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ABSTRACT (<250 words, now=2507?)

We report the results of the ‘UM-TBM’ and ‘Zheng’ groups in CASP15 for protein monomer
and complex structure prediction. These prediction sets were obtained using the D-I-TASSER
and DMFold-Multimer algorithms, respectively. For monomer structure prediction, D-I-
TASSER introduced four new features during CASP15: (i) a multiple sequence alignment
(MSA) generation protocol that combines multi-source MSA searching and a structural
modeling-based MSA ranker; (ii) attention-network based spatial restraints; (iii) a multi-domain
module containing domain partition and arrangementassembly for domain-level templates; (iv)
an optimized I-TASSER-based folding simulation system for full-length model creation guided
by a combination of deep learning restraints, threading alignments, and knowledge-based
potentials. For 47 FM targets and 47 TBM targets in CASP15, the first models predicted by D-I-
TASSER showed average TM-scores 19% and 4% higher than the standard AlphaFold2
program, respectively. We thus showed that traditional Monte Carlo-based folding simulations,
when appropriately coupled with deep learning algorithms, can generate models with improved
accuracy over end-to-end deep learning methods. For protein complex structure prediction,
DMFold-Multimer generated models by integrating a new MSA generation algorithm
(DeepMSAZ2) with the end-to-end modeling module from AlphaFold2-Multimer. For the 38
complex targets, DMFold-Multimer generated models with an average TM-score of 0.83 and
Interface Contact Score of 0.60, both significantly higher than those of competing complex
prediction tools. Our analyses on complexes highlighted the critical role played by MSA
generating, ranking, and pairing in protein complex structure prediction. We also discuss future
room for improvement in the areas of viral protein modeling and complex model ranking.



1. INTRODUCTION

Protein structure prediction is a long-studied fundamental problem in structural biology. The
template-based modeling method I-TASSER (Iterative Threading ASSEmbly Refinement)'*
was designed to address this problem, and has proven to provide a highly robust and versatile
framework for ongoing advances in protein structure prediction. ‘Zhang-Server’, which was
based on the I-TASSER algorithm, joined the Critical Assessment of Protein Structure Prediction
(CASP) experiments®® from CASP7 to CASP11'"*. During this period, I-TASSER predicted
protein structure mainly based on threading template information and knowledge-based
potentials. Since the introduction of co-evolution and deep learning techniques, two versions of
contact-guided I-TASSER (C-I-TASSER)" were developed by introducing the direct coupling
analysis (DCA)-based and deep learning-based residue-residue contact prediction'®**® into I-
TASSER folding. These two versions of C-I-TASSER were used in CASP12" and CASP13%,
respectively. Subsequently, a more comprehensive deep-learning guided I[-TASSER (D-I-
TASSER) was developed using predicted contacts, distances, and hydrogen-bonds*** to guided
I-TASSER Replica Exchange Monte Carlo (REMC) simulation, as applied in CASP14%. All
these I-TASSER-based protein structure prediction methods followed a similar two-step
workflow: first, collecting geometric restraints either from templates or deep learning predictors;
second, converting those features into energy potentials that are combined with the inherent
knowledge-based potentials to guide the REMC folding simulations. This workflow shows
strong robustness and versatility, because new restraint features from new algorithms and
techniques can be conveniently introduced to the pipeline and result in improved modeling
quality. This is evident by the fact that the overall accuracy of the TASSER series algorithms has
consistently increased from CASP11 to CASP14, as improved deep learning-based constraints
were incorporated into the underlying I-TASSER modelling framework.

CASP14 saw a remarkable shift in the field, due to the fact that the end-to-end deep learning
pipeline AlphaFold2** generated excellent models for most targets. Different from our two-step
protein folding strategy, AlphaFold2 feeds the raw multiple sequence alignment (MSA) into a
deep neural network and directly creates the structure models by the network learning. It must be
noted that AlphaFold2 still has difficulties in modeling some proteins, such as those with
multiple domains and those with no homologous sequences®. However, the success of
AlphaFold2 marked a solution to the structure prediction problem through pure machine learning
from the large pool of experimentally solved structures in the Protein Data Bank (PDB)*.
Meanwhile, it also prompted us to ask several fundamental questions: (i) Is the end-to-end
learning method the only way to solve the protein structure prediction problem? (ii) Are
knowledge-based potentials useless in the era of Al and deep learning? (iii) How can multi-
domain protein modeling best incorporate the power of deep learning methods? These were
central questions in protein monomer structure prediction that we wanted to address since
CASP14.

After CASP14, the AlphaFold2 framework was subsequently extended to AlphaFold2-
Multimer”” for predicting the structures of multi-chain protein complexes. The AlphaFold2-
Multimer pipeline has been demonstrated to have the ability to produce high-quality models for
numerous instances. The quality of input MSAs largely decides the modeling performance of
AlphaFold2-Multimer”*°. However, the shallow MSAs produced by its default MSA pipeline,
and the mechanism of combining MSAs without optimal diversity, had restricted the predictive
power of AlphaFold2-Multimer in terms of complex structure predictions. Thus, addressing the



MSA generation and pairing problems in protein complex structure predictions was another
central topic that we wanted to address.

In CASP15, we used two methods, D-I-TASSER (group name ‘UM-TBM’) and DMFold-
Multimer (group name ‘Zheng’), to participate in the protein monomer and protein complex
structure prediction categories, respectively.

Compared with the D-I-TASSER pipeline used in CASP14%, four newly developed
components were integrated into the D-I-TASSER version used in CASP15. First, a new MSA
construction pipeline, DeepMSAZ2, has been created. This pipeline searches large-scale whole-
genome and metagenome databases for generating multi-source MSAs, and utilizes deep
learning structure modeling for scoring MSAs. Second, two new attention-based deep neural
network predictors, AttentionPotential and AlphaFold2, have been developed or introduced.
These two methods as well as our previous method, DeepPotential®, are combined to predict
residue-to-residue spatial restraints, including contact maps, distance maps, inter-residue
orientations, and hydrogen-bond networks. Third, a domain partition and arrangement assefbty
module has been developed for handling multi-domain targets. For domain partition, the contact-
based method FUpred® and threading-based method ThreaDom®' were utilized for non-
homologous and homologous targets, respectively. In the domain arrangement assembly stage,
DEMO2* was employed to merge assemble domain-level templates and extract spatial
restraints. The merged assembled features were subsequently used in the folding simulation.
Fourth, the D-I-TASSER REMC folding system has been optimized to predict protein structures
with the combined guidance of deep learning-based restraint potentials, template-based
potentials, and knowledge-based potentials. With the developments outlined above, the qualities
of models obtained using D-I-TASSER are significantly improved when compared with
AlphaFold2. The success of D-I-TASSER in CASP15 demonstrates that an end-to-end deep
learning pipeline may not be a unique solution to the protein structure prediction problem. A
two-step modeling strategy can also achieve this goal (with higher performance) by appropriately
combining highly accurate deep learning-based spatial restraints with knowledge-based
potentials, and potentially carries the additional benefit of more easily and transparently
incorporating ongoing advances in the field through its ability to combine information from
several different deep learning pipelines.

The DMFold-Multimer pipeline used a three-stage process for multi-chain complex
prediction. First, monomer MSAs were constructed by DeepMSA2. Second, the top-ranked
monomer MSAs were combinatorically paired to generate a diverse set of joint MSAs. Third, the
end-to-end modeling module from AlphaFold2-Multimer was used to generate models using the
paired MSAs as input. The advancements in DMFold-Multimer have led to a substantial
enhancement in the model qualities when compared with AlphaFold2-Multimer and other
competing methods.

2. METHODS

2.1 Overview of ‘UM-TBM’ server and ‘Zheng’ human group in CASP15

The ‘UM-TBM’ server group, utilizing the D-I-TASSER algorithm (Fig. 1), participated in the
protein monomer modeling category in CASP15. Meanwhile, the 'Zheng' human group, based on
the DMFold-Multimer method (Fig. 2), participated in the protein complex modeling category.
Although the ‘Zheng’ group pipeline is fully automated, the extensive running time required for
large protein complexes prevented participation in categories other than the human group. Below
we describe the components of the D-I-TASSER monomer pipeline in sections 2.2-2.5, with a



final summary of how the methods connect in section 2.6; DMFold-Multimer’s components are
described in sections 2.2 and 2.7.

