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Abstract. We present several new and compact formulas for the modified and integral
form of the Macdonald polynomials, building on the compact “multiline queue” formula
for Macdonald polynomials due to Corteel, Mandelshtam and Williams. We also intro-
duce a new quasisymmetric analogue of Macdonald polynomials. These “quasisymmetric
Macdonald polynomials" refine the (symmetric) Macdonald polynomials and specialize
to the quasisymmetric Schur polynomials defined by Haglund, Luoto, Mason, and van
Willigenburg.

1. Introduction

The symmetric Macdonald polynomials Pλ(X; q, t) [22] are a family of polynomials in
X = {x1, x2, . . . } indexed by partitions, whose coefficients depend on two parameters q and
t. Macdonald polynomials generalize multiple important families of polynomials, including
Schur polynomials and Hall-Littlewood polynomials. They can be defined as the unique
monic basis for the ring of symmetric functions that satisfies certain triangularity and
orthogonality conditions. The related nonsymmetric Macdonald polynomials Eµ(X; q, t)
[21, 22, 4] were developed shortly after the introduction of Macdonald polynomials as a
tool to study Macdonald polynomials. The Eµ(X; q, t) are indexed by weak compositions
and form a basis for the full polynomial ring Q[X](q, t).

There has been a great deal of work devoted to understanding Macdonald polynomials
from a combinatorial point of view. Haglund-Haiman-Loehr [10] gave a combinatorial for-
mula for the integral forms Jλ(X; q, t), which are scalar multiples of the classical monic
forms Pλ(X; q, t). They also gave a formula for the nonsymmetric Macdonald polynomials
Eµ(X; q, t) [11], and for the transformed or modified Macdonald polynomials H̃λ(X; q, t),
which are obtained from Jλ(X; q, t) via plethysm. Macdonald conjectured and Haiman
proved [13], using the geometry of the Hilbert scheme, that the modified Macdonald poly-
nomials H̃λ(X; q, t) have a positive Schur expansion whose coefficients are qt-Kostka poly-
nomials. However, it is still an open problem to give a combinatorial proof of the Schur
positivity or a manifestly positive formula for the qt-Kostka polynomials.

Recently, a beautiful connection has been found between Macdonald polynomials and
a statistical mechanics model called the multispecies asymmetric simple exclusion pro-
cess (ASEP) on a circle. The ASEP is a one-dimensional exactly solvable particle model;
Cantini-deGier-Wheeler [3] showed that the partition function of the multispecies ASEP

Date: April 24, 2020.
Jim Haglund was partially supported by NSF grant DMS-1600670.
Olya Mandelshtam was partially supported by NSF grant DMS-1704874.
Lauren Williams was partially supported by NSF grant DMS-1854512.

1



2 CORTEEL, HAGLUND, MANDELSHTAM, MASON, AND WILLIAMS

on a circle is equal to a Macdonald polynomial Pλ(x1, . . . , xn; q, t) evaluated at q = 1 and
xi = 1 for all i. Building on this result as well as work of Martin [25], the first, third,
and fifth authors recently used multiline queues to simultaneously compute the stationary
probabilities of the multispecies exclusion process, and give compact formulas for the sym-
metric Macdonald polynomials Pλ and the nonsymmetric Macdonald polynomials Eλ [5],
for any partition λ. These formulas are “compact” in that they have fewer terms than the
formulas of Haglund-Haiman-Loehr.

In this paper, we use the above ideas to continue the search for compact formulas for
Macdonald polynomials. Our first two main results are compact formulas for the modified
Macdonald polynomials H̃λ(X; q, t) and the integral forms Jλ(X; q, t); these new formulas
have far fewer terms than other known combinatorial formulas. Our third main result uses
the connection with the ASEP on a ring towards a different application: the introduction of
a new family of quasisymmetric functions we call quasisymmetric Macdonald polynomials
Gγ(X; q, t). We show that Gγ(X; q, t) is indeed a quasisymmetric function, and give a
combinatorial formula for the Gγ(X; q, t) corresponding to “pieces” of the compact formula
for the Pλ(X; q, t) from [5]. Moreover, the quasisymmetric functions Gγ(X; q, t) at q = t = 0
specializes to the quasisymmetric Schur functions QSγ(X) introduced by the second and
fourth authors, together with Luoto and van Willigenburg [12]. The quasisymmetric Schur
functions form a basis for the ring of quasisymmetric functions, and until now it has been an
open question to find a refinement of the Macdonald polynomials Pλ into quasisymmetric
pieces which generalize the quasisymmetric Schur functions.

We note that Garbali and Wheeler have recently used integrable lattice models to give
a new formula for the modified Macdonald polynomials [8]. Their formula can be viewed
as an extension of the “fermionic formula" of Kerov, Kirillov and Reshetikhin [16], [17]
for modified Hall-Littlewood polynomials, and the combinatorics involved is quite a bit
different than that of the HHL formula or of our compact version.

This paper is organized as follows. In Section 2, we provide the relevant background.
Section 3 and Section 4 describe our two compact formulas. Section 5 defines our new
quasisymmetric Macdonald polynomials as well as several open problems which naturally
arise from this work.
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2. Definitions

We begin by introducing the notation and definitions we will need in Sections 3 and 4.
In our partition and composition diagrams, the columns are labeled from left to right, and
the rows are labeled from bottom to top, so that the notation (i, r) refers to the box (or
cell) in the ith column from the left and the rth row from the bottom.

Given a partition or composition α = (α1, . . . , αn), its diagram dg(α) is a sequence of
columns (bottom justified), where the ith column has αi cells. See Figure 1 for an example.
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Figure 1. The diagram of the composition (4, 5, 3, 4, 1, 2, 4, 1, 3) and the
cells in the leg and the arm of the cell u = (4, 3). Here leg(u) = 1 and
arm(u) = 3.

Note that the Ferrers graph of a partition λ = (λ1, . . . , λn) is typically defined to contain
λi squares in the ith row (from the bottom). This means that when α is a partition, the
diagram dg(α) is the Ferrers graph of the conjugate partition α′.

For a cell s ∈ dg(λ), let σ(s) denote the integer assigned to s, i.e., the integer occupying
cell s. The numbers appearing in such a filling are called the entries.

The leg of a cell (i, r) is the set of cells in column i above the cell (i, r). The arm of a cell
(i, r) is the set of cells in row r to the right of the cell (i, r) contained in a column whose
height doesn’t exceed αi, together with the cells in row r−1 to the left of the cell (i, r−1),
contained in a column whose height is smaller than αi. We let leg((i, r)) and arm((i, r))
denote the number of cells in the leg and arm of the cell (i, r), respectively. See Figure 1.

Given a partition λ, a filling σ : dg(λ)→ Z+ is an assignment of positive integers to the
cells of the diagram of λ and is denoted by σ. The x-weight of a filling σ of dg(λ) is defined
in a similar fashion to the x-weight of a semistandard Young tableau, namely

xσ =
∏

s∈dg(λ)

xσ(s).

We recall several definitions from [10]. We augment the diagram of a composition or
partition α by adding a basement, i.e., a zero’th row of size equal to the number of parts of
α. In this section we will fill all cells of the basement with the entry ∞; later in Section 4
we will use a more general definition of basement.

Definition 2.1. Given a partition λ and a filling σ of dg(λ), a triple consists of three cells
(v, r), (u, r), and (u, r−1) in the diagram, where u, v, and r are positive integers with u < v.
Let a = σ((v, r)), b = σ((u, r)), and c = σ((u, r− 1)). These entries are therefore arranged
in the configuration b

c
a . We say that the triple is a counterclockwise triple, or an

inversion triple, if the entries are increasing in counterclockwise order. If two entries are
equal, we consider the one appearing first when the entries are read top-to-bottom, left-to-
right to be the smaller entry. In other words, it is an inversion triple if any of the following
holds:

a < b ≤ c or c < a < b or b ≤ c < a.

In all other cases we say the triple is a clockwise triple, or a coinversion triple.

For example, in Figure 2, the cells (3, 3), (1, 3) and (1, 2) form a (counterclockwise)
inversion triple.
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Note that since σ((j, 0)) =∞, for u < v, we have that (v, 1) and (u, 1) form a (counter-
clockwise) inversion triple if and only if σ((u, 1)) > σ((v, 1)). In this case we say that the
triple is a degenerate inversion triple. For example, in Figure 2 the cells (3, 1) and (6, 1)
form a degenerate inversion triple. Given a filling σ of dg(λ), let inv(σ) be the total number
of (counterclockwise) inversion triples, including degenerate inversion triples.

Define the set of descents of a filling σ of dg(λ) to be

Des(σ) = {(u, r) ∈ dg(λ) : σ((u, r)) > σ((u, r − 1))}.
The major index maj(σ) is then defined to be the sum of the legs of the descents of σ plus
the number of descents:

maj(σ) =
∑

s∈Des(σ)

(leg(s) + 1).

