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Expanding the quasisymmetric Macdonald
polynomials in the fundamental basis

Sylvie Corteel, Olya Mandelshtam & Austin Roberts

ABSTRACT The quasisymmetric Macdonald polynomials G(X;gq,t) were recently introduced
by the first and second authors with Haglund, Mason, and Williams in [3] to refine the sym-
metric Macdonald polynomials Py (X;q,t) with the property that G, (X;0,0) equals QS~(X),
the quasisymmetric Schur polynomial of [9]. We derive an expansion for G(X;g,t) in the
fundamental basis of quasisymmetric functions.

1. INTRODUCTION

The symmetric Macdonald polynomials Py(X;q,t) [11] are a family of functions in
X = {x1,x2,...} indexed by partitions, whose coefficients depend on two parameters
q and t. They can be defined as the unique monic basis for the ring of symmetric
functions that satisfies certain triangularity and orthogonality conditions. Macdonald
polynomials generalize multiple important families of polynomials, including Schur
polynomials and Hall-Littlewood polynomials.

The related nonsymmetric Macdonald polynomials E,(X;q,t) were introduced
shortly after as a tool to study Macdonald polynomials, in a series of papers by
Cherednik [2], Macdonald [12], and Opdam [13]. The polynomials E, (X;¢,t) are in-
dexed by weak compositions and form a basis for the full polynomial ring Q[X](q,t).
Ferreira [5] and later Alexandersson [1] studied the extension of these to the more
general permuted basement nonsymmetric Macdonald polynomials EZ(X ;q,t), where
X ={z1,...,z,}, 0 € S, and the length of u is n.

The combinatorics of Macdonald polynomials has been actively studied for decades.
In [7], Haglund, Haiman, and Loehr gave combinatorial formulas for the modified
Macdonald polynomials, ﬁ,\(X;q,t) and the integral form, Jx\(X;q,t). In their later
paper [8], they provided a formula for the nonsymmetric Macdonald polynomials
E,(X;q,t), which was then broadened to the more general polynomials E7(X;q,?)
in [1, 5].

In [3], the first and second authors together with Haglund, Mason, and Williams
introduced a new family of quasisymmetric functions G.(X;¢q,t) they named qua-
sisymmetric Macdonald polynomials. They showed that G (X;q,t) is indeed a qua-
sisymmetric function, and gave a combinatorial formula for the G, (X ¢,t) that refines
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the compact formula for the Py from [4]. The Macdonald polynomial Py(X;gq,t) is a
sum of these quasisymmetric Macdonald polynomials, and at ¢ =t = 0, G,(X;q,t)
specializes to the quasisymmetric Schur functions QS. (X) introduced by Haglund,
Luoto, Mason, and van Willigenburg in [9].

The goal of this article is to write an expansion of the polynomials G, (X;g¢,t) in
the fundamental basis. This basis was introduced by Gessel in [6] and is one of the
most common bases of the vector space of quasisymmetric functions. Our main results
are the following theorems, see Section 2 for the relevant definitions.

THEOREM 1.1. Let v be a strong composition. Then

. . 1-1¢
. _ inv(7) maj(T)
Gry (X, q, t) = Z $c° q J H 1— qleg(u)+1tarm(u)+1
TEST(7) uEé\g(’y)
ugW (r)
1— leg(u)Jrltarm(u)
_)lUl d
X Z (=1) (H 1 — gleg(w)+1zarm(u)+1 Fy (v
UCW (7) uelU

THEOREM 1.2. Let v be a strong composition. Then

(;7 (X, 0’ t) _ Z (1 _ t)w(T) (—t)l DeS(T)|tCOinV(T)_COinV(DeS(T))FG(T).
7€ST1(v)

This article proceeds through a series of purely combinatorial proofs and results
using a variety of tableaux enumeration techniques, organized as follows. In Section
2, we provide the relevant background. Section 3 provides a proof for Theorem 1.1. In
Section 4 we provide an alternative expansion in the Hall-Littlewood case, yielding
Theorem 1.2 and a related result for Jack polynomials.

