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ARTICLE INFO ABSTRACT
Keywords: Temperature has significant effects on thermal modal characteristics of a structure; especially, its
Thermally coupled dynamic model distribution uncertainty makes thermal modal characteristics to be more complicated. Such un-

Stochastic thermal modal analysis
Dynamic characteristics at high temperature
Small sample estimation

certainty also makes definitely predicted results greatly deviate from thermal modal experimental
results at high temperature, and even their change trends with temperature would be different. In
this work, stochastic thermal modal characteristics of a plate with free boundary conditions
induced by a random heating position are studied based on a thermally coupled model. Tem-
perature field distributions of the plate under two-parameter Gaussian heating sources are first
obtained. A thermally coupled dynamic model of the plate is then established based on a ther-
mally coupled constitutive relation theory, and its modal parameters are obtained by a differ-
ential quadrature method. A statistical analysis method with a small sample based on an
improved Bootstrap method and folded normal distribution is proposed to study stochastic
thermal modal characteristics of the plate induced by a random heating position, which includes
probability density functions of natural frequencies and their confidence intervals. Relevant
research will be of great significance to reliability evaluation of thermodynamic experimental
results, and error analysis between experimental and theoretical results.

1. Introduction

Temperature causes changes in mechanical properties of materials in a high-temperature environment and generates thermal
stresses in structures due to such factors as changes in constraints and nonuniform heating on the structures, thereby possibly
impacting stiffnesses and vibration characteristics of the structures. Related theoretical research focuses on variation mechanisms and
experiments of thermal dynamic characteristics of a structure at high temperature, such as beams or laminated beams [1,2], composite
plates or stiffened plates, and so on with different boundary conditions [3-5]. The main research aspects include thermal dynamic
models of a structure [1,3], variations of modal parameters of a structure with temperature [6-8], transient dynamic characteristics of
a structure [4], effects of a temperature field [5,9], and so on. It can be found from theoretical and experimental results that tem-
perature and its distribution have significant effects on dynamic characteristics, such as natural frequencies and mode shapes, of a
structure. A jump phenomenon in mode shapes [4,8] and the non-monotonical behavior of natural frequencies [10-12] were found in
dynamic experiments.
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Fig. 1. Physical model of a titanium plate with a Gaussian heating source and distribution of heated spots

Although there is rich related theoretical research on thermal dynamic characteristics of a structure, there are two shortcomings:
first, uncoupled constitutive relations by considering effects of temperature on mechanical properties of materials are used in theo-
tetical and numerical analyses. Based on the theory of a thermally stressed plate and uncoupled constitutive relations where material
parameters are constant, which do not change with temperature, thermal modal characteristics of a plate with free boundary con-
ditions under non-uniform temperature fields were studied and some phenomena were found [13,14]. However, natural frequencies of
a plate with free boundary conditions under a uniform temperature field obtained by the above mentioned uncoupled model will
almost not change with temperature because thermal stresses under the uniform temperature field of the plate are constant. Changes of
natural frequencies of the plate obtained by the above mentioned uncoupled model with temperature is mainly caused by gradients of
the temperature field. Obviously, it is inappropriate to ignore effects of thermal coupling in constitutive relations on thermal modal
characteristics of the plate. In order to consider the effect of temperature on a material, equivalent Young’s moduli and Possion’s ratios
under different high temperatures, which are obtained by material experiments, are used in thermal dynamic models of structures. Due
to limited experimental results of mechanical properties of materials at different high temperatures, a linear interpolation of me-
chanical properties is often used to obtain mechanical properties of materials in the full temperature field, which lacks a rigorous
theoretical basis. Further thermal modal theoretical research was to introduce nonlinear temperature influence terms into constitutive
relations, which established a thermal modal analysis model of a structure [15]. However, direct introduction of nonlinear temper-
ature influence terms into constitutive relations would make constitutive relations to not satisfy tensor characteristics on a theoretical
basis. Therefore, it is important to study dynamic characteristics of a structure based on coupled constitutive relations. Second,
predicted results, such as natural frequencies and mode shapes, of a structure deviate greatly from thermal modal experimental results
at high temperature, and even their change trends with temperature would be different [12]. With the development of the aerospace
industry, the study of thermal modal experiments at high tempertature was fast developed by contact and non-contact experimental
methods [9,12,16,17]. The experimental reliability at high temperature is greatly increased. Many dynamic experimental phenomena
at high temperature were found, such as some disappearing modes with an increasing rate of temperature rise [6], and occurrences of
the non-monotonical behavior of natural frequencies and interchange of mode shapes [8,10-12]. However, predicted results are always
not consistent with thermal dynamic experiments due to the fact that temperature and its distribution have significant effects on
thermal modal characteristics of a structure. It is difficult to accurately control the temperature field in thermal dynamic experiments.
Different experimental uncertainties, such as uncertainties of the heating position and environment, greatly affect thermal modal
characteristics of a structure. Such uncertainties are more obvious in thermal dynamic experiments under working conditions of a
structure. Recently, some researchers realized that it was not suitable to use a definite theory to analyze thermal modal characteristics
of a structure. Histograms of natural frequencies were obtained to describe distribution characteristics of a structure at high tem-
perature, which were closer to those from thermal modal experiments [11]. However, how to carry out research on statistical char-
acteristics of thermal modes of a structure under a small sample, how to obtain more useful information from distribution of natural
frequencies, and how to obtain confidence intervals of predicted results are still unanswered.