2.2 Multiple sequence alignment construction for protein monomers by DeepMSA2

We utilized DeepMSA2 (Fig. 2A) to generate the multiple sequence alignments required in
subsequent stages of both of our pipelines. DeepMSA?2 contains two stages: (i) MSA generation
using three sub-pipelines, and (ii) MSA ranking based on the structure model-associated
confidence score.

During the MSA construction step, three sub-methods (dMSA, qMSA, and mMSA) are
employed to generate a maximum of ten potential multiple sequence alignments (MSAs). The
first sub-method, dMSA, is a prior MSA construction program (DeepMSA?*) created for
CASP13. dMSA utilizes three stages (labeled stage 1-3) where HHblits*, Jackhmmer®, and
HMMsearch® are used to query the input sequence against Uniclust30*%, Uniref90%, and
Metaclust®® databases, respectively. qMSA is an extended version of dMSA with a new search
added between stages 2 and 3, utilizing HHblits to explore the BFD* metagenomics database.
Additionally, qMSA employs UniRef30* as the database used in stage 1, and adds a new
iteration stage (stage 4) to search through the Mgnify* metagenomics database. The construction
of both dAMSA and gMSA will terminate at any searching stage where the number of effective
sequences (Neff) value (Eq. 1) is greater than 128, yielding a maximum of seven distinct MSAs
generated by stages 1-3 of dMSA and stages 1-4 of gMSA. Here, Neff is defined as:

Neff = Z —! 1l
e > IS,.,20.8]

where L is the length of the query sequence, N is the number of sequences contained in the MSA,
S, is the sequence identity between the m-th and n-th sequences, and I[ ] represents the Iverson

bracket, which takes the value I {Sm,nz 0.8}: 1if S, ,20.8, and 0 otherwise.

The mMSA pipeline subsequently uses the MSA obtained from stage 3 of qMSA, generated
from the BFD database, as the starting point for HMMsearch to explore three in-house
metagenome databases (IMG/M*, TaraDB*, and MetaSourceDB*), which contain more
sequences compared to the Metaclust, BFD, and Mgnify databases. The resulting sequence hits
are converted into a sequence database, which is used as the target database for stage 3 of dAMSA,
stage 3 of qMSA, or stage 4 of gMSA to generate additional three MSAs.

In the MSA ranking step, the ten MSAs generated by DeepMSA?2 are utilized as inputs for
separate AlphaFold2 runs, where the template detection module is turned off and the embedding
parameter is set to one to enable rapid model generation. The MSA linked with the highest
pLDDT score among the AlphaFold2 models is selected as the final output of DeepMSA?2.

Based on benchmarking of 73 protein monomer targets, the time complexity for DeepMSA2
scales roughly linearly with sequence lengths; run times can be estimated by 0.003L+2.055
hours, where L is the length of the protein (Fig. S1A). The benchmarking is based on ten CPU
cores and four GPU A40 cards.

2.3 Template detection by LOMETS3

The templates used for D-I-TASSER simulation are detected by the LOMETS3* pipeline (Fig.
1), which contains two steps: (i) template detection by individual threading programs, and (ii)
template re-ranking by the LOMETS3 scoring function.



In the template detection step, two groups of threading algorithms, profile-based threading
and contact-based threading methods, are employed to gather the initial templates. The MSA that
was generated in the previous step is utilized to create sequence profiles or profile Hidden
Markov Models (HMMs) for six profile-based threading methods including FFAS3D®,
HHpred*, HHsearch”, MRFsearch®, MUSTER®, and SparksX®. For these six profile-based
threading methods, a template re-ranking algorithm is implemented based on a scoring function,
Zscoreli, j|, which combines the original profile-based alignment score (Prof), contact map
overlapping score (CMO), and mean absolute distance error of the template (MAET). The
Zscore|i, j|, where i represents i-th template and j represents j-th threading program, is defined
as following:

Zscoreli, jl=w, Zscore™"" (i, j|+w, Zscore”™°i, j|
+w3Zscorerf( ,jl(2)
Here, Zscore™ i j| could be calculated as:
Xli,jl=(X(jl]

ol X1j)
where (X (j)) and olXx X( ]))are the average and standard deviation of the scoring function X, and
X represents for CMO, MAET and Prof. Here, CMO is defined as:

N<CMquery ) CMtemplate) (4)

N(CM™)
where N (CM™” ,CM""™“*) is the number of overlapping contacts between the predicted query
contact map and the contact map derived from the aligned template, and N(CM**”) is the
number of predicted contacts. MAET is defined as:

Zscore™ i, j|=

CMO=
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where d“” is the predicted distance between residue m and n in the query structure, d,
the correspondmg distance between the residue in the template structure that aligned to posmon
m and n of the query, and ali means the length of alignment. The contact map and distance map,
obtained from the top-ranked AlphaFold2 model using the MSA generated by DeepMSA2, are
utilized by five contact-based threading methods. These methods include CEthreader®,
DisCovER®*’, Map_align®, EigenThreader™, and Hybird-CEthreader®'. To increase the efficiency
of the contact-based threading approaches, we choose the top 1,000 templates identified by
HHsearch, and then re-rank these templates using each of the five contact-based threading
methods.

For the final template re-ranking step, the top 20 ranked templates will be selected from each
individual threading method, resulting in 220 templates. Those templates are re-ranked based on
the following scoring function that integrates Zscore and sequence identity between the
identified template and query sequence®:

[j)*ZSCOFe(i,j)+seqid[i,j)(6]

scoreli, jl=co ,
0] Zscore,| j|

where seqid|i, j| is the sequence identity between the query and the i-th template from the j-th
program, conf |j| is the confidence score for the j-th program, and Zscore,|j| is the Zscore cut-



off for defining good/bad templates for the j-th program. The target will be defined as ‘Easy’ or
‘Hard’ based on the number of high-quality threading alignments (Zscore(i, j)>Zscore,| jl)
detected by LOMETS3, where the ‘Easy’ target is roughly corresponding to CASP ‘TBM-easy’
(and ‘TBM-hard’) target, and ‘Hard’ target is roughly corresponding to CASP ‘FM/TBM’ (and
‘FM’) target. For the different type of targets, the modeling strategy in later steps will be
different.

2.4 Spatial restraint prediction by the deep learning module

Three deep learning algorithms (Fig. 1), AlphaFold2** (8-embedding), AttentionPotential, and
DeepPotential®?, are applied to accurately predict residue-residue contact maps, distance
distributions, inter-residue torsion angles, and hydrogen-bond networks for D-I-TASSER,
utilizing the DeepMSA2 final MSAs.

DeepPotential® is a computational tool that we developed during CASP14 to predict residue-
residue contact maps, distance distributions, inter-residue torsion angles, and hydrogen-bond
networks for both Ca-Ca and C[-Cp residues. The DeepPotential pipeline utilizes a combination
of two-dimensional co-evolutionary features and one-dimensional sequence-based features as
machine learning inputs. The co-evolutionary features consist of raw coupling parameters from
the 22-state Potts model optimized through pseudo-likelihood maximization (PLM), and the raw
mutual information (MI) matrix derived from the co-evolutionary information of the given
multiple sequence alignment (MSA). Sequence features include Potts model field parameters,
Hidden Markov Model (HMM) features, self-mutual information, and one-hot representation of
the MSA. These features are then input separately into deep convolutional residual neural
networks, where they are passed through sets of one-dimensional and two-dimensional residual
blocks, respectively, before being tied together. The resulting tiled feature representations serve
as inputs to another fully residual neural network that contains 40 2-D residual blocks, which is
trained using cross-entropy loss and outputs several types of spatial restraints.

AttentionPotential is an advanced computational pipeline derived from DeepPotential that
leverages an MSA transformer™® and AlphaFold2 Evoformer*. Unlike DeepPotential,
AttentionPotential extracts co-evolutionary information directly through an attention mechanism

init

that can more accurately capture the interactions between residues. Starting from a MSA m,; ,
with S aligned sequences and L positions, the ‘InputEmbedder’ module is applied to get the
embedded MSA representation M and the pairwise representation Z;. Additionally, the MSA
embeddings and attention maps from MSA transformer, i.e., m_," and z; ', are linearly projected

yj
and added to m; and Z; respectively. The representations obtained are subsequently input into the
Evoformer model, which consists of 48 Evoformer stacks used to predict residue-residue contact
maps, distance distributions, inter-residue torsion angles, and hydrogen-bond networks.