2. PRELIMINARIES AND DEFINITIONS

For a nonnegative integer n, a weak composition o = («1,...,ax) = n is a list of
nonnegative integers called the parts of a, summing to n, so that n = |a| = Zle ;.
Let o™ denote the composition obtained by collapsing the (weak) composition a by
removing the zero-parts from a. We call a composition with no non-zero parts a strong
composition. If oy > as = -+ 2 g, then « is called a partition. We denote by inc(a)
the composition obtained by sorting the parts of « in increasing order. Define §(«)
to be the permutation of longest length such that f(«)oa = inc(a), where the length
of a permutation is the number of inversions in its word representation.

ExXAMPLE 2.1.For a = (2,1,0,0,3,0,1), we have a™ = (2,1,3,1), inc(a) =
(0,0,0,1,1,2,3), and (a) = (6,4,3,7,2,1,5).

For two compositions, «, 8, we say B is a refinement of «, denoted by 8 < «, if
« can be obtained by adding together adjacent parts of 8. For example, (2,1,3,1) <
(2,4,1) < (2,5) < (7). Finally, there is a natural bijection from (strong) compositions
a = n with |S] + 1 parts to subsets S € [n — 1], given by taking the difference
between successive elements of {0,n}US, after elements of this set are listed in order.

Specifically, the subset S corresponding to a composition « = (ayq, ..., ) is
S = {041,041 +ag,..., 01 —l—Oég—‘r"'—f—Oék_l},
and the composition « = n corresponding to a subset S = {iy,42,...,ik—1} C [n—1]
is
a = (i1, — 41,43 —d2,..., N —ix_1).
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EXAMPLE 2.2. a = (2,1, 3,2) corresponds to the subset S = {2,3,6} C [7].

2.1. QUASISYMMETRIC FUNCTIONS. The vector space of quasisymmetric functions
properly contains the space of symmetric functions. A quasisymmetric function is a
bounded degree formal power series f € Q[z1, 22, ...] such that for all k, all compo-
sitions a = (a1, ag, ..., ag), and all sets of indices i; < i < -+ < i, the coefficients
of x{* ... xp* and 27! ... 27" in f are equal.

Similar to the symmetric functions, the vector space of quasisymmetric functions
has several natural bases consisting of functions of fixed degree. We will focus on the
monomial basis { Mg} and the fundamental basis { Fs}, indexed by subsets S C [n—1],
for each fixed degree n. The monomial basis functions are defined as

— a1 .02 Qg
(1) Mg := g N R
11 <tg < - <ip

where k = |S| 4+ 1, and « is the (strong) composition corresponding to the subset S.
The fundamental basis functions are defined as

(2) FS = Z P PR
i1<i2< - <in
JES = ijAi 41
For example,
M{2’316} = Z 1‘221 xll2x?3xl24’
11 <ig<iz<ig
Fra36) = Z Xy Tiy * " Tig-
11 iz <tz <ig Li5ie<i7<is
Let S C [n — 1]. It follows that
(3) Fg = Z Mg
sCs’
For example, let n =8 and S = {1,4}. Then
Fraay =Mpay + Maoay+ Mugay + Maosay.

The goal of this article is to give an expansion of the quasisymmetric Macdonald
polynomial G (X;gq,t), which we present below, in terms of the fundamental qua-
sisymmetric basis. Let v be a strong composition. The quasisymmetric Macdonald
polynomial is defined by the infinite sum

(4) Gy(Xiqt)= > B (Xiq.t),

a: at=y
where E7 (X;q,t) is the permuted basement Macdonald polynomial introduced in [5]
and further studied in [1]. We will define G, combinatorially in the next section. Note
that B is a polynomial in k variables, where k is the number of parts of u, so we
actually mean Ef(X;q,t) = Ef(21,...,2k;¢,t), and 0 € Sy.
REMARK 2.3. Due to [3], it turns out that EP) (X;0,t) = E%(X;0,t). Thus the

inc(a)

quasisymmetric Hall-Littlewood polynomials £, (X;t), defined in [9] as
Ly(X;t)= Y EXX;0,1)

aiat=v

coincide with G, (X;0,1).
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Tow 5

row 4 l

row 3 u|a a
row 2 a a

row 1

FIGURE 1. The diagram of the composition (3,1,4,2,1,4,3,5,4) and
the cells in the leg and the arm of the cell u = (3,6). Here leg(u) =1
and arm(u) = 4.

