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Abstract

Background: Protein succinylation has recently emerged as an important and common post-translation
modification (PTM) that occurs on lysine residues. Succinylation is notable both in its size (e.g, at 100 Da, it is one of
the larger chemical PTMs) and in its ability to modify the net charge of the modified lysine residue from + 1 to — 1
at physiological pH. The gross local changes that occur in proteins upon succinylation have been shown to
correspond with changes in gene activity and to be perturbed by defects in the citric acid cycle. These
observations, together with the fact that succinate is generated as a metabolic intermediate during cellular
respiration, have led to suggestions that protein succinylation may play a role in the interaction between cellular
metabolism and important cellular functions. For instance, succinylation likely represents an important aspect of
genomic regulation and repair and may have important consequences in the etiology of a number of disease states.
In this study, we developed DeepSuccinylSite, a novel prediction tool that uses deep learning methodology along with
embedding to identify succinylation sites in proteins based on their primary structure.

Results: Using an independent test set of experimentally identified succinylation sites, our method achieved efficiency
scores of 79%, 68.7% and 0.48 for sensitivity, specificity and MCC respectively, with an area under the receiver operator
characteristic (ROCQ) curve of 0.8. In side-by-side comparisons with previously described succinylation predictors,
DeepSuccinylSite represents a significant improvement in overall accuracy for prediction of succinylation sites.
Conclusion: Together, these results suggest that our method represents a robust and complementary technique for
advanced exploration of protein succinylation.
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Background

Protein post-translational modifications (PTM) are im-
portant cellular regulatory processes that occur after pro-
tein synthesis. PTMs increase the functional diversity of
the proteome by the covalent addition of functional moi-
eties to proteins, proteolytic cleavage of regulatory sub-
units and play important roles in signaling for degradation
of entire proteins. PTMs include phosphorylation, glyco-
sylation, ubiquitination and relatively recently described
modifications, such as succinylation. Succinylation is a
PTM that occurs through the addition of a succinyl group
(-CO-CH,-CH,-CO,H) to the e-amino of target lysine
residues.

Protein PTMs have been detected by a variety of experi-
mental techniques [1], including mass spectrometry (MS)
[2, 3], liquid chromatography [4], radioactive chemical la-
beling [5] and immunological detection, such as chroma-
tin immunoprecipitation [6] and western blotting [7].
Generally, the experimental analysis of PTMs requires
time-consuming, labor- and capital-intensive techniques
and the use of hazardous/expensive chemical reagents.
Due to importance of PTMs in both disease states and
normal biological functions, it is imperative to invest in
developing options that can screen proteins for potential
PTM sites in a rapid, cost-effective manner.

In recent years, machine learning has become a cost-
effective method for prediction of different PTM sites.
Some of the machine learning based succinylation site pre-
diction approaches are iSuc-PseAAC [8], iSuc-PseOpt [9],
pSuc-Lys [10], SuccineSite [11], SuccineSite2.0 [12], GPSuc
[13] and PSuccE [14] . Although results have been promis-
ing, the potential for bias is present due to manual selection
of features along with the possible absence of unknown fea-
tures that contribute to succinylation. Moreover, the pre-
diction performance of these methods is not yet satisfactory
enough to be used in high throughput studies.

Recently, deep learning (DL) approaches have been de-
veloped to elucidate putative PTM sites in cellular pro-
teins. For instance, MusiteDeep [15] and DeepPhos [16]
have been developed to predict phosphorylation sites
while Fu et al. [17] and Wu et al. [18] used DL-based
methods to identify putative ubiquitination and acetyl-
ation sites, respectively. These DL methods have achieved
relative improvement in aggregate measures of method
performance, such as the area under curve (AUC) and
Matthews Correlation Coefficient (MCC). Typically, these
models utilize some combination of one-hot encoding and
extracted features as an input, largely trying to avoid reli-
ance on manual feature extraction. To the best of our
knowledge, DL models have not been applied previously
for prediction of succinylation sites. In this study, we de-
veloped a succinylation site predictor, termed DeepSucci-
nylSite, based on a convolutional neural network (CNN)
deep learning framework [19] using Keras library [20].