The remaining part of this paper is organized as follows. In order to accurately predict thermal modal characteristics of a plate and
evaluate statistical characteristics of modal parameters of the plate at high temperature, temperature field distributions of the plate
under Gaussian heat sources with different heating positions at different heating times are obtained in Sec. 2 by a finite element
method (FEM), and a modified Gaussian function is used there to describe temperature fields to reduce violent oscillations of numerical
results caused by direct use of discrete temperatures for their derivative calculations and to improve the calculation accuracy. A strict
thermally coupled constitutive relation theory is used in Sec. 3 to establish a thermally coupled dynamic model of the plate under a
non-uniform temperature field, and its natural frequencies are obtained in Sec. 4 by a differential quadrature method (DQM). A
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Table 1

Simulation parameters
Parameter Value
Density 4620 kg/m®
Isotropic Thermal Conductivity 21.9 W/me°C
Specific Heat 522 J/(kge °C)
Element Size 0.01 m
Room Temperature 20 °C
Film Coefficient 5 W/m?e°C
Emissivity 0.65

Fig. 2. Meshed model and its section along lines I; and I,

Table 2
Temperatures at the point E in the thickness direction of the plate with different heated spots A, B and C
Heating Position Node E; /°C Node Eg /°C Difference /°C
A 463.74 464.96 1.22
B 459.83 461.07 1.24
9 102.02 102.98 0.96

statistical analysis method with a small sample is used in Sec. 5 to study statistical properties of the plate induced by a random heating
position, which includes probability density distributions (PDFs) of natural frequencies and their confidences and confidence intervals.
Finally, some conclusions are presented in Sec. 6.

2. Temperature Field Distributions of the Plate under Gaussian Heat Sources at Different Heating Times

Temperature and its distribution highly affect dynamic characteristics of a structure, which makes thermal dynamic analysis more
complex. The uncertainty of the heating position is one of the most important factors that affect the uncertainty of the temperature
field of the structure. In order to describe influence of the heating position on thermal modal characteristics of a titanium plate with its
size being a x b x c, as shown in Fig. 1, it can be assumed that the Gaussian heating source acts at the heated spot P(xo, o) of the plate.
By considering the uncertainty of the heating position, two parameters a and f are introduced, which satisfy a, g ~ N(0,0.052). By
letting xo = a/2 + a and yo = b/2+ 3, distribution of the heat flux g over the heated spot is approximately described by the Gaussian
function [18,19]

q= Qexp(* ((X*XO)ZJF(/V*/VO)Z)/(r/ﬁy) )

where Q is the maximum heat flux and r = 0.4 m. In order to simulate the uncertainty of the heating position, 200 random samples of «
and f are used in this work; detailed heated spots are shown in Fig. 1 and listed in Table A1 in Appendix A. It can be seen that the
density of samples is gradually sparse from the geometrical center of the titanium plate to the edge. Unless otherwise specified, the size
of the titanium plate is 0.6 m x 0.35 m x 0.002 m, Q = 3 x 10* W/m?2, and other simulation parameters are given in Table 1. It is noted
that three heated spots with positions A(0.3 m,0.175 m), B(0.2 m,0.1 m) and C(0.1 m,0.1 m) are used in this work for convenience of
explanation. The commercial software ANSYS is used to analyze transient temperature distributions of the titanium plate under
different Gaussian heating sources at different heating times, and the corresponding analysis process with use of ANSYS is shown in
Ref. [19].

The meshed model of the titanium plate is shown in Fig. 2. Table 2 shows temperatures at the point E(0.2 m,0.2 m) along the
thickness of the plate at the heating time t = 250 s when heated spots are A, B and C. It can be seen that the maximum temperature
difference along the thickness is not larger than 1.3 °C, as shown in Table 2. Therefore, the average temperature in the thickness
direction is used in the following analyses instead of temperature distribution in the thickness direction.
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Fig. 4. Temperature field distributions of the titanium plate with different heated spots A, B and C at different heating times, where (a)-(c)
correspond to heating times t = 15 s, t = 250 s and t = 10000 s, respectively

The highest and lowest temperatures on the titanium plate with different heated spots A, B and C as a function of the heating time
are shown in Fig. 3. It can be seen that the highest and lowest temperatures take 250 s and 1000 s to reach steady state, respectively.
Temperature field distributions of the titanium plate at heating timest =15 s, t = 250 sand t = 1000 s are shown in Fig. 4. In order to
reduce violent oscillations of numerical results caused by direct use of discrete temperatures for their derivative calculations and to
obtain more accurate derivatives of the non-uniform temperature field in the following analyses, a modified Gaussian function is used
to describe the dimensionless temperature field:



Y.-J. Hu et al. Journal of Sound and Vibration 552 (2023) 117581

Table 3
Fitted values of Tq, Rq, dq and corresponding coefficients of determination R? with different heated spots and heating times

Heated spot Heating time /s To Rq /m dq R2

A 10 3.024141 0.231107 0.020630 0.9996
30 8.621528 0.233605 0.080714 0.9990
50 13.20158 0.240462 0.067387 0.9981
250 24.72248 0.321820 2.05E-15 0.9947
1000 22.36368 0.327503 2.185605 0.9970
8000 22.36198 0.327489 2.187304 0.9969

B 10 3.044806 0.232356 9.68E-16 0.9998
30 8.711131 0.234998 1.25E-15 0.9993
50 11.95891 0.245694 4.65E-16 0.9982
250 24.89881 0.301823 1.04E-15 0.9912
1000 24.73871 0.338022 2.81E-16 0.9959
8000 24.72797 0.338419 2.63E-15 0.9960

C 10 3.049625 0.232012 3.00E-16 0.9998
30 8.737664 0.234250 4.59E-16 0.9996
50 13.64971 0.237915 2.04E-17 0.9993
250 21.84155 0.287503 1.06E-15 0.9962
1000 25.05201 0.324783 9.59E-16 0.9959
8000 24.97439 0.327811 1.02E-15 0.9967

T" = TQexp< —3(x—x0)’ 4+ (v — ) /Ré) +dy 2

where dq is an additional boundary correction term that considers influence of boundaries; T" = AT/To = (T —To)/To is a dimen-
sionless temperature, in which T and Ty = 20 °C are the present temperature and room temperature, respectively; and Tq, Rq, dq are
variables that need to be fitted by numerical results of a temperature field. Table 3 lists fitted values of Ty, Rq, d, and corresponding
coefficients of determination R? with different heated spots and heating times. One can find that the modified Gaussian function used
in this work has a good precision that can be used to describe temperature distributions of the titanium plate under Gaussian heating
sources. Fitted values of temperature fields of 200 random Gaussian heating sources are given in Table A1l in Appendix A.

