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We study a class of cooperative multi-agent optimization problems, where each agent is associated
with a local action vector and a local cost, and the goal is to cooperatively find the joint action profile
that minimizes the average of the local costs. We consider the setting where gradient information is not
readily available, and the agents only observe their local costs incurred by their actions as a feedback
to determine their new actions. We propose a zeroth-order feedback optimization scheme and provide
explicit complexity bounds for the constrained convex setting with noiseless and noisy local cost
observations. We also discuss briefly on the impacts of knowledge of local function dependence
between agents. The algorithm’s performance is justified by a numerical example of distributed routing
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1. Introduction

In this paper, we study model-free decentralized optimization
for a specific class of cooperative multi-agent systems. Specifi-
cally, the cooperative multi-agent system comprises a group of n
decision-making agents connected by a communication network.
Associated with each agent is a local action X € R%, and after
the agents take their actions, a local cost fi(x!, ..., x") will be
observed by agent i which reflects the impact of all agents’
actions. The goal for the agents is to cooperatively seek their local
actions that minimize their averaged cost as the global objective
characterizing the system-wise performance:

l n
min = Y fix', ..., ")
i=1

x,..xn <

We shall focus on the model-free setting, where each agent can
only utilize the observed (zeroth-order) feedback values of the

* This work was supported by NSF, United States CNS-2003111, NSF, United
States ECCS-2038603, NSF Al Institute in Dynamic Systems, United States CBET-
2112085, NSF CAREER, United States ECCS-1553407, and ONR YIP, United
States N0O0014-19-1-2217. This research was conducted when Yujie Tang was a
postdoctoral fellow in the School of Engineering and Applied Sciences at Harvard
University. The material in this paper was partially presented at the 59th
IEEE Conference on Decision and Control, December 14-18, 2020, Jeju Island,
Republic of Korea. This paper was recommended for publication in revised form
by Associate Editor Luca Schenato under the direction of Editor Christos G.
Cassandras.

* Corresponding author.

E-mail addresses: yujietang@pku.edu.cn (Y. Tang),
zhaolinren@g.harvard.edu (Z. Ren), nali@seas.harvard.edu (N. Li).

https://doi.org/10.1016/j.automatica.2022.110741
0005-1098/© 2022 Elsevier Ltd. All rights reserved.

associated local cost, but not (higher-order) derivatives thereof.
We refer to such optimization problems as (cooperative) multi-
agent zeroth-order feedback optimization.

Multi-agent zeroth-order feedback optimization and its vari-
ants can cover many real-world applications, such as optimal
flow of routing games (Li & Marden, 2013; Nisan, Roughgar-
den, Tardos, & Vazirani, 2007), mobile sensor coverage (Cortés,
Martinez, Karatas, & Bullo, 2004), wind farm power optimization
problem (Marden, Ruben, & Pao, 2013), power control in wireless
networks (Candogan, Menache, Ozdaglar, & Parrilo, 2010), etc.
In these applications, decision-makers may not have access to
a sufficiently accurate model of the underlying system, which
motivates the use of zeroth-order/derivative free approaches.

We emphasize that in multi-agent zeroth-order feedback op-
timization, each agent i can only control its own action x/, but
each local cost f; is a function of the joint action profile x =
(x',...,x"), ie., agent i's local cost depends possibly on the
actions of all agents (or a subset of agents). Such coupling in the
local cost functions adds complexities in optimizing the global
objective via local information, and requires carefully designed
schemes of coordination among agents. We also point out that
this problem setup is different from the more commonly studied
consensus optimization setup, in which each agent maintains a
local copy of the global decision variable, and is able to evaluate
its local cost at its own local copy without being directly affected
by other agents (see Nedi¢ & Ozdaglar, 2010, for a survey).

Existing literature has investigated cooperative multi-agent
zeroth-order feedback optimization and its variants from a num-
ber of different angles. One line of works (Marden, Young, & Pao,
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2014; Menon & Baras, 2013a, 2013b, 2014) has been motivated by
the wind farm power maximization problem and has developed
algorithms for social welfare maximization of multi-agent games.
Specifically, Marden et al. (2014) and Menon and Baras (2013a)
studied welfare maximization of multi-agent games with dis-
crete action spaces, which can be viewed as a discrete analog
of our problem setup, and Marden et al. (2013) applied these
methods to model-free wind farm power maximization; Menon
and Baras (2013b) proposed a modified algorithm that incor-
porates exchange of information between agents to eliminate
the restrictions on the payoff structure in previous works. Then
in Menon and Baras (2014), the authors studied welfare max-
imization of multi-agent games with continuous action spaces,
which is essentially identical to our problem setup; they de-
veloped a continuous-time decentralized payoff-based algorithm
using extremum seeking control and consensus on the local pay-
offs. The paper Dougherty and Guay (2017) motivated its problem
setup from distributed extremum seeking control over sensor
networks, but can also be regarded as an extension of Menon and
Baras (2014), which further handles coupled constraints on the
actions by barrier functions. We point out that, apart from im-
plementation issues of continuous-time algorithms, these works
that were based on extremum seeking control have the limitation
that they only established convergence to a neighborhood of an
optimal joint action for limited situations, contrary to our work
that establishes explicit complexity bounds that also reflect the
impact of problem dimension and network structure for general
constrained smooth convex problems. In another related direc-
tion, Li and Marden (2013) considered the problem of designing
local objective functions so as to optimize global behavior in
multi-agent games but it assumes the knowledge of the objective
function structure.

Our contributions

In this paper, we propose a Zeroth-order Feedback Optimiza-
tion (ZFO) algorithm for cooperative multi-agent systems. Our
ZFO algorithm is based on local computation and communication
of the two-point zeroth-order gradient estimators investigated
in Nesterov and Spokoiny (2017) and Shamir (2017). More specif-
ically, for each iteration, each agent first takes its own actions
and observes the corresponding zeroth-order values of its own
local cost, then collects and updates zeroth-order information
of other agents’ costs by exchanging data with its neighbors
in the network, and finally constructs a two-point zeroth-order
partial gradient estimate for updating its own action vector. The
communication network could be subject to potential delays.

Furthermore, we conduct complexity analysis of our ZFO al-
gorithm for smooth convex problems for both noise-free and
noisy zeroth-order evaluations. A summary of the complexity
bounds can be found in Table 1. Here we list the number of
iterations needed for the proposed algorithm to converge with
accuracy € > 0, where the accuracy is measured by the expected
optimality gap in the objective value (see Section 4 for detailed
definitions). These complexity bounds are also compared with the
centralized counterparts. In addition, apart from the dependence
on ¢, we also provide the dependence of the complexity bounds
on the problem’s dimension d, and on the communication net-
work’s structure and delays quantified by b. To the best of our
knowledge, this work seems to be the first to provide explicit
complexity bounds for algorithms of multi-agent zeroth-order
feedback optimization with analysis on the impact of problem
dimension and network structure.

Compared to the authors’ conference paper Tang, Ren, and Li
(2020a) which only analyzed the unconstrained nonconvex set-
ting with noiseless zeroth-order evaluations, this journal article
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Table 1
Complexity bounds for our ZFO algorithm.