Page 2 of 10

Methods

Benchmark dataset

In this study, we used the same training and independ-
ent dataset collected from experimentally derived lysine
succinylation sites as in Hasan et al. [13] and Ning et al.
[14]. Ning et al. used UniProtKB/Swiss-Prot database
and NCBI protein sequence database as Hasan et al. to
create the succinylation dataset. After removing proteins
that have more than 30% sequence identity using CD-
HIT, 5009 succinylation sites and 53,542 sites not
known to be succinylated remained. Of these, 4755 suc-
cinylation sites and 50,565 non-succinylation sites were
used for the training set and 254 succinylation sites and
2977 non-succinylation sites were used for the inde-
pendent test. Moreover, for our approach the optimal
window size came out to be 33 and some of the se-
quences had other characters, we lost 5 (out of 4755)
positive sites in the training set.

For the training and test sets, data were balanced using
under-sampling. The final training dataset contained 4750
positive and 4750 negative sites whereas the independent
test dataset contained 254 positive and 254 negative sites
after balancing. Table 1 shows the final dataset for training
and independent test after balancing. In order to generate
a local representation of the protein and to optimize the
model, a window parameter was set around each lysine
(K) of interest. If the left or right side of K was less than
half the size of the window, then pseudo residue “-” was
used in order to retain all the positive sites.

Encoding

In contrast to traditional machine learning methods, our
DL-based method takes sequence data in the form of
windows directly as an input, reducing the need for
hand-crafted feature extraction. A pre-requisite for this
approach is that the sequence data must be encoded in a
form that is readable by our DL model. Accordingly, we
have utilized two types of encoding: (i) one-hot encoding
and (ii) embedding layer. Compared to other DL ap-
proaches for other types of post-translational modifica-
tion site prediction, one of the major differences is our
embedding encoding.

One-hot encoding

One hot encoding converts categorical variables to respect-
ive binary variables. We implemented one-hot encoding in
a manner similar to that used during the development of

Table 1 Number of positive and negative sites for training and
testing dataset

Dataset Positive Negative
Training 4750 4750
Independent Test 254 254




Thapa et al. BMC Bioinformatics 2020, 21(Suppl 3):63

MusiteDeep [15]. In order to convert the 20 common
amino acids and our pseudo residue “-” into numerical
values, these 21 characters are converted into integers ran-
ging from 0 to 20. Every amino acid was represented by a
binary code consisting of a sequence of zeros and a singular
one, the location of which encodes the identity of the
amino acid. In our study, the binary representation was
done based on alphabetical order. For example, Alanine (A)
is represented as 100000000000000000000 and Arginine
(R) is represented as 010000000000000000000 and so on.
Accordingly, in our model, a window of size, N, corre-
sponded to an input vector size of N x 21.

One of the primary drawbacks of one-hot encoding is
that the mapping is completely uniform. Therefore,
amino acids with similar properties are not placed to-
gether in vector space.

Embedding layer

One of the highlights of our approach is the embedding
layer. The second type of encoding that we utilize is the
embedding encoding [20, 21]. Embedding finds the best
representation for the amino acid sequence, as in DeepGO
[22], to overcome the shortcomings of one-hot encoding.
Briefly, the 20 amino acids residue and 1 pseudo residue
were first converted into integers ranging from 0 to 20.
This is provided as an input to the embedding layer, which
lies at the beginning of our DL architecture. The embed-
ding layer is initialized with random weights. The layer then
learns better vector-based representations with subsequent
epochs during training. Each vectorization is an orthogonal
representation in another dimension, thus preserving its
identity. Hence, making it more dynamic than the static
one-hot encoding. In our study, embedding encoding (word
to vec) for K is: [-0.03372079, 0.01156038, - 0.00370798,
0.00726882, — 0.00323456, — 0.00622324, 0.01516087, 0.023
21764, 0.00389882, — 0.01039953, — 0.02650939, 0.0117422
9, —0.0204078, - 0.06951248, - 0.01470334, - 0.03336572,
0.01336034, — 0.00045607, 0.01492316, 0.02321628, — 0.025
51141] in 21-dimensional vector space after training. Em-
bedding groups commonly co-occurring items together in
the vector space. Two key arguments must be specified in
the embedding layer. These are:

e output_dim: Size of vector space.
e input_length: Size of input, which is window size.

