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Abstract: We study the stationary points and local geometry of gradient play for stochastic
games (SGs), where each agent tries to maximize its own total discounted reward by making
decisions independently based on current state information which is shared between agents.
Policies are directly parameterized by the probability of choosing a certain action at a given
state. We show that Nash equilibria (NEs) and first-order stationary policies are equivalent
in this setting by establishing a gradient domination condition for SGs. We characterize the
structure of strict NEs and show that gradient play locally converges to strict NEs within finite
steps. Further, for a subclass of SGs called Markov potential games, we prove that strict NEs
are local maxima of the total potential function, thus locally stable under gradient play, and
fully-mixed NEs are saddle points, thus unstable under gradient play.
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1. INTRODUCTION

Multi-agent systems find applications in a wide range of
societal systems, e.g. electric grids, traffic networks, smart
buildings and smart cities etc. Given the complexity of
these systems, multi-agent reinforcement learning (MARL)
has gained increasing attention in recent years (Shalev-
Shwartz et al., 2016; Vidhate and Kulkarni, 2017; Xu
et al., 2020). Among MARL algorithms, policy gradient-
type methods are highly popular because of their flexibility
and capability to incorporate structured state and action
spaces. However, while many recent works (Zhang et al.,
2018; Chen et al., 2018; Wai et al., 2018; Li et al., 2019; Qu
et al., 2020) have studied the performance of multi-agent
policy gradient algorithms, due to a lack of understanding
of the optimization landscape in these multi-agent learning
problems, most works can only show convergence to a
first-order stationary point. Deeper understanding of the
quality of these stationary points is missing even in the
simple identical-reward multi-agent RL setting.

In this paper, we examine this problem from a game-
theoretic perspective. We model the multi-agent system
as a stochastic game (SG) where agents can have different
reward functions, and study the dynamical behavior of
first-order (gradient-based) learning methods. The study of
SGs dates back to as early as the 1950s by Shapley (1953)
with a series of followup works on developing NE-seeking
algorithms, especially in the RL setting (e.g. (Littman,
1994; Buşoniu et al., 2010; Lanctot et al., 2017; Zhang
et al., 2019a) and citations therein). While well-known
classical algorithms for solving SGs are mostly value-based,
such as Nash-Q learning (Hu and Wellman, 2003), Hyper-
Q learning (Tesauro, 2003), and WoLF-PHC (Bowling
and Veloso, 2001), gradient-based algorithms have also
started to gain popularity in recent years due to their
advantages as mentioned earlier (e.g. (Zhang and Lesser,
2010; Foerster et al., 2017)). In this work, we aim to gain a

deeper understanding of the structure and quality of first-
order stationary points for these gradient-based methods,
with a particular focus on answering the following questions:
1) How do the first-order stationary points relate to the NEs
of the underlying game?, 2) Do gradient-based algorithms
guarantee convergence to a NE?, 3) What is the stability
of the individual NEs?.

These questions have already been widely discussed in
other settings, e.g., one-shot (stateless) finite-action games
(Shapley, 1964; Jordan, 1993; Krishna and Sjöström, 1998;
Van Damme, 1991), one-shot continuous games (Mazumdar
et al., 2020), zero-sum linear quadratic (LQ) games Zhang
et al. (2019b), etc. There are both negative and positive
results depending on the settings. For one-shot continuous
games, (Mazumdar et al., 2020) proved a negative result
suggesting that gradient flow has stationary points (even
local maxima) that are not necessarily NEs. Conversely,
Zhang et al. (2019b) designed projected nested-gradient
methods that provably converge to NEs in zero-sum LQ
games. However, much less is known in the tabular setting
of SGs with finite state-action spaces.

Contributions. In our paper, we consider the gradient
play algorithm for the infinite time-discounted reward SG
where an agent’s local policy is directly parameterized by
the probability of choosing an action from the agent’s own
action space at a given state. We focus on the tabular
setting where state and action spaces are finite. Through
generalizing the gradient domination property in (Agarwal
et al., 2020) to the multi-agent setting studied in this paper,
we first establish the equivalence of first-order stationary
policies and Nash equilibria (Theorem 1).

Then we study the convergence of gradient play for SGs.
For general games, it is known that gradient play may
fail to have global convergence (Shapley, 1964; Crawford,
1985; Jordan, 1993; Krishna and Sjöström, 1998). Thus we
firstly focus on characterizing some local properties for the
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general cases. In particular, we characterize the structure
of strict NEs and show that gradient play locally converges
to strict NEs within finite steps (Theorem 2).

Next we study a special class of SGs called Markov potential
games (MPGs) (González-Sánchez and Hernández-Lerma,
2013; Macua et al., 2018; Leonardos et al., 2021), which
includes identical reward multi-agent RL (Tan, 1993; Panait
and Luke, 2005) as an important special case. Though
global convergence rate results were established recently
by Zhang et al. (2021); Leonardos et al. (2021) for gradient
play under MPGs, these results only bound the NE-gap
(c.f. Definition 4) but do not say the convergence of the
policies or which NE the policies converge to, even if they
do converge. Given the fact that there are many NEs that
would have poor global value, global convergence results
has a limited implication on the algorithm performance.
This motivate us study the local geometry around some
specific types of NEs. In this paper, we show that strict
NEs are local maxima of the total potential function, thus
stable points under gradient play, and that fully mixed NEs
are saddle points, thus unstable points under gradient play.
Lastly, we note that results of this paper are posted online
in our ArXiv report (Zhang et al., 2021), which contains
all the proofs, numerical study and extra results.