The filling σ of dg(λ) in Figure 2 has inv(σ) = 22 and maj(σ) = 5.

Definition 2.2. Given a weak composition, i.e. a vector α = (α1, α2, . . . , αn) of nonneg-
ative integers, we let inc(α) and dec(α) be the vectors obtained from α by sorting the parts
into weakly increasing order, and weakly decreasing order, respectively. Let β(α) be the
permutation in Sn of maximal length with the property that β applied to the entries of the
vector α yields inc(α). Let α+ be the strong composition obtained from α by removing the
zeros and let `(α) be the number of parts of α+. For example, if α = (0, 2, 0, 2, 1, 3) then
inc(α) = (0, 0, 1, 2, 2, 3), dec(α) = (3, 2, 2, 1, 0, 0), β(α) = (3, 1, 5, 4, 2, 6), α+ = (2, 2, 1, 3),
and `(α) = 4.

3. Compact formula for modified Macdonald polynomials

Our first main result is a “compact” formula for the modified Macdonald polynomials
H̃λ(X; q, t), given in Theorem 3.5. Before explaining our result, we first recall the combi-
natorial formula of Haiman, Haglund and Loehr [10].

Theorem 3.1 ([10, Theorem 2.2]). Let λ be a partition. The modified Macdonald polyno-
mial H̃λ(X; q, t) is given by

(3.1) H̃λ(X; q, t) =
∑

σ:dg(λ)→Z+

xσqmaj(σ)tinv(σ),

where the sum is over all fillings of dg(λ).

Remark 3.2. The careful reader might notice that [10, Theorem 2.2] looks different from
(3.1), because the roles of q and t are swapped, and the diagram of λ as defined in [10] is
the conjugate of the diagram of λ we defined here. However, because of the qt-symmetry
of Macdonald polynomials – that is, H̃λ(X; q, t) = H̃λ′(X; t, q)1 – (3.1) is equivalent to [10,
Theorem 2.2].

While Theorem 3.1 is simple and elegant, it has the disadvantage of containing many
terms, since it is a sum over all fillings of dg(λ) by positive integers. By contrast, our
compact formula (Theorem 3.5) is a sum over far fewer terms—it is a sum over sorted
tableaux. To define these sorted tableaux, we first define an order on the columns of the
fillings.

1This follows from the triangularity conditions defining H̃λ and also follows from Haiman’s geometric
interpretation [14].
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Figure 2. A filling in which the cells (3, 3), (1, 3) and (1, 2) form an inver-
sion triple, and the cells (3, 1) and (6, 1) form a degenerate inversion triple.
This filling is a sorted tableau, with permt(σ) =

(
3
2,1

)
t

(
2
1,1

)
t

(
4
2,2

)
t
.

Definition 3.3. Fix a filling σ of a diagram, and consider two columns A and B of height
j, with A to the left of B. Let a1, . . . , aj and b1, . . . , bj be the entries of columns A and B,
respectively, read from bottom to top. We say that A� B, if either a1 < b1, or ai = bi for
i = 1, 2, . . . , r − 1 (for some positive r), and the cells containing br, ar and ar−1 do not
form a counterclockwise (inversion) triple.

A � B

6=

=

=a1 b1

...
...

ar−1 br−1

ar br

...
...

aj bj

Definition 3.4. Given a filling σ of the diagram of a partition λ, we say that σ is a sorted
tableau of dg(λ) if, for all positive integers h, when we read all columns of height h from
left to right, the columns appear in weakly increasing order with respect to �. See Figure 2
for an example. We write ST(λ) for the set of all sorted tableaux of dg(λ).

Let σ be a sorted tableau. First suppose that the diagram of λ is an m × n rectangle.
The n columns may not all have distinct fillings: suppose that among those n columns,
there are j distinct column fillings, with u1 identical columns of the first filling, u2 identical
columns of the second filling, . . . , uj identical columns all containing the jth filling. Define

(3.2) permt(σ) =

(
n

u1, . . . , uj

)
t

,

the t-analogue of the multinomial coefficient
(

n
u1,...,uj

)
. Now suppose σ is a sorted tableau

which is a concatenation of rectangular sorted tableaux σ1, . . . , σ`, all of different heights.
Define permt(σ) =

∏`
i=1 permt(σi).

Our main result in this section is a compact formula for H̃λ.
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Figure 3. We compute H̃(2,1,1)(x1, x2, x3; q, t) by adding the weights of
the sorted tableaux of dg((2, 1, 1)). In the figure above, we’ve listed
tinv(σ)qmaj(σ) permt(σ) below each sorted tableau σ, but have omitted xσ

to save space. Here [i] denotes [i]t.

Theorem 3.5. Let λ be a partition. The modified Macdonald polynomial H̃λ(X; q, t) equals

H̃λ(X; q, t) =
∑

σ∈ST(λ)

xσtinv(σ)qmaj(σ) permt(σ),

where the sum is over all sorted tableaux of dg(λ).

Example 3.6. We use Theorem 3.5 to compute H̃(2,1,1)(x1, x2, x3; q, t) in Figure 3.

To prove Theorem 3.5, we use the inversion flip operators of Loehr and Niese [20], which
act on fillings of a given diagram. These operators fix the maj statistic and change the
inv statistic by one; in other words, they change the number of counterclockwise inversion
triples by one.

Definition 3.7. Let σ be a filling with columns i, i + 1 having different entries at row r,
and identical entries σ(i, s) = σ(i + 1, s) in all rows s below r (i.e., s < r). The operator
T (r)
i consists of two steps. The first step swaps the entries in the cells (i, r) and (i, r + 1).

The second step adjusts for any changes to triples that might have happened in higher rows
due to this swapping. The precise statement of these steps is as follows.

(1) Switch the entries σ(i, r) and σ(i+ 1, r).
(2) Consider the triple formed by the cells (i+ 1, r+ 1), (i, r+ 1), and (i, r), if it exists.

(If it does not exist, terminate the process.)
(a) If this triple is a counterclockwise triple before and after the swap, terminate

the process.
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(b) If this triple is a clockwise triple before and after the swap, terminate the
process.

(c) Otherwise, switch the entries σ(i, r+ 1) and σ(i+ 1, r+ 1) and go to step (2),
after replacing r by r + 1.

Note that T (r)
i is well-defined if and only if the entries in columns i, i+ 1 are different at

row r and identical at all rows below r. Thus for each i, there is at most one r such that
T (r)
i is well-defined. However, we keep the r in the superscript to improve the readability

of our proofs.

Example 3.8. To apply the operator T (2)
1 to the filling σ shown below, first swap the entries

in row 2. Then notice that the clockwise triple 2 5
1

becomes a counterclockwise triple 2 5
4

.

So we must swap the 2 and 5 in row 3. At this point the clockwise triple 3 4
2

remains a

clockwise triple 3 4
5

and so the procedure is complete.

σ =

3 3
2 4
3 4
2 5
1 4
3 3

−→

3 3
2 4
3 4
2 5
4 1
3 3

−→

3 3
2 4
3 4
5 2
4 1
3 3

3.1. How the operators affect the maj and inv statistics. Lemma 3.10 and Lemma 3.11
appear as Theorem 5.3 in the work of Loehr and Niese [20]. For completeness, we provide
here a careful proof of each, including details for several cases left to the reader in [20].

Lemma 3.9. [20, Lemma 5.2]. Each operator T (r)
i is an involution.

Proof. As in [20], this follows directly from the definition that each operator is an involution.
�

Lemma 3.10. Let σ be a filling. Fix row r and column i within σ. Assume the entries in
columns i and i+ 1 of σ are identical in rows r − 1 and below. Then

maj(T (r)
i (σ)) = maj(σ).

Proof. In what follows, we make the convention that if the cell (i, r) is not part of the
diagram of σ, then σ(i, r) = 0. To prove that maj is fixed under the application of a T (r)

i
operator, note that the contribution to maj from row r remains the same since σ(i, r−1) =
σ(i + 1, r − 1). Consider a higher row j of σ in column i (j ≥ r) and label the entries in
rows j + 1 and j in columns i and i+ 1 as shown below.

c d
a b

row j + 1

row j

i i+ 1

If a and b are not swapped after the application of T (r)
i , then there is nothing to check.

We now consider the possible repercussions of swapping a and b. (Note that we may assume
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c 6= d since otherwise there would also be nothing to check. Also, if a and b as well as c and
d are swapped, the contributions to maj from this portion of the filling remain the same.)