Vf(x*) = 0 known

Vf(x*) = 0 not known

Noiseless

o2 o2
Noisy o (b(d +d1n(]/e))> o (b(d +dln(1/e)))

e3 €t

contains new results for (i) the constrained convex setting where
the global objective function is convex and the feasible regions
are compact and convex, and (ii) the situations where zeroth-
order evaluations are corrupted by additive noise. In order to deal
with the compact constraints in the convex setting, we introduce
and analyze a new sampling procedure for the random pertur-
bations in zeroth-order gradient estimation, which has its own
merit for the general area of zeroth-order optimization. We also
conduct a preliminary investigation on how knowledge of local
function dependence can be exploited to improve convergence
and reduce communication burden. We provide new numerical
results on finding the optimal flow of a routing game with a
convex global objective.

Other related work

Zeroth-order optimization. Our work employs zeroth-order opti-
mization techniques to deal with the lack of model information.
In the centralized setting, one line of research on zeroth-order
optimization has focused on constructing gradient estimators
using zeroth-order function values (Duchi, Jordan, Wainwright,
& Wibisono, 2015; Flaxman, Kalai, & McMahan, 2005; Larson,
Menickelly, & Wild, 2019; Nesterov & Spokoiny, 2017; Shamir,
2017), and there have also been works proposing direct-search
methods that do not seek to approximate a gradient (Agarwal,
Foster, Hsu, Kakade, & Rakhlin, 2013; Torczon, 1997). A survey
can be found in Larson et al. (2019). In addition, there has been
increasing interest recently in exploiting zeroth-order optimiza-
tion methods in a distributed setting (Hajinezhad, Hong, & Garcia,
2019; Li, Tang, Zhang, & Li, 2021; Sahu, Jakovetic, Bajovic, & Kar,
2018; Tang, Zhang, & Li, 2021; Yu, Ho, & Yuan, 2022). However,
to the best of our knowledge, most of them focus on the consen-
sus optimization setup, rather than the cooperative multi-agent
system setup discussed in this work.

Distributed optimization. Another related research area is dis-
tributed optimization. While our setting is different from consen-
sus optimization (Chang, Hong, & Wang, 2015; Nedi¢ & Ozdaglar,
2009; Pu & Nedi¢, 2021; Qu & Li, 2018; Shi, Ling, Wu, & Yin,
2015), we note that in both settings, collaborations among agents
are needed for optimizing the global objective. In addition, in
our problem setup, the agents will naturally experience delays
when receiving information from other (possibly distant) agents
in the network due to the local nature of communication. We
shall see later that our algorithm and analysis share similari-
ties with asynchronous/delayed distributed optimization (Agar-
wal & Duchi, 2011; Lian, Huang, Li, & Liu, 2015; Lian, Zhang,
Hsieh, Huang, & Liu, 2016; Liu & Wright, 2015; Nedi¢, 2011;
Zhang & Kwok, 2014). However, our work appears to be the first
that studies the effects of delays in a decentralized zeroth-order
setting.

Notation

We use || - || to denote the standard ¢, norm, and use (-, -) to
denote the standard inner product. For any differentiable function
h(x) = h(x!, ..., x"), we use Vih(x) to denote the partial gradient
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of h with respect to x'. For x € R, we let [x], := max{0, x}. For a
finite set A, we use |A| to denote its number of elements. For any
S C RP, we use intS to denote its interior, use S + x to denote
{s+x :s € S} for any x € RP, and use uS to denote {us : s € S} for
any u € R. The projection of x onto a closed convex set C will be
denoted by P¢[x]. The closed unit ball in R? will be denoted by B),.
The p x p identity matrix will be denoted by I,. N(u, X') denotes
the Gaussian distribution with mean w and covariance X.

2. Problem formulation

Consider a group of n agents, where agent i is associated with
an action vector X € x; € RY% for eachi = 1,...,n. Each set
A; is convex and compact. The joint action profile of the group of
agents is then x := (x',x%,...,x") € &, where X = [[_, & C
R and d = ZL d;. Upon taking action jointly, each agent
i receives a corresponding local cost fi(x) = fi(x',...,x") that
depends on the joint action profile ¥, i.e., the actions of all agents.
The goal of the agents is to cooperatively find the actions that
minimize the average of all the local costs, i.e.,

: 1 - 1 n
min f(x) .—n;‘ﬁ(x,...,x), (1)
where f(x) denotes the global objective function defined as the
average cost among agents.

Since the local costs are affected by all agents’ actions, when
solving the problem (1), each agent will not only need to collect
information on its own local cost, but also need to communicate
and collaborate with other agents by exchanging necessary in-
formation. We further impose two assumptions for our problem
setup; the first pertains to the type of information the agents
can access, and the second to communication mechanism among
agents:

1. Access to only zeroth-order information. Each agent i can
only access zeroth-order function value of its local cost f;, and
derivatives of f; of any order are not available. Moreover, the
function values can only be obtained through observation of
feedback cost after actions have been taken. Precisely, each
agent i first determines its action vector x' and takes the
action, yielding a new joint action profile x = (x!,...,x"),
and then observes its corresponding local cost f; evaluated at
x = (x',...,x"). We shall also assume that the constraint
X € X is a hard constraint in the sense that each f; is defined
only on X and the agents can only explore their local costs
within the set x.

In this paper, we consider two cases regarding the observation
of local cost values:

(i) Noiseless case: Each agent can observe its local cost
accurately without being corrupted by noise.

(ii) Noisy case: Each agent’s observed local cost value
is corrupted by additive random noise with zero mean
and variance bounded by o2. We assume the noises are
independent of each other and are also independent of
X.

2. Localized communication. We let the n agents be connected
by a communication network. The topology of the network is
represented by an undirected, connected graph ¢ =
({1,...,n}, &), where the edges in £ correspond to the bidi-
rectional communication links. Each agent is only allowed to
exchange messages directly with its neighbors in the network
G. We shall denote the distance (the length of the shortest
path) between the pair of nodes (i, j) in the graph g by bj.

We adopt the following technical assumptions throughout the
paper:
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Assumption 1. We assume that for each i = 1,...,n, the
compact and convex set A&; has a nonempty interior. Without
loss of generality we also assume 0 € int;, as we can always
translate X;.

We define
r;:=sup{r > 0: 1By C X}, ri=
Ri:=inflR>0:x C RByg,}, R:=

Assumption 1 guarantees that these quantities are well-defined
positive real numbers.

Assumption 2. Each local cost function f; is G-Lipschitz and L-
smooth on &, ie.,

lfix) = W < Gllx =y, IIVfi(x) = VDI < Lllx =yl

for any x,y € X for each i = 1,...,n. Furthermore, the global
cost function f is convex.

In the following subsection, we present one example which
fits the aforementioned formulation.

2.1. Example: Optimal flow of routing games

Consider finding the optimal flow of a nonatomic routing
game formulated in Li and Marden (2013) and Nisan et al. (2007).
We have n agents each seeking to send an amount of trafficQ; > 0
through a network. Each agent i is able to use a set of paths 7;
in the network, and here we allow the edges in the network to
be shared by different paths for different agents. Each agent i is
associated with an action vector ¥ € R/"il where x;, represents
the proportion of traffic in Q; allocated to the path p € P;. The
joint action profile is x = (x!, ..., x"). Each edge e of the network
has a cost function ¢, : [0, o0) — R characterizing the congestion
incurred by the total traffic through e, and the cost of a path
p € P;, denoted by c,, is the sum of the costs of the constituent
edges:

n

G =) celde®) q=)" D Q.

eep j=1 p'ePjeep’

We assume that the function t — t - c.(t) is smooth and convex
for each edge e. The goal is to find the optimal joint action that
minimizes the global cost defined by

fi) =Y XQ - ¢x),

peP;

1 n
fe = Eﬁ(X),

subject to the constraints X' € x; where x; = {x¥' € Rl
Xp = 0,3 pep X, = 1}. Observe that each local cost f; is affected
by other agents’ actions (¥');.;.