In addition to DeepPotential and AttentionPotential, the Cp-C[ distance distribution derived
from AlphaFold2 is also utilized to guide the D-I-TASSER simulation. The final MSA of
DeepMSAZ2 is input into AlphaFold2, where the default templates are replaced by LOMETS3
templates and the embedding parameter is set to eight. Other parameters (e.g., modeling recycles,
dropout rate, number of sampling decoys, etc.) of AlphaFold2 as utilized were left at their default
values. Finally, AlphaFold2 generates five models, and the distance output from the model with
the highest pLDDT score is selected as the final output.



To assess the accuracy of the distance predictions relative to experimental results, the mean
absolute distance error (MAE) of the top 5L (L is the protein length, in amino acids) long-range (
(1—jV>24) predicted distances is considered:

1 5L
red ex
MAEZEZ‘dP _di,JP(7)

i,j
i,
where dfxf is the distance between residue i and j in the experimental structure, and d; rfd is the
predicted distance between residue i and j from prediction, the latter is estimated as the middle
value of the bin with the highest probability.

2.5 Domain partition and arrangement assembly by the multi-domain handling module

A novel domain partition and arrangement assembly module (Fig. 1) has been incorporated
into D-I-TASSER to tackle the complex issue of multi-domain protein modeling. Unlike our
earlier domain handling module employed in CASP14, which attempted to merge assemble the
final predicted domain-level models, the new module strives to assembte reconstruct a full-
length model from the domain-level inputs, i.e., the templates and spatial restraints, for
subsequent D-I-TASSER folding simulation.

The new domain partition module integrated into D-I-TASSER incorporates two domain
boundary prediction algorithms, ThreaDom® and FUpred®. ThreaDom is a template-based
approach utilized for ‘Easy’ targets, whereas FUpred is designed for ‘Hard’ targets and predicts
domains based on deep learning predicted contact maps. ThreaDom predicts domain boundaries
by relying on LOMETS3 threading alignment coverage, where a domain conservation score
(DCS) is calculated for each residue by combining information from template domain structures,
terminal and internal gaps, and insertions. The domain boundary information is then derived
from the DCS profile distribution. On the other hand, FUpred uses a recursive strategy to detect
domain boundaries based on predicted contact maps and secondary structure information. This
algorithm retrieves domain boundary locations by maximizing the number of intra-domain
contacts while minimizing the number of inter-domain contacts from the contact maps. For a
full-length sequence, LOMETS3 and the deep learning module are first used to collect whole
chain-based templates and predicted contact maps, respectively, which are subsequently utilized
by ThreaDom and FUpred to predict domain boundaries. Each individual predicted domain is
then input again to LOMETS3 for domain-level template detection and to the deep learning
module for domain-level spatial restraint prediction.

The final templates for the domains are merged assembled into a ‘full-length’ template using
DEMO2*. DEMO?2 first identifies ten global templates that cover as many domains as possible
from a non-redundant multi-domain protein library by aligning each domain model to the
template using TM-align®’. A Limited-memory Broyden—Fletcher-Goldfarb—Shanno (L-BFGS)
optimization is then performed starting from each initial global template to detect each domain's
optimal translation vectors and rotation angles for domain-level templates. The optimization is
guided by a comprehensive energy function that includes the knowledge-based potential,
template-based potential, and inter-domain spatial restraints from the deep learning module. The
translation vectors and rotation angles with the lowest energy are selected to construct the final
‘full-length’ template. In addition to merging assembling the full-length templates, the domain-
level predicted spatial restraints are also merged assembled into full-length spatial restraints.
Finally, the merged assembted full-length templates, the merged assembtled full-length spatial
restraints, and the whole chain-based full-length spatial restraints are all used as inputs for the D-



I-TASSER simulation (see below), with the whole chain-based full-length spatial restraints
primarily used for providing inter-chain restraints during the modeling process.

2.6 D-I-TASSER folding pipeline for protein monomers

The full D-I-TASSER pipeline (Fig. 1) includes five steps: (i) MSA construction by DeepMSA2,
(ii) template detection by LOMETS3, (iii) spatial restraints prediction by the deep learning
module, (iv) domain partition and arrangement assembly by the multi-domain handling module,
and (v) full-length atomic model generation by D-I-TASSER folding simulation.

Steps (i)-(iv) have been introduced in sections 2.2-2.5 above, while step (v) involves the D-I-
TASSER folding simulation, which includes three sub-stages. Firstly, initial conformations are
generated based on LOMETS3 templates and deep learning-based models. Next, full-length Ca
models are arranged assembled using D-I-TASSER Replica Exchange Monte Carlo (REMC)
simulation, which is guided by template-based restraints, deep learning spatial restraints, and
knowledge-based potentials. Finally, a full-length atomic model is generated and refined.

In the initial conformation generation step, a total of 15 full-length models are created by
AlphaFold2 or DeepFold® L-BFGS folding system utilizing spatial restraints collected from
LOMETS3 templates (see section 2.3) and predicted by the deep learning module (see section
2.4). To provide further details on the DeepFold system, it should be noted that the probabilities
of distance terms for each pair of residues are converted into smooth potentials for the gradient-
descent based protein folding system. The negative log of raw probability histogram is then
interpolated by cubic spline as potentials. For distance probability histogram of residue pair i and
j, the probability, P(i,j)y, is a fusion probability combining the raw probability P(i, )T,
predicted from DeepPotential (or AttentionPotential) and statistical probability P(i, j);. derived
from LOMETS3 top N ranked templates with alignment coverages > 0.5 for ‘Easy’ targets
(alignment coverages >0.6 for ‘Hard’ targets). Here, N is 50 for an ‘Easy’ target, while 30 for a
‘Hard’ target. The fusion probability P (i, j) 4 can be calculated as
P(i, )= (i, j i+ (1—w)P(i, j)z""(8)
where w is a weight and equals to 0.8. Five models were generated using DeepFold, with varying
random seeds, utilizing restraints from either DeepPotential or AttentionPotential combined with
LOMETS3 templates. Along with five models from AlphaFold2, a total of 15 models are
collected from the deep learning module. These 15 models are ranked as five AlphaFold2
models, five AttentionPotential-based models, and five DeepPotential-based models. They will
be then employed as initial conformations, together with 220 LOMETS3 templates, for D-I-
TASSER REMC folding simulations.

During the D-I-TASSER REMC folding simulation stage, three different types of REMC
simulations (labeled as ‘A’, ‘M’ and ‘F’) are carried out based on the target’s category. The ‘A’
simulation retains all Ca atoms on a 0.87A lattice and the Ca atoms move along the lattice, with
REMC simulation conformations initiated from LOMETS3 templates and 15 deep learning
models and gaps filled from random conformations. On the other hand, ‘M’ freely rotates and
translates fragments excised from the threading alignments; and ‘F’ keeps the threading-aligned
fragments frozen with changes only to the unaligned regions. ‘M’ and ‘F’ are conducted only for
‘Easy’ targets whose template alignments have a higher confidence. For each pipeline, five
REMC simulations are performed, and the decoy structures from eight (or three for ‘Hard’
targets) low-temperature replicas are subjected to structural clustering. The REMC simulation is
guided by knowledge-based potentials, template-based restraints, and deep learning-based spatial
restraints potentials. The deep learning-based spatial restraints potentials consist of residue-



residue contact maps'>*® (described in Eq. 9), distance distributions* (described in Eq. 10), inter-
residue torsion angles, and hydrogen-bond networks potentials, with the first two terms being the
primary energy terms during the folding simulation.

1 d;— 8-;D
— Ujy|1—sin|——-——n[|,8A<d;<D
Econtact dij): ’ (9)
D+80
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where, i and j are a residue pair, U;U; is the depth of the potential, d; is the CB-Cp or Ca-Ca
distance between residue i and j in the simulation decoys, and D is a hyper parameter to control
the well width of the contact potential function term. In distance energy potential, P,-j(d ,-j) is the
probability of the distance d;, and Pg is the probability of the last distance bin.