Assume therefore that the operator T (r)
i sends c d

a b
to c d

b a
; that is, c and d are not

swapped under T (r)
i . If c > a and d > b but d ≤ a, then b < d ≤ a < c, implying that

d, c, a forms a clockwise triple in σ while d, c, b forms a counterclockwise triple in T (r)
i (σ),

contradicting the conditions of the adjustment process. Similarly if c > a and d > b but
c ≤ b, then a < c ≤ b < d, implying that a, c, d form a clockwise triple in σ while b, c, d
form a counterclockwise triple in T (r)

i (σ), also a contradiction.
Next assume that c > a but d ≤ b. If d > a and c > b, then a < d ≤ b < c, implying that

a, d, c form a counterclockwise triple in σ but d, b, c form a clockwise triple in T (r)
i (σ), a

contradiction. Similarly, if d ≤ a and c ≤ b, then d ≤ a < c ≤ b, implying that d, a, c form
a clockwise triple in σ while d, c, b form a counterclockwise triple in T (r)

i (σ). An analogous
argument shows that when d > b and c ≤ a, the contribution to the maj statistic remains
fixed, as well.

Finally, assume c ≤ a and d ≤ b. If d > a, then c ≤ a < d ≤ b, implying that c, a, d form
a counterclockwise triple in σ while b, c, d form a clockwise triple in T (r)

i (σ) in this collection
of cells. Similarly, if c > b, then d ≤ b < c ≤ a, implying that d, c, a form a counterclockwise
triple in σ while d, b, c form a clockwise triple in T (r)

i (σ), letting us conclude that all cases
lead to contradictions. Therefore, although the locations of the descents might change from
σ to T (r)

i (σ), the total contribution to the major index remains the same. �

Lemma 3.11. Let σ be a filling. Fix row r and column i within σ. We assume that the
entries in cells (i, r) and (i+1, r) are distinct, and that the entries in columns i and i+1 of
σ are identical in rows r− 1 and below. Let T be the (possibly degenerate) triple consisting
of the three cells (i+ 1, r), (i, r), (i, r − 1). Then

inv(T (r)
i (σ)) = inv(σ) +

{
−1, if T is a counterclockwise triple
1, otherwise.

Proof. Consider the columns i and i+ 1 of σ as shown below, where the columns are
identical from the bottom to row r−1. Suppose also that row r+ j−1 contains cj 6= dj for
1 ≤ j ≤ n for some n ≥ 1. Suppose T (r)

i is applied with the first swap occurring at c1, d1,
propagating up to cn, dn, and finally terminating at row r + n− 1.

σ T (r)
i (σ)

row r + n− 1

row r

row r + n
T (r)
i

...
...

...
a b f

cn dn fn
...

...
...

c1 d1 f1
e e ...

...
...

...
a b f

dn cn fn
...

...
...

d1 c1 f1
e e ...

i j i j
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By construction, the triple (d1, c1, e) is counterclockwise in σ if and only if (c1, d1, e)

is clockwise in T (r)
i (σ), where e = σ((i, r − 1)). All other triples in columns i, i + 1 are

counterclockwise in σ if and only if the corresponding triples in T (r)
i (σ) are as well.

Swapping entries in columns i, i+ 1 will not affect any triples with entries in columns to
the left of i. It remains to check that T (r)

i preserves the total number of counterclockwise
triples with an entry in some column j > i and entries in columns i or i+ 1, shown in the
figure above.

Define fu = σ((j, r + u− 1)) for u = 1, . . . , n and f = σ((j, r + n)). Both σ and T (r)
i (σ)

have the same triples (fu, cu, cu−1) and (fu, du, du−1) for u = 2, . . . , n, along with (f1, c1, e)
and (f1, d1, e). The only triples that change after applying the operator are the triples
(f, a, cn) and (f, b, dn) in σ, where a = σ(i, r + n) and b = σ(i + 1, r + n). These triples
become (f, a, dn) and (f, b, cn) in T (r)

i (σ). We will now check that the total number of
counterclockwise triples is preserved in each of these pairs. To simplify notation, we write
c = cn and d = dn.

Since we know that the adjustment process terminated at row r + n − 1, we have that
(b, a, c) is a counterclockwise triple in σ if and only if (b, a, d) is in T (r)

i (σ). Without loss
of generality, assume c > d. First suppose both triples are counterclockwise. We represent

the order on the entries a, b, c, d by the circle c
b

a

d

, where the entries (read in counter-
clockwise order starting from the smallest entry) appear in order from smallest to largest.

The relative position of f gives 4 possible cyclic orders, which we consider in the table
below. In this table, we check that indeed the total number of counterclockwise triples in
the two pairs is preserved.

σ T (r)
i (σ)

a f
c

b f
d

a f
d

b f
c

c
b

a
f

d
clock clock clock clock

c
b

fa

d
counter clock counter clock

f
b

a
d

c
counter counter counter counter

c
b

a
d

f
clock counter counter clock
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The case where both triples are clockwise, implying the cyclic order c

a
b

d

, is sym-
metric. By construction, no other counterclockwise triples are introduced or removed, so
in all the possible cases, inv changes by exactly one based on the orientation of the triple
T , thus completing the proof of the lemma. �

Remark 3.12. Let σ be a filling, and let T be a triple in σ consisting of three cells
(j, r), (i, r), (i, r − 1), where i < j and columns i and j have different lengths. Then a
consequence of the proof of Lemma 3.11 is that for any operator T (r)

u , either
• T is a counterclockwise triple in both σ and T (r)

u (σ), or
• T is a clockwise triple in both σ and T (r)

u (σ).

3.2. Sequences of operators and positive distinguished subexpressions. So far we
have defined operators T (r)

i that act on two adjacent columns i and i + 1 at row r of a
filling. We will also need to consider sequences of these operators.

Recall that the symmetric group Sn is generated by the simple transpositions {s1, . . . , sn−1},
subject to the relations s2i = e and sisi+1si = si+1sisi+1, where si ∈ Sn is the simple trans-
position which swaps i and i + 1, and e is the identity. Given any w ∈ Sn, we say that
w = sit . . . si2si1 is reduced if there are no factorizations of w into fewer than t simple trans-
positions. We often refer to a fixed reduced expression sit . . . si2si1 for the permutation w
as w. We call t the length of w and denote it `(w) = t.

Definition 3.13. Fix n and suppose that w = sit · · · si1 is a reduced expression for a
permutation w ∈ Sn. Then we let T (r)

w denote the composition of operators

T (r)
it

. . . T (r)
i1
.

Note that while each operator T (r)
i is an involution, the operators do not satisfy braid

relations; i.e. in general, T (r)
i T

(r)
i+1T

(r)
i (σ) 6= T (r)

i+1T
(r)
i T

(r)
i+1(σ). So the operator T (r)

w depends
on the reduced expression w, not just the permutation w.

Since we will want to associate one operator to each permutation, we need to choose
a canonical reduced expression for each permutation. For this, we use the notion of the
positive distinguished subexpression (or PDS) of a reduced expression, as defined in [23].

Definition 3.14. Let v and w be permutations in Sn such that v ≤ w in the (strong)
Bruhat order. Fix w = sit · · · si1 a reduced expression for w. The positive distinguished
subexpression (PDS) for v in w is a reduced expression v = vt . . . v1 where vj ∈ {sij , e},
which is defined as follows. First we initialize v(0) = v, and then we inductively set

v(j) =


v(j−1)sij if v(j−1)sij < v(j−1)

v(j−1) otherwise.

Correspondingly we have vj = sij if v(j−1)sij < v(j−1) and vj = e otherwise.

Note that informally, the PDS for v is the rightmost reduced subexpression for v in w,
where we choose its simple transpositions greedily from right to left.
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j v(j−1)sij v(j) vj

0 N/A (2, 5, 1, 4, 3) N/A

1 (5, 2, 1, 4, 3) (2, 5, 1, 4, 3) e

2 (2, 1, 5, 4, 3) (2, 1, 5, 4, 3) s2

3 (2, 1, 4, 5, 3) (2, 1, 4, 5, 3) s3

4 (2, 1, 4, 3, 5) (2, 1, 4, 3, 5) s4

5 (1, 2, 4, 3, 5) (1, 2, 4, 3, 5) s1

6 (1, 4, 2, 3, 5) (1, 2, 4, 3, 5) e

7 (1, 2, 3, 4, 5) (1, 2, 3, 4, 5) s3

8 (2, 1, 3, 4, 5) (1, 2, 3, 4, 5) e

9 (1, 3, 2, 4, 5) (1, 2, 3, 4, 5) e

10 (2, 1, 3, 4, 5) (1, 2, 3, 4, 5) e

Figure 4. Determining the PDS for v = (2, 5, 1, 4, 3) inw = si10 · · · si2si1 =
s1s2s1s3s2s1s4s3s2s1.

Example 3.15. Consider v = (2, 5, 1, 4, 3) (written in one-line notation), w = (5, 4, 3, 2, 1),
and the following reduced expression w for w, where the PDS for v is in bold and the steps
used to determine this PDS are listed in Figure 4.

w = s1s2s1s3s2s1s4s3s2s1.

Therefore the PDS for v is v = eees3es1s4s3s2e = s3s1s4s3s2.