We assume the following mechanism of collecting and ex-
changing information among agents:

1. Access to only zeroth-order information. Each agent i does
not know the specific form of the cost function c,, and can
only observe the local cost fi(x) corresponding to the currently
implemented action x.

2. Localized communication. The agents are connected by a
bidirectional communication network, and each agent can only
directly talk to its neighbors.

Note that the set X; has an empty interior and does not satisfy
Assumption 1. One way to handle this issue is to arbitrarily select
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one route p; € P;, remove x;l). from the action vector X/, and
. i
replace the constraints by
i
<
E X, < 1.

pePi\(pi}

X, >0 V¥p € P\{pi},

After a further translation of the variables to include the origin in
the interior, Assumption 1 will be satisfied. The variable x}g_ can
1

i _1_ i
be recovered by x; =1— 35\ 5 Xp-

3. Algorithm
3.1. Zeroth-order gradient estimation

We first give a preliminary introduction to the zeroth-order
optimization method adopted in this paper. Consider the follow-
ing zeroth-order gradient estimator (Nesterov & Spokoiny, 2017):

Gy 1, 2) = fx+uz)—f(x uz)z, 2)
2u

where u > 0 is called the smoothing radius, and z is a perturbation
sampled from an isotropic distribution on R with finite second
moment. Nesterov and Spokoiny (2017) shows that, if we let
z ~ N(0,Iy), then E; [Gf(x;u,z)] = VfU(x) where f'(x) =
Ey~nr0,i)lf (X + uy)], and one can also control the differences
If¥(x) — f(x)| and ||Vf"(x) — Vf(x)|| by controlling u when f is
Lipschitz continuous and smooth. In other words, G¢(x; u, z) can
be viewed as a stochastic gradient with a nonzero bias controlled
by the smoothing radius u.

3.2, Algorithm design

Our algorithm will be based on the zeroth-order gradient
estimator (2) and the stochastic mirror descent algorithm

no £+ t) — £- t
G(t) = %Zﬁ()ziuf’()z(t), zZ(t) ~

j=1

x(t + 1) = argmin {(G(t), x —x(t)) + :}@w(xlx(t))} .

N(0, Iy),

XxeX

Here, fi( t) == fi(x(t) £ uz(t ))+8 (t) represent the observed local
cost values after the agents take the actions x(t) &+ uz(t), where
J+( ) and ¢;(t) are the independent additive random noises with
variance bounded above by o2 (setting 62 = 0 reduces to the
noiseless case); 2y (xly) = ¥(x) — ¥ () — (V¥ (), x — y) is
the Bregman divergence associated with the function v that is
convex and continuously differentiable (Beck & Teboulle, 2003).

In our multi-agent setting, we let v be given by ¥(x', ..., x")
= Y 1, ¥i(x), and require each v; to be 1-strongly convex. Then
since X = []; i, we observe that the mirror descent iteration
can be decoupled among agents as follows:

. . o 1 o
X'(t + 1) = argmin { (G'(t), ¥ — X'(t)) + %pi(x’lxl(t))} , (3)
xex; n
where Gi(t) is a zeroth-order estimate of the partial gradient
VIf(x(t)) given by

i 1 j;‘+(t) —5@ iy
Gt =~ ; S——20), Z(6) ~ N0 Iy). (4)
We can see that employing A0, I) as the distribution of the
perturbation z allows the agents to generate their associated
subvectors z' independently of each other without resorting to
coordination strategies. However, we also notice the following
two issues when adopting (3) and (4) in our setting:
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1. In our setting, the agents can only take actions within x. How-
ever, samples from A/(0, I3) are unbounded, and x(t) + uz(t) or
x(t) — uz(t) may not lie in x.

2. The computation of (4) requires agent i to collectfj+(t) —fj‘(t)
for all j. While each agent can observe its own local cost, other
agents’ local cost information has to be transmitted via the
communication network, which will result in delays.

We now discuss how to handle these two issues.

3.2.1. Sampling within the constraint set
Our idea of handling the first issue is to slightly modify the
distribution of the perturbation z so that (i) x(t) & uz(t) always
lies in x, (ii) each agent can still generate their associated z' inde-
pendently, and (iii) the resulting zeroth-order gradient estimator
has comparable bias and variance with the original estimator (2).
For any x' € int &; and u > 0, we introduce the set

st =00 (L (i)

see Fig. 1 for an illustrative description. Obviously, Si(x, u)is a

closed convex set with a nonempty interior, and Zl e Si(x!, u) if

and only if —z' € Si(x', u). Moreover, we have x' + uz' € x; and

xi—uz' € x;forany z € Si(x!, u). Therefore we propose to generate
Z! for each agent i by

7= Psi(xu) [Zi] J
The resulting probability distribution of Z' and z will be denoted
by zi(x', u) and Z(x, u) respectively.

The modified zeroth-order partial gradient estimator for agent
i is then given by

7'~ N(0, Ig,). (5)

+ A
G(e) = Z”)z#z'm, Zi(t) ~ Z(x\(t), u). (6)

Jj=1

In order for Gi(t) to have comparable statistics with the original
estimator (2), we require S;(x(t), u) to contain a ball with a suffi-
ciently large radius, so that the projection Pg, ) in (5) happens
rarely, i.e., the probability of Z' € S;(x', u) is close to 1. This further
leads to the requirement that there should be sufficient distance
from xi(t) to the boundary of ;. In order for xi(t) to satisfy this
requirement, we modify the mirror descent step as in Agarwal,
Dekel, and Xiao (2010) and Flaxman et al. (2005):

X(t +1) = argmin {(Gf(r), X = X(t) + 1%(x"lx"(t»}, (7)
xie(1-8)x; n
where § > 0 is an algorithmic parameter to be determined
later. In other words, we shrink the feasible set in the mirror
descent step to be (1 — §)&, so that a band along the boundary
of X will be available for the sampling of z(t). Indeed, Flaxman
et al. (2005, Observation 3.2) shows that, for § € (0, 1) and any
I e (1-246)x;, we have x' + 8r;Bg, € X; (recall the definition of r;
after Assumption 1), i.e., the distance from x' to the boundary of
X; is at least ér;. Moreover, x4 dr;By, € A&; also implies %Bdi C
Si(x', u). Thus, if let 8r;/u be sufficiently large (say > 3+/d;), then
the set Si(x!, u) will correspondingly contain a sufficiently large
ball, meaning that projection happens rarely when we sample z
by (5).

Remark 1. Depending on the specific &;, the projection Psixi,u)
either admits a closed-form expression that can be computed
efficiently, or needs to be computed via some iterative method.
One option for iterative methods is Dykstra’s projection algo-
rithm (Boyle & Dykstra, 1986) that finds the projection onto the
intersection of finitely many convex sets; one may also consider
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translation
and scaling

reflection
through the
origin
—_—
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intersection
—_—

Si(x',u)

Fig. 1. Construction of the set S;(x', u).

applying a fast optimization algorithm (such as ADMM) to the
optimization problem
2i||2

min Iz — st. X +uz' e A

zieRrdi

We also point out that, for sufficiently large dr;/u, the probability
that P, [z] # Z! will be very small, meaning that one rarely
needs to exp11c1tly compute the projection in (5) for generating z'.
Therefore, we expect that the projection step in (5) will not have
a major impact on the computational efficiency of our algorithm.