2.2. TABLEAUX FORMULA FOR EJ(X;q,t). The polynomial Ef(X;q,t) has a com-
binatorial description in the form of a tableaux formula [7]. We review the relevant
statistics for general compositions, though we will be primarily concerned with the
case where the parts of p are arranged in weakly increasing order.

For any weak composition «, define dg(«), the diagram of «, to be the composition
shape in French notation with a; boxes in column ¢ from left to right. The rows are
labeled from bottom to top starting with row lkand a cell in row r and column ¢
is denoted by coordinates (r,¢) € dg(«). Define dg(a) to be the set of cells in dg(«)
that are not contained in the bottom row. If T is a filling of dg(«), the entry in a cell
u € dg(a) is denoted by T'(u). Let 27 = [1.cdg(a) T (u), be the monomial encoding
the content of T.

The reading order of a diagram is the total order given by reading the entries along
the rows from top to bottom, and from left to right within each row. Two cells are
said to attack each other if they are in the same row, or if they are in adjacent rows
where the one above is strictly northeast of the one below. A filling T is considered
non-attacking if T(u) # T'(v) for any pair of attacking cells u, v.

For a cell u € dg(«), we call leg(u) the number of cells above u in the same column.
We call arm(u) the number of cells to the right of w in the same row, in columns whose
height does not exceed the height of the column containing u, plus the number of cells
to the left of u in the row below, in columns of height strictly smaller than the height
of the column containing u. More precisely, let u = (r,¢). Then

arm(u) =|{(r,j) € dg(a) : j>i,a; <@} +[{(r—1,j) € dg(a):j <i, a5 <}

See Figure 1. Denote by South(u) the cell directly below u in the same column. The
set of descents of a filling of dg(a) is

Des(T) = {u € dg(a) : T(u) > T(South(u))},

and the major indez is

maj(T) = leg(u) + 1.

u€Des(T)

Triples consist of a cell z, the cell y = South(z) directly below, and a third cell z
in the arm of x. If z is in the same row as x, this is called a type A triple, and if z is
in the same row as y, this is called a type B triple, as shown

Type A: Type B:

Algebraic Combinatorics, Vol. 6 #4 (2023) 944
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Coinversion triples consist of type A triples where the entries are increasing in
clockwise orientation, plus type B triples where the entries are increasing in counter-
clockwise orientation. The coinv(T') statistic is defined as the total number of all such
triples.

Let a = (aq,...,ax) be a composition with at = v and £ := {(y). Let o =
B(y) € Sp and o/ = B(«) € Sk, and let & be the last ¢ entries of ¢’. Note that & is
order equivalent to . Then define NAT(«) to be the set of non-attacking fillings of
dg(inc(v)) such that entries of the first row read in reading order are order equivalent
to o, and define NAT(«) € NAT() to be the subset of those fillings whose entries in
the first row are equal to &.

EXAMPLE 2.4. Let o = (0,4,0,3,1,0,0,3). Then inc(a) = (0,0,0,0,1,3,3,4), at =
4,3,1,3), B(a) = (7,6,3,1,5,8,4,2), and B(at) = (3,4,2,1). The NAT associated
to « are fillings of dg(inc(a™)) with the bottom row equal to (5,8,4,2): the last £
entries of B3(«a), where £ = {(a™) = 4. Observe that (5,8,4,2) is order equivalent to
(3,4,2,1). NAT(a™) is the set of fillings of dg(inc(a™)) with entries order equivalent
to (3,4,2,1). For instance, below, the left filling belongs to NAT (o), and the right
filling belongs NAT (o) C NAT(a™).

H H
2 2
0151 ¢ NAT((4,3,1,3)), Ol NAT((0,4,0,3,1,0,0,3))
3(11]2 41112
6[7]4]1 (5]8]4]2
By comparing with [1], we obtain the combinatorial formula for EIBn (CC(Y()I)(X iq,t),
where « is a weak composition. Define B(a) to be the last £(«™) entries of 3(a). Then
(5) Ep (X5q,t) = > wt(1)a™,
TENAT(at)

T has bottom row E(a)

where the weight of a (nonstandard) filling T" is

_ - maj(T) ycoinv(T) (1 — t)
(6) Wt(T) =q t H (1 _ qleg(u)+1tarm(u)+l)'

uedg(at)
T(u)#T (South(u))
REMARK 2.5. We have given the tableaux formula for E;; where the parts of u are
weakly increasing. A general formula exists (see [1] for details) for an arbitrary com-
position p and a permutation o by keeping track of the “basement” of a filling.
Comparing definitions, it follows that for any composition «, the basement of a filling
of dg(inc(er)) can be recovered uniquely from the bottom row of the filling.