Definition 3.16. Fix a positive integer n and let w0 be the canonical reduced expression
(s1)(s2s1) . . . (sn−1 . . . s2s1) For each permutation w ∈ Sn, we let w = sik . . . si1 be the PDS
for w in w0. Let PDS(n) := {w | w ∈ Sn}. We also define for each permutation w ∈ Sn
and each choice of r the operator

T (r)
w = T (r)

ik
. . . T (r)

i1
.

Example 3.17. When n = 3, we have that PDS(n) = {e, s1, s2, s1s2, s2s1, s1s2s1}. Note
however that s2s1s2 /∈ PDS(3).

Remark 3.18. Note that by construction, if sjt . . . sj2sj1 lies in PDS(n), then so does
sjh . . . sj2sj1 for each t ≥ h ≥ 1. In other words, PDS(n) is closed under truncation: if we
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truncate any PDS in PDS(n) by removing simple reflections at the left, we obtain again a
PDS in PDS(n).

Remark 3.19. Suppose we construct a graph whose vertices are labeled by the permutations
in Sn, where we add an edge from u to v if the PDS for v is obtained by adding one simple
reflection to the left of the PDS for u. It follows from Remark 3.18 that this graph is a tree;
moreover it is a spanning tree for the 1-skeleton of the permutohedron.

We now consider how the inv statistic changes when we perform a sequence of operators
on a tableau.

Lemma 3.20. Let σ denote the sorted two-row tableau

c c . . . c
b1 b2 . . . bn

and let σ′ denote a new tableau

c c . . . c

w1w2 . . . wn

obtained from σ by permuting the entries b1, . . . , bn. We define the length L(σ′) to be the
length `(w̃) of a shortest permutation w̃ such that (bw̃(1), . . . , bw̃(n)) = (w1, . . . , wn). Then
L(σ′) = inv(σ′).

Proof. By Lemma 3.11, each time we swap two consecutive entries in the bottom row of
such a two-row tableau, we increase the number of counterclockwise triples by at most 1.
So inv(σ′) ≤ `(w̃) = L(σ′).

We prove the opposite inequality by induction. By the definition of a sorted tableau,
there exists some 0 ≤ h ≤ n such that

(3.3) bh ≤ bh+1 ≤ · · · ≤ bn ≤ c < b1 ≤ b2 ≤ · · · ≤ bh−1.
If w is such that w̃ = id, then inv(σ) = inv(σ′) = 0 = `(w̃). This gives the base case. For
the inductive step, suppose that inv(σ′) = k + 1 ≥ 1. Then σ′ is not a sorted tableau;
or equivalently, (3.3) is violated. But in that case there exists a position i such that
inv(T (1)

i (σ′)) = k. By the induction hypothesis, this implies that L(T (1)
i (σ′)) ≤ k, and

hence L(σ′) ≤ k + 1. �

3.3. The family F(σ) generated by a tableau. In this section, we associate a set
of tableaux F(σ) to each sorted tableau σ. This set of tableaux is obtained from σ by
applying sequences of operators to σ. See Figure 6 for a collection of sorted tableaux and
their families.

We first define the block decomposition of a sorted tableau.

Definition 3.21. Let σ be a sorted tableau. A block in row r of σ is a maximal-by-
inclusion contiguous sequence of elements (σ(i, r), σ(i+ 1, r), . . . , σ(j, r)) (with i < j) such
that σ(i, s) = · · · = σ(j, s) for every row s < r below r in the diagram.

Since every row of σ can be partitioned into blocks, we get a block decomposition of σ.
See Figure 5 for an example of a block decomposition of a sorted tableau.

Remark 3.22. If (σ(i, r), . . . , σ(j, r)) is a block in row r, then (σ(i, r+ 1), . . . , σ(j, r+ 1))
is a concatenation of blocks in row r + 1.



COMPACT FORMULAS FOR MACDONALD POLYNOMIALS 13

3 1 3 1 1 6
1 3 3 5 5 1
3 2 2 2 2 2
4 6 6 6 5 5
3 3 3 3 9 9

row 5
row 4
row 3
row 2
row 1

Figure 5. Block decomposition of a filling

Definition 3.23. Suppose B = (b1, . . . , bn) is a word, possibly with repeated entries. Let

Sym(B) = {w = (w1, . . . , wn) | (w1, . . . , wn) is a rearrangement of the letters of B}.
For each w ∈ Sym(B), let w̃ be the shortest permutation such that

(bw̃−1(1), . . . , bw̃−1(n)) = (w1, . . . , wn).

Let
S̃ym(B) = {w̃ | w ∈ Sym(B)}.

Note that Sym(B) is a set (rather than a multiset), since although there might be two
different permutations of the letters of B resulting in the same rearrangement, Sym(B) is
the set of all distinct such rearrangements.

Example 3.24. In the table below, we show the element of S̃ym and the PDS corresponding
to each w ∈ Sym(B) for B = (1, 1, 2, 2).

Sym(B) S̃ym(B) PDS
1122 1234 e

1212 1324 s2
1221 1342 s2s3
2112 3124 s2s1
2121 3142 s2s3s1
2211 3412 s2s1s3s2

Remark 3.25. Let B = (b1, . . . , bn), b1 ≤ · · · ≤ bn, and w ∈ Sym(B). Then `(w̃)
equals the number of inversions of w. Moreover, if B contains r distinct entries (without
loss of generality suppose the entries are 1 through r), i.e. B = 1m12m2 . . . rmr , where
m1 +m2 + · · ·+mr = n, then by [7, Theorem 5.1] we have

(3.4)
(

n

m1,m2, . . . ,mr

)
t

=
∑

w̃∈S̃ym(B)

t`(w̃).

In what follows, we will often single out the rth row of a tableau, and permute the
elements of its blocks.

Definition 3.26. Suppose that σ has blocks B(1), . . . , B(`) in row r. Let Sym(B(1))× · · · ×
Sym(B(`)) denote the set of all permutations of the rth row of σ, which only permute entries
within a block. We also let

S̃ym(B(1))× . . . S̃ym(B(`)) = {w̃ | w ∈ Sym(B(1))× · · · × Sym(B(`))}.
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In our definition of the family F(σ) below, we will first discuss the case where the diagram
of σ is a rectangle. In the general case, when a sorted tableau σ is a concatenation from
left to right of rectangular sorted tableaux σ1, . . . , σk (all of different heights), the elements
of F(σ) are precisely the concatenations of the elements of F(σ1), . . . ,F(σk).

Definition 3.27 (The family of a rectangular sorted tableau). Suppose that σ is a rectan-
gular sorted tableau with m rows and n columns (where as usual, rows are labeled from 1 to
m from bottom to top, and columns are labeled 1 to n from left to right). Set F (m)(σ) = {σ}.
For r from m−1 to 0 we define a set F (r)(σ) of tableaux. These tableaux will have the prop-
erty that their entries in rows 1, 2, . . . , r − 1 agree precisely with the corresponding entries
of σ.

For each τ ∈ F (r)(σ), consider the block decomposition of the rth row of τ . Denote the
entries and blocks of row r by b1, . . . , bn and B(1), . . . , B(`), respectively. We set

F (r−1)(σ) = {T (r)
w̃ (τ) | τ ∈ F (r)(σ), w ∈ S̃ym(B(1))× · · · × S̃ym(B(`))}.

Finally we define
F(σ) = F (0)(σ).

Remark 3.28. Note that the tableaux in F(σ) are naturally the labels of a tree rooted at
σ, which we call the family tree of σ. Here we draw an edge from tableau τ to another
tableau τ ′ if we have obtained τ ′ from τ by applying a single operator T (r)

i for some i and
r; see Figure 6 for an example. As we use the positive distinguished subexpression for every
permutation (see Remark 3.19), we will get every tableau only once.

Example 3.29. Consider the sorted tableau σ = 2 1 1
1 1 3

in Figure 6. It has the following

block decomposition.

2 1 1

1 1 3

row 2
row 1

Row 2 has two blocks, B(1) = (2, 1) and B(2) = (1). Sym(B(1))×Sym(B(2)) = {(2, 1, 1), (1, 2, 1)}.
For w = (2, 1, 1) we have w̃ = e; for w = (1, 2, 1) we have w̃ = s1. We set F (2)(σ) = {σ}
and obtain the elements of F (1)(σ) by applying T (2)

e and T (2)
s1 to σ to get F (1)(σ) =

{σ, 1 2 1
1 1 3

}.

Row 1 has one block, B(1) = (1, 1, 3). We have Sym(B(1)) = {(3, 1, 1), (1, 3, 1), (1, 1, 3)}.
For w = (1, 1, 3) we have w̃ = e; for w = (1, 3, 1) we have w̃ = s2; and for w = (3, 1, 1) we
have w̃ = s1s2. So we obtain the elements of F (0)(σ) by applying T (1)

e , T (1)
s2 and T (1)

s1s2 to
each of the elements of F (1)(σ). This is shown in Figure 6.