2. PROBLEM SETTING AND PRELIMINARIES

We consider a stochastic game (SG) M = (N,S, A = A1×
· · ·×An, P, r = (r1, . . . , rn), γ, ρ) with n agents (Shapley,
1953) which is specified by an agent set N = {1, 2, . . . , n},
a finite state space S, a finite action space Ai for each
agent i ∈ N , a transition model P where P (s′|s, a) =
P (s′|s, a1, . . . , an) is the probability of transitioning into
state s′ upon taking action a := (a1, . . . , an) in state s
where ai ∈ Ai is action of agent i, agent i’s reward function
ri : S × A → [0, 1], a discount factor γ ∈ [0, 1), and an
initial state distribution ρ over S.
A stochastic policy π : S → ∆(A) (where ∆(A) is the
probability simplex over A) specifies a strategy in which
agents choose their actions jointly based on the current
state in a stochastic fashion, i.e. Pr(at|st) = π(at|st).
A distributed stochastic policy is a special subclass of
stochastic policies, with π = π1 × . . .× πn, where πi : S →
∆(Ai). For distributed stochastic policies, each agent takes
its action based on the current state s independently of
other agents’ choices of actions, i.e.:

Pr(at|st)=π(at|st)=
n∏

i=1

πi(ai,t|st), at=(a1,t, . . . , an,t).

For notational simplicity, we define: πI(aI |s) :=
∏

i∈I πi(ai|s),
where I ⊆ N is an index set. Further, we use the notation
−i to denote the index set N\{i}.
We consider direct distributed policy parameterization,
where agent i’s policy is parameterized by θi:

πi,θi(ai|s) = θi,(s,ai), i = 1, 2, . . . , n. (1)

For notational simplicity, we abbreviate πi,θi(ai|s) as

πθi(ai|s), and θi,(s,ai) as θs,ai
. Here θi ∈ ∆(Ai)

|S|, i.e. θi is
subject to the constraints θs,ai ≥ 0 and

∑
ai∈Ai

θs,ai = 1

for all s ∈ S. The global joint policy is given by: πθ(a|s) =∏n
i=1 πθi(ai|s) =

∏n
i=1 θs,ai . We use Xi := ∆(Ai)

|S|,X :=
X1 × · · · × Xn to denote the feasible region of θi and θ.

Agent i’s value function V θ
i : S → R, i ∈ N is defined as

the discounted sum of future rewards starting at state s
via executing πθ, i.e.

V θ
i (s) := E

[ ∞∑
t=0

γtri(st, at)
∣∣ πθ, s0 = s

]
,

where the expectation is with respect to the random
trajectory τ = (st, at, ri,t)

∞
t=0 where at ∼ πθ(·|st), st+1 =

P (·|st, at). We denote agent i’s total reward starting from
initial state s0 ∼ ρ as:

Ji(θ) = Ji(θ1, . . . , θn) := Es0∼ρV
θ
i (s0).

In the game setting, agent i’s incentive is to maximize its
own total reward Ji. A Nash equilibrium (NE) is often
used to characterize the equilibrium where no agent has a
unilateral incentive to deviate from it.

Definition 1. (Nash equilibrium) A policy θ∗ = (θ∗1 , . . . , θ
∗
n)

is called a Nash equilibrium (NE) if

Ji(θ
∗
i , θ

∗
−i) ≥ Ji(θ

′
i, θ

∗
−i), ∀θ′i ∈ Xi, i ∈ N

The equilibrium is called a strict NE if the inequality
holds strictly for all θ′i ∈ Xi, θ

′
i ̸= θi and i ∈ N . The

equilibrium is called a pure NE if θ∗ corresponds to a
deterministic policy. The equilibrium is called a mixed
NE if it is not pure. Further, the equilibrium is called a
fully mixed NE if every entry of θ∗ is strictly positive, i.e.:
θ∗s,ai

> 0, ∀ ai ∈ Ai, ∀ s ∈ S, i ∈ N

We define the discounted state visitation distribution dθ of
a policy πθ given an initial state distribution ρ as:

dθ(s) := Es0∼ρ(1− γ)

∞∑
t=0

γtPrθ(st = s|s0), (2)

where Prθ(st = s|s0) is the state visitation probability that
st = s when executing πθ starting at state s0. Throughout
the paper, we make the following assumption on the SGs
we study.

Assumption 1. The stochastic game M satisfies: dθ(s) >
0, ∀s ∈ S, ∀θ ∈ X .

Assumption 1 requires that every state is visited with
positive probability, which is a standard assumption for
convergence proofs in the RL literature (e.g. (Agarwal et al.,
2020; Mei et al., 2020)).

Similar to centralized RL, we define agent i’s Q-function
Qθ

i : S×A → R and its advantage function Aθ
i : S×A → R

as:

Qθ
i (s, a) :=E

[ ∞∑
t=0

γtri(st, at)
∣∣ πθ, s0=s, a0=a

]
,

Aθ
i (s, a) :=Qθ

i (s, a)−V θ
i (s).