3. Coupled Thermodynamic Model of the Plate
3.1. Thermally Coupled Constitutive Relations

The key to establish a thermal dynamic model of a structure is to use thermally coupled constitutive relations to describe a thermo-
mechanical coupled characteristic of a material. For a simple material, the state function of a particle of the material is independent of
motion and temperature histories, which is only determined by the current state. In general, coupled constitutive relations of a ma-
terial can be obtained by a strain energy function as functions of a dimensionless temperature T" and strain invariants I, I, and I5.
When the strain tensor |r;| < 1, wherei,j = 1,2,3, a strain energy function ® can be expressed as a power series. It is further noted that
effects of the strain tensor over the third order and those of products of the dimensionless temperature over the fourth order are
neglected. The strain energy function can be simplified as [20,21]

@ =a, +aT +a;T*+a T +asT™* + agly + a;, T" + ag T?
+ash T™ + apl} + an BT +anBiT? + anl +auliT + aish 3)
taishT" + anhT™? + aighly + awh LT + ayls + an LT

where ag, a;, ---, ap; are material constants of the strain energy function. Stress-strain constitutive equations can be derived as

00 0® o, 0P J, 0D I

K A @
where 3}%‘) =&, gyizj =hd5 —yyand 37% =265 — iy + vjxrwi- By neglecting high-order strains, thermally coupled stress-strain constitutive
equations can be obtained [21]:

on =TT +w(T )y, + () +E(T )y (5a)

o0 =TT+ [w(T") + &)y +w(T )y (5b)

Opp = —f(T*)Vlz (50)

where 611, 622, 612 and 711, 722, Y1 are stress components and strain components, respectively, and &(T") = ajs + a;e T +a17T 2, w(T")
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Table 4
Equivalent Young’s moduli, Poisson’s ratios and coefficients of thermal expansion at different temperatures
Temp. E(T") /GPa w(T") a(T") / x 1078 °C7!
20°C 113.14 0.263 -
200°C 98.77 0.299 7.59
400°C 71.98 0.322 9.475
600°C 24.76 0.347 11.75

= 2(ayo +an T +a12T?) and y(T") = a; + agT" + agT"? are functions of the dimensionless temperature. In order to facilitate appli-
cations, equivalent Young’s moduli E(T"), Poisson’s ratios v(T") and coefficients of thermal expansion a(T") at different dimensionless
temperatures are introduced. Functions of the dimensionless temperature &(T"), w(T") and y(T") can be described by equivalent pa-
rameters E(T"), vo(T") and a(T") at different dimensionless temperatures [21]:

" * " E(T"
ET") =ais +aT +apT? = —U(TET)I (6a)
. R . E(T"
w(T") =2(aw+anT +anT?) = % (6b)
Z(T"‘) =a;+asT" +ayT™? = m (60)

o(T°) — 1

Material constants a;, where i = 7,8,---,12,15,16,17 can be fitted by the least squares method when equivalent material pa-
rameters E(T"), o(T") and a(T") at different dimensionless temperatures are obtained by mechanical property experiments at high
temperature. By use of a laser engraving technology and three-dimensional digital image correlation proposed in Ref. [22], Young’s
moduli, Poisson’s ratios, and coefficients of thermal expansion of the titanium plate at 20°C, 200°C, 400°C and 600°C are listed in
Table 4.

By use of Egs. 6(a)-(c), expressions of functions of equivalent material parameters &(T"), y(T") and y(T") of the titanium plate are

ET") = ais +awT" +apT™? = —8.309 x 10 +1.318 x 10°7" 4-7.24 x 10'T" (7a)
w(T") =2(aw+anT +anT?) =2(5.693 x 10" +2.3 x 10°7" —5.9 x 10'T"?) (7b)
2(T") = a7 + agT" + agT™ =2.324 x 10° — 6.415 x 10'T" + 1.618 x 10°T" (7c)

3.2. Coupled Thermal Dynamic Governing Equation of the Plate under a Non-uniform Temperature Field

Under the assumption of small deformation, geometrical relations can be given by

. 7_02_w P w ’w

== Yy = —2=—
o ® 0y? b ¥y t))cayZ ®)

where ey, ey and y,, are normal strains in x and y directions and the shear strain, respectively, and w = w(x, y, t) is the deflection of the
plate. Coupled thermal dynamic governing equations can be derived via Hamilton’s principle

5/t(K—H)dt+/r§Rdt:0 9

fo fo

where variation of the potential energy 6H, variation of the kinetic energy K, and the virtual work 6R due to the mechanical load gq
=q(x,y,t) are

6H = /// (008, + 0,0, + 1,0y, )dV (10)
v

oK = /// pwowdV 1D
v
oR = // géwds a2
N

respectively, in which w is the vibration velocity, and p is the density of the material. By keeping Egs. (5) and (8) in mind, substituting
8H, 5K and R into Eq. (9), and letting w(x,y,t) = w(x,y)e!, where i is the imaginary unit and w is the excitation frequency, the coupled
thermal dynamic governing equation of the titanium plate under a non-uniform temperature field can be obtained, with detailed
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Table 5
Boundary conditions of the titanium plate
Boundary condition Mathematical equations
fixed end W
%: o E‘ko :
hinged end 2 2w 24

" 14 ow . 14
Wlaco = 0E(T7(6)) Gy o + (T 062)) 53 oo + W(T (2 ) Gz oo =0

free end QT (1Y) (T ()| P T(ey) T (xy)
( o ax )oyZ'“’( oy ox )
27 3.
;’xay\”w( ) o + PSR o1 )
3 2 —

T e VT () Ty = 08T (k) S g =0

derivation given in Appendix B:

D[y/(T*(x,y))(a W dw aj>+(6 (T (x,y) + &(T" (x,¥)))

+2

ot T ooy’ 9y?
T () P (azw(ﬂx,y)) LW )+ f(T*(»ay))))) P
ox* ox* oy’ o oy* (13)
LPET ) P ) P (T (x)
0xdy Oxdy ox ox® dy oy’
(T (x,y) Iw oyp(T (xy) Iw P
+2 ox dy*ox 2 dy 0x20y] ~photw =0

where D = h3/12. Corresponding boundary conditions of the titanium plate can also be obtained, which are listed in Table 5.