3.2.2. Collecting data from other agents .

To ensure that each agent can obtain jj-+(t) —fj‘(t) of all other
agents as soon as possible, we develop a procedure for generating,
distributing and utilizing the most up-to-date information among
agents via the network. This procedure consists of the following
parts:

1. Generating new data: At time step t, each agent i generates
Zi(t) ~ zi(x\(t), u), adjusts its actions to be x/(t) £ uz(t) and
observes the corresponding local costsfi(t) = fi(x(t)xuz(t))+

( ). Agent i then computes

frey—f)
2u

and also records the timestamp rii(t) = t at which the
data Di(t) is generated. This pair of newly-generated data
(Di(t), Ti(t)) is going to be distributed via the communication
network among agents.

2. Distributing and updating other agents’ information: Each
agent i maintains a 2 x n array that records the most up-to-
date information on the difference quotients of all f; at each
time step t:

)

Di(t) :=

difference quotient | D)(t) | D4(t)
time instant | 7{(t) | 7,(t) | - - | 7,(0)

(8)

Here the quantity D’:(t) records agent i's most up-to-date value

of the difference quotient M, and the quantity rji(t)

records the time step at which DJ‘( ) was generated by agent
j. In other words,

Dj(t) = D)(j(t) = *

Note that the entries D;f(t) and rii(t) in the array (8) will
be updated by agent i itself following the previous part. In
order to update other entries in (8) at time t, each agent i
first collects data that has been sent by its neighbors in the
previous time step, to get their versions of the array (8). We use
(D}(t), 7/~'(t)) to denote the entries of the array on the differ-
ence quotient of f; that agent i has received from its neighbor
k at time t. In the situation when agent i does not receive
the array from agent k at time t, we let (D{7'(t), 7/7(t)) =

) , j
(D(t — 1), 7j(t — 1)). Then for each j # i, agent i compares

all collected tj’“'( ) and finds the neighbor k}(t) that has sent
the largest 7/(t), i.e.,

kj':( )= arg max rjkﬁ'(t)
k:(k,i)e€
In other words, the difference quotient of f; sent by the neigh-
bor ki( t) is the most up-to-date among all of agent i’s neigh-
bors. We then update (D‘( )T ( )) to be equal to the data sent
by the neighbor k’( ).
Finally, after agent i finishes updating the array (8), it sends
this array to all of its neighbors.
Each agent initializes the array (8) by setting D}(—
7/(-1)=-1.
3. Constructing partial gradient estimator with delayed infor-
mation: Each agent i calculates the partial gradient estimator
(6) but with delayed information. Specifically,

ZD rj (t)), (9)

where z (t) Zi(x(t), u) for each t, and the past perturbation
Zi(t T i(t)) is used to pair with the delayed information Dl( ) for
j # i. The mirror descent step (7) is then applied to obtain
xi(t +1).

We further elaborate on this procedure and the communica-
tion delays therein: Assuming that each round of communication
takes one time step and there are no additional delays for all ¢,
we see that agent i's received data (Dj(t), 7'(t)) will be just
(Dk(t 1), 7 ( 1)). As aresult, it takes exactly b;; communication
rounds to transmit data from agent j to agent i (recall that b;
is the distance between i and j in G), and consequently rji(t) =
t — by and Di(t) = Dj(t — by) for t > by. On the other hand, if
some additional delay occurs during communication, then agent
i may fail to receive new data from some neighbor k at some
time step t, and in this case rjl(t) may be smaller than t — by.
In Section 4, we shall see that as long as the additional delays
during communication are bounded, our algorithm will still work
with performance guarantees.

1) =0 and

3.3. Our proposed algorithm

We are now ready to present our multi-agent Zeroth-order
Feedback Optimization (ZFO) algorithm, which is given by Algo-
rithm 1. In summary, each iteration of Algorithm 1 consists of the
following steps:

1. Each agent i generates the associated random perturbation
Z'(t) ~ Z(x'(t), u) by (5) (Line 3). , ,

2. Each agent takes the two perturbed actions x'(t)£uz'(t) succes-
sively and observes the corresponding local cost values (Lines
4-5). Note that we require the agents to take each of the two
perturbed actions synchronously.

3. Based on the new cost values, each agent i computes the
difference quotient Dﬁ(t) of its own cost function and records
the current time instant ‘L’ii(t) =t (Line 6).
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4, Based on the information received from the neighbors, each
agent updates other columns of its array (8) by the procedure
described in Section 3.2.2 (Line 7).

5. Finally, each agent sends the updated array (8) to its neighbors
(Line 8) and performs stochastic mirror descent (Line 9).

Algorithm 1: Zeroth-order Feedback Optimization (ZFO) for
cooperative multi-agent systems
Require: step size n > 0, smoothing radius u > 0, number of
iterations T, initial action profile (x(l), csXp)
Initialize: x'(0) = xj, Dj’.(—l) =0, rj’(—l) = —1 for all
L,j=1,...,n
fort=0,...,T—1do
Each agent i generates z/(t) ~ Z;(x!(t), u) by (5).
Each agent i takes action x/(t) 4+ uz(t) and observes its
local cost f(t).
Each agent i takes action xi(t) — uz(t) and observes its
local cost fi_(t).
Agent i computes and records
- )
2u
Agent i receives data (D/(t), rj’”(t));’:1
neighbor k : (k, i) € &£, and updates

. Ki(t)i
Ki(t) = argmax 77'(t), (1) = 7’
k: (k ieg

Di(t) = () =t

from each

(),

Di(t) = D’ o
Agent i sends (Dj(t), rji(t));=l
Agent i updates
i 1 TNy i
Ge)=—% DOz, (9)

{6 %

Vj#£i.
to its neighbors.

x'(t + 1) = argmin — X(t))

xie(1-8)x;

1 .
+ =2y (XX () -
o L Zn W)

4. Complexity results

In this section, we present our main results on the complexity
of Algorithm 1. We first make the following assumption on the
delays occurred during the optimization procedure:

Assumption 3. There exists A > 0 such that the delays are

bounded above by t — 'L'ji(t) < bj + A for every t > 0 and
i,j=1,...,n

We define
- b
" <W> ’ (10)
1/2
b= Yijer(bij + A)(di + d)) (11)
Zl] (di +dj)

Roughly speaking, these two quantities are (weighted) averages
of pairwise distances of nodes plus the additional delay bound in
the network, and characterize the connectivity of the network:
Smaller b or b indicates that the nodes are more closely connected
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and information can be transferred over the network with fewer
hops. We also define B := max; j b; + A.

We characterize the complexity of our algorithm by the num-
ber of iterations T needed to achieve E[f(x(T))] — f(x*) < € for
sufficiently small €, where x* is a minimizer of f(x) over x € X,
and

- 1

Here we require the total number of iterations T to be greater
than or equal to B to ensure that each agent i has updated the
entries on agent j in the array (8) at least once.

The following theorems characterize the complexity results of
Algorithm 1 for our constrained convex setting, whose proofs will
be postponed to Section 5. Recall that o2 is the variance of the
additive noise on the agents’ observed local cost values. We also
denote 2 := maxyex Py (x*|X).