Training and testing datasets

The training dataset was further sub-divided into 80%
training and 20% validation sets. The model was trained
on 80% of the training data with validation done in every
epoch using the remaining 20% of the training dataset.
This validation approach was performed in order to track
the training progress and to identify overfitting. Overfit-
ting was identified when validation accuracy started
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decreasing while training accuracy continued to in-
crease. Checkpointer was utilized to select the optimal
model from the epochs based on validation accuracy;
this approach also helped to minimize any potential
overfitting. The model generated was then used for
independent testing with the independent testing
dataset.

Input

The main advantage of using DL over traditional ma-
chine learning approaches is the exclusion of manual
feature extraction. The input for our DL approach is the
sequence windows in FASTA format. For example, for a
window size of 33, the input dimension would be 33 x
21 for one-hot encoding. For embedding for the same
window size, the input dimension would be 33 x 21 for
embedding output dimension of 21.

DeepSuccinylSite architecture
The overall architecture of DeepSuccinylSite is shown in
Fig. 1.

After encoding the input data, the encoded data was
fed into the network. The same architecture was utilized
for both encoding methods, except for the inclusion of
an embedding layer and a lambda layer in the case of
the embedding encoding.

The next layer is the convolutional layer. Previous
DL-based models for Phosphorylation sites (Deep-
Phos, MusiteDeep) [19, 20] have used 1-D (dimen-
sional) convolutional layer, whereas we have used 2-D
(dimensional) convolutional layer, thus increasing our
flexibility with choosing 2-D size. If we use 1D con-
volutional layer and do the same, then we will not be
able to deduce many feature information, as the x-
axis is fixed (it will stay at 21) and will only stride
vertically. Thereafter, other layers were also chosen
with 2D. We used a 2D convolutional layer to
prioritize the inclusion of filter size 17 x 3 (for win-
dow size 33, the PTM site lies at the 17th position),
which will include the PTM site in every stride. The
use of this filter size, along with the disabling of pad-
ding, allowed the model to be optimized for training
time without compromising performance. Higher
dropout of 0.6 was used to avoid overfitting. More-
over, a rectified linear unit (ReLU) was used as an ac-
tivation function for all layers. ReLU was deemed an
optimal activation function due to its sparse activa-
tion, which minimized the possibility for overfitting
and maximized the predictive power of the model.
We used two convolutional layers, one maxpooling
layer, a fully connected layer with two dense layers,
and an output layer. The parameters used in the
model are given in Table 2.
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Input (Window Size = 33)
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[4,7,15,4,1,19,5, 10, 10, 6, 7, 6,19, 16, 14,
10, 11, 11, 15, 0,12, 7, 3,3, 7, 16, 9, 10, 4, 4,
15, 4, 19]

Dimension 33X21

Dimension 33X21

—

One-hot Encoding Output

Embedding Layer Output

Encoded
Input

@
® Output

CTO 00000009

=

2D Convolutional
Layer
Qutput 17X19

2D Convolutional
Layer
Qutput 17X19

0000000000000000

Fully Connected

2D Maxpooling Layers

Layer
Qutput 8X9

Dense Layer 1 = 768
Dense Layer 2 = 256

Fig. 1 a Window size of 33 in FASTA format is the input. It is converted into integers which is then encoded either using one-hot encoding or
embedding layer. This will be the input for CNN layers. b The output from either of the encoding is then fed as input into the deep learning
architecture. Finally, after the flattening and fully connected layers we get the final output which contains two nodes with outputs [0 1] for