2.3. STANDARD, PACKED, AND NON ATTACKING FILLINGS. A packed filling is one that
2
2

uses every integer from the set {1,...,m} for some m. For example, the filling l 1
3]

is packed, but [1]3 is not. However, the latter filling compresses to the former by
shifting the alphabet of values in the filling down as necessary: given a set {s1,...,sx}
with s; < .-+ < s, the entries s; become 1.

It is convenient to work with packed fillings in the context of quasisymmetric
functions. We consider every packed filling T to be the representative of the family of
fillings which compress to T'.

Algebraic Combinatorics, Vol. 6 #4 (2023) 945
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LEMMA 2.6. Suppose T' € NAT(~y) compresses to a packed filling T € NAT(y). Then
coinv(T") = coinv(T) and maj(T") = maj(T).

The proof of the above lemma, follows from the fact that the relative order of entries
is preserved by compression. Moreover,

!
§ T = My,
T/

the sum being over all fillings 7" that compress to the packed filling T', and My is the
monomial quasisymmetric function corresponding to the content of 7T'. Thus the ¢, t-
generating function of the family of fillings that compress to the packed representative
T is the weight of T' times Mp. Hence, we may work with the finite set of packed
fillings to represent all possible fillings.

From (4) and (5), we thus obtain
(7)

G’Y (X, q, t) _ Z qmaj(T)tcoinV(T)MT H
TENAT(v) weds
T packed T(u);éT(SchZZh(u))

(-1

(1 _ qleg(u)+1tarm(u)+1) :

EXAMPLE 2.7. For v = (1, 2), all the packed nonattacking fillings in NAT () are shown
below with their weights, to obtain

(1—t)(1+t+qt)
gz Moy

G2 = Mpy +

(2] [3] (2] (1]
=(1,2):
7=2) [1]2 [1]2 [1]3 [2]3
t(1—t) (1—t) t(1—t)
My T Muey  =Mps Moy

Standard fillings (or standard tableaux), denoted by ST(), are fillings of dg(inc(v))
such that every element in the set {1,...,n} appears exactly once, where n = |7|.
Thus there is a bijection 7 : dg(inc(v)) — {1,...,n} between cells of dg(inc(v)) and
the entries {1,...,n}, and so we can slightly abuse notation and refer to both a cell
and its entry when we work with standard tableaux.

The standardization map std: NAT(y) — ST(y) is defined as follows. For T' €
NAT(v), let 7 = std(T) be the unique standard filling in ST(v) that preserves the
relative order of the original tableau, and where the reading order is used to break
ties. In other words, 7 is such that the sequence T o 7~ ! is weakly increasing, and
the restriction of 7 to T—1({x}) is increasing with respect to the reading order for
all values x. It is straightforward to check that if 7 is the standardization of T,
then coinv(T) = coinv(7) and maj(T) = maj(7). See Example 2.8 below for the
standardization std(T") of T' € NAT((1,4, 3)).

Let T € NAT(y) with standardization 7 = std(7"), and n = |y|. Define the reading
word of T to be the sequence of entries of T listed in reading order, denoted by rw(T).
The reading word of 7 is thus a permutation of {1,...,n}. Define ID(7) to be the
inverse descent set, where ¢ € ID(7) if i+1 precedes ¢ in rw(7). Comparing definitions,
one may check that 7 is a standardization of T' if and only if the following holds: the
weakly increasing sequence a = T'o7~! satisfies that if a(i) = a(i+1), then i & ID(7).
See Example 2.8 for an explicit computation.

ExXAMPLE 2.8. We show T' € NAT((1,4,3)) and the corresponding standardization
T = std(T).