Theorem 1 (Convex, Noiseless). Suppose 0 = 0. Let ¢ € (O,
maxyex f(x) — f(x*)] be arbitrary. Then by choosing the parameters
of Algorithm 1 to satisfy

€ 4
§<——, u- |d+—=|In
5GR 9

20GR° /1 } _or
+

ue 3’

€/18 159
= ®\2] 7, 1 12’T_B+IZ 2ne |’
[+ (%)) 6+ H(va+1) "
we can guarantee that E [f(x(T))] — f(x*) < €. Moreover, if all the
conditions on the parameters are satisfied with equality, then

_(bd

Theorem 2 (Convex, Noisy). Suppose o > 0, and let ¢ > 0 be
sufficiently small.

1. By choosing the parameters of Algorithm 1 to satisfy 8 < €/(5GR)
and

—2
4 20GR /n or

u- d+|:lnfi| < =,
9 ue N

- u’e . B+]>"15§—‘
T 202(b+ D)(Vd+ 1R - e’

we can guarantee that E [f(X(T))] — f(x*) < €. Moreover, if all
the conditions on the parameters are satisfied with equality, then

— o (E(dz +dln(1/e))> '
64

2. Suppose it is known that Vf(x*) = 0. By choosing the parameters
of Algorithm 1 to satisfy § < ﬁ/(R\/ﬂ) and the conditions in
(12), we can guarantee that E [f(X(T))] — f(x*) < €. Moreover,
if all the conditions on the parameters are satisfied with equality,
then

— o (E(dz +d1n(1/e))> .
63

We now provide some discussion on the two theorems:

(12)

1. Existence of u. Observe that the map

=2
4| 20GR

d+ - |:ln “/ﬁ}
9 ue .

ur—u-
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is continuous over u € (0, +o0), goes to 0 as u — 0" and
diverges to 400 as u — +oo. Therefore given ¢ > 0 and
§ > 0, there always exists some u € (0, +0o0) that satisfies
the conditions in Theorems 1 and 2, and the condition can be
achieved with equality.

2. Complexity bound for the noiseless case. It can be seen that
in the convex noiseless case, the number of iterations needed
for Algorithm 1 to achieve E[f(x(T))] — f(x*) is on the order of
0(bd/€?). The d/e? part is in accordance with the centralized
zeroth-order method (Nesterov & Spokoiny, 2017).
Equivalently, the convergence rate of Algorithm 1 can be rep-
resented as E[f(X(T))] — f(x*) < o( Ed/T)

3. Complexity bound for the noisy case. For the convex noisy
case, depending on whether or not we know an optimizer
x* lies in the interior of the feasible set X, the complex-
ity bound of Algorithm 1 can be different. Specifically, if we
know Vf(x*) = 0 (for which a sufficient condition is x* €
int '), then the complexity has O(e 3 In(1/¢)) dependence on
€ and 0(d?) dependence on the problem dimension d; they are
in accordance with the centralized case in Bach and Perchet
(2016) except for a logarithmic dependence on 1/€. On the
other hand, if we do not have Vf(x*) = 0, the complexity
bound becomes worse in terms of the dependence on €. Here
we provide a qualitative explanation of this difference: If one
knows Vf(x*) = 0, then by the smoothness of the objective
function, we have f(x)—f(x*) ~ O(]lx—x*||?), implying that the
suboptimality caused by shrinking into a smaller set (1 — §)X
is on the order of O((1 — 8)?). Therefore, one can shrink the
feasible set more aggressively, allowing a larger smoothing ra-
dius u that does not amplify the noise much, and consequently
the number of iterations can be reduced. On the other hand,
if we do not have Vf(x*) = 0, then only f(x) — f(x*) ~
O(||]x—x*||) can be guaranteed by the Lipschitz continuity of the
objective function, and the suboptimality caused by shrinkage
is on the order of O(1 — §). Therefore the set (1 — §)X needs
to be sufficiently large to make sure that the suboptimality
caused by shrinkage is small, resulting in more restricted size
of the smoothing radius. Consequently, the additive noise in
the gradient estimator can be more severely amplified, and one
needs more iterations to average out the noise.

4. Dependence on the network connectivity. We can see that
the complexity bounds of both the noiseless and noisy cases
has an addition factor b. This term upper bounds the influence
of the connectivity of the communication network. We shall
see in Section 7 that for the numerical test cases we have
run, our algorithm achieves better empirical behavior than
the bounds would suggest in terms of the dependence on the
network connectivity. It would be interesting to investigate
whether and how we can improve the theoretical analysis in
the future.

5. Proofs of complexity results

Note that the iterations of Algorithm 1 can be written as

x(t + 1) = arg min {(G(t), x —x(t)) + %9¢(x|x(t))} , (13)

xe(1-8)x

where G(t ) is the d- dimensional vector that concatenates
G'(t), ..., G"(t), and yr(x) = D[ ¥i(x'). Recall that each v;(x) is
1—strongly convex, So that Py (Xly) = 5 ||x —y||'2 for all x,y € A
For notational simplicity, we let D;(t) denote Dj.(t) fort > 0, and
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let each Dj(t) = 0 and z(t) = 0 for t < 0. We let F; denote the
o-algebra generated by x(t) for t < t and all rj'(s) forl1<i,j<n
and0 <s<T.

5.1. Auxiliary results on the gradient estimator

We first establish a lemma for bounding the bias of the gradi-
ent estimator (2) with z ~ Z(x, u).

Lemma 1. Let h : X — R be a G-Lipschitz continuous and L-smooth
function. Let 8 € (0, 1) and suppose 0 < u < 8r/(3+/d). Then there

exists some «(u) € [199/200, 1] such that for all x € (1 — §)X,

(d 62§2>

R T

where the expectation in E[Gp(x; u, z)] is with respect to z ~
Z(x,u), and h* : (1 — §)x — R is given by

HE[Gh(x; u,z)] — «(u)Vh'(x H

h(x) = Ey~yh(x + uy)] (14)

for some compactly supported and isotropic distribution Y(u) that
does not depend on the function h. Moreover, h" is a G-Lipschitz
continuous and L-smooth function that satisfies

|h"(x) — h(x)| < min {ucda, %uzLd}
forallx e (1—6)x.

The proof of Lemma 1 is given in our online report (Tang, Ren,
& Li, 2020b).

The following lemma handles the second moment of the
(delayed) gradient estimation (9), whose proof is given in Ap-
pendix A.

Lemma 2. For any t > 0, we have
i 2 2 02
e[ [p©20]| 7] < (436> + 3 )di
E[IG()2] < (4fc;2 + Z—)d

The following lemma will be used for bounding the error in the
gradient estimation (9) caused by delays.

Lemma 3. Foranyt > 0and 1 <i,j,l <n,
E [IIx(t) = X(z/(E)I1%] <n*(by + A) (4fc2+7)
E [JIx(6) = X({(O)] = n(by + AP (4v/36 + —)

Proof. Since v; is 1-strongly convex, we have ||x/(t+1)—x/(t)]? <
Dy (X (0)IX(t + 1)) + 2y, (x'(t + 1)IX(£)). The first-order optimality
condition of (13) can be written as

(—nG'(t) = (VYiX'(t + 1)) — Vir(x(1)) , ¥ —x'(t + 1)) < 0

for all ¥ e (1 — 8)x;, and together with the identity (V;(x) —
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VYi(y), x — y) =
Ix(t + 1) — x'(6)])?