‘Averaged’ Markov decision process (MDP): We

further define agent i’s ‘averaged’ Q-function Qθ
i : S ×

Ai → R and ‘averaged’ advantage-function Aθ
i : S ×

Ai → R as:

Qθ
i (s, ai) :=

∑
a−i

πθ−i
(a−i|s)Qθ

i (s, ai, a−i),

Aθ
i (s, ai) :=

∑
a−i

πθ−i(a−i|s)Aθ
i (s, ai, a−i).

(3)
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general cases. In particular, we characterize the structure
of strict NEs and show that gradient play locally converges
to strict NEs within finite steps (Theorem 2).

Next we study a special class of SGs called Markov potential
games (MPGs) (González-Sánchez and Hernández-Lerma,
2013; Macua et al., 2018; Leonardos et al., 2021), which
includes identical reward multi-agent RL (Tan, 1993; Panait
and Luke, 2005) as an important special case. Though
global convergence rate results were established recently
by Zhang et al. (2021); Leonardos et al. (2021) for gradient
play under MPGs, these results only bound the NE-gap
(c.f. Definition 4) but do not say the convergence of the
policies or which NE the policies converge to, even if they
do converge. Given the fact that there are many NEs that
would have poor global value, global convergence results
has a limited implication on the algorithm performance.
This motivate us study the local geometry around some
specific types of NEs. In this paper, we show that strict
NEs are local maxima of the total potential function, thus
stable points under gradient play, and that fully mixed NEs
are saddle points, thus unstable points under gradient play.
Lastly, we note that results of this paper are posted online
in our ArXiv report (Zhang et al., 2021), which contains
all the proofs, numerical study and extra results.

2. PROBLEM SETTING AND PRELIMINARIES

We consider a stochastic game (SG) M = (N,S, A = A1×
· · ·×An, P, r = (r1, . . . , rn), γ, ρ) with n agents (Shapley,
1953) which is specified by an agent set N = {1, 2, . . . , n},
a finite state space S, a finite action space Ai for each
agent i ∈ N , a transition model P where P (s′|s, a) =
P (s′|s, a1, . . . , an) is the probability of transitioning into
state s′ upon taking action a := (a1, . . . , an) in state s
where ai ∈ Ai is action of agent i, agent i’s reward function
ri : S × A → [0, 1], a discount factor γ ∈ [0, 1), and an
initial state distribution ρ over S.
A stochastic policy π : S → ∆(A) (where ∆(A) is the
probability simplex over A) specifies a strategy in which
agents choose their actions jointly based on the current
state in a stochastic fashion, i.e. Pr(at|st) = π(at|st).
A distributed stochastic policy is a special subclass of
stochastic policies, with π = π1 × . . .× πn, where πi : S →
∆(Ai). For distributed stochastic policies, each agent takes
its action based on the current state s independently of
other agents’ choices of actions, i.e.:

Pr(at|st)=π(at|st)=
n∏

i=1

πi(ai,t|st), at=(a1,t, . . . , an,t).

For notational simplicity, we define: πI(aI |s) :=
∏

i∈I πi(ai|s),
where I ⊆ N is an index set. Further, we use the notation
−i to denote the index set N\{i}.
We consider direct distributed policy parameterization,
where agent i’s policy is parameterized by θi:

πi,θi(ai|s) = θi,(s,ai), i = 1, 2, . . . , n. (1)

For notational simplicity, we abbreviate πi,θi(ai|s) as

πθi(ai|s), and θi,(s,ai) as θs,ai
. Here θi ∈ ∆(Ai)

|S|, i.e. θi is
subject to the constraints θs,ai ≥ 0 and

∑
ai∈Ai

θs,ai = 1

for all s ∈ S. The global joint policy is given by: πθ(a|s) =∏n
i=1 πθi(ai|s) =

∏n
i=1 θs,ai . We use Xi := ∆(Ai)

|S|,X :=
X1 × · · · × Xn to denote the feasible region of θi and θ.

Agent i’s value function V θ
i : S → R, i ∈ N is defined as

the discounted sum of future rewards starting at state s
via executing πθ, i.e.

V θ
i (s) := E

[ ∞∑
t=0

γtri(st, at)
∣∣ πθ, s0 = s

]
,

where the expectation is with respect to the random
trajectory τ = (st, at, ri,t)

∞
t=0 where at ∼ πθ(·|st), st+1 =

P (·|st, at). We denote agent i’s total reward starting from
initial state s0 ∼ ρ as:

Ji(θ) = Ji(θ1, . . . , θn) := Es0∼ρV
θ
i (s0).

In the game setting, agent i’s incentive is to maximize its
own total reward Ji. A Nash equilibrium (NE) is often
used to characterize the equilibrium where no agent has a
unilateral incentive to deviate from it.