It is noted that effects of thermal coupling on the plate generally include two parts: the thermal mechanical coupled effect in
constitutive relations, and the thermal mechanical coupled effect in the heat equation. The thermal mechanical coupled effect in
constitutive relations is considered in the present work. Strictly speaking, the thermally coupled model should consider the thermal
mechanical coupled effect in the heat equation. However, one can find that changes of temperature with time under Gaussian heating
sources are slow when the change of the temperature field is not particularly violent. Therefore, similar to the treatment in Refs. [13,
14], such a coupled effect is neglected in the present work.

3.3. Simulation Method

The DQM is employed to numerically solve coupled thermal dynamic governing equations in Eq. (13), with boundary conditions
listed in Table. 5. The fundamental idea behind the DQM is to approximate an unknown function and its derivatives at any discrete
point as linear weighted sums of its values at all discrete points chosen in the solution domain [23]. By considering a function w(x,y) in
adomain {(x,y) € (0 <x < a,0 <y <b)}, its rth derivative with respect to x and sth derivative with respect to y at x = x; and y = y; are
approximated by [23]

- Z " (14a)

ax, .r Xi § A:k ijv () s

The associated (r + s)th derivative of w(x,y) with respect to x and y is
_7 AC . 14b
iy = @ iy Z ik Z "y (14b)

wherei=1,2,--,Nyandj =1,2,---,N), in which N, and N, are grid points in x and y directions on the plate; w; =w(x;,y;); and AE,:) and

a(r ts) W
0x" dy*

B;lr ) are weighting coefficients dependent on coordinates of discrete points only, which can be calculated through a recursive formula. It

should be mentioned that zeros of the Chebyshev— Lobatto polynomial are taken as coordinates of grid points here due to its excellent
convergence. The discretized governing equation can be obtained as
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Table 6
Convergence of the numerical method of natural frequencies with different grid points with N, = N,
Temperature Mode 14 nodes /Hz 21 nodes /Hz 27 nodes /Hz 30 nodes /Hz 35 nodes /Hz
Uniform Ist 27.97 27.79 27.74 27.73 27.70
2nd 30.51 30.56 30.32 30.17 30.13
3rd 67.80 67.92 67.62 67.50 67.35
4th 76.55 76.42 76.40 76.38 76.38
Non-uniform Ist 24.61 21.96 21.70 21.62 21.60
2nd 26.17 26.40 26.27 26.21 26.07
3rd 60.30 57.92 57.60 57.38 57.22
4th 67.86 62.76 63.08 63.13 63.11
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Fig. 5. First four natural frequencies of the titanium plate obtained by the present analysis, the FEM and experiments in Ref. [12], where (a) and (b)
correspond to uniform temperatures of 25.5 °C and 211.3 °C, respectively
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wherei=3,4,.--,Ny—3andj = 3,4,---,N, — 3, and

Py = y(T" (5,)),Pr = "’ﬁ;ﬁ’” )9 ("’(T*(X»yz) ;2 &(T
py, = PV () | PO ) +ET )
dy Ox
P5:P7:2M,P6:P8:2M
ox dy

")

5

PET (x,y))

0xdy

Ny Ny Ny
P, (ZAEI?)WH"'ZZAE?)ZB Wkl+z er> +P, ZA:k Wi
k=1 = =1
Ny
+P3 Y
=1

)

(15)

16)

By rearranging Eq. (15) and considering the effect of free boundary conditions studied in this work, an assembled form is given by

DKW — pha*W = 0

where W

= [W11, W12, WiN,, =, Wit, Wiz, =, Win, -+, WN, 1, WN, 2, -+

,Wn,n, ], and K is the stiffness matrix.

a7

The calculation process in this work is to first obtain temperature fields of the plate at different heating times as shown in Sec. 2, and
then use the thermally coupled governing equation and the DQM to study thermal modal characteristics of the plate. It should be
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Fig. 6. Natural frequencies of the titanium plate under the three Gaussian heated spots A, B and C vs. the heating time, where (a)-(c) correspond to
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pointed out before calculating Eq. (17) by the inverse iterative method that y/(

T"(x,y)) and &(T"(x,y)) in Eq. (17) can be expressed by

the dimensionless temperature field in Eq. (7), dimensionless temperature fields of the plate under Gaussian heat sources at different
heating times can be described by Eq. (2), and their derivatives in Eq. (17) with respect to x and y can be obtained by analytical
expressions. As indicated earlier, this approach can reduce violent oscillations of numerical results caused by direct use of discrete
temperatures for their derivative calculations and to improve the calculation accuracy.
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Table 7
MAC values of the first four mode shapes of the titanium plate with different heating positions and times
Heated position Heating time /s Ist 2nd 3rd 4th
A 10 0.9958 0.9966 0.9996 0.9998
30 0.9980 0.9984 0.9995 0.9947
50 0.9966 0.9972 0.9999 0.9998
250 0.9995 0.9995 0.9992 0.9986
1000 0.9985 0.9987 0.9987 0.9933
8000 0.9994 0.9995 0.9988 0.9922
B 10 0.9996 0.9997 0.9989 0.9995
30 0.9938 0.9950 0.9989 0.9975
50 0.9937 0.9949 0.9992 0.9968
250 0.9944 0.9971 0.9791 0.9634
1000 0.9959 0.9981 0.9927 0.9370
8000 0.9930 0.9955 0.9926 0.9379
C 10 0.9958 0.9966 0.9997 0.9970
30 0.9949 0.9956 0.9982 0.9967
50 0.9998 0.9997 0.9991 0.9894
250 0.9979 0.9986 0.9888 0.8960
1000 0.9955 0.9973 0.9733 0.7308
8000 0.9914 0.9937 0.9750 0.7362
Table 8
Probabilities of evaluating heating positions through natural frequencies
Frequency interval /Hz Radius interval /m Np, Nt Probability
<21.89 <0.058 90 99 91.0%
21.89~22.15 0.058~0.085 46 52 88.5%
22.15~22.41 0.085~0.104 25 26 96.2%
22.41~22.70 0.104~0.125 14 14 100.0%

4. Numerical Results of Thermal Modal Characteristics of the Titanium Plate

Before proceeding to stochastic thermal modal properties of the titanium plate, the present analyses are validated in Table 6 and
Fig. 5 for the titanium plate under uniform and un-uniform temperature fields by directly comparing the present results with existing
experimental ones reported in previous studies, and results from the FEM. The convergence of the proposed solution method is
evaluated by varying total numbers of grid points Ny and N, when uniform and non-uniform dimensionless temperature fields are