positive and [1 0] for negative sites

Adam optimization was used as the optimizer for our
architecture, as described previously by Kingma et al. [23].
Adam uses an adaptive learning rates methodology to cal-
culate individual learning rates for each parameter. Adam
is different from classical stochastic gradient descent in
that stochastic gradient descent maintains a single, con-
stant learning rate for all weight updates during training
[24]. Specifically, Adam combines benefits of both adap-
tive gradient algorithm and root mean square propagation,
allowing for efficient training of the model. Since this
study is a binary classification problem, binary cross-
entropy (measure of uncertainty associated with given

distribution) or log loss was used as the loss function. The
binary cross-entropy is given by:

N

Dl log(5,) + (1-3,) fog (13,

i=1

(1)

where vy is the label (1 for positive and 0 for negative)
and y; is the predicted probability of the site being posi-
tive for all N points. For each positive site (y = 1), it adds
log(y;) to the loss, that is, the log probability of it being
positive. Conversely, for each negative site (y = 0), it adds
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Table 2 Parameters in DeepSuccinylSite

Parameters Settings
Embedding Output Dimension 21
Learning Rate 0.001
Batch Size 256
Epochs 80
Conv2d_1 number of filters 64

Conv2d_1 filter size 17 X 3 (For window size 33)

Conv2d_1 padding Disabled
Dropout 0.6
Conv2d_1 number of filters 128
Conv2d_1 filter size 3X3
Conv2d_1 padding Enabled
Dropout 0.6
MaxPooling2d 2x%2
Dense 1 768
Dropout 0.5
Dense_2 256
Dropout 0.5

Checkpointer Best validation accuracy

log(1-y,) , that is, the log probability of it being
negative.

The fully connected layers contained two dense layers
with 768 and 256 nodes, respectively, with the final out-
put layer containing 2 nodes.

Model evaluation and performance metrics

In this study, 10-fold cross validation was used to
evaluate the performance of the model. In 10-fold
cross validation, the data are partitioned into 10 equal
parts. Then, one-part is left out for validation and
training is performed on remaining 9 parts. This
process is repeated until all parts are used for
validation.

Confusion Matrix (CM), Matthew’s Correlation Co-
efficient (MCC) and Receiver Operating Characteris-
tics (ROC) curve were used as performance metrics.
The ROC curve is a graphical plot that illustrates the
diagnostic ability of a binary classifier whereas area
under curve (AUC) represents the degree or measure
of separability. Since identification of succinylation
sites is a binary classification problem, the confusion
matrix size is 2 x 2 composed of true positives (TP),
true negatives (TN), false positives (FP) and false neg-
atives (EN). Other metrics calculated using these vari-
ables were accuracy, sensitivity (i.e., the true positive
rate) and specificity (i.e., the true negative rate).

ACCuMlC -

100 (2)
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Sensitivity = ™ x 100 (3)

ensitivity = TP T EN

TN
Specificity = —— x 100 4
pecificity = o —p X (4)
(TP)(TN)-(FP)(EN)
MCC =
/(TP + EP)(TP + EN)(TN + EP)(IN + EN)
(5)
Results

Optimal window size and encoding

Initially, window sizes from 9 to 45 were tested with
both one-hot encoding and embedding. For example, for
a window size of 9, the lysine (K) residue was set in the
middle of the window with 4 amino acid residues up-
stream and 4 amino acid residues downstream. A win-
dow size of 33 yielded the highest MCC for both one-
hot encoding and embedding, with further increases in
window size resulting in reductions in MCC (Table 3).
Likewise, the highest specificity and AUC were achieved
using a window size of 33, with only a marginal reduc-
tion in sensitivity when using embedding (Table 3 and
Fig. 2). Hence, a window size of 33 was considered as
the optimal window size for this study. Interestingly, a
window size of 33 was also utilized by Wang et al. for
phosphorylation site prediction using one-hot encoding
[15]. It is worth noting that the consistency in window
size between this study and the previous study by Wang
et al. correlates with the known range for many inter-
protein amino acid interactions. Importantly, with only a
few exceptions, embedding performed better than one-
hot encoding for every window size tested. Therefore,
for this study, embedding was chosen for encoding.