< (VWX (t + 1)) — V(X' (1)), X'(t + 1) — x(t))

< —n(Gi(t), X(t + 1) — X(1)) < nlIGOIIX(t + 1) = X (D],

which implies ||xi(t + 1) — xi(t)|| < n[|Gi(t)||. Then

Py, (YIX) + 2y, (x|y), we have

2
-1

Y 6]

T==bjj—A

E[I¥(t) = ¥ (¢} (0)I*] <E

-1

<iby+4) Y

‘L'=7b’j7A

E [IIG'(2)II%]

n?(by + A)2(4fc2 2 22)d

where we used the assumption t — rji(t) < bj + A in the first
step, and used Lemma 2 in the last step. Finally, by taking the
sum of the above bound over i = 1,...,n, we get the second
inequality. O

5.2. Analysis of the complexity

We now analyze the complexity of Algorithm 1 for our con-
strained convex setting. First, the following is a standard result
for mirror descent (see Beck & Teboulle, 2003, Eq. (4.21)).

Lemma 4. Let X € (1 — §)X be arbitrary. Then

1
= (2y RIx(t + 1)) — 24 (RIx(1)))
n (15)

< (G(t), & — x(1)) + gnc(t)uz.

Our analysis of the complexity consists of two steps: (1) bounding
the expectation of the right-hand side of (15), and (2) taking
the telescoping sum to cancel the terms from the left-hand side
of (15).

Step 1: Bounding the expectation of the right-hand side of (15).
It can be seen that the expectation of n||G(t)||>/2 can be bounded
via Lemma 2. In order to bound the expectation of (G(t), X —x(t)),
we note that

E [(G(t), & — x(t))]

=& | Y DR 8 ~ o)

1 ; .
+E| - (DO O ) - X (o)

ij=1
The following two lemmas bound the two terms on the right-
hand side of (16) respectively.

Lemma 5. Let X = (X', ..., X") € X be arbitrary. Suppose 0 < u <
81/(3+/d). Then for t > B, we have

n

1 1 i i i S i i
i E E;<Dj(g(r>)z(rj(r)),x — X(t(1)))
2
<E[f(X) — f(x(t))] + min {qu 2Ld }

+2«‘%n5(62 >f+anf 4fcz+— R

fu
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2 4u?
where «(u) € [199/200, 1].

2GR /A (d 82r2>
+ ex :

k(u)u 2 42

The proof of Lemma 5 is given in Appendix B.

Lemma 6. For any t > 0,

1< . o o )
E - Z(Dj(fj'(f))z'(fj'(t) L X(T/(6)) — ®(1))

ij=1
02 -
< 7](4\/§Gz + ﬁ)bd

Proof. We have

n

1 i i i
) LI CAONACIE

ij=1

72 [nb | D)2 (o))

i,j=1

), X(5}(0)) - X(0)

I A

1 ir i i 2
+ eI () = ¥ |

1 2, O S -1 2
< %(4«@(; + ﬁ) ,; [bd; + nb~"(by + A)d;]
0'2 —
- n(4ﬁc:2 + —)bd,
2u?
where we used Lemmas 2 and 3 in the second step. O

Step 2: Taking the telescoping sum. By taking the telescoping
sum of (15) and summarizing the previous results, we get the
following theorem.

Theorem 3. Let x* be a mmzmlzer of f(x) overx € X. Let T > B,
and let X(T) = =5 B+1 Zt s X(t). Denote 7 = maxyex Zy(x*|X).

Suppose 0 < u < 3% Then
E[f(x(T))] — f(x*)
59 ,  /IRNZ] (- 1 1\’
< oregrn o+ (5) | (+3) (Vi 3)
202 (- 1 1\> 5GR J/n d 82
=5 (5 3) (Varg) 5 e (5 - 5)
+ uGv/d + GRS.
If it is known that Vf(
E[f(x(T))] — f(x*)

<asrn oo (] () (vas)
) S

w’ld RS2

2+2

x*) =0, then

Proof. By the previous lemmas, we see that for t > B,

o E [2y XIX(t + 1)) — 24 (XIx(1))]

_ B[, % —x0)] L NE [IG(0)I1%]
- k(u) 2k (u)
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<E[f(®) ))]+m1n {ucf i Ld}

2

+2<‘6n5(62 fu )f+anf 4IGZ+— R

2GR f 8%r? 5
e P(i‘m)w )(4“ +ﬁ>hd

¢ (av3 + 25)a
2k(u) 2/

By taking the telescoping sum and noting that «(u) €
[199/200, 1], we get

|:T B+1 Zf } f®)
E[Jw(xpc(B))] { WG, 2Ld}

~ k(u)n(T —B+ 1)
N (viel)
2 5

+ 9n|:G2 + (L;)Z] <B+
+ 23'7~(;(E+1) (ﬁ+;)2

+2ch < 322)’

r(u)u 2 4

2 4u?

where we plugged in the following bounds derived by noting
k(u) € [199/200, 1] and some inequality manipulation:

2(‘/§n6(cz fu2>f+ —(4f02 + —)ba
2/( ( f + 7)
<7 (E + 5) <ﬁ+ §> (G2 + S\UEuZ)’

- 2 p—
nLbv/nd\[4V36? + 5 R
u

Zl‘,j(bij + A)Z 1 2
nd 2 |:2L(4f * T) + 2R }

o 5-3) (o

Now let X = P1_s)x [x*]. We have [|x—x*|| < ||(1—-8)x"—x*| < SR,
and so f(X) — f(x*) < G||X¥ — x*|| < GSR; if we further know
that Vf(x*) = 0, then f(X) — f(x*) < L||X — x*||?/2 < LSZEZ/Z.
Summarizing the above results and plugging in lower bounds
of «(u), we can then get the desired results by further noting

E [T%BH Z::Bf(x(t)) > E[f(x(T))] since f is convex, and using

E[2yXxB)] <2. O

<nld

+L2R>

Now Theorems 1 and 2 can be proved.

Proof of Theorem 1. The condition on u implies

=2
4 20GR 5
u<-— d + — In J < é,

ue . 3J/d

f 9

meaning that the condition of Theorem 3 is satisfied. The condi-
tion on u also implies

5GRm (d 82
exp( )

2u 2 a2

2 4u?
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e~ 74/ 9 4 20GRVn  [or)° e 7/4e
exp| - [d+-In——— — | = < .
8 4 9 ue 3u 8

The conditions on &, n and T further guarantee
59
4n(T —B+1

Summarizing all these bounds and using Algorithm 1 witho =0
shows that E[f(x(t))] — f(x*) <e. O

Proof of Theorem 2. Just as in the proof of Thezorem 1, We
can similarly show that u < 8r/(3+/d) and that %uﬁ exp(% -

5272 —7d/4 .. . .
ﬁ < ¢ €. Moreover, the condition on u implies that, for

sufficiently small € > 0,

u< @(a++(1/e))’ (17)

in which equality can be achieved if the condition on u is satisfied
with equality. By plugging in the conditions on the parameters, it
can be established that

57 2ne? (- 1 1\*
T B 1) 32 (b+5> (“/a+§>
, IR\ (- 1 1\’

+e +9 u%e G2+<L§)2 - 2¢

6 3 202 3 -3
for sufficiently small € > 0. _

Now, if 8§ < €/(5GR), then uG+/d + GRS < =tE <k
and since e~7%/4/8 < 1/15, by summarizing the above results and
using Theorem 3, we get E[f(X(T))] — f(x*) <

Ifo( *) = 0and § < /e/(RV2L), then @
¢ < 2 and since e7%/*/8 < 1/18, by summarlzmg the
agove results and using Theorem 3, we get E[f(x(T))] —f(x*) <

The asymptotic behavior of T can be derived from (17) and the
conditions on the parameters. O

S

LEZ 52 <

6. Knowledge of local function dependence

In the previous sections we assume that each local cost f; may
be affected by any other agent’s action, i.e., Vifj can be nonzero
for any i. However, in some situations, f; may only depend on the
actions of a subset of agents, and the agents may have knowledge
of this dependence. In this section, we briefly discuss the benefits
when the agents have additional knowledge of such local function
dependence information.