T"(x,y) = 4 and T"(x,y) = 24.64exp(— ((x—0.2)* + (y — 0.1)%) /(0.338/1/3)?) + 0.01, respectively. Excellent convergence can be
observed from Table 6. In what follows, N, = Ny= 27 is used unless otherwise stated. Figure 5 shows the first four natural frequencies
of the titanium plate with its size being 0.35 m x 0.5 m x 0.002 m, obtained by the present analysis, the FEM, and experiments shown
in Ref. [12] when uniform temperatures are 25.5 °C and 211.3 °C, respectively. It can be found that the numerical method used in this
work is correct. It is noted that equivalent Young’s moduli E(T"), Poisson’s ratios v(T"), and coefficients of thermal expansion a(T") at
different dimensionless temperatures, as shown in Table 4, are used in the following numerical simulations by use of the commercial
software ANSYS, and the corresponding analysis process of ANSYS is shown in Ref. [24].

Natural frequencies of the titanium plate under three Gaussian heated spots A, B and C, as shown in Fig. 1, with respect to the
heating time are shown in Fig. 6, where distributions of temperature fields at different heating times are given by Eq. (2) and pa-
rameters in Eq. (2) are listed in Table 3. It can be found that the first four natural frequencies have a sudden decrease phenomenon
within the heating time period from 50 s to 250 s. However, in other heating time periods, the first four natural frequencies slowly
decrease. The sudden decrease phenomenon is independent of the Gaussian heated spot, which is caused by thermally coupled material
properties and drastic temperature field changes in the heating time period from 50 s to 250 s under the Gaussian heating source, as
shown in Fig. 3. Thus, the effect of the phenomenon should be fully considered in the study of the thermodynamics of a plate.

The effect of temperature fields on modal shapes of the titanium plate is described by the modal assurance criterion (MAC), which is

T 2
defined as MAC = %, where @, and @, are a modal shape at room temperature and the corresponding modal shape at a heating

time, respectively. It is noted that temperature has no effect on a mode shape when the associated MAC value is equal to 1, and the
smaller the value, the greater the effect of temperature on the mode shape. The first four mode shapes at room temperature of the plate
are shown in Fig. 7. MAC values of the first four mode shapes of the plate at different heating positions and times are listed in Table 7. It
can be found that the effect of the heating time on mode shapes of the plate is small when the heating positon is relatively close to the
center of the plate. Otherwise, the effect of the heating time on mode shapes of the plate is large.

Distributions of the first four natural frequencies with the Gaussian heating source and 200 random Gaussian heated spots, as listed
in Table Al in Appendix A, are shown in Figs. 8(a) and (b) when heating times are t=100 s and t=1000 s, respectively, where
equipotential curves of natural frequencies and corresponding heating positions in a range of frequencies are also shown. It is noted
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heating times t=100 s and t=1000 s, respectively
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Fig. 9. Histograms of the first four natural frequencies of the titanium plate, where (a) and (b) are heating times of 100 s and 1000 s, respectively

that distributions of temperature fields of 200 random Gaussian heated spots when heating times are t=100 s and t=1000 s are given by
Eq. (2), and parameters in Eq. (2) are listed Table A1 in Appendix A. It can be found that: (1) there is a strong correlation between the
value of a natural frequency and the Gaussian heated spot; (2) the natural frequency is small when a Gaussian heated spot is close to the
center of the titanium plate; and (3) equipotential curves of the first and third natural frequencies are approximately circles, while
equipotential curves of the second and fourth natural frequencies show elliptical trends. Due to that fact, one can use the value of a
natural frequency to estimate the probability of the heating position. By taking the first natural frequencies with the heating time being
1000 s into account, equipotential curves of natural frequencies, corresponding heating positions in a range of frequencies, and radii of
equipotential curves are shown for mode 1 in Fig. 8(b). Probabilities of evaluating heating positions through natural frequencies are
shown in Table 8, where [a7, a3] is a radius interval of equipotential curves, and @; and a; are lower and upper bounds of the interval;
Ny, is the number of points with predicted values within the radius interval and frequency interval, as shown for mode 1 in Fig. 8(b);
and Nr, is the number of points with predicted values within the frequency interval. The probability can be obtained by Ny, /Nro X
100%. For example, in the first natural frequency of the plate with the heating time being 1000 s, when the natural frequency interval
is less than 21.89 Hz, the heating source position has a 91.0% probability of being in the center circle with a radius of less than 0.058 m.
It can be found that the probability of evaluating the heating position through a natural frequency can be used to estimate the un-
certainty of the offset of the heating position during a dynamic experiment by a measured natural frequency.

By setting q={q1, g2, -*, @200 } as a certain natural frequency with 200 sample data at a certain time, as shown in Figs. 8(a) and (b),
letting gmin and . be the minimum and maximum values in q, and evenly dividing the interval [gmin, @max] into 71 subintervals, the ith
subinterval can be expressed as

L= [i (qmax - qmin) + qmimé (qmax - qmin) + qmin) = 17 2» e — 1 (18a)

n n

and

n—1
Ln = [ 7 (qmax - qmin) + Gmin, qmax:| (]-Sb)

The probability density PD; of each subinterval L;, wherei = 1,2, ---,n, can be calculated by

Nnum n

i = - 1
200 Gmax — Gmin ( 9)

where Ny, is the number of the value of a natural frequency in the ith subinterval, and n=100 is used in this work. Histograms of the
first four natural frequencies of the titanium plate with 200 random Gaussian heated spots at different times, as shown in Table A1 in
Appendix A, are shown in Fig. 9.

12
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5. Random Small Sample Estimation of Thermal Modal Properties of the Titanium Plate Induced by a Random Heating
Position

A random small sample estimation method is used in this section to study distributions of the first four natural frequencies of the
titanium plate induced by a random heating position. First, by considering that sample data of the first four natural frequencies with
200 random Gaussian heated spots at heating times of 100 s and 1000 s, as shown in Fig. 8, are small, an improved Bootstrap method is
used to expand sample data. Second, folded normal distribution is used to describe distributions of the first four natural frequencies of
the titanium plate at heating times of 100 s and 1000 s according to histograms in Fig. 9. Finally, PDFs of natural frequencies and their
confidence intervals are obtained.