Definition 1. (Nash equilibrium) A policy θ∗ = (θ∗1 , . . . , θ
∗
n)

is called a Nash equilibrium (NE) if

Ji(θ
∗
i , θ

∗
−i) ≥ Ji(θ

′
i, θ

∗
−i), ∀θ′i ∈ Xi, i ∈ N

The equilibrium is called a strict NE if the inequality
holds strictly for all θ′i ∈ Xi, θ

′
i ̸= θi and i ∈ N . The

equilibrium is called a pure NE if θ∗ corresponds to a
deterministic policy. The equilibrium is called a mixed
NE if it is not pure. Further, the equilibrium is called a
fully mixed NE if every entry of θ∗ is strictly positive, i.e.:
θ∗s,ai

> 0, ∀ ai ∈ Ai, ∀ s ∈ S, i ∈ N

We define the discounted state visitation distribution dθ of
a policy πθ given an initial state distribution ρ as:

dθ(s) := Es0∼ρ(1− γ)

∞∑
t=0

γtPrθ(st = s|s0), (2)

where Prθ(st = s|s0) is the state visitation probability that
st = s when executing πθ starting at state s0. Throughout
the paper, we make the following assumption on the SGs
we study.

Assumption 1. The stochastic game M satisfies: dθ(s) >
0, ∀s ∈ S, ∀θ ∈ X .

Assumption 1 requires that every state is visited with
positive probability, which is a standard assumption for
convergence proofs in the RL literature (e.g. (Agarwal et al.,
2020; Mei et al., 2020)).

Similar to centralized RL, we define agent i’s Q-function
Qθ

i : S×A → R and its advantage function Aθ
i : S×A → R

as:

Qθ
i (s, a) :=E

[ ∞∑
t=0

γtri(st, at)
∣∣ πθ, s0=s, a0=a

]
,

Aθ
i (s, a) :=Qθ

i (s, a)−V θ
i (s).

‘Averaged’ Markov decision process (MDP): We

further define agent i’s ‘averaged’ Q-function Qθ
i : S ×

Ai → R and ‘averaged’ advantage-function Aθ
i : S ×

Ai → R as:

Qθ
i (s, ai) :=

∑
a−i

πθ−i
(a−i|s)Qθ

i (s, ai, a−i),

Aθ
i (s, ai) :=

∑
a−i

πθ−i(a−i|s)Aθ
i (s, ai, a−i).

(3)

Similarly, we define agent i’s ‘averaged’ transition proba-

bility distribution P θ
i : S × S × Ai → R, and ‘averaged’

reward rθi : S ×Ai → R as:

P θ
i (s

′|s, ai) :=
∑
a−i

πθ−i(a−i|s)P (s′|s, ai, a−i),

rθi (s, ai) :=
∑
a−i

πθ−i(a−i|s)ri(s, ai, a−i)

From its definition, the averaged Q-function satisfies the
following Bellman equation:

Lemma 1. Qθ
i satisfies:

Qθ
i (s, ai) = rθi (s, ai) + γ

∑
s′,a′

i

πθi(a
′
i|s′)P θ

i (s
′|s, ai)Qθ

i (s
′, a′i)

Lemma 1 suggests that the averaged Q-function Qθ
i is

indeed the Q-function for the MDP defined on action

space Ai, with rθi , P
θ
i as its stage reward and transition

probability respectively. We define this MDP as the

‘averaged’ MDP of agent i, i.e., Mθ
i = (S,Ai, P θ

i , r
θ
i , γ, ρ).

Note that the ‘averaged’ MDP is only well-defined when
the policies of the other agents θ−i are kept fixed. When
this is indeed the case, agent i can be treated as an
independent learner with respect to its own ‘averaged’ MDP.
This observation serves as an important intuition for our
theoretical results, for example, we can apply performance
difference lemma (Kakade and Langford, 2002) to the
averaged MDP to derive a corresponding lemma for SGs
which is useful throughout the paper (see Appendix C in
our online supplementary material (Zhang et al., 2022) for
more detail).

Lemma 2. (Performance difference lemma, for SGs) Let
θ′ = (θ′i, θ−i)

Ji(θ
′
i, θ−i)−Ji(θi, θ−i) =

1

1− γ

∑
s,ai

dθ′(s)πθ′
i
(ai|s)Aθ

i (s, ai).

Note that in the single agent case (n = 1), Lemma 2 is the
same as the original performance difference lemma known
in literature.

3. GRADIENT PLAY FOR GENERAL STOCHASTIC
GAMES

Under direct distributed parameterization, the gradient
play algorithm is given by:

θ
(t+1)
i = ProjXi

(θ
(t)
i + η∇θiJi(θ

(t)
i )), η > 0. (4)

Gradient play can be viewed as a ‘better response’ strategy,
where agents update their own parameters by gradient
ascent with respect to their own rewards. A first-order
stationary point is defined as such:

Definition 2. (First-order stationary policy) A policy θ∗ =
(θ∗1 , . . . , θ

∗
n) is called a first-order stationary policy if

(θ′i − θ∗i )
⊤∇θiJi(θ

∗) ≤ 0, ∀θ′i ∈ Xi, i ∈ N.

It is not hard to verify that θ∗ is a first-order stationary
policy if and only if it is a fixed point under gradient
play (4). Comparing Definition 1 (of NE) and Definition
2, we know that NEs are first-order stationary policies,
but not necessarily vice versa. For each agent i, first-order
stationarity does not imply that θ∗i is optimal among all
possible θi given θ∗−i. However, interestingly, we will show

that NEs are equivalent to first-order stationary policies
due to a gradient domination property that we will show
later. Before that, we first calculate the explicit form of
the gradient ∇θiJi.