Identification of optimal embedding dimension

Next, we sought to identify the optimal embedding di-
mension. To this end, dimensions ranging from 9 to 33
were tested for embedding. It is important to note that

Table 3 Performance metrics for different window sizes. The
highest values in each category are highlighted in boldface.
MCC: Matthew's Correlation Coefficient

Window  One-Hot Encoding Embedding (Dimension = 21)

Size Sensitivity  Specificity MCC  Sensitivity ~ Specificity MCC
9 0.70 0.55 0.25 0.80 0.57 0.39
15 0.73 0.60 0.33 0.82 0.58 042
21 0.79 0.55 034 0.76 067 043
27 0.79 0.59 0.38 0.81 0.63 045
33 0.84 0.55 0.41 0.79 0.69 0.48
39 0.81 053 036 0.75 063 040
45 0.81 0.55 0.38 0.76 067 043
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Fig. 2 ROC curve for different window sizes for embedding
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increasing the dimension of embedding will result in
higher computational cost. Therefore, we aimed to
identify the smallest dimension that struck a balance
across all metrics. Because MCC is often used as a
surrogate of overall model performance, it was priori-
tized slightly over the other parameters. While both
dimension sizes of 15 and 21 struck such a balance,
the performance metrics were generally better using a
dimension size of 21. Indeed, a dimension size of 21
achieved the highest MCC, with sensitivity and speci-
ficity scores that were within 7% of the maximum
scores achieved in these areas (Table 4). Consistently,
dimension size of 15 and 21 achieved the highest
AUC score (Fig. 3). Taken together, these data sug-
gest that a dimension size of 21 is optimal using our
architecture. Therefore, a dimension size of 21 was
selected for model development. The dimension size
is consistent with the fact that 20 amino acid residues
and 1 pseudo residue were present in each vector.

Table 4 Performance metrics for different embedding
dimensions. The highest values in each category are shown in
bold. MCC: Matthew's Correlation Coefficient

Dimension Sensitivity Specificity MCC
9 0.85 0.58 045
15 0.73 0.71 044
21 0.79 067 0.48
27 0.75 0.66 041

33 0.77 0.68 045

Cross-validation and alternative classifiers

Our final model, which we termed DeepSuccinylSite, uti-
lizes embedding with window and dimension sizes of 33
and 21, respectively. Based on five rounds of 10-fold cross-
validation, DeepSuccinylSite exhibited robustness with
consistent performance metrics with an average MCC of
0.519 +/-0.023 and an AUC of 0.823 (Additional file 1:
Table S3). We also implemented additional Deep Learning
architectures and different machine learning models where
the input was hand-crafted ‘physico-chemical’ based fea-
tures rather than the protein sequence alone. Essentially,
this implementation takes various physiochemical features
combined with XGBoost to extract prominent features.
We excluded any sequences with ‘-, while calculating the
features. We then used XGBoost to extract prominent fea-
tures, which provided better accuracy and obtained a total
of 160 features at threshold of 0.00145. Interestingly, the
performance of the methods using these approaches were
not as good as DeepSuccinylSite, whose input is protein
sequence alone (Additional file 1: Table S2). Further in-
formation on performance of our model are included in
Additional file 1. Additionally, the results of feature-
based Deep Learning architecture is shown in Add-
itional file 1: Figure S1.