Definition 3.30 (The family of an arbitrary sorted tableau). Suppose that σ is a sorted
tableau which is a concatenation from left to right of rectangular sorted tableaux σ1, . . . , σk
(all of different heights). In this case we define F(σ) to be precisely the concatenations
(from left to right) of the elements of F(σ1), . . . ,F(σk).

Lemma 3.31. Let σ be a sorted tableau, and choose any τ ∈ F(σ). Then maj(τ) = maj(σ).

Proof. This follows from Lemma 3.10 and the definition of the family F(σ). �
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1 1 1
1 2 3

1 1 1
2 1 3

1 1 1
1 3 2

1 1 1
2 3 1

1 1 1
3 1 2

1 1 1
3 2 1

t0

t1 t1

t2 t2

t3

T (1)
1 T (1)

2

T (1)
2 T (1)

1

T (1)
1

1 1 2
1 1 3

1 2 1
1 3 1

2 1 1
3 1 1

t2

t3

t4

T (2)
2

T (2)
1

3 1 1
1 1 2

1 3 1
1 1 2

3 1 1
1 2 1

3 1 1
2 1 1

1 3 1
1 2 1

1 3 1
2 1 1

qt0

qt1

qt2

qt3

qt1

qt2

T (2)
1 T (1)

2

T (1)
2

T (1)
1

T (1)
1

2 3 1
1 1 1

3 2 1
1 1 1

2 1 3
1 1 1

3 1 2
1 1 1

1 2 3
1 1 1

1 3 2
1 1 1

q2t0

q2t1 q2t1

q2t2 q2t2

q2t3

T (2)
1 T (2)

2

T (2)
2 T (2)

1

T (2)
1

2 1 1
1 1 3

1 2 1
1 1 3

2 1 1
1 3 1

1 1 2
1 3 1

1 1 2
3 1 1

1 2 1
3 1 1

qt0

qt1 qt1

qt2 qt2

qt3

T (2)
1 T (1)

2

T (1)
2

T (1)
1

T (1)
1

1 1 3
1 1 2

1 1 3
1 2 1

1 1 3
2 1 1

qt2

qt3

qt4

T (1)
2

T (1)
1

Figure 6. Sorted tableaux σ of dg((2, 2, 2)) such that xσ = x41x2x3 with
their families and their statistics tinvqmaj

3.4. The proof of Theorem 3.5. In this section we will prove Theorem 3.5. Once we
have verified Proposition 3.32 and Proposition 3.33 below, the theorem will follow from
Theorem 3.1.

Proposition 3.32. Fix a partition λ. Then⊔
σ∈ST(λ)

F(σ) =
⋃

τ :dg(λ)→Z+

τ.
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Proposition 3.33. Let σ be a sorted tableau. Then∑
τ∈F(σ)

qmaj(τ)tinv(τ) = qmaj(σ)tinv(σ) permt(σ).

To prove Proposition 3.33, note that by Lemma 3.31, it suffices to prove:

Proposition 3.34. Let σ be a sorted tableau. Then

(3.5)
∑

τ∈F(σ)

tinv(τ) = tinv(σ) permt(σ).

Note that Proposition 3.34 implies in particular that

|F(σ)| = permt=1(σ).

We prove Proposition 3.32 by explaining how to go from an arbitrary filling τ of dg(λ)
to a unique sorted tableau σ such that τ ∈ F(σ). We prove Proposition 3.34 by using the
operators T .

3.4.1. The proof of Proposition 3.32. The following simple lemma is the key step in proving
Proposition 3.32.

Lemma 3.35. Let τ be a filling of an m × n rectangle, such that the restriction τ |r−11 of
τ to rows 1, 2, . . . , r − 1 (its bottom r − 1 rows) is a sorted tableau. Let w1, . . . , wn be the
entries in row r. Then there is a unique rearrangement of w1, . . . , wn, say b = (b1, . . . , bn),
such that when we add b as a new row at the top of τ |r−11 , we get a sorted tableau. We refer
to the replacement of w1, . . . , wn by b1, . . . , bn in τ as putting row r into sorted order.

Proof. Since the bottom r−1 rows of τ form a sorted tableau, we have a block decomposition
of row r, see Definition 3.21. Now we just take the entries w1, . . . , wn from row r, and within
each block B, we sort the entries according to the following procedure.

Notice that all the entries in row r − 1 directly below a fixed block B are equal to
the same number, say z. Now we sort the entries of B with respect to z: from left to
right, start with all entries larger than z in weakly increasing order, followed by all entries
smaller than or equal to z in weakly increasing order. After we do this for all blocks B,
if we let b = (b1, . . . , bn) denote the new rearrangement of the entries of row r, then the
concatenation of b at the top of τ |r−11 gives a sorted tableau. �

Example 3.36. Suppose τ = 7 2 4 1 1 7
1 3 3 3 4 4

, with m = 2 and n = 6. Then row 1 of τ is

a sorted tableau, so we take r = 2. Then τ |r−11 = 1 3 3 3 4 4 , the block decomposition
of row r induced by row r − 1 gives B(1) = (7), B(2) = (2, 4, 1), B(3) = (1, 7), and finally
(w1, . . . , w6) = (7, 2, 4, 1, 1, 7), and (b1, . . . , b6) = (7, 4, 1, 2, 7, 1).

The following algorithm starts with an arbitrary filling τ of dg(λ), and produces the
unique sorted tableau σ such that τ ∈ F(σ). This algorithm completes the proof of Propo-
sition 3.32.

Algorithm 3.37. Suppose τ is an arbitrary filling of an m × n rectangle. We use the
operators T (1)

i apply Lemma 3.35 with r = 1 to rearrange the entries of row 1 of τ into
sorted order (which in this case is just weakly increasing order). This gives us a block
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τ = τ (1) . . . τ (`)

Figure 7. A tableau τ decomposed into maximal rectangular tableaux τ (1), . . . , τ (`).

τ =

= σ

2 1 3 3 1
3 3 2 4 2
1 2 1 2 1

2 3 1 3 1
3 2 3 4 2
1 1 2 2 1

2 3 1 1 3
3 2 3 2 4
1 1 2 1 2

2 3 1 1 3
3 2 2 3 4
1 1 1 2 2

3 2 1 1 3
2 3 2 3 4
1 1 1 2 2

3 2 1 1 3
2 2 3 3 4
1 1 1 2 2

T (1)
2 T (1)

4 T (1)
3 T (2)

1

T (2)
2

Figure 8. An example of the reverse algorithm is shown for the gener-
alized tableau τ in the upper left corner to find the corresponding sorted
tableau σ in the bottom right corner. Note that we have indicated the block
decomposition of a given row as soon as all rows below it are in sorted order.

structure on row 2, so we use the operators T (2)
i to apply Lemma 3.35 with r = 2 to put the

entries in row 2 of the resulting tableau into sorted order. This gives us a block structure
on row 3, and we continue, until we arrive at a unique sorted tableau which we denote by
σ = σ(τ). By Definition 3.27, it is clear that τ ∈ F(σ).

Now let τ : dg(λ) → Z+ be an arbitrary filling of dg(λ). We write it as a concate-
nation, from left to right, of rectangular tableaux τ (1), . . . , τ (`), each of a different height,
see Figure 7. We let σ = σ(τ) be the concatenation, from left to right, of the rectangular
tableaux σ(τ (1)), . . . , σ(τ (`)). Since each of σ(τ (1)), . . . , σ(τ (`)) is a sorted tableau, so is their
concatenation. And by Definition 3.30, it is clear that τ ∈ F(σ).

See Figure 8 for an example of Algorithm 3.37.

3.4.2. The proof of Proposition 3.34. We start by reducing Proposition 3.34 to the case
where σ is a rectangular sorted tableau.

Lemma 3.38. If Proposition 3.34 is true for sorted rectangular tableaux, then it is true for
all sorted tableaux.

Proof. Let σ be a sorted tableau that is a concatenation of two rectangular sorted tableaux
σ1 and σ2, which have different heights. Note that σ may contain some counterclockwise
triples (j, r), (i, r), (i, r − 1) for i < j, where columns i and j have different lengths. Let s
be the number of such triples. By Remark 3.12, this set of counterclockwise triples will be
invariant under the operators.

We have that F(σ) is the concatenation of elements of F(σ1) and F(σ2), and hence if
τ ∈ F(σ) has the form τ = τ1 t τ2 where τi ∈ F(σi), then inv(τ ) = inv(τ1) + inv(τ2) + s.
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Therefore the left-hand side of (3.5) becomes∑
τ∈F(σ)

tinv(τ) =
∑

τ1∈F(σ1),τ2∈F(σ2)

tinv(τ1)+inv(τ2)+s

= ts
∑

τ1∈F(σ1)

tinv(τ1)
∑

τ2∈F(σ2)

tinv(τ2).

Since (3.5) is true for rectangles, this quantity is equal to

tstinv(σ1) permt(σ1)t
inv(σ2) permt(σ2),

which in turn is equal to tinv(σ) permt(σ), as desired. �

We can now focus on proving Proposition 3.34 for rectangular sorted tableaux. We will
prove it by induction on the number of rows. We start with the base case.