Policy gradient theorem (Sutton et al., 1999) gives an
efficient formula for the gradient:

∇θEs0∼ρV
θ
i (s0)=

1

1−γ
Es∼dθ,a∼πθ(·|s)[∇θ log πθ(a|s)Qθ

i (s, a)].

(5)
Applying (5), the gradient ∇θiJi can be written explicitly
as follows:

Lemma 3. (Proof in Appendix B of our online supplemen-
tary material (Zhang et al., 2022)) For direct distributed
parameterization (1),

∂Ji(θ)

∂θs,ai

=
1

1− γ
dθ(s)Qθ

i (s, ai) (6)

Gradient domination and the equivalence between
NE and first-order stationary policy. Lemma 4.1 in
Agarwal et al. (2020) established gradient domination for
centralized tabular MDP under direct parameterization. We
can show that a similar property still holds for stochastic
games.

Lemma 4. (Gradient domination) For direct distributed pa-
rameterization (1), we have that for any θ = (θ1, . . . , θn) ∈
X and any θ′i ∈ Xi, i ∈ N :

Ji(θ
′
i, θ−i)−Ji(θi, θ−i)≤

∥∥∥∥
dθ′

dθ

∥∥∥∥
∞

max
θi∈Xi

(θi − θi)
⊤∇θiJi(θ),

(7)

where
∥∥∥dθ′

dθ

∥∥∥
∞

:= maxs
dθ′ (s)
dθ(s)

, and θ′ = (θ′i, θ−i).

The proof of Lemma 4 resembles the proof technique
in Agarwal et al. (2020). Agarwal et al. (2020) leverage
performance difference lemma for centralized MDP to
derive their result, while we can replace the performance
difference lemma by Lemma 2 to prove Lemma 4. The
detailed proof can be found in Appendix C of our online
supplementary material (Zhang et al., 2022).

Our result (7) is consistent with the result in Agarwal et al.
(2020) for the single-agent case (n = 1), i.e.: J(θ′) −
J(θ) ≤

∥∥∥dθ′
dθ

∥∥∥
∞

maxθ∈X (θ − θ)⊤∇J(θ). However, when

there are multiple agents, the condition is much weaker
because the inequality requires θ−i to be fixed. When
n = 1, gradient domination rules out the existence of
stationary points that are not global optima. For the
multi-agent case, the property can no longer guarantee
the equivalence between first-order stationarity and global
optimality; instead, it links the stationary points with NEs
as shown in the next theorem.

Theorem 1. Under Assumption 1, first-order stationary
policies and NEs are equivalent.

The proof of Theorem 1 is given in Appendix C in the
online supplementary material (Zhang et al., 2022). Before
moving on to the local convergence results, we would
like to point that the equivalence established in Theorem
1 cannot be generalized to settings other than tabular
SGs. For example, Mazumdar et al. (2020) construct
counterexamples for continuous games using quadratic
functions. Our result does not contradict their work because
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their counterexamples are not tabular SG as studied in this
paper and the utility functions there may not be gradient
dominant.

Local convergence for strict NEs Although the equiv-
alence of NEs and stationary points under gradient play
has been established, it is in fact difficult to show that
gradient play converges to these stationary points. Even
in the simpler static (stateless) game setup, gradient play
might fail to converge (Shapley, 1964; Crawford, 1985;
Jordan, 1993; Krishna and Sjöström, 1998). One major
difficulty is that the vector field {∇θiJi(θ)}ni=1 is not a
conservative vector field (definition see e.g. Marsden and
Tromba (2003)). Accordingly, its dynamics may display
complicated behavior. Thus, as a preliminary study, instead
of looking at global convergence, we focus on the local
convergence and restrict our study to a special subset of
NEs - the strict NEs. We begin by giving the following
characterization of strict NEs:

Lemma 5. Given a stochastic game M, any strict NE θ∗ is
pure, meaning that for each i and s, there exist one a∗i (s)
such that θ∗s,ai

= 1{ai = a∗i (s)}. Additionally,

i) a∗i (s) = argmax
ai

Aθ∗
i (s, ai),

ii) Aθ∗
i (s, a∗i (s)) = 0;

iii) Aθ∗
i (s, ai) < 0, ∀ ai ̸= a∗i (s)

(8)

Based on this lemma, we define the following for studying
the local convergence of a strict NE θ∗:

∆θ∗

i (s) := min
ai ̸=a∗

i
(s)

∣∣∣Aθ∗
i (s, ai)

∣∣∣ ,

∆θ∗
:= min

i
min
s

1

1− γ
dθ∗(s)∆θ∗

i (s) > 0.
(9)

Theorem 2. (Local finite time convergence around strict
NE) Define the metric of policy parameters as: D(θ||θ′) :=
max1≤i≤n maxs∈S ∥θi,s − θ′i,s∥1, where ∥ · ∥1 denote the ℓ1-
norm. Suppose θ∗ is a strict Nash equilibrium, then for

any θ(0) such that D(θ(0)||θ∗) ≤ ∆θ∗ (1−γ)3

8n|S|(
∑n

i=1
|Ai|)

, run-

ning gradient play (4) will guarantee D(θ(t+1)||θ∗) ≤
max

{
D(θ(t)||θ∗)− η∆θ∗

2 , 0
}
, which means that gradient

play is going to converge within ⌈ 2D(θ(0)||θ∗)
η∆θ∗ ⌉ steps.