Algebraic Combinatorics, Vol. 6 #4 (2023) 946
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2] 3]

T = L T =std(T) = b1
513 8|6
[1]4]2 (2]7]4

We have a = To77! = (1,1,2,2,3,3,4,5), rw(7) = (3,5,1,8,6,2,7,4), and ID(7) =
{2,4,7}. We check that the indices i for which a(i) = a(i+1) are {1, 3,5}, and indeed
those are not contained in ID(7).

For 7 € ST(7), define V(7) C [n — 1] to be the set of entries such that i € V(1)
if i € ID(7) or if ¢ and i + 1 are in cells that attack each other. Define W (r) = {i €
7 @ South(i) = ¢ + 1} to be the set of entries ¢ with ¢ + 1 directly below. Note that
V(ir)nW(r) =@.

Given a standard filling 7 with n cells, the cells labelled from 1 to n — 1 are
partitioned into three blocks:

e The cells containing entries in V' (7), namely those cells where i € ID(7) OR
t and ¢ + 1 are in attacking cells.

e The cells containing entries in W (), namely those cells where i+ 1 is directly
below <.

e The rest of the cells with entries in [n — 1)\(V(7) U W(7)).

Let v = n. We consider the pre-image in NAT(y) of standard fillings 7 € ST(7).
For a choice of V(1) C S C [n—1], define a destandardization map ds(7) : dg(y) — Z
as follows. Let « be the (strong) composition corresponding to the set S. Let w be
the word containing the content associated to « in weakly decreasing order, given by
w = (1*1,2% ... k*) where a has k parts. Define dg(7) := w o 7 to be the unique
filling of dg(y) with content « that standardizes to 7.

EXAMPLE 2.9. Consider the standard tableau 7 from Example 2.8. ID(7) = {2,4, 7},
and the set of indices ¢ such that ¢ and i 4 1 are in cells that attack each other is {6},
so V(1) = {2,4,6,7}. Thus, S can be any subset of [7] containing V(7). We show
some examples of §g for various choices of S:

3] 2]

§ _ 5|1 5 _ 411 5 _ 1
A s R A o s IR G R o
12]7]4 12]6]3 [1]4]2

The following Lemmas contain some observations that will be essential to our
arguments.

LEMMA 2.10. Let v = n, and let 7 € ST(7). For a set S C [n—1] such that V(1) C S,
the following conditions hold:
i. d5(7) € NAT(7).
ii. std(dg(7)) =7.
iii. Let S be the unique set such that T = dg(7). Then wt(T) = wt(ds(std(T))).

In fact, the destandardization map splits NAT(y) into disjoint components {T" €
NAT(y) : std(T) = 7} indexed by 7 € ST(7), due to the following lemma.

LEMMA 2.11. Let v = n, let T € NAT(y) be a packed filling, and set T = std(T).
There exists a unique set V(1) C S C [n — 1] such that T = ds(T). Furthermore,

SIS SRED SIS S 1A

T : std(T)=7 V(r)CSC[n—1] T=6bs(T) V(r)CSC[n—1]
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Thus for a strong composition ~, the set of packed fillings contained in NAT(y) is

55(7’).

reST(v) V(MESCn—1]

The following lemma gives the weight of a destandardized filling in terms of its
standardization.

LEMMA 2.12. Let v = n, 7 € ST(%), and S such that V(1) C S C [n—1]. Then

. . 1-—t¢
__ ycoinv(T) ,maj(T)
Wt(és(T)) =t q 1:[ 1— qleg(u)+1tarm(u)+1
u€dg(y)
ugW(r)

1-1¢
x H 1— qleg(u)+1tarm(u)+1 :
ueSNW (1)

Proof. We are given V(1) C S C [n—1], and let T" = d5(7). Recall that W () contains
the entries {i € 7 : South(i) = i+ 1}. Ensuring the products are correct is a matter of

tracking the cells {u € &Q(T) : T(South(u)) = T'(u)}. All such cells must correspond to
cells of W (7). In particular, by our construction, {u € dg(7T) : T'(u) = T(South(u))} =

W (r)\S. All other cells contribute a factor of W. Since the coinversions
and major index are preserved by standardization, the lemma follows. O

For a strong composition v = n where £() is the number of parts, define h(y) =
n — £(7y) to be the number of cells in dg() without its bottom row. Note that h(vy) is
the number of cells in dg(7).