Lemma 3.39. Proposition 3.34 is true for sorted tableaux that consist of a single row.

Proof. If σ is a sorted tableau consisting of a single row, say with entries B = (b1, . . . , bn),
then the entries are weakly increasing and inv(σ) = 0. For any τ ∈ F(σ), the entries w are
in Sym(B), and inv(τ ) = `(w̃), which puts us precisely in the situation of Remark 3.25. The
result follows from Remark 3.25, after noting that permt(σ) is precisely the multinomial
coefficient that appears in Remark 3.25. �

Recall that if τ is a tableau, then we use τ |ba to denote the restriction of τ to rows a
through b.

Lemma 3.40. Let σ be a rectangular sorted tableau, whose topmost row (row m) has blocks
B(1), . . . , B(`). Then

permt(σ) = permt(σ|m−11 )
∏̀
i=1

permt(B
(i)).

Proof. For j = 1, . . . , r, set mj := |B(j)|, and let there be nj sets of identical entries
whose sizes are the set

{
b
(j)
`

}
1≤`≤nj

with
∑

1≤`≤nj b
(j)
` = mj . By the definition of a block

decomposition, this implies σ has
∑

1≤j≤rmj sets of identical columns whose sizes are the

set ]1≤j≤r
{
b
(j)
`

}
1≤`≤nj

.

Thus by the definition of permt, the right hand side of the equation equals(
n

m1, . . . ,mr

)
t

∏
1≤j≤r

(
mj

b
(j)
1 , . . . , b

(j)
nj

)
t

,

which simplifies to permt(σ). �

Proposition 3.41. Let σ denote a sorted tableau with one block B = (b1, . . . , bn) in the
rth row. Let τ denote a new tableau obtained from σ by permuting the entries b1, . . . , bn so
as to get the word w1, w2, . . . , wn. Let w̃ be as in Definition 3.23. Then

inv(T (r)
w̃ (τ)) = inv(τ) + `(w̃).

Proof. This follows from Lemma 3.20 and Lemma 3.11. �
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Note that when we choose τ as above, the bottom rows (1, . . . , r − 1) of τ are identical
to those of σ and hence are themselves a sorted tableau.

Because the operators only affect the triples in the pair of columns where they act,
Corollary 3.42 follows from Proposition 3.41.

Corollary 3.42. We use the notation of Definition 3.27. For each τ ∈ F (r) and w̃ ∈
S̃ym(B(1))× · · · × S̃ym(B(`)), we have that

inv(T (r)
w̃ (τ)) = inv(τ) + `(w̃).

Lemma 3.43. Let σ be a sorted tableau with one block B = (b1, . . . , bn) in the rth row, and
let B(1), B(2), . . . , B(`) be the blocks in row r + 1. If we let mi = |B(i)|, this means that B
contains ` distinct entries, and b1 = · · · = bm1 , bm1+1 = · · · = bm1+m2 , etc. Then we have∑

w̃∈S̃ym(B)

t`(w̃) =

(
n

m1, . . . ,m`

)
t

= permt(B).

Proof. This follows from Remark 3.25. �

Lemma 3.44. Proposition 3.34 is true for arbitrary rectangular sorted tableaux.

Proof. Let σ be a sorted tableau which is an m × n rectangle. We use induction on the
number of rows. The base case is true by Lemma 3.39. Suppose Proposition 3.34 holds for
tableaux with (m− 1) rows.

We need to analyze
∑

τ∈F(σ) t
inv(τ). Recall from Definition 3.27 that F(σ) consists of

tableaux of the form
T (1)

w̃(1) ◦ T
(2)

w̃(2) ◦ · · · ◦ T
(m)

w̃(m)(σ).

Let the top row of σ have blocks B(1), . . . , B(`), and let σ′ denote σ|m−11 . Note that
the bottom m − 1 rows of T (m)

w̃(m)(σ) form the sorted tableau σ′, and row m is given by
w(m) ∈ Sym(B(1))× · · · × Sym(B(`)). Also, inv(σ) = inv(σ′) + s, where s is the number of
counterclockwise triples in row m of σ.

By Corollary 3.42, inv(T (m)

w̃(m)(σ)) = `(w̃(m)) + inv(σ) = `(w̃(m)) + s + inv(σ′). When

we apply the operators T (1)

w̃(1) ◦ · · · ◦ T
(m−1)
w̃(m−1) to T (m)

w̃(m)(σ), they only affect inv coming from
triples in rows 1 through m−1. Moreover, the tableaux obtained by applying the operators
T (1)

w̃(1) ◦ · · · ◦ T
(m−1)
w̃(m−1) to σ′ are precisely the elements of F(σ′) (where we think of the rows of

σ′ as being labeled from bottom to top by 1 through m− 1).
Therefore we have that∑

τ∈F(σ)

tinv(τ) = ts
∑
w(m)

t`(w̃
(m))

∑
τ ′∈F(σ′)

tinv(τ
′),

where the first sum on the right-hand side is over all w(m) ∈ Sym(B(1))× · · · × Sym(B(`)).
Applying Lemma 3.43 to the first sum on the right-hand side, and the inductive hypothesis
to the second sum on the right-hand side, we find that this is equal to

ts
∏̀
i=1

permt(B
(i)) · tinv(σ′) permt(σ

′).

This simplifies to permt(σ)tinv(σ) by Lemma 3.40 and Lemma 3.43, as desired. �
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Combining Lemma 3.38 and Lemma 3.44 yields the proof of Proposition 3.34.

4. A compact formula for integral Macdonald polynomials

In this section, we provide a compact formula for the symmetric Macdonald polynomials
Pµ(X; q, t) and their integral form version Jµ(X; q; t). Recall that Macdonald defined the
integral form Jµ(X; q, t) as follows.

Definition 4.1. Let µ be a partition. Then

Jµ(X; q, t) = Pµ(X; q, t)PR1(µ),(4.1)

where
PR1(µ) =

∏
s∈dg(µ′)

(1− qarm(s)tleg(s)+1) =
∏

s∈dg(µ)

(1− qleg(s)tarm(s)+1).

Throughout this section we will be working with diagrams dg(α) where α = (α1, . . . , αn)
is a weak composition. For these diagrams we need to generalize the concept of triple defined
for partition diagrams in Section 2. We use the notational conventions from [9, Appendix
A: pp. 124, 137]; the reader may wish to consult that source for more background and
examples of these concepts.

A triple consists of two adjacent squares (u, r) and (u, r−1) in the same column, together
with a third square (v,m) in the arm of the square (u, r). If m = r, so that (v, r) is in a
column to the right of (u, r), we call the triple a type A triple, and it has the configuration

. If m = r − 1, so (v, r − 1) is in a column to the left of (u, r), we call the triple a

type B triple, and it has the configuration . Note that all the triples from Section

2 were type A triples. A degenerate triple consists of a pair of squares in the bottom row,
with the rightmost of these squares in the arm of the leftmost (i.e. pairs of entries in row 1,
with the column of the rightmost square not higher than the column of the leftmost). Two
cells attack each other if either the cells are in the same row, or they are in adjacent rows,
and in different columns, with the rightmost cell in a row strictly above the other cell. A
filling is nonattacking if it does not contain any two cells that both attack each other and
contain the same number.

Given a filling σ of dg(α), the entries in each triple of squares carry with them an
orientation defined as follows. To find the orientation of a triple, if all the entries in the
three squares are distinct, start at the smallest one and go in a circular manner to the next
smallest and then the largest. If you went in a clockwise direction, it is a clockwise triple,
otherwise it is a counterclockwise triple. For triples with repeated entries, when comparing
equal entries the one which occurs first in the reading order is viewed as being smaller.
(Here the reading word of the filling σ is the sequence of numbers obtained by reading
the entries of the filling across rows, left-to-right, starting with the top row and working
downwards. The reading order of the entries is the order induced by the reading word; i.e.
if an entry a appears before an entry b in the reading word, then a is said to be smaller or
earlier in reading order than b.)

We call a triple a coinversion triple if it is either a type A clockwise triple or type
B counterclockwise triple. (All fillings in this section will be nonattacking, and repeated
entries in any triple in a nonattacking filing must be directly on top of each other. This
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forces any triple with repeated entries in a nonattacking filling to be an inversion triple.)
For degenerate triples, if the rightmost entry is smaller than the leftmost it is an inversion
triple, otherwise it is a coinversion triple. Some of our diagrams will contain a basement,
i.e. a row of n squares below dg(α) filled with a permutation in Sn. We use the notation
dgβ(α) to refer to dg(α) with basement β. We make the convention that squares in the
basement count as being in the arm of squares in dg(α), and so can be part of triples. But
we require that the top square(s) of a triple or degenerate triple must be in dg(α) (above
the basement).