In the structure refinement stage, the 10,000 decoy conformations obtained from the REMC
simulation are subjected to clustering using SPICKER®, which yields five clusters. These five
cluster centers are then subjected to fragment-guided molecular dynamics (FG-MD®)
simulations, leading to the generation of five full atomic models. Subsequently, FASPR® is
employed for repacking the side-chain rotamer structures of these models, while locPREFMD®
and Amber® refinement techniques, which were used in AlphaFold2, are applied sequentially to
refine the models further. The models are ranked by a confidence score that is calculated based
on the significance of threading template alignments, contact map satisfaction rate, mean
absolute error between model distances and predicted distances, and convergence of D-I-
TASSER simulations.

Based on benchmarking of 85 protein monomer targets, the time complexity of D-I-TASSER
is linear with protein length, and can be estimated by 0.172L-3.822 hours, where L is the length



of the protein (Fig. S1B). The benchmarking is based on ten CPU cores and four GPU A40
cards.

2.7 DMFold-Multimer folding pipeline for protein complexes

The DMFold-Multimer (DeepMSA-based Folding for protein Multimer) pipeline (Fig. 2B)
is designed for modeling protein complexes using the DeepMSA2 method for multiple sequence
alignment (MSA) generation and the AlphaFold2-Multimer algorithm for protein complex
modeling. The DeepMSA?2 pipeline generates ten ranked MSAs for each individual protein. As a
result, for a protein complex, each constituent protein sequence is linked with ten ranked MSAs.
In the case of homomer (homo-oligomer) complexes, all ten MSAs are utilized in DMFold-
Multimer for the purpose of generating paired MSAs, as the same MSA can be used for all
monomers (simply tiled the correct number of times). However, in the instance of heteromer
(hetero-oligomer) complexes, an additional selection process is implemented to generate an ideal
set of paired MSAs based on the combinations of the individual constituent MSAs. For each
constituent protein, we select the top N ranked MSAs based on monomeric pLDDT scores. These
MSAs are then used to generate potential paired MSAs, where each selected MSA for one
constituent protein can be paired with the MSA of another constituent. Thus, for a heteromeric
complex containing M different constituent proteins, N" distinct paired MSAs are generated and
evaluated. To guarantee that modeling with N* set of paired MSAs could be completed within a
reasonable time, N is selected as the maximal value to satisfy N"=<100. For example, if a
complex contains three unique protein components (A2B2C1), then N would be set to 4
(64=4<100). In other word, for each protein components in this complex, we will select best
top 4 MSAs, and build a set of MSAs for the complex with 64 different combinations, using
every possible combinatorial pairing of those four MSAs for each of the constituents. After the
MSAs for M different constituent proteins are paired, for example for paired MSAs (MSA-P1;,
MSA-P2;;, MSA-P3;, ... , MSA-PMiy) (1<ik< N; 1<k< M), the sequences within each MSA are
concatenated using the AlphaFold2-Multimer default sequence connection pipeline®’. This
pipeline initially groups the sequences by the UniProt annotated species and subsequently
connects the sequences in each group based on their order of sequence identity to the query
sequence. In the final step of complex model generation, the selected N* (or 10 for homomer)
sets of MSAs are used as input to a modified AlphaFold2-Multimer pipeline. The major
difference between DMFold-Multimer and AlphaFold2-Multimer is the MSA pipeline, so other
parameters of AlphaFold2-Multimer folding engine utilized by DMFold-Multimer (i.e. modeling
recycles, dropout rate, number of sampling decoys, etc.) were left at their default values during
modeling. For each set of MSAs, 25 models are generated. Finally, the resulting 25N (or 250
for homomer) complex models are ranked by the predicted TM-scores® (a linear combination of
protein monomer TM-score and protein interface TM-score with weight 0.2 and 0.8,
respectively), and the top five complex models are selected as the final set of models. Based on
the benchmarking of 32 protein complex targets, the time complexity of DMFold-Multimer is
linear with sequence length and could be estimated by 0.059L-1.179 hours (Fig. S1C), where L
is the sum length of the component proteins in the protein complex. The time complexity
benchmarking is based on ten CPU cores and four GPU A40 cards.

3. RESULTS

Using official CASP15 definition, 94 domains (Table S1) from 68 full-length monomer targets
were assessed for protein regular modeling category by D-I-TASSER, and 38 multimer targets



(Table S2) were assessed for protein complex modeling category by DMFold-Multimer. Based
on the difficulty of modeling, these 94 domains were categorized as 36 “TBM-easy’ targets, 11
‘TBM-hard’ targets, 8 ‘FM/TBM’ targets, and 39 ‘FM’ targets by the official CASP definitions.
To simplify the terminology in the following analysis, ‘“TBM-easy’ and “TBM-hard’ targets were
labeled as TBM targets, while ‘FM’ and ‘FM/TBM’ targets were labeled as FM targets. Of the
38 multimer targets, based on chemical stoichiometry information, the protein complexes include
19 hetero-oligomer (heteromer) targets and 19 homo-oligomer (homomer) targets. In the
following discussions, the analyses were made on the datasets mentioned above, if there is no
specific explanation.

3.1 The evolution of a series of I-TASSER algorithms after introducing more accurate deep
learning-based spatial restraints

The protein monomer modeling pipeline in CASP15 was based on the D-I-TASSER algorithm,
which is an extended method from our classic template-based I-TASSER algorithm and the
contact-associated C-I-TASSER algorithm. Fig. 3A and 3B show the protein monomer modeling
results of a series of [-TASSER algorithms from CASP11 to CASP15. Since some experimental
structures in CASP11 to CASP14 are still not released, we directly downloaded the ‘Zhang-
Server’ results from the CASP official website, and all analyses in Fig. 3A and 3B were based on
TM-scores from those official results. -TASSER, which is a pure fragment assembly-based
method, took part in the CASP11, and only folded two FM targets with an average TM-score of
0.335 (Table S3). In CASP12 and CASP13, two versions of C-I-TASSER algorithms, using
DCA-based contacts or deep learning-based contacts to guide the folding simulation, showed
better folding abilities, where C-I-TASSER folded (TM-score>0.5°) over 45% and 54% of the
FM targets in CASP12 and CASP13, with average TM-scores of 0.470 and 0.486, respectively.
After deep learning-predicted distances were introduced, D-I-TASSER in CASP14 generated
models with an average TM-score of 0.610 for FM targets. In CASP15, the new version of D-I-
TASSER, which hybridizes distance predictions from AlphaFold2, AttentionPotential, and
DeepPotential, generated substantially better models with an average TM-score of 0.833 for FM
targets, increasing around 36% compared with CASP14. For TBM targets, since the modeling
performance highly depends on the template quality, the tendency was slightly different from
FM targets.

Since the target difficulties in the past five CASP experiments were slightly different, to
make a more fair comparison between these I-TASSER-based algorithms and highlight the
advantages of the new version of the D-I-TASSER algorithm, we re-ran I-TASSER, C-I-
TASSER, and CASP14 version of D-I-TASSER algorithm on 65 CASP15 full-length targets
with the same domain boundary predictions we used in CASP15, and all templates released after
May 1 2022 excluded. Fig. 3C-E shows the resulting head-to-head comparisons between the D-
[-TASSER algorithm and these three previous I-TASSER methods. Overall, D-I-TASSER
generated models for FM and TBM targets with average TM-scores of 0.840 and 0.925, which
were 152% (121%) and 23% (23%) better than the models generated by I-TASSER (C-I-
TASSER) method, with p-values of 2.13E-14 (7.11E-15) and 1.42E-14 (7.11E-15), respectively
(Table S4). Most notably, when compared with previous D-I-TASSER pipeline (CASP14
version) that solely utilized the DeepPotential spatial restraints, the updated D-I-TASSER
pipeline generated 98% (=46/47) and 98% (=46/47) models with better TM-scores for TBM and
FM targets on the CASP15 dataset, respectively.