Proofs of Lemma 5 and Theorem 2 are given in Appendix D
of our online supplementary material (Zhang et al., 2022).

Remark 1. Note that the local convergence in Theorem 2
only requires a finite number of steps and the stepsize η
can be chosen arbitrarily large so that exact convergence
can happen in even just one step after projection to the
feasible set X . However, the caveat is that we need to
assume that the initial policy is sufficiently close to θ∗.
For numerical stability considerations, one should pick
reasonable stepsizes to run the algorithm to accommodate
random initializations. Theorem 2 also shows that the
radius of region of attraction for strict NEs is at least

∆θ∗ (1−γ)3

8n|S|(
∑n

i=1
|Ai|)

, and thus θ∗ with a larger ∆θ∗
, i.e., a

larger value gap between the optimal action and other
actions, will have a larger region of attraction. We would
like to further remark that Theorem 2 only focuses on the
local convergence property; hence, we can interpret the

theorem in the following way: if there exists a strict NE,
then it is locally asymptotically stable under gradient play.
However, it does not claim to solve the global existence or
convergence of the strict NEs.

4. GRADIENT PLAY FOR MARKOV POTENTIAL
GAMES

We have discussed that the main problem for the global
convergence of gradient play for general SGs is that the
vector field {∇θiJi(θ)}ni=1 is not conservative. Thus, in
this section, we restrict our analysis to a special subclass,
Markov Potential Games (MPG), where the vector field
is conservative, which in turn enjoys global convergence
(Zhang et al., 2021; Leonardos et al., 2021).

Definition 3. (Markov potential game (Macua et al., 2018;
Zhang et al., 2021; Leonardos et al., 2021)) A stochastic
game M is called a Markov potential game if there exists
a potential function ϕ : S × A1 × · · · × An → R such
that for any agent i and any pair of policy parameters
(θ′i, θ−i), (θi, θ−i) :

E
[∑∞

t=0 γ
tri(st, at)

∣∣π = (θ′i, θ−i), s0 = s
]

−E

[ ∞∑
t=0

γtri(st, at)
∣∣π = (θi, θ−i), s0 = s

]

=E
[∑∞

t=0 γ
tϕ(st, at)

∣∣π = (θ′i, θ−i), s0 = s
]

−E

[ ∞∑
t=0

γtϕ(st, at)
∣∣π = (θi, θ−i), s0 = s

]
, ∀ s.

More discussions on MPG including conditions to verify a
SG is a MPG could be found in Macua et al. (2018); Zhang
et al. (2021); Leonardos et al. (2021). We defer readers to
these references. Note that identical interest game where
agents share a same reward function naturally satisfies the
above condition and serves as one important special case
of MPG.

Given a policy θ, we define the ‘total potential function’
Φ(θ) := Es0∼ρ(·)

[∑∞
t=0 γ

tϕ(st, at)
∣∣ πθ

]
for a MPG. From

the definition of the total potential function we obtain the
following relationship

Ji(θ
′
i, θ−i)− Ji(θi, θ−i) = Φ(θ′i, θ−i)− Φ(θi, θ−i). (10)

Thus,
∇θiJi(θ) = ∇θiΦ(θ),

which means that gradient play (4) is equivalent to running
projected gradient ascent with respect to the total potential
function Φ, i.e.:

θ(t+1) = ProjX (θ(t) + η∇θΦ(θ
(t)
i )), η > 0.

With this property people have established the global con-
vergence for gradient play to a ϵ-NE for MPG Zhang et al.
(2021); Leonardos et al. (2021). We cite the definition of
ϵ-NE and the theorem here for the sake of self-completeness.

Definition 4. (ϵ-Nash equilibrium) Define the ‘NE-gap’ of
a policy θ as:

NE-gapi(θ) := max
θ′
i
∈Xi

Ji(θ
′
i, θ−i)− Ji(θi, θ−i);

NE-gap(θ) := max
i

NE-gapi(θ).

A policy θ is an ϵ-Nash equilibrium if: NE-gap(θ) ≤ ϵ.

Theorem 3. ((Zhang et al., 2021; Leonardos et al., 2021))
Suppose that total potential function Φ is bounded, i.e.,
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their counterexamples are not tabular SG as studied in this
paper and the utility functions there may not be gradient
dominant.