One can also define coinversion triples without the concept of an orientation using in-
equalities as follows.

• Given a type A triple (v, r), (u, r), and (u, r − 1) for u < v, set a = σ((v, r)),
b = σ((u, r)), and c = σ((u, r − 1)).
• Given a type B triple (v, r−1), (u, r), and (u, r−1) for u > v. Set a = σ((v, r−1)),
b = σ((u, r)), and c = σ((u, r − 1)).

Then a type A or B triple is a coinversion triple if one of the following occurs:

a ≤ c < b or c < b ≤ a or b ≤ a ≤ c.

Theorem 4.2 ([9, Corollary A.11.1]). The integral form Macdonald polynomial is given by

Jµ(X; q, t) = (1− t)`(µ)
∑

nonattacking fillings σ of dg(µ)

xσqmaj(σ)tcoinv(σ)(4.2)

×
∏

s∈dg(µ)
s not in row 1

σ(s)=σ(South(s))

(1− qleg(s)+1tarm(s)+1)
∏

s∈dg(µ)
s not in row 1

σ(s)6=σ(South(s))

(1− t),

where `(µ) is the number of (nonzero) parts of µ, and for a cell s not in row 1, South(s)
denotes the cell directly below s in the same column as s. Here the sum is over all nonat-
tacking fillings of dg(µ) (there is no basement in these fillings). As usual the statistic maj is
the sum of leg(s)+1, over all descents (i.e. squares s above row 1 with σ(s) > σ(South(s))).

In [10] the authors note that the right-hand-side of (4.2) actually yields a correct formula
for Jµ if we replace µ everywhere by α, where α is any weak composition of n into n
parts satisfying dec(α) = µ. In fact, the most efficient formula seems to be when one uses
α = inc(µ), in which case the formula is closely related to a formula of Lenart for Pµ(X; q, t)
[19] (which he proved under the additional assumption that µ has distinct parts).

One unpleasant feature of all these formulas for Jµ is that for the special case µ = 1n,

(4.3) J1n(X; q, t) = x1x2 · · ·xn(1− t)(1− t2) · · · (1− tn),

while the formula (4.2) reduces to

x1x2 · · ·xn(1− t)n
∑
σ∈Sn

tcoinv(σ),

a sum of n! terms.
In this section, we will obtain a compact formula for Jµ, see Corollary 4.7, which in the

case µ = 1n, has only one term—identity (4.3). To prove Corollary 4.7, we will use a recent
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3
7215
61354

Figure 9. An ordered nonattacking filling of dg((0, 0, 1, 2, 2, 2, 3)) with
maj = 3 and coinv = 7.

result of the first, third, and fifth authors [5, Theorem 1.10 and Proposition 4.1], namely

Pµ(X; q, t) =
∑

α: dec(α)=µ

E
β(α)
inc(α)(X; q, t),(4.4)

where β = β(α) was defined in Definition 2.2. In (4.4), the quantity Eβinc(α)(X; q, t) is a
permuted-basement nonsymmetric Macdonald polynomial [6, 1], described combinatorially
in (4.6) below. We mention that in the case γ = (n, n− 1, · · · , 1), the permuted-basement
nonsymmetric Macdonald polynomial Eγ(αn,...,α1)

(X; q, t) equals the original nonsymmetric
Macdonald polynomial Eα(X; q, t) [21], while the special case γ = (1, 2, · · · , n) yields a
family of polynomials Eγα(X; q, t) studied by Marshall [24].

Definition 4.3. Let α = (α1, . . . , αn) be a weak composition. We say a nonattacking filling
σ of dg(inc(α)) (with or without a basement) is ordered if in the bottom row of the diagram
of inc(α), entries of σ below columns of the same height are strictly decreasing when read
left to right.

Figure 9 shows an ordered, nonattacking filling of the diagram of α = (0, 0, 1, 2, 2, 2, 3).
The 7 coinversion triples for the filling are (1, 6, 7), (3, 6, 7), (5, 6, 7), (4, 6, 7), (3, 1, 2),
(4, 1, 2), and (5, 7, 3).

Proposition 4.4. For α a weak composition, define

PR2(α) =
∏
i≥1

(t; t)mi
∏

s∈dg(inc(α))
s not in the bottom row

(1− qleg(s)+1tarm(s)+1),

where for i ≥ 1, mi is the number of times i occurs in α, and (t; t)k = (1− t)(1− t2) · · · (1−
tk). Then if µ is any partition, PR1(µ) = PR2(inc(µ)).

Proof. This an easy exercise, which we illustrate for the partition µ = (6, 6, 6, 6, 3, 3). Con-
sider Figure 10, which lists the arm lengths for the two diagrams dg(inc(µ)) and dg(µ). If we
ignore squares in the bottom row of the diagram dg(inc(µ)) and at the top of their columns
in the diagram dg(µ), there is an obvious bijection between the factors (1 − qlegt arm+1)
and (1 − qleg+1t arm+1) occurring in the definition of PR1(µ) and PR2(inc(µ)), respec-
tively. For the factors in PR1(µ) corresponding to squares at the top of their columns in
dg(µ), all the leg lengths are 0, and we get the remaining factor

∏
i≥1(t; t)mi occurring in

PR2(inc(µ)). �

Recall the definition of β(α) from Definition 2.2.
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Figure 10. The arm lengths for the diagrams dg(inc((6, 6, 6, 6, 3, 3))) and
dg((6, 6, 6, 6, 3, 3)).

Definition 4.5. Given a weak composition α = (α1, . . . , αn), we define the integral form
version of Eβ(α)inc(α)(X; q, t) as

Eβ(α)inc(α)(X; q, t) = PR2(inc(α))E
β(α)
inc(α)(X; q, t).(4.5)

Using the definition of permuted basement nonsymmetric Macdonald polynomials [1,
Definition 5], we have:

E
β(α)
inc(α)(X; q, t) =

∑
σ

xσ wt(σ),(4.6)

where the sum is over all nonattacking fillings σ of dgβ(α)(inc(α)) which use the letters
{1, 2, . . . , n}, and

wt(σ) = qmaj(σ)tcoinv(σ)
∏

s: σ(s)6=σ(South(s))

1− t
1− qleg(s)+1tarm(s)+1

.(4.7)

Remark 4.6. For general diagrams, the product in (4.7) normally includes cells s in row
1, but since the parts of inc(α) are by definition in nondecreasing order, the nonattacking
condition forces the entries in row 1 to be the same as those directly below them in the
basement. (Using the definition of β(α), this will mean moreover that a nonattacking fill-
ing must be ordered.) Hence for diagrams corresponding to partitions, we can restrict the
product in (4.7) to cells s above row 1. Note also that if σ(s) = σ(South(s))), then s and
South(s) are never part of a coinversion triple with any third cell in the arm of s, so such
a pair will not contribute to coinv either.

It follows from (4.6), (4.7) and Remark 4.6 that Eβ(α)inc(α)(X; q, t) is
∏
i(t; t)mi times an

element of Z[x1, . . . , xn, q, t]. This follows since squares s in row 1 do not contribute to
the product in wt(σ), while if any square s above row 1 satisfies σ(s) 6= σ(South(s)), then
the associated factor (1 − qleg(s)+1tarm(s)+1) in the denominator of Equation (4.7) will get
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cancelled by a factor in PR2(α). In fact this argument shows that

Eβ(α)inc(α)(X; q, t) =
∏
i

(t; t)mi
∑

ordered, nonattacking fillings σ of dgβ(α)(inc(α))

xσqmaj(σ)tcoinv(σ)
(4.8)

×
∏

s∈dg(inc(α)), s not in row 1
σ(s)=σ(South(s))

(1− qleg(s)+1tarm(s)+1)
∏

s∈dg(inc(α)), s not in row 1
σ(s)6=σ(South(s))

(1− t),

Corollary 4.7. The formula for Jµ has the following more compact version:

Jµ(X; q, t) =
∏
i

(t; t)mi
∑

ordered, nonattacking fillings σ of dg(inc(µ))

xσqmaj(σ)tcoinv(σ)(4.9)

×
∏

s∈dg(inc(µ)), s not in row 1
σ(s)=σ(South(s))

(1− qleg(s)+1tarm(s)+1)
∏

s∈dg(inc(µ)), s not in row 1
σ(s)6=σ(South(s))

(1− t).

Note that (4.9) implies the (as far as we know) new fact that Jµ(X; q, t) is
∏
i(t; t)mi

times an element of Z[x1, . . . , xn, q, t].

Proof. Start by multiplying both sides of (4.4) by PR2(inc(µ)). The left-hand-side then
becomes Jµ(X; q, t) by (4.1) and Proposition 4.4. The summand on the right hand side
becomes Eβ(α)inc(α)(X; q, t), which by (4.8) equals the portion of (4.9) which has bottom row
determined by β(α). �

By (4.1) and Proposition 4.4, an equivalent form of (4.9) is the identity

Pµ(X; q, t) =
∑

ordered, nonattacking fillings σ of dg(inc(µ))

xσqmaj(σ)tcoinv(σ)(4.10)

∏
s∈dg(inc(µ)), s not in row 1

σ(s)6=σ(South(s))

(1− t)
(1− qleg(s)+1tarm(s)+1)

.