One reason why the new D-I-TASSER pipeline outperformed the previous version used in
CASP14 was the introduction of AlphaFold2-derived distance restraints. To test whether the
improvement of D-I-TASSER arises only from the advantage of AlphaFold2, we made a direct
comparison between D-I-TASSER and AlphaFold2 on 94 CASP15 domains (Fig. 3F). The
AlphaFold2 models were taken from the CASP standard AlphaFold2 server (the ‘NBIS-AF2-
standard’ group in CASP15, which used the public release AlphaFold2 at that time with default
parameters run by the Elofsson Lab). Overall, D-I-TASSER generated 39 (31) models with
better TM-scores than AlphaFold2 models for 47 FM (47 TBM) targets. Especially for FM
targets, the average TM-score of D-I-TASSER model was 19% better than AlphaFold2 with a p-
value of 4.02E-06 (Table S5). It was notable that D-I-TASSER constructed correct folds (TM-
score>0.5%) for 12 targets (10 FM targets and 2 TBM targets) on which AlphaFold2 failed in
generating correct models. Fig. 3G lists five such FM targets (T1125-D1, T1125-D2, T1125-D5,
T1130-D1, and T1169-D1), for which D-I-TASSER predicted correct models, while the other
five of these FM targets formed a protein complex (H1137) by a simple helix-strand fold, and
thus are not listed here. For these five targets, D-I-TASSER predicted models with TM-scores
that were all above 0.7, while AlphaFold2 models had TM-scores that were all below 0.45. The
better performance of D-I-TASSER showed its folding ability already went beyond the premier
end-to-end deep learning method, AlphaFold2.

In summary, D-I-TASSER outperformed the previous I-TASSER-based algorithms after
incorporating AlphaFold2 (and other deep learning-derived) distances. The result comparison of
a series of I-TASSER algorithms, both in historical CASP data and re-analysis of CASP15 data,
showed the improvement of D-I-TASSER folding system by including more state-of-the-art deep
learning methods within the I-TASSER simulation framework.

3.2 Contributions of DeepMSA2 MSA and threading template information to D-I-TASSER

To investigate why D-I-TASSER performed better than AlphaFold2 (‘NBIS-AF2-standard’
group), we performed a comparative analysis on modeling results from the standard version
AlphaFold2, AlphaFold2 with LOMETS3 templates (shortened as ‘AlphaFold2-L’), AlphaFold2
with LOMETS3 templates and DeepMSA2 MSA (shortened as ‘AlphaFold2-L.D’), and the full
D-I-TASSER method (Fig. 4A). Overall, AlphaFold2-L performed slightly better than standard
AlphaFold2 in both FM and TBM targets. Especially for FM targets, the average TM-score was
0.725 against 0.707 (Table S5), demonstrating the usefulness of LOMETS3-detected templates.
Furthermore, after giving Alphafold2-L the improved DeepMSA2-derived MSA as input,
AlphaFold2-LD could generate much better models, with the average TM-scores increasing 7%
and 1% for FM and TBM targets, respectively. These results showed the power of integrating
deeper MSA to AlphaFold2 pipeline, especially for FM targets. As we mentioned in section 2.4,
in the full D-I-TASSER pipeline the models from AlphaFold2-LD would be used as the initial
conformations for D-I-TASSER folding simulation and the derived distances from those models
would be used to guide the folding simulation. Thus, the LOMETS3 threading templates and
DeepMSA2 MSA contributed to the final D-I-TASSER modeling performance. Finally, there
was a substantial jump in quality between the models from AlphaFold2-LD and D-I-TASSER,
i.e., TM-scores were 0.775 vs. 0.840 for FM targets and 0.913 vs. 0.925 for TBM targets, arising
from the contributions of other components in the D-I-TASSER pipeline, such as multi-domain
handling module and folding simulation with the comprehensive force field.

Based on the above analysis, it is clear that deep learning-based spatial prediction was a
critical feature for generating successful predicted models. However, the usefulness of the



template information still could not be ignored. For example, T1110 (T1110-D1) is an
isocyanide hydratase with 227 residues. It is a single-domain TBM target with 8 a-helices and 8
B-strands forming a o/p fold (Fig. 4B). T1109 (T1109-D1) is the same protein as T1110 with a
single site mutation D183A (highlighted in red color in Fig. 4B). Both T1109 and T1110 form a
homo-dimer complex (targets T11090 and T1110o in complex modeling category) in their
crystal structure. The structures of the main region (residues 1-205) of these two targets are
almost identical, while the C-terminus loop regions (residues 206-227) have different
orientations. In T1110, the C-terminus loop forms intra-chain contacts to the N-terminus main
region, while for T1109, the C-terminus loop shifts to the opposite direction almost without any
contacts to N-terminus main body region. For the wild type protein (T1110), all component
threading methods of LOMETS3 detected a good template, 3nooA, with an average TM-score of
0.80 (Fig. 4C). All residues from the template that aligned to the key residue D183 of the query
sequence were all observed as aspartate (Fig. S2). Thus, the C-terminus loops of the templates
also showed the same orientation pattern as the experimental structure of T1110. In addition, the
predicted distances indicated the C-terminus loop had contact with the main region, which was
consistent with the threading templates (Fig. S3). The conserved and high-quality templates from
LOMETS3 helped D-I-TASSER construct a high-quality model with a TM-score of 0.97 that
was nearly identical to the experimental structure (Fig. 4E). In contrast, for the mutated target
T1109, LOMETS3 detected a template, 3b38A (Fig. 4C), which has a similar main region to the
experimental structure with a TM-score of 0.74, but without the C-terminal region. Thus, when
D-I-TASSER built models for T1109, the C-terminus loop was constructed ab initio guided by
spatial restraints from the deep learning pipelines. D-I-TASSER generated a very accurate
predicted distance map (Fig. 4D) with the mean absolute distance error (MAE, see Eq. 7) of
0.28A. Tt clearly showed that the distances between the C-terminus loop and the main region
were greater than 20A in the predicted distance map. As a result, the final D-I-TASSER model
(Fig. 4E) achieved a very high TM-score of 0.96. In contrast, for the wild-type T1110, The
success of modeling both the wild-type T1110 and the mutated T1109, and particularly in
identifying different templates and distance restraints on the basis of the mutation, showed the
benefits of correct template information to protein structure prediction, especially for predicting
some single site mutation targets.

Current deep learning-based protein structure prediction protocols are highly dependent on
the quality of MSAs. To further investigate the impact of DeepMSA2 on D-I-TASSER
modeling, we highlight one single-domain FM target, T1179 (T1179-D1). T1179-D1 is an all 3
protein with 261 residues (Fig. 4G). AlphaFold2 generated a relatively good model for this target
with a TM-score of 0.76, as its MSA pipeline detected 136 homologous sequences with a Neff of
6.84. However, the D-I-TASSER model had a much better quality with a TM-score of 0.93,
since DeepMSA2’s MSA had 324 homologous sequences with a slightly higher Neff of 8.84. To
provide further insight into the relationship between MSA depth and model quality on T1179, we
separately considered the models generated by D-I-TASSER using each of the component MSAs
created by the DeepMSA?2 pipeline. As expected, we saw a strong correlation between deeper
MSAs (higher Neff) and increasing quality of D-I-TASSER. For example, when only genome
sequence databases were used (dAMSA and qMSA stage 1&2), numbers of sequences in MSAs
were approximately 140, resulting in D-I-TASSER models with TM-scores lower than 0.7. After
giving DeepMSA?2 the third-party metagenomics sequence databases (Metaclust, BFD and
Mgnify), models from D-I-TASSER achieved slightly better TM-scores due to more homologous
sequences detected. Finally, if in-house metagenomics sequence database was utilized, two of



three D-I-TASSER models achieved TM-scores greater than 0.9, since the MSAs contained
around 300 homologous sequences with Neffs greater than 8.0. The case of T1179-D1 where D-
I-TASSER with different MSAs generated different quality of models showed again MSA is an
important feature of the success of D-I-TASSER.

Overall, the newly developed MSA generation pipeline, DeepMSA2, provides deeper MSAs
which helped D-I-TASSER produce more reliable protein structure prediction results, especially
for FM targets. Although the modeling performance improvement obtained by introducing
threading templates was relatively small, the template information still showed its usefulness to
correctly pick up the correct folds for some TBM targets.