Let A; be the set of agents whose local costs will be affected
by agent i’s action (i.e., V'ﬁ is not always zero for each j € A;).
Then, if each agent i knows its associated set .4;, due to the fact

that Vif(x) = 1 Z e Ai 'jj(x ), the partial gradient estimator (9)
can be further 51mp11f1ed as
1 o
= — Y Di(0)Z(x](t). (18)
n

JeA;
In this case, the following lemma shows that the second-moment
of the gradient estimator will be reduced:
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Lemma 7. We have

o[ e

JEA;

2] <4f<;2 + —) %di.

Proof. By the first bound in Lemma 2, we have
2

1 .
E HX:D}(t)zlr t
JEA;
4 4 2
=25 Y E||plaozo)
JEA;
| A 2 o? -Al|2 2 o?
< Z(4ﬁc +ﬁ)d,-: : (4@5 +?)d,~,
JEA;

which completes the proof. O

Compared to Lemma 2, we see that E [[|G/(t)||?] is reduced by
a factor of |.4;12/n?. Consequently, the complexity of Algorithm 1
can be further improved with better dependence on the network
topology and the number of agents. We omit detailed analysis
here but provide brief numerical comparison in Section 7.

Another benefit brought by the knowledge of 4; is commu-
nication savings. Originally, in Algorithm 1, each agent needs to
send the whole array (8) to its neighbors. On the other hand, the
following theorem shows that, the communication burden can be
relieved if A4; is known to each agent i and the communication
network has a structure compatible with the sets A;.

Theorem 4. Suppose for any i,j, 1 such that j € A\A; (ie, f
depends on x' but not x'), the following conditions hold:

1. There exists a path P; in G connecting | and j which does not
contain i.

2. For any agent r on the path Py, f; depends on x,.

Further, suppose no communication failures occur at any link. Then,
in order for each agent to be able to construct the partial gradient
estimator (18) with t — r]( ) being bounded, each agent i only needs

to record, update and pass (D'( ( ) forj € A

Proof. It suffices to show that for each i, agent i does not need to
pass information about the difference quotient of f; for any j ¢ A4;
for the sake of other agents’ updates.

Leti € {1,...,n} and j ¢ A; be arbitrary, and let | be an
arbitrary agent such that j € A;. By the first condition stated in
the theorem, we know that there exists a path P; not containing i.
Moreover, by the second condition, for any agent r on the path Py,
fi is a function of x;, so agent r receives and passes on information
about f;. This then implies that agent [ can successfully receive
the mformatlon it needs from f; via the path Py, and further that
t—t !(t) is upper bounded by the length of Pj;. Hence, agent i does
not need to pass on information about f; for agent [, and by the
arbitrariness of i, j and I, we get the desired conclusion. O

Theorem 4 shows that, when the communication graph is
“compatible” with the local function dependence (in the sense
stated in the conditions of the theorem), the number of columns
of the array (8) can then be reduced from n to | .4;| for each agent i,
which also leads to reduced communication burden. We mention
that Theorem 4 analyzes only one possibility of “compatibility”
between the communication network and the local function de-
pendence, and one can propose other compatibility conditions
for the communication network so that the size of the array (8)
and/or the communication burden can be reduced. Investigating

10
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other notions of compatibility between the communication net-
work and the local function dependence for the ZFO algorithm
will be an interesting direction which we leave as future work.

7. Numerical examples

We demonstrate the performance of our ZFO algorithm on
finding the optimal flow of a nonatomic routing game introduced
in Section 2.1. It can be shown that the global objective function
is (Nisan et al., 2007)

1
=~ ) e(x) - celge(x)),
n e

where ge(x) = ;> repyecy Xy X Q; is the total traffic through the
edge e. Smce g is affine in x and the function t — t - c.(t) is
convex, f(x) is a convex function of x.

Just as explained in Section 2.1, we eliminate one entry xg
from each action vector and perform a translation so that the new
feasible set has a nonempty interior containing the origin. We
choose v; to be the unnormalized negative entropy of (x)
ie,

=) x(nx, — 1),

PEPi

where XV =1 = Y pepniin X

The routmg network of the test case consists of 28 vertices
and 85 edges, and the congestion function c.(t) for each edge is
a convex and increasing quadratic function. There are 60 agents
in the test case. Each agent i is associated with a pair of vertices
(si, t;), and is allowed to use 4 paths from s; to t; in the routing net-
work for sending its traffic Q;. We consider three communication
networks that connect the group of agents:

pePy’

1. A linear chain network, with E = 24.4915.
2. A 4 x 15 grid network, with b = 7.2303. _
3. Arandomly generated Erdés-Rényi network, with b = 4.3522.

We assume no additional delays in the communication network
so that A 0. The optimal value for the test case is given
by f* 5.4530. Details of the test cases and the code for
our numerical experiments can be found at https://github.com/
tyj518/ZFO_Distributed-Routing.

Noiseless setting. We first simulate the setting where the func-
tion value observations are noiseless and we do not assume
knowledge of the function dependence. We also run the cen-
tralized zeroth-order optimization method for our test case as a
benchmark. We use the same step size n and shrinkage factor
8 for the three communication networks as well as the central-
ized method. The results are shown in Fig. 2, where the dark
curves represent the average of f(x(t)), the light bands indicate
3.0-standard deviation confidence intervals computed from 50
random trials, and the red dash-dotted line indicates the optimal
value f*.

It can be seen that our ZFO algorithm is able to approach the
optimal value with satisfactory convergence behavior. Moreover,
while the three communication networks have different values
of b, our algorithm exhibits almost indistinguishable performance
on the three communication networks and compared to the cen-
tralized algorithm. This suggests the theoretical complexity result
in Theorem 1 might be more conservative compared to the real
performance in terms of the dependence on the communication
network’s connectivity. It would be interesting to further investi-
gate whether and how the theoretical analysis can be improved,
but we leave it as future work.

Noisy setting. We then consider the setting where the function
value observations are noisy, and simulate two cases o = 0.01f*
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Fig. 3. Noisy, no knowledge of local function dependence.

and o = 0.025f*. We decrease the step size n and increase the
smoothing radius u as well as the shrinkage factor § as the noise
level o increases, in order to suppress the variance associated
with the zeroth-order gradient estimator. We do not assume
knowledge of the function dependence for both cases.

The results are shown in Fig. 3, where again the dark curves
represent the average of f(x(t)), the light bands indicate 3.0-
standard deviation confidence intervals computed from 50 ran-
dom trials, and the red dash-dotted line indicates the optimal
value f*. Compared to the noiseless case, we see that the conver-
gence is substantially slower. Also, as the noise level increases,
the convergence becomes slower, and the final optimality gap
becomes larger. On the other hand, we again observe that our
algorithm achieves very similar convergence behavior for the
three communication networks and compared with the central-
ized setting, which suggests that our algorithm may have bet-
ter performance than indicated by Theorem 2 in terms of the
dependence on the communication network’s connectivity.