Comparison with other deep learning architectures

Other DL architectures, such as Recurrent Neural Network
(RNN) [25] and Long Short-Term Memory (LSTM) [26],
as well as the combined model, LSTM-RNN, were also im-
plemented for one-hot encoding (DeepSuccinylSite-one_
hot) and compared with the independent test result of
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DeepSuccinylSite (Table 5). Additionally, we implemented
an additional DL architecture, where the input includes
other features beyond the primary amino acid sequence.
Specifically, this implementation utilizes a combination of
1) physiochemical features, such as Pseudo Amino acid
Composition (PAAC), ‘k-Spaced Amino Acid Pairs’ (AAP);
2) Autocorrelation features, such as Moreau-Broto auto-
correlation and Composition, Transition and Distribution
(CTD) features, and 3) Entropy Features, such as Shannon
entropy, Relative entropy, and Information gain. We ex-
cluded any sequences with ‘-, while calculating the fea-
tures. We then used XGBoost to extract prominent
features which provided better accuracy and obtained
a total of 160 features at threshold 0.00145. The ver-
sion of the algorithm using features is termed as
DeepSuccinylSite-feature based.

Table 5 Comparison of DeepSuccinylSite with other deep
learning architectures for window size 33. The highest value in
each category is shown in bold. MCC: Matthew's Correlation
Coefficient; RNN: Recurrent neural network; LSTM: Long short-
term memory model

Models Sensitivity Specificity MCC
RNN 0.70 049 0.20
LSTM-RNN 0.66 057 023
LSTM 0.74 0.66 0.36
DeepSuccinylSite-feature based 0.80 044 027
DeepSuccinylSite-one_hot 0.84 0.55 041
DeepSuccinylSite-Embedding 0.79 0.69 0.48

For fair comparison, we used the same balanced train-
ing and testing dataset for window size of 33 and one-
hot encoding for these three DL architectures. The re-
sults are shown in Table 5 and ROC curve is shown in
Fig. 4. The results for our DL model with embedding
(DeepSuccinylSite) is also shown. The detailed architec-
ture of these models, including results for other window
sizes are discussed in Additional file 1 and the perform-
ance of these methods is presended in Additional file 1:
Table S1. For one-hot encoding, DeepSuccinylSite
achieved better MCC and AUC score than the other DL
architectures. Likewise, our final model using embedding
achieved the highest MCC and AUC scores of any
model (Table 5).

Independent test comparisons with existing models
Next, the performance of DeepSuccinylSite was com-
pared with other succinylation site predictors using an
independent test set as mentioned in the benchmark
dataset earlier. During these analyses, some of the most
widely used tools for succinylation site prediction, such
as iSuc-PseAAC [8], iSuc-PseOpt [9], pSuc-Lys [10], Suc-
cineSite [11], SuccineSite2.0 [12], GPSuc [13] and PSuccE
[14], were considered. All these methods use the same
training and independent test data sets as in Table 6. The
performance metrics for these previously published
methods were taken from their respective manuscripts
mainly based on comparison done in PSuccE [14].
DeepSuccinylSite achieved a 58.3% higher sensitivity
score than the next highest performing model (Table 6).
In contrast, our model exhibited the lowest specificity
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score of all of models tested. However, the specificity score
achieved by DeepSuccinylSite was only 22.2% lower than
that of the top-ranked methods. Consequently, DeepSuc-
cinylSite achieved a significantly higher performance as
measured by MCC. Indeed, DeepSuccinylSite exhibited an
~62% increase in MCC when compared to the next high-
est method, GPSuc. Taken together, the novel architecture
we have described, termed DeepSuccinylSite, shows sig-
nificantly improved performance for precise and accurate
prediction of succinylation sites.