3.3 A case study to highlight the advantage of optimized D-I-TASSER folding system to
model domains from large multi-domain targets

As noted above, both threading templates and MSAs were important features for the D-I-
TASSER modeling pipeline. However, it is difficult to determine whether solely using one
feature could lead to the success of D-I-TASSER on any particular target. The optimized D-I-
TASSER folding system which integrates threading template information, high quality MSAs, an
efficient multi-domain handling module, and REMC folding simulation with the comprehensive
force field, results in high overall prediction performance. Especially when modeling multi-
domain targets, this optimized folding system showed remarkable superiority over other
methods, demonstrating the importance of the improved domain-level handling in the most
recent iteration of D-I-TASSER. In the 94 CASP15 domain targets, 48 came from the single-
domain targets, while 46 domains came from 20 multi-domain targets. Fig. S4 compared the
modeling performance of D-I-TASSER for domains from single-domain targets vs. multi-
domain targets. It was interesting to see that D-I-TASSER modeling quality for these two groups
of domains were comparable for both FM and TBM targets, where average TM-scores of
domains from single-domain targets were 0.840 and 0.926 for FM and TBM targets, and average
TM-scores of domains from multi-domain targets were 0.840 and 0.924 for FM and TBM
targets, respectively (Table S6).

Here we use the case of T1125-D2 to highlight the advance of D-I-TASSER in modeling
large multi-domain targets, by combining multi-domain handling module and combining multi-
source distances for the folding simulation. T1125 is a large multi-domain target with 1,200
residues (Fig. 5A). The solved experimental structure covers only residues 327-1162, whereas
the N-terminus and C-terminus are disordered regions. The solved region could be split into six
domains, T1125-D1 to T1125-D6, with domain boundaries defined by the CASP organizers as
‘327-460; 461-608; 609-797; 798-946; 947-1096; 1097-1162° (with each pair of numbers
denoting the residue range for a single domain). Since the entire T1125 was defined as a ‘Hard’
target by LOMETS3, FUpred (see section 2.5) was utilized to predict the domain boundaries.
The entire T1125 was predicted as a seven domain targets where the last five domains covered
the equivalent regions in the experimental structures of T1125-D1 to T1125-D6, with the
predicted domain boundaries as ‘331-460; 461-610; 611-810; 811-925; 926-1200’. T1125-D2 is
an all B protein with 148 residues. FUpred almost perfectly predicted the domain boundary (461-
610 vs. 461-608). The standard AlphaFold2 predicted a model for the T1125-D2 domain with a
very low TM-score of 0.38 if modeling T1125 as a whole target without any domain partitions
(Fig. 3G). Interestingly, with the MSAs from DeepMSA2, even the same modeling strategy
utilized in AlphaFold2, it could generate a much better model for the T1125-D2 domain, with a
TM-score of 0.75, associated with a derived distance map with an MAE of 0.53A (Fig. 5B and



5C). However, due to the excellent domain boundary prediction for T1125-D2 and the deeper
domain-level MSA with more homologous sequences, the domain-level distance map provided
by domain-level AlphaFold2 modeling, had a lower error with an MAE of 0.49A (Fig. 5D),
associated with model with a better TM-score of 0.79 (Fig. 5E). Furthermore, as we mentioned
in multi-domain handling module (section 2.5), the D-I-TASSER folding system combined the
whole chain-level distance map and domain-level distance map, resulting in an even better
distance map for T1125-D2 with an MAE of 0.48A (Fig. 5F). Guided by this combined distance
map, and initial conformation from the high-quality AlphaFold2 model with DeepMSA2 MSA
(Fig. 5E), the D-I-TASSER folding simulation generated a more accurate final model with a
TM-score of 0.83 (Fig. 5G). The modeling results of T1125-D2 again demonstrated the
advantage of D-I-TASSER folding system in modeling domains from large-size multi-domain
proteins by combining deep learning, threading template, MSA information, multi-domain
handling module, and REMC folding simulation with the comprehensive force field, which taken
together yields both improved intra-domain conformations and inter-domain orientations.

3.4 Overall performance of DMFold-Multimer for protein complex structure prediction

The ‘Zheng’ group protein complex modeling pipeline in CASP15 was based on the DMFold-
Multimer method, which is an algorithm that combines DeepMSA2 multi-MSAs strategy and
AlphaFold2-Multimer structure modeling module. In CASP15, four types of measures were used
to assess the complex modeling quality, including TM-score, LDDT score, Interface Contact
Score (ICS), and Interface Patch Score (IPS). The first two measures were used for assessing the
global fold modeling quality, while ICS and IPS were used for quantifying the interface
modeling performance. Fig. 6A summarizes the TM-scores of the DMFold-Multimer models vs.
the target lengths for 38 CASP15 protein complex targets. Overall, DMFold-Multimer generated
models for 36 complex targets with TM-scores greater than 0.50, and models for 30 targets with
TM-scores greater than 0.70. In particular, for 63% of the complex targets, DMFold-Multimer
models had a comparable quality with the experimental structures (TM-score>0.90). For all 38
complex targets, the DMFold-Multimer models achieved an average TM-score of 0.83, where
for heteromer and homomer targets, average TM-scores were 0.869 and 0.792, respectively
(Table S7). The reason why the average TM-score of homomer targets was slightly lower than
heteromer targets was that for a homomer complex, given a residue i, the inter-chain distance to
residue j in another chain or intra-chain distance to residue j in the same chain was more difficult
to distinguish®. In contrast, the intra-chain vs. inter-chain distance problem was relatively rare in
heteromer complexes. It was notable that DMFold-Multimer modeling quality was independent
of the size of protein complex. As a proof, the average TM-score of the targets with residues
greater than 1,500 was 0.881, which was even higher than the average TM-score (0.814) for
targets with residues less than 1,500. For complex interface modeling, DMFold-Multimer
generated models for 29 complex targets with ICS greater than 0.50, and for 17 targets with ICS
greater than 0.70. For all 38 complex targets, the DMFold-Multimer models achieved an average
ICS of 0.60, where for heteromer and homomer targets, average ICS were 0.61 and 0.59,
respectively (Table S7). In Fig 6B, we presented the DMFold-Multimer models associated with
the experimentally solved structures for 7 large-size complex targets (>1,500 residues) for which
the predictions had a TM-score >0.8. These include H1111, H1114, H1137, T11700, H1171,
H1172, and T11810, the sequences of which contain 8,460, 7,988, 4,592, 1,908, 1,956, 2,004,
and 2,064 residues. For these 7 targets, DMFold-Multimer constructed impressive complex
models with TM-scores (interface contact scores) of 0.98 (0.48), 0.91 (0.82), 0.94 (0.79), 0.93



(0.58), 0.93 (0.51), 0.91 (0.55), and 0.85 (0.60), respectively. Notably, the three largest targets
are all heteromeric complexes with stoichiometry wvariable of ‘A9B9C9’, ‘A4B8C8’, and
‘A1B1C1D1E1F1G2H1I1’, respectively; DMFold-Multimer constructed high-accuracy models
with average TM-score (ICS) of 0.94 (0.70) for them. These results demonstrated the ability of
DMFold-Multimer to model large-size protein complexes.

Since the DMFold-Multimer method integrated the AlphaFold2-Mulitmer structure modeling
module as its model generator, it was important to examine if DMFold-Multimer provided an
improvement over the standard version of AlphaFold2-Multimer with default parameters. Fig.
6C shows a head-to-head comparison of the modeling quality between DMFold-Multimer and
the standard version AlphaFold2-Multimer on CASP15 targets, where AlphaFold2-Multimer
models came from ‘NBIS-AF2-multimer’ as operated by the Elofsson lab (using the public
release of AlphaFold2-Multimer at that time with default parameters). Overall, DMFold-
Multimer models outperformed AlphaFold2-Multimer for most targets both in terms of global
quality and interface quality. Taking the TM-score and ICS score as examples, DMFold-
Multimer models performed 15.6% and 29.1% better than AlphaFold2-Multimer models (both
significant improvements, with p-values of 1.6E-02 and 3.4E-04, respectively; see Table S8).
Furthermore, for heteromer and homomer targets, the DMFold-Multimer generated models with
TM-scores (ICSs) of 0.869 (0.61) and 0.792 (0.59), which were 20.2% (41.9%) and 10.9%
(18.0%) higher than those of AlphaFold2-Multimer models (0.723 (0.43) and 0.714 (0.50)),
respectively. These results showed that the combination of improved MSAs and enhanced MSA
pairing allowed DMFold-Multimer to substantially improve upon AlphaFold2-Multimer in
predicting protein complex structures.