Local convergence for strict NEs Although the equiv-
alence of NEs and stationary points under gradient play
has been established, it is in fact difficult to show that
gradient play converges to these stationary points. Even
in the simpler static (stateless) game setup, gradient play
might fail to converge (Shapley, 1964; Crawford, 1985;
Jordan, 1993; Krishna and Sjöström, 1998). One major
difficulty is that the vector field {∇θiJi(θ)}ni=1 is not a
conservative vector field (definition see e.g. Marsden and
Tromba (2003)). Accordingly, its dynamics may display
complicated behavior. Thus, as a preliminary study, instead
of looking at global convergence, we focus on the local
convergence and restrict our study to a special subset of
NEs - the strict NEs. We begin by giving the following
characterization of strict NEs:

Lemma 5. Given a stochastic game M, any strict NE θ∗ is
pure, meaning that for each i and s, there exist one a∗i (s)
such that θ∗s,ai

= 1{ai = a∗i (s)}. Additionally,

i) a∗i (s) = argmax
ai

Aθ∗
i (s, ai),

ii) Aθ∗
i (s, a∗i (s)) = 0;

iii) Aθ∗
i (s, ai) < 0, ∀ ai ̸= a∗i (s)

(8)

Based on this lemma, we define the following for studying
the local convergence of a strict NE θ∗:

∆θ∗

i (s) := min
ai ̸=a∗

i
(s)

∣∣∣Aθ∗
i (s, ai)

∣∣∣ ,

∆θ∗
:= min

i
min
s

1

1− γ
dθ∗(s)∆θ∗

i (s) > 0.
(9)

Theorem 2. (Local finite time convergence around strict
NE) Define the metric of policy parameters as: D(θ||θ′) :=
max1≤i≤n maxs∈S ∥θi,s − θ′i,s∥1, where ∥ · ∥1 denote the ℓ1-
norm. Suppose θ∗ is a strict Nash equilibrium, then for

any θ(0) such that D(θ(0)||θ∗) ≤ ∆θ∗ (1−γ)3

8n|S|(
∑n

i=1
|Ai|)

, run-

ning gradient play (4) will guarantee D(θ(t+1)||θ∗) ≤
max

{
D(θ(t)||θ∗)− η∆θ∗

2 , 0
}
, which means that gradient

play is going to converge within ⌈ 2D(θ(0)||θ∗)

η∆θ∗ ⌉ steps.

Proofs of Lemma 5 and Theorem 2 are given in Appendix D
of our online supplementary material (Zhang et al., 2022).

Remark 1. Note that the local convergence in Theorem 2
only requires a finite number of steps and the stepsize η
can be chosen arbitrarily large so that exact convergence
can happen in even just one step after projection to the
feasible set X . However, the caveat is that we need to
assume that the initial policy is sufficiently close to θ∗.
For numerical stability considerations, one should pick
reasonable stepsizes to run the algorithm to accommodate
random initializations. Theorem 2 also shows that the
radius of region of attraction for strict NEs is at least

∆θ∗ (1−γ)3

8n|S|(
∑n

i=1
|Ai|)

, and thus θ∗ with a larger ∆θ∗
, i.e., a

larger value gap between the optimal action and other
actions, will have a larger region of attraction. We would
like to further remark that Theorem 2 only focuses on the
local convergence property; hence, we can interpret the

theorem in the following way: if there exists a strict NE,
then it is locally asymptotically stable under gradient play.
However, it does not claim to solve the global existence or
convergence of the strict NEs.

4. GRADIENT PLAY FOR MARKOV POTENTIAL
GAMES

We have discussed that the main problem for the global
convergence of gradient play for general SGs is that the
vector field {∇θiJi(θ)}ni=1 is not conservative. Thus, in
this section, we restrict our analysis to a special subclass,
Markov Potential Games (MPG), where the vector field
is conservative, which in turn enjoys global convergence
(Zhang et al., 2021; Leonardos et al., 2021).

Definition 3. (Markov potential game (Macua et al., 2018;
Zhang et al., 2021; Leonardos et al., 2021)) A stochastic
game M is called a Markov potential game if there exists
a potential function ϕ : S × A1 × · · · × An → R such
that for any agent i and any pair of policy parameters
(θ′i, θ−i), (θi, θ−i) :

E
[∑∞

t=0 γ
tri(st, at)

∣∣π = (θ′i, θ−i), s0 = s
]

−E

[ ∞∑
t=0

γtri(st, at)
∣∣π = (θi, θ−i), s0 = s

]

=E
[∑∞

t=0 γ
tϕ(st, at)

∣∣π = (θ′i, θ−i), s0 = s
]

−E

[ ∞∑
t=0

γtϕ(st, at)
∣∣π = (θi, θ−i), s0 = s

]
, ∀ s.

More discussions on MPG including conditions to verify a
SG is a MPG could be found in Macua et al. (2018); Zhang
et al. (2021); Leonardos et al. (2021). We defer readers to
these references. Note that identical interest game where
agents share a same reward function naturally satisfies the
above condition and serves as one important special case
of MPG.

Given a policy θ, we define the ‘total potential function’
Φ(θ) := Es0∼ρ(·)

[∑∞
t=0 γ

tϕ(st, at)
∣∣ πθ

]
for a MPG. From

the definition of the total potential function we obtain the
following relationship

Ji(θ
′
i, θ−i)− Ji(θi, θ−i) = Φ(θ′i, θ−i)− Φ(θi, θ−i). (10)

Thus,
∇θiJi(θ) = ∇θiΦ(θ),

which means that gradient play (4) is equivalent to running
projected gradient ascent with respect to the total potential
function Φ, i.e.:

θ(t+1) = ProjX (θ(t) + η∇θΦ(θ
(t)
i )), η > 0.