3. PROOF OF THEOREM 1.1
We will start with a proof for the ¢ = 0 specialization of Theorem 1.1 to develop the

main ideas of the proof. The proof for the general g case follows the same strategy.

3.1. THE ¢ = 0 CASE. We assume ¢ = 0 throughout this section. Let v be a strong
composition. When we compute compute G,(X;0,t), the only surviving tableaux
in (7) are those with an empty descent set, which means the entries must be non-
increasing as we read the columns from bottom to top. We denote the subsets of
NAT(y) and ST(y) that have nonzero weight at ¢ = 0 by NATy(y) and STo(v),
respectively. We will prove the following.

() G0 = 3 O OOl S )V
TESTo (V) Ucw(r)

Observe the following. The denominator in the product of (7) vanishes, and the
weight of each T' € NAT(7y) becomes

wt(T) = ()1 — t)\{u€dAg(/\) : T(South(u))#T (u)}|
Moreover, for 7 € STy(), Lemma 2.12 specializes to
9) wt(8g (7)) = 9OV (1 — )R =IW(DNST

We are now ready to prove Theorem 1.1 at ¢ = 0.
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Proof of (8). From the definition, we have

G,(X;0,t) = Z wt(T)z”
TENAT((7)

> Y wi(ds(r)Ms

T€STo(v) V(r)CSCn—1]

— Z Z tcoinv(‘r) (1 - t)h('y)f|W(‘r)\S|MS
T7E€STo(y) V(T)CSCn—1]
(10) I TR LI R N S LTV
7€8To(7) V(r)CSCln—1]

where the second line is by Lemmas 2.10 and 2.11, the third line is by (9).
To complete the proof, we need to reformulate the second summation.

Z (1-— t)|SﬂW(T)\MS — Z (1-— t)lW‘ Z Mg

V(r)CSC[n—1] WCW(r) V(r)CSCln—1]
SAW (1)=W

By the binomial theorem,
(1) (=™ = 3 (4.
Ucw

Plugging in gives

2. 2 Ty Me= 3 (0 Y > Ms

WCW(r) UCW V(r)CSCn—1] UCW (r) WDU V(r)CSC[n—1]
SNW(r)=W SNW (r)=W
SV LID VR
UCW (7) V(r)UUCSC[n—1]
= Y (P,
UCW (7)
which completes the proof. 0

3.2. THE GENERAL q CASE. Let v be a strong composition of n. Recall that the
weight of a tableau T' € NAT(v) is given by:

. . 1-—-t¢
_ ycoinv(T) maj(T)
Wt(T) =t q H 1— qleg(u)+1tarm(u)+1 ’

uedg(y)
T (South(u))#T (u)

As in the ¢ = 0 case, we use the destandardization map dg to split the set NAT(~)
into disjoint components indexed by their representative standard fillings in ST(7).
For 7 € ST(y) and any V(7) C S C [n — 1], again, the only cells that will potentially
change the weight of the destandardized tableau dg(7) are the ones in W (7). This
is because when an entry ¢ € 7 has ¢ + 1 above it, it is possible for that pair to
destandardize to the same value if §5(7) o 771(i) = 65(7) o 771(i + 1), changing the
product within the weight function.

We require the following lemma.

LEMMA 3.1. Let W be any subset of the cells of dg()\). Then

1—1¢ 1— qleg(u)+1tarm(u)
— —H)IUl
H 1— qleg(u)+1tarln(u)+1 - Z ( t) (H 1— qleg(u)+1tarm(u)+1

uew UCW wel
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Proof. First we note that

11—t —t+ qleg(u)+1tarm(u)+1

—t(1 = leg(u)Jrltarm(u)
14 (I—g¢ )

1— qlcg(u)+1tarm(u)+1 1— qlcg(u)+1tarm(u)+1 1— qlcg(u)+1tarm(u)+1

Then we apply the binomial theorem. Given a set S and a function f : .S — Q(q,t),
the binomial theorem states

[0+ s =3 (H f(U)>-

ses UCS \ueU

_t(l_qlcg(u)+1tarm(u))

We apply this with f(u) =

17qleg(u)+1tarm(u)+1 .
We can now prove the main result.
Proof of Theorem 1.1. By Lemmas 2.10 and 2.11 we have

G (Xiqt)= > wi(T)a"
TENAT(v)

Z Z wt(0g(7)) Ms.