3.5 Contributions of MSA combination strategy and large-scale metagenomics database to
DMFold-Multimer

Since DMFold-Multimer mainly focused on optimizing the input MSAs given to AlphaFold2-
Multimer method (all other parameters during the modeling stage of DMFold-Multimer and
AlphaFold2-Multimer are set same), it was important to investigate what MSA strategy led to the
success of DMFold-Multimer. Compared to the default MSA pipeline in AlphaFold2-Multimer,
two factors may contribute to the quality improvement: One is the integrated MSA creation and
pairing mechanism, and the second is the inclusion of the additional huge in-house
metagenomics databases used in DeepMSA2. To assess the relative contributions of these
factors, in Fig. 7A and Table S9, we compared the complex modeling performance of
AlphaFold2-Multimer and DMFold-Multimer using different sequence databases. Here H1111,
H1114 and H1137 were excluded from the analysis, since the standard AlphaFold2-Multimer
server (‘NBIS-AF2-multimer’ group) did not generate the full-length models for those three
targets, which may affect the contribution analysis of MSA strategy. It was observed that even
with the same sequence databases (from genomic sequences, BFD and Mgnify), DMFold-
Multimer still outperformed AlphaFold2-Multimer with the average TM-score (ICS) increasing
from 0.753 (0.48) to 0.769 (0.53), indicating the usefulness of MSA generating and pairing
methods. After using the full version DMFold-Multimer including our expanded metagenome
databases, the global fold modeling quality (TM-score) could be further increased by 6.6% from
0.769 to 0.820, and the interface modeling quality (ICS) could be further increased by 11.3%
from 0.53 to 0.59, showing that the large metagenome databases were also beneficial for protein
complex modeling.



To further check the importance of MSAs to protein complex structure prediction, three
Nano-body antigen complexes, H1140, H1141 and H1144 are shown in Fig. 7B. For all three
complex targets, AlphaFold2-Multimer could only generate models with TM-scores lower than
0.7 and ICS nearly 0. However, DMFold-Multimer could create models that have very high
quality global folds with all TM-scores greater than 0.9, and good interfaces with all ICS greater
than 0.5. Taking H1144 as an example to analyze why DMFold-Multimer produced high-quality
models, we found that DMFold-Multimer could generate 2,500 decoys with TM-scores ranging
from 0.62 to 0.99, and ICS ranging from 0.00 to 0.74 for this target (Fig. 7C), and thus most of
the decoys had better quality than AlphaFold2-Multimer models. Furthermore, the predicted TM-
score correctly selected one of those high-quality models as the first model (i.e., the model
ranked as best by the predictor) for DMFold-Multimer, resulting in a very good final model with
a TM-score of 0.99 and an ICS of 0.74 (Fig. 7D). It was notable that we observed that for H1144,
all decoys with predicted TM-scores greater than 0.8 had very high-quality global fold with TM-
score greater than 0.98, and good interface with ICS greater than 0.50. The quality of the
DeepMSA?2 paired MSA largely affected the accuracy of the protein complex modeling. For
H1144, the number of sequences in DeepMSA2 paired MSAs ranged from 38 to 414, and the
corresponding Neffs for those paired MSAs ranged from 1.8 to 16.3. Fig. 7E-F show the
relationship between TM-score/ICS and Neffs of DeepMSA2 paired MSAs for H1144. It clearly
indicated the first model of DMFold-Multimer came from the paired MSA with the highest Neff.
It is understandable because the paired MSA with a high Neff could provide more co-
evolutionary information, and thus lead to a better interface modeling quality. Interestingly, when
giving DMFold-Multimer the same databases as AlphaFold2, it could still generate models with
TM-scores greater than 0.9, and ICS roughly close to or greater than 0.5 for all three Nano-body
antigen complex targets. Those results indicated that the enhanced MSA generating, ranking, and
pairing used in DMFold-Multimer was critical for building correct models of those targets.

3.6 What went wrong in protein monomer and complex modeling using D-I-TASSER and
DMFold-Multimer?

Although the D-I-TASSER and DMFold-Multimer have received excellent results in protein
monomer and complex modeling, there are still some problems needed to be improved.

For D-I-TASSER protein monomer modeling pipeline, the prediction performance is highly
reliant on the MSA quality and the targets with better MSA quality usually result in better
structure models. Hence, we analyzed the relationship between the MSA Neff values and TM-
scores of the D-I-TASSER models for different taxonomic categories on the 94 domains from 68
full-length monomer targets. As shown in Fig. 8A, DeepMSA2 is able to generate high-quality
MSAs for most bacterial and eukaryotic targets, but relative low-quality MSAs for archaea and
viruses. In particular, the virus-derived targets had low-quality MSAs with the lowest Neff of 13,
and thus resulted in relatively low-performance models with an average TM-score of 0.801
(0.916 and 0.883 for bacterial and eukaryotic targets, respectively; see Table S10). This is
mainly because there are fewer virus sequences in databases. Therefore, in the future, we plan to
collect more virus data into our DeepMSA?2 databases based on some virus specific databases
such as Virus-Host DBY and NCBI Virus®. Although the overall modeling performance of
eukaryotic targets was good (TM-score=0.883), for some targets, such as T1130-D1 (Fig. S5),
we observed relatively poor performance with a TM-score=0.754 compared with the best model
from other groups with a TM-score=0.971. It appears that this failure was again due to the
shallow MSA (Neff=0.16) created by DeepMSA2.



For our DMFold-Multimer protein complex modeling method, the predicted TM-score can
distinguish high-quality models from low-quality models for most of the cases. However, we still
found that the predicted TM-score sometimes was not sufficiently sensitive to rank high-quality
models for some targets. For example, target H1172 contains six copies of the ‘A’ protein and
two copies of the ‘B’ proteins (A6B2 heterooctamer), where the two copies of ‘B’ proteins are in
the neighboring positions in the experimental structure (Fig. 8B). DMFold-Multimer actually
predicted all three possible states of this A6B2 complex (ortho, meta, or para orientations of the
‘B’ proteins). However, the first ranked model has the wrong relative positions of the ‘B’
proteins because it has a slightly higher predicted TM-score of 0.746 compared with Model3
with the correct positions (0.733) (Fig. 8C). Another example is the target H1129, which
contains one copy of the ‘A’ protein and one copy of the ‘B’ protein (A1B1 heterodimer) (Fig.
8D). The models predicted by DMFold-Multimer all had predicted TM-scores lower than 0.4.
Thus, the correct models cannot be picked out by the predicted TM-scores. In fact, DMFold-
Multimer is able to predict a model (Model542) with a TM-score as high as 0.91. However, the
best model has a predicted TM-score of only 0.335, which is 14% lower than the highest
predicted TM-score of 0.388, and thus the correct structure could not be properly identified (Fig.
8E). Similarly, DMFold-Multimer predicted a model (Model79) with the highest ICS of 0.33.
However, this model has a predicted TM-score of 0.371, which is still lower than the best
predicted TM-score of 0.388, and thus the model showing the best ICS could not be picked out
either (Fig. 8E). One reason for the failure of H1129 modeling is the poor predicted interface
(ICS=0.01) between component protein ‘A’ and ‘B’. This is due to the very shallow paired
MSAs generated by DeepMSA2, which only contains two paired sequences (including the query
sequences) with a Neff of 0.05. We noticed several groups built high-quality models for H1129
during CASP15, including the ‘Wallner’ group that utilized massive sampling with AlphaFold2-
Multimer as their prediction strategy. To investigate whether the performance of DMFold-
Multimer could be improved by combing the massive sampling with the DeepMSA2 multi-MSA
strategy, we tested use of the same parameter settings as the Wallner group during the complex
model generation stage for H1129. In detail, the settings include: using templates or not,
increasing the modeling recycles, and turning on/off the dropout rate, resulting in a total of xx
candidate structures as opposed to the yy generated by our standard pipeline. Overall, after
applying massive sampling in DMFold-Multimer, the TM-score of the first model had been
significantly improved to 0.96, and the ICS had also been largely improved to 0.72 (Table S11).
Furthermore, we also tried this massive sampling strategy using DMFold-Multimer on other five
dimer targets (H1142, T11210, T11600, T11610, and T11870) where we built relatively poor
models with TM-scores <0.7 in the CASP15 evaluation. For all six targets, DMFold-Multimer
produced better first models with average TM-score and ICS increased 26.4% and 120.0%,
respectively, indicating that by combining the massive sampling with DeepMSA2 multi-MSAs
strategy, the capability of DMFold-Multimer could be largely extended. However, we also
noticed that the best models produced by DMFold-Multimer for those six targets were still
substantially better than the first models according to our scoring, especially for T11210 and
T11610. Again, the ranking issue of the predicted TM-score prevents successfully selected those
high-quality models. These findings suggest that improvements in massive sampling and model
ranking have the potential to make major contributions to future performance enhancement for
DMFold-Multimer, and that further improvements can be made through improved ranking to
identify the best structures from an expanded ensemble of candidates.