Remark 4.8. The HHL formulas for Eα, Eα and Jµ never implied a particularly nice
corresponding formula for Pµ. For on the one hand, if you divide formula (4.2) by PR1(µ),
then by (4.1) you get an expression for Pµ, but the terms in PR1(µ) don’t cancel the (1 −
qleg(s)+1tarm(s)+1) factors in (4.1) nicely. On the other hand, if you start by writing Pµ
as a linear combination of Macdonald’s original Eα, the coefficients are ratios of products,
each with n factors (see [10, Proposition 5.3.1]), and the resulting formula is again not
particularly nice. By starting with (4.4) and using the combinatorial formula for the Eβ(α)inc(α)
from [1], we avoid these complications, and arrive at the nice formula in (4.10) for Pµ.

5. A quasisymmetric Macdonald polynomial

Recall that the ring of quasisymmetric functions is a graded ring which contains within
it the ring of symmetric functions. The ring of quasisymmetric functions has multiple
distinguished bases, indexed by (strong) compositions, one of which is the quasisymmetric
Schur functions QSγ(X) introduced by the second and fourth authors, together with Luoto
and van Willigenburg [12]. (See [27] for an exposition on quasisymmetric functions and
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some recent developments in that area of research.) The authors showed that QSγ(X)
is quasisymmetric, and that each (symmetric) Schur function sλ(X) is a positive sum of
quasisymmetric Schur functions. In light of this, and the fact that Macdonald polynomials
expand positively in terms of Schur polynomials, it is natural to ask if there is a notion of
a Macdonald quasisymmetric polynomial Gγ(X; q, t) such that:

(A) The symmetric Macdonald polynomial Pλ(X; q, t) is a positive sum of Macdonald
quasisymmetric polynomials;

(B) Gγ(X; q, t) is quasisymmetric;
(C) Gγ(X; 0, 0) is the quasisymmetric Schur function QSγ(X);
(D) Gγ(X; q, t) has a combinatorial formula along the lines of the Haglund-Haiman-

Loehr (HHL) formula for the Eα [11], or its compact version from [5].
We show in this section that the answer to this question is yes.

Given a permutation σ ∈ Sn, let Eσα(X; q, t) be the permuted-basement nonsymmetric
Macdonald polynomial defined in [6] and studied in [1, 5], and let Fα(X; q, t) = E

β(α)
inc(α)(X; q, t).

For any partition λ of n, from [5] we have that

Pλ(X; q, t) =
∑

α: dec(α)=λ

Fα(X; q, t),(5.1)

where the sum is over all weak compositions α whose positive parts are a rearrangement of
the parts of λ.

Note that if id = (1, 2, . . . , n) and w0 = (n, n − 1, . . . , 1) are the identity permutation
and permutation of maximal length in Sn, respectively, then Eid

α (X; 0, 0) is the Demazure
atom (introduced in [18] and developed in [26]) and Ew0

α (X; 0, 0) the Demazure character
(see [28]). In the common notation for Demazure characters, i.e., key polynomials, one re-
verses the vector α, i.e., the key polynomial corresponding to α would be Ew0

(αn,...,α1)
(X; 0, 0).

Motivated by (5.1), we have the following definition and theorem.

Theorem 5.1. We define the quasisymmetric Macdonald polynomial Gγ(X; q, t) to be

Gγ(X; q, t) =
∑

α: α+=γ

Fα(X; q, t)(5.2)

=
∑

α: α+=γ

E
β(α)
inc(α)(X; q, t),

where the sum is over all weak compositions α for which α+ = γ. Then Gγ(X; q, t) satisfies
properties (A), (B), (C), and (D). Moreover, we have that

(5.3) Fα(X; 0, t) = Eid
α (X; 0, t),

where Eid
α (X; 0, t) is the Demazure t-atom [1].

Proof. The fact that Gγ(X; q, t) satisfies (A) follows from (5.1). There are several combi-
natorial proofs that Gγ(X; q, t) is quasisymmetric and hence satisfies (B). One proof uses
the multiline queues from [5]. Here we provide a proof using (4.6) and a notion of packed
nonattacking fillings.

Call a nonattacking filling σ packed if the set of non-basement entries in σ equal {1, 2, . . . , k}
for some k, as in Figure 11 (where k = 6). By Remark 4.6 any entry in row 1 will not
generate any contribution to wt(σ). The contributions to wt(σ) by the numbers in the rows
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1
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245
453
4562

10 9 8 7 3 1 2 6 5 4

2
234
378
784
78103

9 6 5 4 2 1 3 10 8 7

Figure 11. On the left, a packed, nonattacking filling (with a basement).
On the right, a nonattacking filling with the same qt-weight but a shifted
monomial weight.

above row 1 depend only on the relative order of these numbers; hence if we replace the
filling σ by another filling R using a replacement of the form i→ wi for 1 ≤ i ≤ k, where k
is the maximal value occurring above the basement in σ and 1 ≤ w1 < w2 < · · · < wk ≤ n,
then the vector of exponents V (xR) satisfies V (xR)+ = V (xσ)+, and wt(σ) = wt(R).
Note that changing the entries in the basement in columns of height zero doesn’t affect
the weight of σ. For example, the monomial weight of the packed filling (including the
basement) on the left of Figure 11 is x21x32x23x34x35x6, with vector V = (2, 3, 2, 3, 3, 1), while
the monomial weight of the filling on the right of Figure 11 is x22x33x24x37x38x10, with vector
V = (0, 2, 3, 2, 0, 0, 3, 3, 0, 1). Hence each packed nonattacking filling can be associated to a
family of nonattacking fillings with the same weight. The sum of the monomial weights of
all these fillings is a monomial quasisymmetric function by definition, and it follows that
Gγ(X; q, t) is quasisymmetric.

To see that Gγ(X; q, t) satisfies (C), recall that for γ a strong composition of n, QSγ is
the quasisymmetric function defined by the equation

QSγ(X) =
∑

α: α+=γ

Eid
α (X; 0, 0).(5.4)

To verify (C), it suffices to show that Fα(X; 0, 0) = Eid
α (X; 0, 0). We actually prove (5.3),

that

Fα(X; 0, t) = Eid
α (X; 0, t).

To prove this, we use induction on the length of β(α) together with the action of the
Hecke operators Ti := t − txi−xi+1

xi−xi+1
(1 − si). For the base case, if α1 ≤ α2 ≤ . . . αn, then

α is already in increasing order and therefore β(α) = id. This implies that Fα(X; 0, t) =

E
β(α)
inc(α)(X; 0, t) = Eid

α (X; 0, t), as desired.
For the inductive step, assume Fα(X; 0, t) = Eid

α (X; 0, t) for all compositions α such
that `(β(α)) ≤ k. Corteel, Mandelshtam, and Williams [5, Theorem 1.22] prove that
TiFα = Fsiα for αi > αi+1, and Alexandersson [1, Corollary 26] asserts that Θ̃iE

id
α (X; 0, t) =

Eid
siα(X; 0, t) for αi > αi+1. As noted in [1, page 8], a straightforward calculation shows
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that Ti = Θ̃i. Therefore we apply Ti to both sides of Fα(X; 0, t) = Eid
α (X; 0, t) to get

Fsiα(X; 0, t) = TiE
id
α (X; 0, t)(5.5)

= Θ̃iE
id
α (X; 0, t)(5.6)

= Eid
siα(X; 0, t).(5.7)

Therefore Fα(X; 0, t) = Eid
α (X; 0, t), as desired. Specializing to t = 0 finishes the proof that

Gγ(X; q, t) satisfies (C). By (4.6), Gγ(X; q, t) satisfies (D). �

Remark 5.2. From [11] we have

Pλ(X; q, t) =
∑

α:α+=λ

cλ,α(q, t)Eid
α (X; q, t),(5.8)

where cλ,α is a certain explicit rational function in q, t. Letting q = t = 0 in this identity,
since cλ(0, 0) = 1, produces the formula of Lascoux-Schützenberger expressing the Schur
function sλ as a sum of Demazure atoms. In view of (5.4), this also shows that the Schur
function is a sum of the QSγ. Trying the same idea in (5.8) though, one finds the sum of
the cλ,αEidα (X; q, t) over α+ = γ are not generally quasisymmetric.

It would be interesting to find a connection between the quasisymmetric Macdonald
polynomials Gγ(X; q, t) that we introduce in this paper, and other objects in the literature.
We note that our Gγ are different from the duals of the noncommutative symmetric function
analogues of Macdonald polynomials introduced in [2]; we also do not see a connection to
the noncommutative Hall-Littlewood polynomials studied in [15].
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