7EST(7) V() CSCIn—1]

Applying Lemma 2.12,

: - 1t
. — coinv(7)  maj(r)
G’y(X; q, t) - Z 3 q J H 1— qleg(u)+1tarm(u)+1
TEST(7) ueci\g('y)
ugW ()
1-t¢ u
x Z H 1— qleg(u)+1tarm(u)+1 S

V(r)CSC[n—1] \ueSNW(r)

. . 1-1¢
_ coinv(7) maj(T)
- Z ¢ q H 1— qleg(u)+1tarm(u)+1

TEST(7) uea\g(w)
ugW ()
1-t¢
x Z < H 1— qleg(u)+1tarm(u)+1> Z Ms
wew () | \uew V(r)CSCln—1]
SNW (1)=W

By Lemma 3.1,

1-t¢
Z ( H 1— qleg(u)+1tarm(u)+1> Z Ms

WCW (r) ueW V(r)CSC[n—1]
SAW (1) =W

1— qleg(u)Jrltarm(u)

U

= Z Z (_t)‘ | (H 1— qleg(u)+1tarm(u)+1 Z Ms
wew(r) \ ucw wel V(r)CSC[n—1]
SNW (r)=W
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Next, we reorder the summations, as

2. >, Ms

WCW () V(r)CSCn—1]
WDU = SNW(r)=W

1— qleg(u)+1tarm(u) )

_ _H\IUl
= Z : ( t) (H 1 _qleg(u)+1tarm(u)+1

UCW (r uelU
Finally, we gather terms and apply (3),

1— lcg(u)+1tarm(u)

—p)lUl q

Z ) ( t) <H 1 _qleg(u)+1tarnl(u)+1 - Z Ms
Vi(r

UCW (r wel UUCSC[n—1]

1— qleg(u)+1tarm(u)

_plul
Z ( t) (H 1— qleg(u)+1tarm(u)+1> FV(T)UU'

UCW(r) uelU

The theorem follows. O

4. FURTHER SIMPLIFICATIONS AND SPECIALIZATIONS

In this section, we further simplify the result for the Hall-Littlewood case (¢ = 0)
from Section 3.1. First, we introduce some notation. Let

ST1(y) = {7 € ST(v): i € Des(r) = South(i) =i — 1}.

That is, reading down columns, values can decrease by at most 1 per cell. We may
send any element of 7 € ST1(v) to an element of 7 € STy(y) by sorting entries
within their columns to become weakly decreasing from bottom to top. In this case
the cells containing descents are sent to some U C W(7), though the values in the
cells may change. To make this sorting function invertible, we need to keep track of
U. For any U C W (1), consider the map ¢y that sends 7 € STo(y) to 7/ € ST1(7) by
reversing the order of certain consecutive values in columns of 7. Specifically, for each
maximal set {#,i+1,...,i +k — 1} € U, the values in [i,7 + k] are reversed so that
{i +1,4,...,i+ k} is similarly maximal in Des(7’). All other values are fixed. Note
that since the cells of standard filling 7 are identified with the values they contain,
we represent U by a subset of [n]. Further, since 7 € STy(7y) is the result of sorting
the entries within the columns of 7/, 7’ has a unique preimage.
Next, for 7/ € ST1(7), let

coinv(Des(7")) := Z arm(u),

u€Des(7’)
w(t’):=h(y) — |{i € 7": i and i + 1 share a column}|.

Lastly, we need to replace V(7') with a new set in the context of STy(v). The
descent group of i is the maximal connected set of cells in the column of ¢ such that
every cell is a descent except the bottom cell. By construction, every cell is contained
in a unique descent group. We say ¢ attacks i + 1 through descents if a cell in the
descent group of 7 attacks a cell in the descent group of 7 + 1. Notice that if ¢ attacks
i+ 1in 7" € ST1(7), then ¢ must be at the top of its descent group and ¢ + 1 must
be at the bottom of its descent group. Define V(7') as the set of i in 7/ such that
i € ID(7') or i attacks ¢ + 1 through descents. Since i attacking ¢ + 1 implies ¢ attacks
i+ 1 by descents, it follows that V(') C V(7).