4. CONCLUSIONS

We report two of our algorithms, D-I-TASSER and DMFold-Multimer, that participated in
CASP15 as ‘UM-TBM’ server group for protein monomer structure prediction and ‘Zheng’
human group for protein complex structure prediction, respectively. The CASP15 version of D-I-
TASSER includes four major developments compared with the previous version used in
CASP14, including: a deep learning structure modeling ranking-based MSA generation method;
new attention deep neural network-based spatial restraints predictors; a new domain partition and
recombination assembty module; and a newly optimized folding system including balanced deep
learning spatial energy potentials, template-based energy potentials, and knowledge-based
potentials. The DMFold-Multimer pipeline combines the newly developed MSA constructor,
DeepMSAZ2, for searching homologous sequences from large-scale genomic and metagenomics
databases, with the structure model generator used in AlphaFold2-Multimer.

Based on analysis of the CASP15 targets, one important reason why D-I-TASSER and
DMFold-Multimer generated high quality protein monomer and complex models was that the
deeper and diverse MSAs generated by DeepMSAZ2. In particular, the large-scale metagenomics
databases and the MSA pairing mechanism were key factors that helped improve the accuracy of
protein complex structure predictions by DMFold-Multimer. On the other hand, by introducing
more accurate geometric spatial restraints from new deep learning predictors, the D-I-TASSER
method also showed its excellent performance compared with a series of previous I-TASSER
methods. In addition, the newly designed domain handling module, associated with an optimized
folding system that balanced deep learning spatial energy potentials, template-based energy
potentials, and knowledge-based potentials, were major contributors for D-I-TASSER to produce
high-quality models for multi-domain proteins. Finally, direct comparison between D-I-TASSER
and standard AlphaFold2 control method in modeling protein monomer structures demonstrates
that end-to-end deep learning is not the unique solution to achieve the goal of solving the protein
folding problem.

Despite the success of D-I-TASSER and DMFold-Multimer, there are still significant
challenges for the current pipelines. One was that shallow MSAs were still encountered for a few
targets even though the DeepMSA2 and large-scale metagenomics databases had been utilized.
Especially for some viral targets, due to rapid speed of evolution and the massive taxonomic
spread of viruses, the number of homologous sequences was much fewer than other taxonomic
groups, leading to a relatively lower performance of structure predictions. The other major
challenge that we encountered was that the current model ranking score, predicted TM-score,
produced by the AlphaFold2-Multimer structure module was not sensitive enough to distinguish
models in some cases, especially when predicted TM-scores were very close, while model
conformations were quite different. Those two issues probably could be solved by constructing a
virus-specific sequence database®”®®, and developing a new model quality assessment tool that
combines predicted TM-scores and decoys structure consensus, which will be the subject of our
future efforts.
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Figure 1. The pipeline of the ‘UM-TBM’ server (D-I-TASSER). The full D-I-TASSER pipeline
is designed for modeling protein monomers through five steps: (i) MSA construction by
DeepMSAZ2, (ii) template detection by LOMETS3, (iii) spatial restraints prediction by the deep
learning module, (iv) domain partition and arrangement assembty by the multi-domain handling

module (yellow box), and (v) full-length atomic model generation via D-I-TASSER folding
simulation (green box).
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Figure 4. The impact of DeepMSA2 MSA and threading template information on D-I-TASSER.
(A) The TM-scores of the first models built by the standard version of AlphaFold2, AlphaFold2
with LOMETS3 templates, AlphaFold2 with LOMETS3 templates and DeepMSA2 MSA, and
the D-I-TASSER method. (B) The experimental structures for cases of T1109/T11090 and
T1110/T11100. (C) The LOMETS3 threading templates — PDB 3b38A superposed to T1109
experimental structure, and PDB 3nooA superposed to T1110 experimental structure. (D) The
predicted (upper-triangle) and experimental (lower-triangle) distance maps for T1109. (E) The
D-I-TASSER models for T1109 and T1110. (F) Comparative performance of the AlphaFold2
model and D-I-TASSER models from different stages of the DeepMSA2 pipeline for T1179.
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between DMFold-Multimer and the standard AlphaFold2-Multimer.
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DMFold-Multimer. (A) The complex modeling performance of AlphaFold2-Multimer and
DMFold-Multimer using different sequence databases; n.b. DMFold-Multimer (R) uses a new
MSA selection/pairing strategy but the same databases as AlphaFold2-Multimer. (B) The
experimental structures and models predicted by AlphaFold2-Multimer, DMFold-Multimer, and
DMFold-Multimer without the in-house metagenomic database for three nanobody-antigen
complexes, H1140, H1141 and H1144. (C) The relationship between TM-score and predicted
TM-score for H1144. (D) The relationship between ICS and predicted TM-score for H1144. (E)
The relationship between TM-score and Neff of the paired MSA for H1144. (F) The relationship
between ICS and Neff of paired MSA for H1144.






>

e o o 9
o N o ©
T T T T

I
12

0.4 8 T1122:01

2 9
N W
T T

X

TM-score of D-I-TASSER model

T1113-D1j
T1125-D2 T1125-D3 o =
T1179-D1  T1181-D1

X

] |
T1123-D1 X
T1129s2-D1

T1125-D4

T1178-D1 | y 5 © o)
-8 % 30 O%o

TR AT

T1181-D2

o

Tl T1125-D6

|O Bacteria X

Eukaryota M Viruses Archaea A  Others 9

ne
I

N
&l

Experimental structure

DMFold-Multimer model1
Predicted TM-score=0.746
TM-score=0.91, ICS=0.51

DMFold-Multimer model2
=0.738
TM-score=0.91, ICS=0.50

Predicted TM-score:

DMFold-Multimer model3
=0.733
TM-score=0.93, ICS=0.53

Predicted TM-score:

ICS of DMFold-Multimer model

Neff

28 29 210 211 212

H1129, A1B1

o ® o Model1

Model542
<€—— Model79

(.Model1

P> o

o o
00do

Predicted TM-score=0.388
TM-score=0.63, ICS=0.01

DMFold-Multimer model1

TM-score of DMFold-Multimer model

DMFold-Multimer model

0.371

0 0.2 0.4 0.6 0.8

Predicted TM-score of DMFold-Multimer model

0 02 04 06 0.8

Predicted TM-score of DMFold-Multimer model

DMFold-Multimer model79
TM-score=0.87, ICS=0.33

Predicted TM-score:

T T T T

I Experimental structure
ICS of DMFold-Multimer model

TM-score=0.91, ICS=0.20

| Model3 |
+ o |
< °§}) Model1
o
o
0¥
2t S |
I
|
. KA .
0 0.2 0.4 0.6 0.8

Predicted TM-score of DMFold-Multimer model

DMFold-Multimer model542
Predicted TM-score=0.3354

<—— Model79
Model542
L o i
Model1
L h L
0 0.2 0.4 0.6 0.8

Predicted TM-score of DMFold-Multimer model

Figure 8. Problems in protein monomer and complex modeling. (A) The relationship between
the MSA Neff values and TM-scores of the D-I-TASSER models for different taxonomic
categories on the 94 domains from 68 full-length monomer targets, where three targets in the
‘Others’ group are one designed protein and two reconstructed ancient proteins. (B) The
experimental structures and models predicted by DMFold-Multimer for H1172. (C) The
relationship between TM-score (top)/ICS (bottom) and predicted TM-score for H1172. (D) The
experimental structures and models predicted by DMFold-Multimer for H1129. (E) The
relationship between TM-score (top)/ICS (bottom) and predicted TM-score for H1129.