Known local function dependence. In this setting, we assume
that each agent knows the set 4; of local function dependence,
and employs (18) for gradient estimation. We enlarge the step
sizes by 1.5 times compared to the corresponding scenarios with-
out knowledge of 4;. Fig. 4 compares the convergence behavior
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Fig. 4. With local function dependence as in (18), linear chain communication
network.

of f(x(t)) with and without utilizing local function dependence,
averaged over 50 random trials; here only the results for the lin-
ear chain communication network are presented, but we mention
that the results for the other two communication networks are
very similar. It is not surprising to see that both the convergence
rates and the final optimality gaps are improved when knowledge
of A; has been utilized in our algorithm.

8. Conclusion and future directions

We consider the cooperative multi-agent optimization prob-
lem, where a group of agents determine their actions coopera-
tively through observations of only their local cost values, and
each local cost is affected by all agents’ actions. We propose a
zeroth-order feedback optimization (ZFO) algorithm, and conduct
theoretical analysis on its performance. Specifically, we provide
complexity bounds of our algorithm for constrained convex prob-
lems with noiseless and noisy function value observations. We
also briefly discuss the benefits of utilizing local function depen-
dence. Some interesting future directions include (i) extending
the algorithm to handle coupled constraints on the actions, (ii)
analysis for constrained nonconvex problems, (iii) investigating
whether the sampling procedure of the random perturbation
can be simplified, (iv) improving the algorithm’s complexity by
incorporating, e.g., variance reduction techniques, (v) extending
the algorithm to handle asynchronous local action updates, (vi)
further investigation on how local function dependence can be
exploited.

Appendix A. Proof of Lemma 2
We first provide some useful lemmas.

Lemma 8 (Concentration Inequality, Boucheron, Lugosi, & Massart,
2013, Theorem 5.6). Let h : R? — R be G-Lipschitz. Then we have

Pono.1y) (Ih(z) — Bz [M(2)]] = t) < 2exp (—t°/(2G%)).

With the help of the concentration inequality, we can prove the
following lemma.

Lemma 9. Let h : RY — R be G-Lipschitz. Then
h(z) — h(—z) |?
E, Umz(Z)Z” } < 43¢,

»2a) ~ N(0, Ia).

where z = (z4, . ..

Proof. The proof follows Shamir (2017, Lemmas 9 & 10) closely.
Denote h = E,[h(z)]. We have

. U hz) — h(=2)
2

2 1
} = ZEZ [27(h(z) — h(—2))*]
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1 = Z\2
= 2E: |2 ((h2) = B) — (h(=2) — 1))’
< 2B [2 ((h2) — B + ((—2) — )]
=FE, [z}(h(z) — h)*].
Then

E, [z (h( \/]E [z \/IE — h4]
1/2
—f(f P, ((h(z) — h)* = )dt>
0

< ﬁ(/ Zexp(—2i> dr)l/z — 43¢,

where the first step follows from the Cauchy-Schwarz inequality,
the second step uses the fact that E, [z;‘] = 3, and the third step
uses Lemma 8. O

We then derive bounds on the second moment of the gradient
estimator (2) with z ~ Z(x, u).

Lemma 10. Let h : X — R be G-Lipschitz, and let § € (0, 1) be
arbitrary. Then forany x € (1 —8)X and 1 <i <d,

h — h(x — 12
Ey 200 |:H (x+uz)2u (x uZ)Z,H :| < 4V3G%;

Proof. Let h(z) = h (x + u - Pspu)lz]) . ¥z € R Then
|h(z1) — h(z,)|

= |h (X +u- 7)S(x,u)[zl]) —h (X +u- Pg(x.u)[zz])|

< UG |Pspwlzi] — Pspuwlz2]| < uGllzi — 2,

showing that his a uG-Lipschitz continuous function on R
Moreover, we have

IEz~Z(x4,u) [||(h(X + UZ) - h(X —uz ziHZ]
= Ecwioun [ |(2) = B(=2)) - Ptz ]
< Beiouy | |(h@) — =202 ]

where the last inequality follows from IIPSI.(X,"”)[Z"]H <
Si(x', u) is a convex set containing the origin.
Then by Lemma 9, we have

[

[FAlES

h(-z) ;

2
1
z i| <= 432G - d;
u
= 4/3G%d;,

which gives the desired bound. O

Ez~A(0.19) |:

eh()—

We are now ready to prove Lemma 2. Denoting ;(t) = ]

gj’(t), we have
7]
2
ft}

R LIGEG]
_ [ Fx(D) + uz(t))

—+

— filx(t) —
2u

uZ(t))z,»(t)

‘l .
—E [t ?12(0)1%1 7]

42
0_2
< 4V/3Gd; + —d;,
2u?

where we used Lemma 10, the independence between &(t) and
Zi(t), and the fact that E,i_ziy ) [I12'12] < Eziopoy,) [12'17] <
1
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d;. Then,

n

Ly e [Ing

j=1
02

(4362 + - )d;
2u?

Note that by summing overi = 1,...,
bound on E [ [|G(t)]1?].

E[IIG(O)1%]

IA

OZCION

IA

n, we can get a similar

Appendix B. Proof of Lemma 5

For each 7 > 0, we have

1r‘(t) T

1 . S o
E| = (DEHOR 0. X (/)

8]

1
=ity - (n Z( W)V (x(1)), ¥ — x(1))
Lj
+ Z

where the second term can be bounded by Lemma 1 and Y | R;

< /1R as
=Y (E[Di(r)(0)I 7] -

Fr
)20 F] — @V (x(2)), & —Xi(f)>),

KWV (x(7)), X = x(7))

Therefore
Bl D DEOR o)X - X))
ij

= XT:E[ [ 21 o= * (D

(5(0)2'(5 (1)),

W | 3™ (ViFr (i), # — (gl (1)

<
n P
L]
! @ex (¢-20) v w
P 2 42 :
Now,
n 2V () ¥ — ¥(0)
L)
= (VFU(x(1)), X — x(t))

! ifu i ioi
+ - Z(ij (x(£)), ¥(£) — %(z()))

+ - Z (VI (x((e

where f4(x) = 1 f (x). Note that by (14), we have f!(x) =
IEyNy(u)[f(x + uy ] and] together with the convexity of f, we see
that f* is convex and f“(x) > f(x). Then by Lemma 1,

(VFU(x(1), & — x(0)) < f*(%) — fH(x(1))

VI (x(6), X — X{(5](1)).
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< F(R) — f(x(£)) + min {ucda, %uzLd} ,

and by Lemma 3, we have

1 icu i ir i
E | = (Ve X(e) = (o))

ij
! Y36 iru
= ;(Zﬁnbﬁlﬁ[nvg (o]
E[JIxi(t) - xf(r;‘(r))HZ])
2/3nb4/d
<

-~ (z%nwancz
436 + —) 3 by + A)Zdi)

1
v
23" ) &

(2«/_nbczf+2fnb(cz V)

<2J3- U[’(Gz \/‘uz>\/a’
and
2| -3 (VI ) - VRO E - X(50)

ij

= Iy v o)
L]
% Z \/]E [Ix(z/(£)) — x(D)I12] - Ry

L
"‘/_ 4fc2+—ZbU+A)R,

A

= VI (x(0)| Ri]

IA

< nlbv/nd,/4v/3G? + —

where the last step follows from Cauchy’s inequality. Summariz-
ing these results, we get the desired bound.
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