Discussion

Succinylation is relatively newly discovered PTM that is
garnering interest due to the biological implications of
introducing a large (100 Da) chemical moiety that changes
the charge of the modified residue. Experimental detection

Table 6 Comparison of DeepSuccinylSite with existing
predictors using an independent test dataset. The highest value
in each category is shown in bold

Prediction Schemes Sensitivity Specificity MCC
iSuc-PseAAC 0.12 0.89 0.01
iSuc-PseOpt 0.30 0.76 0.04
pSuc-Lys 0.22 0.83 0.04
SuccineSite 037 0.88 0.20
SuccineSite2.0 045 0.88 0.26
GPSuc 0.50 0.88 0.30
PSuccE 038 0.89 020
DeepSuccinylSite 0.79 0.69 0.48

of succinylation is labor intensive and expensive. Due to
the availability of a relatively large dataset containing 4750
positive sites for training, it was possible for us to imple-
ment different DL architectures. The model optimization
process described in this paper led to a significant im-
provement in precise prediction of succinylation sites
when compared to models previously described in the lit-
erature. Two types of encoding were considered for this
study, one-hot encoding and embedding. Our results sug-
gest that embedding is an optimal approach, as it allows
the model to learn representations similar to the amino
acid features, which results in further improvements in
the ability to identify putative sites of modification.

Furthermore, DeepSuccinylSite corroborates previous
indications in the literature that have suggested a window
size of 33 optimally reflects local chemical interactions in
proteins that predict sites of PTM due to its performance
in metrics like MCC. One of the important parameters
was embedding dimension. DeepSuccinylSite was trained
with different dimensions ranging from 9 to 33. With in-
crease in dimension, training time also increased. Though
there was not a significant difference between dimension
sizes 15 and 21, considering the number of amino acid
residues and slightly better result, 21 was chosen as the
embedding dimension for this study. Finally, for window
size 33 with embedding dimension 21, DeepSuccinylSite
achieved efficiency scores of 0.79, 0.69 and 0.48 for sensi-
tivity, specificity and MCC, respectively.

For further improvements, instead of current protein
sequence-based window sequence, we can extract
structure-based window sequence centered around the site
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of interest and use that window as the input. When the
structure of the protein is not available, protein structure
prediction pipelines like I-TASSER [27] or ROSETTA [28],
can first be used to predict the structure. Since the struc-
ture of the proteins are more conserved than sequence, we
hope to capture evolutionary information better and thus
obtain better prediction accuracy. Moreover, we could also
improve the performance of the approach by creating mul-
tiple models using sequence-based windows, structure-
based windows, physiochemical properties and then utilize
voting approaches. Lastly, multi-window input, as done in
DeepPhos [16], using our encoding technique can improve
the performance. However, more datasets are required for
these schemes and once more experimental data becomes
available, we could explore this in more detail. We also ex-
plored the effects of data size on prediction performance
(Additional file 1: Table S4 and Additional file 1: Figure
S2). These studies suggest that, initially, the performance of
our model increases with the increasing data size before
reaching a plateau. This is somewhat contrary to the gen-
eral consensus in deep learning that performance keeps
increasing with the data size according to a power law.
However, with more experimental data likely to be
available in the future, we could perform a more com-
prehensive study on how performance scales with in-
creasing data size. Perhaps, this might also suggest that
with increasing data we might have to develop more
complex deep learning models.

Utilizing the unique architecture described in this paper,
the DeepSuccinylSite model shows a substantial improve-
ment in predictive quality over existing models. The utility
of this model is in its ability to predict lysine residues that
are likely to be succinylated. Accordingly, this model could
be utilized to optimize workflows for experimental verifica-
tion of succinylation sites. Specifically, use of this model
could significantly reduce the time and cost of identification
of these sites. This model may also have some utility in hy-
pothesis generation when PTM presents itself as likely ex-
planation for observed biological phenomenon.

Conclusion

In this study, we describe the development of DeepSucci-
nylSite, a novel and effective deep learning architecture
for the prediction of succinylation sites. The primary ad-
vantage of using this model over other machine learning
architectures is the elimination of feature extraction. As a
consequence, other PTM sites could be easily applied in
this model. Since this model only utilizes two convolu-
tional layer and one max-pooling layer to avoid overfitting
for the current data, provision of new data sources may
allow for further modification of this model in the future.
In conclusion, DeepSuccinylSite is an effective deep learn-
ing architecture with best-in-class results for prediction of
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succinylation sites and potential for use in general PTM
prediction problems.
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