alignments,  which  contains  two stages:  (i) 
MSA generation using three sub-pipelines, and (ii) MSA ranking based on the structure model-
associated  confidence  score.  (B)  The  DMFold-Multimer  pipeline  is  designed  for  modeling 
protein complexes by combining the DeepMSA2 MSA generation method with the AlphaFold2-
Multimer complex modeling algorithm.



Figure  3. The  series  of  I-TASSER  methods  for  protein  monomer  predictions  in  CASP 
experiments 11-15 (years 2014 – 2013). (A) The TM-scores of a series of I-TASSER algorithms 
from CASP11 to CASP15, where the error bar means the standard deviation of the TM-scores. 
(B) The number of foldable targets (dark color) versus non-foldable target (light color) for the I-
TASSER algorithms  participating  in  CASP11  to  CASP15.  (C-F)  Head-to-head  comparisons 
between  the  CASP15  D-I-TASSER  algorithm  and  four  methods:  (C)  I-TASSER,  (D)  C-I-
TASSER, (E) CASP14 version of D-I-TASSER, and (F) AlphaFold2 default method. (G) Five 
FM targets (T1125-D1, T1125-D2, T1125-D5, T1130-D1, and T1169-D1) where D-I-TASSER 
constructed correct folds (TM-score>0.5) while AlphaFold2 failed in generating correct models.



Figure 4. The impact of DeepMSA2 MSA and threading template information on D-I-TASSER. 
(A) The TM-scores of the first models built by the standard version of AlphaFold2, AlphaFold2 
with LOMETS3 templates, AlphaFold2 with LOMETS3 templates and DeepMSA2 MSA, and 
the  D-I-TASSER method.  (B)  The  experimental  structures  for  cases  of  T1109/T1109o  and 
T1110/T1110o.  (C) The LOMETS3 threading templates – PDB 3b38A superposed to T1109 
experimental structure, and PDB 3nooA superposed to T1110 experimental structure. (D) The 
predicted (upper-triangle) and experimental (lower-triangle) distance maps for T1109. (E) The 
D-I-TASSER models for T1109 and T1110. (F) Comparative performance of the AlphaFold2 
model and D-I-TASSER models from different stages of the DeepMSA2 pipeline for T1179.



Figure 5. The impact of the multi-domain handling module and the folding simulation on D-I-
TASSER in modeling domains from large multi-domain targets. (A) The official (CASP15) and 
predicted  domain  boundaries  for  T1125.  (B-C)  The  whole  chain-level  distance  map  and 
structural model predicted by AlphaFold2 without any domain partitions for T1125-D2. (D-E) 
The  domain-level  distance  map  and structural  model  predicted  by  AlphaFold2  with  domain 
partitions for T1125-D2. (F-G) The distance map and structural model predicted by D-I-TASSER 
that combined the whole chain-level distance map and domain-level distance map for T1125-D2. 



Figure 6. The performance of DMFold-Multimer for protein complex structure prediction in 
CASP15.  (A)  The  TM-scores  of  the  DMFold-Multimer  models  vs  the  target  lengths  for  38 
CASP15  protein  complex  targets.  (B)  DMFold-Multimer  models  associated  with  the 
experimentally solved structures for 7 large-size complex targets (>1,500 residues) for which the 
predictions  had  a  TM-score  >0.8.  (C)  Head-to-head  comparison  of  the  modeling  quality 
including TM-score, LDDT score, Interface Contact Score (ICS), and Interface Patch Score (IPS) 
between DMFold-Multimer and the standard AlphaFold2-Multimer.



Figure 7. The impact of MSA combination strategy and large-scale metagenomics database on 
DMFold-Multimer.  (A)  The  complex  modeling  performance  of  AlphaFold2-Multimer  and 
DMFold-Multimer using different sequence databases;  n.b.  DMFold-Multimer (R) uses a new 
MSA selection/pairing  strategy  but  the  same  databases  as  AlphaFold2-Multimer.  (B)  The 
experimental structures and models predicted by AlphaFold2-Multimer, DMFold-Multimer, and 
DMFold-Multimer  without  the  in-house  metagenomic  database  for  three  nanobody-antigen 
complexes, H1140, H1141 and H1144.  (C) The relationship between TM-score and  predicted 
TM-score for H1144. (D) The relationship between ICS and predicted TM-score for H1144. (E) 
The relationship between TM-score and Neff of the paired MSA for H1144. (F) The relationship 
between ICS and Neff of paired MSA for H1144. 





Figure 8.  Problems in protein monomer and complex modeling. (A) The relationship between 
the  MSA  Neff values  and  TM-scores  of  the  D-I-TASSER  models  for  different  taxonomic 
categories on the 94 domains from 68 full-length monomer targets, where three targets in the 
‘Others’  group  are  one  designed  protein  and  two  reconstructed  ancient  proteins.  (B)  The 
experimental  structures  and  models  predicted  by  DMFold-Multimer  for  H1172. (C)  The 
relationship between TM-score (top)/ICS (bottom) and predicted TM-score for H1172. (D) The 
experimental  structures  and  models  predicted  by  DMFold-Multimer  for  H1129. (E)  The 
relationship between TM-score (top)/ICS (bottom) and predicted TM-score for H1129.