5.1. Folded Normal Distribution and Improved Bootstrap Method

Let Y ~ N(u,0?) and X = |Y — min| + min, where min is the minimum value in sample data; the PDF of Y ~ FN(u,0?) can be
expressed as [25]

709 = (enn = gt =) e = gpztomin —x ) ) (20)

where N(u, 6%) and FN(u, 62) are the normal distribution and folded normal distribution, respectively; 4 and ¢ are the mathematical
expectation and variance, respectively; and x = min is a folded axis of the PDF that can be described by Fig. 10.

It is difficult to directly use the Monte Carlo method to analyze thermal modal characteristics of the titanium plate induced by a
random heating position due to a large amount of calculation in thermal field analyses. Therefore, with existing random small sample
data, an improved Bootstrap method is used to expand sample data [26], which overcomes the limitation of the previous Bootstrap
method that only relies on existing observation information, and resampled sample data can only be generated by original samples
[26]. The Bootstrap method is only dependent on existing observation information and has no prior property in calculation, which can
be conveniently applied to data processing. However, calculation in the Bootstrap method limits the range of the self-help sample that
is only from the original sample data, which makes it impossible to obtain distribution characteristics outside non-observed sample
data. Although the Bootstrap method can increase observation data through the self-help sample, no new observation information is
actually added. In this case, the self-help sample may lose its proper significance and characteristics. However, the improved Bootstrap
method can obtain the self-help sample that is completely different from the original sample based on minimizing the deviation from
the real distribution. Such a method can obtain information outside observation data. It should be noted that the method cannot obtain
accurate information beyond observation data, but only approximate information [26]. The specific implementation process of the
improved Bootstrap method is shown below.

Arranging 200 sample data of a certain natural frequency at a certain time q={q1,q2, -, q200} in the ascending order, one can
record them as P = {p1,p2,--,p200}. A neighborhood U; = [a;, b;] for each p; can be expressed as

Ui =Ipr — (p2 —Pl){"LPl + (p2 — p1)/m]
Ui = [pi — (pi 7Pi—l)/:m7]7i + (pis1 — pi)/m] (21
U, = @n - (pn _Pn—l))mvpu + (Pn _Pn—l)/m]

wherem > 2 andi= 2,3, ---n—1 with n = 200; m = 2 is used in this work.
By assuming that N is the number of resampling times, the following rules are used to expand sample data:

(1) Determine a subscript sample | of an expanded neighborhood, which satisfies uniform distribution in the interval [1, 200]. The
probability of [ =i is

13
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Table 9
Original parameters and fitted parameters of folded normal distribution obtained by the improved Bootstrap method
o o2 min e o2 & /% en %
35 0.09 34.9 34.90 0.0897 0.286 0.333
45 0.25 40.0 45.05 0.2540 0.111 1.600
55 0.04 54.8 55.00 0.0378 0.000 5.500
65 0.25 66.0 65.03 0.2578 0.046 3.120
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Fig. 11. Histograms and their PDFs of the re-sampled first four natural frequencies of the titanium plate, where (a) and (b) correspond to heating
times of 100 s and 1000 s, respectively

P(l=i) =~ (22)

By resampling the subscript in U; N times according to the above distribution, a sample 1 = {l;, 5, ---, Iy} can be obtained, where
I; is an integer in the interval [1, 200].
(2) Self-help sample Q: H

Q ~U(v,).i=1,2-N (23)

where U(U,) = U([a;, bi]) is uniform distribution in the interval [a;, b;]. By use of such a method, the expanded observation

sample ¢ = {q},q5, -, qx} can be obtained by the self-help sample Q" = {Q},Q5,-,Qx}. Such a method extends distribution
characteristics of data to its non-observed samples while keeping original distribution characteristics as consistent as possible.

In order to verify the feasibility of the above sampling method, folded normal distribution with different parameters is verified:

(1) Generate a sample q, with a sample size of 200, which obeys folded distribution with the mean u,, variance ¢2, and minimum
value min.

(2) An expanded sample q, can be obtained by the improved Bootstrap method with 4000 times of sampling of the sample q,.

(3) Fit the PDF of q, by use of folded distribution to obtain the fitted mean y, and variance ag.

Based on the improved Bootstrap method, verification results are shown in Table 9. It can be found that relative errors of the mean ¢,
and variance ¢, are small, and such a method can be used in random small sample estimation.

14
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Table 10
Values of the parameter min and fitted results in folded normal distribution
Heating time /s Mode min /Hz u /Hz 62 /Hz?
100 1st 24.5189 24.5108 0.0939
2nd 28.3460 28.3395 0.0122
3rd 63.1711 63.1638 0.0376
4th 70.2965 70.5008 0.0106
1000 Ist 21.6436 21.6327 0.1582
2nd 26.2220 26.3566 0.0163
3rd 57.5029 57.4904 0.2269
4th 63.1657 63.1486 0.1622
Table 11

Confidence intervals of the first four natural frequencies of the titanium plate when heating times are 100 s and 1000 s

Heating time /s Mode Confidence interval for n=3 /Hz confidence interval for =2 /Hz confidence interval for =1 /Hz
100 1 [24.5189, 25.4286] [24.5189, 25.1336] [24.5189, 24.8254]

2 [28.3460, 28.6745] [28.3460, 28.5679] [28.3460, 28.4567]

3 [63.1711, 63.7471] [63.1711, 63.5601] [63.1711, 63.3652]

4 [70.2965, 70.7836] [70.2965, 70.6754] [70.3978, 70.6032]
1000 1 [21.6436, 22.8245] [21.6436, 22.4412] [21.6436, 22.0415]

2 [26.2220, 26.7074] [26.2220, 26.5732] [26.2289, 26.4278]

3 [57.5029, 58.9175] [57.5029, 58.4581] [57.5029, 57.9794]

4 [63.1657, 64.3620] [63.1657, 63.9738] [63.1657, 63.5688]

5.2. Numerical results

According to the above improved Bootstrap method, the first four natural frequencies of the titanium plate with 200 random
Gaussian heated spots at heating times of 100 s and 1000 s, as shown in Fig. 8, are resampled 4000 times, and their histograms are
shown in Fig. 10. Folded normal distribution given by Eq. (20) is used to describe their PDFs, as shown in Fig. 11, where the parameter
min in Eq. (20) takes the minimum value in sample data. Values of the parameter min and fitted results in folded normal distribution are
shown in Table 10. It can be found from Table 10 that: (1) the variance corresponding to each natural frequencies increases with the
heating time, which shows that the random heating position has a great effect on natural frequencies of the plate when the heating time
increases. (2) Variances corresponding to the first and second natural frequencies of the plate are the largest when heating times are
100 s and 1000 s, respectively. This also shows that the effect of the random heating position on the first and second natural frequencies
is larger than that on the other natural frequencies when heating times are 100 s and 1000 s, respectively.