EXAMPLE 4.1. Consider 7 € STo((1,4,3)) and 7’ = (343 (7) € ST1((1,4, 3)).
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3] H
4 L |]e
5 23
6[s]7 6[s]7

Here, coinv(Des(7')) = 2, w(r') = 2, ID(7') = {3,4,7}, and V(') = {2,3,4,5,6,7}.
THEOREM (Theorem 1.2). Let v be a strong composition. Then

(;7 (X, 0, t) _ Z (1 _ t)w(T) (—t)l DeS(T)|tCOinV(T)_COinV(DeS(T))FG(T)
7€ST1(v)

Proof. The proof is a matter of changing the order of summations in (8), applying
Ly, tracking the changes to statistics, and combining the sums. Reversing the order
of summations gives

(12) G, (X;0,1) Z Z (1—1) h(v)— |W(T)\( )lU\tCOiHV(T)Fv(T)UU_

T€ST
UCde() Twinsy

Next, apply ¢y to each 7. The image is in ST (). Further, each tableau of STy (%)
will appear exactly once. We now work through the changes to the factors in (12)
from left to right.

Consider the image of W (7) under ¢yy. Because tableaux in ST(vy) have no descents,
W (r) is precisely the set containing those i that share a column with ¢ + 1. Because
ty permutes entries within columns, h(y) — |W(7)| is taken to w(7).

By the definition of iy, |U| is taken to |Des(7)|. Thus, (—t)IYl is taken to
(_t)l Des(7)]

Notice that every type B triple with its upper right cell contained in U is changed
from an inversion to a coinversion. We may compensate by multiplying by ¢~ V()
Because the relative order of entries within all other triples is preserved, no other
coinversions are changed.

Finally, V(LU(T)) = V(r) UU. To see this, first notice that each i € U is moved
below i+ 1, and so is moved after i+ 1 in the reading word. Hence, each element of U
is taken to an element of \A/(LU(T)). The only other values that need to be considered
are those 7 that are in a different column than ¢+ 1. In this case, ¢ can only move up
relative to ¢ + 1, and ¢ + 1 can only move down relative to i. It is thus possible that
ty removes i from V(7), but it cannot add any values to V(7). By construction of ¢y,
if - and i + 1 were attacking in 7 or i € ID(7), then i and i + 1 are attacking through
descents in ¢y (7). We thus replace Fy -y with F@(r)' Tracking these changes gives

G X 0, t Z Z 1 —t UJ(T) )|Des(T)|tcoinv(r)—coinv(Des(r))Fi}

TEST
UCdz() )

(7

Combining the two sums completes the proof. O

4.1. JACK SPECIALIZATION. We also consider the specialization of G (X;q,t) to the
setting of Jack polynomials, from which we immediately get a new definition of a qua-
sisymmetric Jack polynomial. Recall that the Jack polynomial indexed by a partition
A with parameter « is a symmetric polynomial that can be obtained from

1— tarm(u)—&-lta leg(u)

P)\(X;ta,t).
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Thus we define the quasisymmetric Jack polynomial indexed by a strong composition
v as

1— tarm(u)+1ta leg(u)

(13) Gy(X;a) = tl_lgl_ H T3 G, (Xt ).
uedg()
Using (7), we get
(14) G (X;0)= 11 (a(leg(u) + 1) 4+ arm(u) 4+ 1) | M.
EDTGNATpg uedg(N)

T packed T (u)=T(South(u))

This is a refinement of the Knop—Sahi formula [10, Theorem 5.1],

I X;a) = Z H (a(leg(u) + 1) + arm(u) + 1) | 27.
TENAT(N) uEC/l\g(A)
T(u)=T(South(u))

Using Theorem 1.1 we obtain the following corollary.

COROLLARY 4.2. The quasisymmetric Jack polynomial has the following fundamental
exrpansion:

G (Xia)= Y I (elleg(u) +1) +arm(u) + 1)

TEST(y) \ueW(T)

Fyyuu-

_pll a(leg(u) + 1) + arm(u)
X UCXW:(T)( 1) g a(leg(u) + 1) + arm(u) + 1
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