With this property people have established the global con-
vergence for gradient play to a ϵ-NE for MPG Zhang et al.
(2021); Leonardos et al. (2021). We cite the definition of
ϵ-NE and the theorem here for the sake of self-completeness.

Definition 4. (ϵ-Nash equilibrium) Define the ‘NE-gap’ of
a policy θ as:

NE-gapi(θ) := max
θ′
i
∈Xi

Ji(θ
′
i, θ−i)− Ji(θi, θ−i);

NE-gap(θ) := max
i

NE-gapi(θ).

A policy θ is an ϵ-Nash equilibrium if: NE-gap(θ) ≤ ϵ.

Theorem 3. ((Zhang et al., 2021; Leonardos et al., 2021))
Suppose that total potential function Φ is bounded, i.e.,

for all θ ∈ X , Φmin ≤ Φ(θ) ≤ Φmax, then with stepsize

η = (1−γ)3

2
∑n

i=1
|Ai|

, the NE-gap of θ(t) asymptotically converge

to 0 under gradient play (4), i.e., limt→∞ NE-gap(θ(t)) = 0.
Further, we have:

1

T

∑
1≤t≤T

NE-gap(θ(t))2 ≤ ϵ2,

whenever T ≥
64M2(Φmax − Φmin)|S|

∑n
i=1 |Ai|

(1− γ)3ϵ2
,

(11)

where M := maxθ,θ′∈X

∥∥∥ dθ

dθ′

∥∥∥
∞

(by Assumption 1, we

know that this quantity is well-defined, and if the initial
state distribution satisfies ρ(s) > 0 for all s, M can be
bounded by M ≤ 1/(1− γ)mins ρ(s)).

Quality of NEs. Theorem 3 suggests that gradient play is
guaranteed to converge to a NE, however, which exact NE it
converges to is not specified in the theorem.The qualities of
NEs can vary significantly. For example, consider a simple
two-agent identical-interest normal form game with reward
table given in Table 1. There are three NEs. Two of them
are strict NEs, where both agents choose the same action,
i.e. a1 = a2 = 1 or 2. Both NEs are of reward 1. Another
NE is a fully mixed NE, where both agents choose action
1 and 2 randomly with probability 1

2 . This NE is only

of reward 1
2 . This significant quality difference between

different types of NEs motivates us to further understand
whether gradient play can find NEs with relatively good
qualities. Since the NE that gradient play converges to
depends on the initialization as well as the local geometry
around the NE, as a preliminary study, we characterize the
local geometry and landscape for strict NEs as well as fully
mixed NEs (stated in the following theorem). More future
investigation is needed for non-strict, non-fully-mixed NEs.

a2 = 1 a2 = 2

a1 = 1 1 0

a1 = 2 0 1

Table 1.

Theorem 4. For a Markov potential game with Φmin <
Φmax (i.e., Φ is not a constant function):

• A strict NE θ∗ is equivalent to a strict local maximum
of the total potential function Φ, i.e.: ∃ δ, such that
for all θ∈X , θ ̸=θ∗ that satisfies ∥θ− θ∗∥ ≤ δ, we have
Φ(θ) < Φ(θ∗).

• Any fully mixed NE θ∗ is a saddle point with regard
to the total potential function Φ that satisfies: ∀ δ >
0, ∃ θ ∈ X , such that ∥θ−θ∗∥ ≤ δ and Φ(θ)>Φ(θ∗).

The proof of Theorem 4 is given in Appendix E in our
online supplementary material (Zhang et al., 2022).

Remark 2. Theorem 4 implies that strict NEs are asymp-
totically locally stable under first-order methods such as
gradient play; while the fully mixed NEs are unstable
under gradient play. Note that the theorem does not claim
stability or instability for other types of NEs, e.g., pure
NEs or non-fully mixed NEs. Nonetheless, we believe that
these preliminary results can serve as a valuable platform
towards a better understanding of the geometry of the
problem. We remark that the conclusion about strict NEs
in Theorem 4 does not hold for settings other than tabular

MPG; for instance, for continuous games, one can use
quadratic functions to construct simple counterexamples
(Mazumdar et al., 2020). Also, similar to Remark 1, this
theorem focuses on the local geometry of the NEs but does
not claim the global existence or convergence of either strict
NEs or fully mixed NEs.

5. CONCLUSIONS AND DISCUSSIONS

This paper studies the optimization landscape of multi-
agent reinforcement learning through a game theoretic
point of view. Specifically, we look into the tabular
stochastic game problem and prove that all first order
stationary policies are NEs under this setting. We also give
a local convergence rate around strict NEs. For a special
subclass of stochastic games called the Markov potential
game, we have shown that strict NEs are the local maxima
of the total potential function and fully mixed NEs are
saddle points.

We believe that this is a fruitful research direction with
many interesting open questions. For instance, one could
explore generalizing our work (which assumes access to
exact gradients) to a setting where gradients are estimated
using data samples. Extending our results beyond direct
policy parameterization to e.g. softmax parameterization
(cf. (Agarwal et al., 2020)), is another interesting topic.
Other interesting questions include local stability analysis
in more general games (beyond Markov potential games),
faster algorithm design (via e.g. natural policy gradient,
Gauss-Newton methods), and online algorithm design for
stochastic learning.
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