Considering that folded distribution is a variant of normal distribution, one can study confidence intervals of natural frequencies of
the titanium plate induced by the random heating position from the 3-sigma criterion with some modifications. By letting X €
[min, +c0) when X ~ NF(u,02), lower bounds of confidence intervals y can be defined as

r= {” — Mo, min SH—no 29
min, min > y —no

where 7 = 1,2, 3 correspond to three conditions whose confidences are 0.683, 0.955 and 0.997, respectively. Thus, upper bounds of
confidence intervals can be obtained by PDFs in Eq. (20) with parameters in Table 10. Confidence intervals for n = 1,2, 3 are given in
Table 11. It is noted that confidence intervals can be used to estimate reliability of thermal modal experiments when measured natural
frequencies are obtained. If measured natural frequencies fall within a confidence interval, it can be believed that the random heating
position affects thermal modal experiments. If they do not, it means that there are errors in thermal modal experiments or there are
other important uncertainties that have not been considered in the analysis.

6. Conclusions

Stochastic thermal modal characteristics of a titanium plate induced by a random heating position are studied by a random small
sample estimation method that combines the improved Bootstrap method and folded normal distribution. The research mainly in-
cludes the following work: (1) temperature distributions of the plate under two-parameter Gaussian heating sources with different
heated spots are obtained by a simulation method, and a modified Gaussian function is used to describe temperature fields to reduce
violent oscillations of numerical results caused by direct use of discrete temperatures for their derivative calculations and to improve
the calculation accuracy. (2) A coupled thermal dynamic governing equation of the plate is established by a thermally coupled
constitutive relation theory, and modal parameters of the plate at different high temperatures are obtained by the DQM. By comparing
the present numerical results with those from the FEM and experimental results, the accuracy of the numerical results is verified. (3)
The first four natural frequencies of the plate under 200 Gaussian heating sources with different heating positions and times are
obtained. By use of the improved Bootstrap method to expand sample data of natural frequencies, folded normal distribution is used to
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Table 1A
Positions of heated spots and fitted parameters of temperature fields
No. X /m y /m Heating time=100 s Heating time=1000 s
Tq Rq /m do Tq Rq /m do

1 0.247 0.179 20.954 0.260 0.000 24.560 0.346 0.000
2 0.347 0.128 20.944 0.259 0.000 24.527 0.347 0.000
3 0.318 0.196 20.911 0.260 0.000 23.149 0.336 1.372
4 0.299 0.209 20.910 0.260 0.000 22.630 0.330 1.907
5 0.309 0.218 20.917 0.259 0.000 22.936 0.333 1.589
6 0.222 0.140 21.001 0.258 0.000 24.666 0.342 0.000
7 0.296 0.197 20.906 0.260 0.000 22.527 0.329 2.015
8 0.380 0.180 21.001 0.259 0.000 24.682 0.342 0.000
9 0.305 0.216 20.915 0.260 0.000 22.792 0.331 1.738
10 0.302 0.202 20.907 0.260 0.000 22.542 0.329 1.999
11 0.263 0.220 20.940 0.259 0.000 24.492 0.348 0.000
12 0.298 0.168 20.902 0.260 0.000 22.380 0.328 2.168
13 0.312 0.168 20.904 0.260 0.000 22.709 0.331 1.828
14 0.321 0.225 20.916 0.259 0.000 23.666 0.340 0.835
15 0.281 0.069 20.948 0.257 0.000 24.257 0.343 0.217
16 0.288 0.150 20.909 0.260 0.000 22.833 0.332 1.697
17 0.401 0.111 21.056 0.257 0.000 24.747 0.338 0.000
18 0.187 0.156 21.082 0.257 0.000 24.821 0.336 0.000
19 0.411 0.207 21.079 0.257 0.000 24.809 0.337 0.000
20 0.317 0.216 20.919 0.259 0.000 23.292 0.337 1.221
21 0.350 0.124 20.951 0.259 0.000 24.539 0.346 0.000
22 0.217 0.151 21.010 0.259 0.000 24.692 0.341 0.000
23 0.270 0.182 20.918 0.260 0.000 24.087 0.345 0.408
24 0.286 0.160 20.907 0.260 0.000 22.873 0.333 1.657
25 0.321 0.190 20.912 0.260 0.000 23.395 0.338 1.118
26 0.216 0.195 21.010 0.259 0.000 24.695 0.341 0.000
27 0.324 0.129 20.927 0.259 0.000 23.778 0.341 0.720
28 0.239 0.166 20.968 0.259 0.000 24.592 0.345 0.000
29 0.303 0.068 20.943 0.257 0.000 24.006 0.341 0.474
30 0.333 0.232 20.930 0.259 0.000 24.453 0.348 0.028
31 0.316 0.144 20.914 0.260 0.000 23.156 0.335 1.363
32 0.354 0.115 20.962 0.258 0.000 24.553 0.345 0.000
33 0.350 0.162 20.949 0.260 0.000 24.547 0.347 0.000
34 0.267 0.104 20.938 0.258 0.000 24.479 0.347 0.000
35 0.313 0.174 20.904 0.260 0.000 22.769 0.332 1.765
36 0.253 0.147 20.948 0.259 0.000 24.533 0.347 0.000
37 0.234 0.284 21.000 0.256 0.000 24.589 0.342 0.000
38 0.346 0.232 20.948 0.259 0.000 24.524 0.346 0.000
39 0.300 0.050 20.955 0.256 0.000 24.309 0.343 0.162
40 0.297 0.197 20.905 0.260 0.000 22.498 0.329 2.045
41 0.346 0.105 20.953 0.258 0.000 24.519 0.346 0.000
42 0.330 0.162 20.919 0.260 0.000 24.113 0.345 0.382
43 0.318 0.183 20.908 0.260 0.000 23.093 0.335 1.430
44 0.363 0.212 20.968 0.259 0.000 24.595 0.345 0.000
45 0.346 0.161 20.943 0.260 0.000 24.531 0.347 0.000
46 0.312 0.254 20.928 0.258 0.000 23.641 0.339 0.854
47 0.265 0.151 20.928 0.260 0.000 24.487 0.349 0.000
48 0.267 0.191 20.907 0.260 0.000 23.925 0.344 0.570
49 0.360 0.208 20.961 0.259 0.000 24.583 0.345 0.000
50 0.219 0.179 21.002 0.259 0.000 24.684 0.342 0.000
51 0.299 0.219 20.916 0.259 0.000 22.790 0.331 1.739
52 0.203 0.191 21.044 0.258 0.000 24.758 0.339 0.000
53 0.351 0.136 20.947 0.259 0.000 24.546 0.346 0.000
54 0.343 0.085 20.960 0.257 0.000 24.510 0.345 0.000
55 0.300 0.268 20.935 0.257 0.000 23.740 0.339 0.750
56 0.296 0.145 20.909 0.260 0.000 22.604 0.330 1.934
57 0.176 0.180 21.109 0.257 0.000 24.866 0.335 0.000
58 0.329 0.203 20.923 0.260 0.000 24.090 0.345 0.404
59 0.190 0.181 21.074 0.258 0.000 24.811 0.337 0.000
60 0.184 0.130 21.088 0.257 0.000 24.818 0.336 0.000
61 0.258 0.199 20.938 0.260 0.000 24.512 0.348 0.000
62 0.235 0.160 20.978 0.259 0.000 24.611 0.344 0.000
63 0.330 0.213 20.928 0.259 0.000 24.160 0.345 0.330
64 0.182 0.210 21.094 0.257 0.000 24.832 0.336 0.000
65 0.298 0.195 20.905 0.260 0.000 22.469 0.328 2.075
66 0.304 0.170 20.902 0.260 0.000 22.409 0.328 2.138
67 0.341 0.142 20.940 0.259 0.000 24.508 0.348 0.000

(continued on next page)
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Table 1A (continued)

No. x /m y /m Heating time=100 s Heating time=1000 s
Tq Rq /m do Tq Rq /m do

68 0.318 0.142 20.916 0.260 0.000 23.268 0.337 1.248
69 0.316 0.270 20.940 0.257 0.000 24.025 0.342 0.457
70 0.372 0.105 20.997 0.258 0.000 24.620 0.342 0.000
71 0.216 0.126 21.016 0.258 0.000 24.683 0.341 0.000
72 0.253 0.151 20.946 0.260 0.000 24.533 0.347 0.000
73 0.247 0.232 20.959 0.258 0.000 24.551 0.345 0.000
74 0.273 0.148 20.920 0.260 0.000 23.901 0.343 0.597
75 0.236 0.124 20.975 0.258 0.000 24.594 0.344 0.000
76 0.354 0.124 20.957 0.259 0.000 24.553 0.346 0.000
77 0.302 0.212 20.912 0.260 0.000 22.681 0.330 1.853
78 0.300 0.221 20.917 0.259 0.000 22.816 0.332 1.712
79 0.316 0.154 20.910 0.260 0.000 23.026 0.334 1.498
80 0.267 0.225 20.927 0.259 0.000 24.477 0.348 0.005
81 0.208 0.171 21.029 0.258 0.000 24.734 0.340 0.000
82 0.286 0.222 20.921 0.259 0.000 23.193 0.335 1.322
83 0.295 0.142 20.910 0.260 0.000 22.661 0.330 1.875
84 0.279 0.281 20.949 0.257 0.000 24.335 0.344 0.138
85 0.438 0.205 21.134 0.256 0.000 24.902 0.333 0.000
86 0.299 0.174 20.901 0.260 0.000 22.368 0.328 2.181
87 0.275 0.187 20.914 0.260 0.000 23.694 0.341 0.811
88 0.390 0.128 21.031 0.258 0.000 24.713 0.340 0.000
89 0.297 0.112 20.916 0.259 0.000 23.149 0.334 1.365
90 0.348 0.100 20.960 0.258 0.000 24.528 0.345 0.000
91 0.308 0.029 20.970 0.255 0.000 24.482 0.342 0.000
92 0.254 0.185 20.941 0.260 0.000 24.530 0.347 0.000
93 0.377 0.273 21.014 0.256 0.000 24.630 0.341 0.000
94 0.289 0.131 20.918 0.259 0.000 23.023 0.334 1.498
95 0.319 0.173 20.908 0.260 0.000 23.180 0.336 1.340
96 0.215 0.132 21.019 0.258 0.000 24.694 0.341 0.000
97 0.387 0.154 21.019 0.258 0.000 24.711 0.341 0.000
98 0.329 0.204 20.924 0.260 0.000 24.096 0.345 0.397
99 0.392 0.207 21.033 0.258 0.000 24.729 0.340 0.000
100 0.292 0.246 20.922 0.258 0.000 23.402 0.337 1.102
101 0.312 0.095 20.929 0.258 0.000 23.655 0.339 0.839
102 0.233 0.200 20.974 0.259 0.000 24.620 0.344 0.000
103 0.298 0.235 20.914 0.259 0.000 23.082 0.334 1.434
104 0.256 0.151 20.942 0.260 0.000 24.521 0.347 0.000
105 0.287 0.223 20.921 0.259 0.000 23.172 0.335 1.344
106 0.260 0.139 20.941 0.259 0.000 24.506 0.348 0.000
107 0.302 0.218 20.915 0.259 0.000 22.780 0.331 1.749
108 0.351 0.142 20.955 0.259 0.000 24.545 0.346 0.000
109 0.346 0.122 20.945 0.259 0.000 24.523 0.347 0.000
110 0.248 0.197 20.954 0.259 0.000 24.552 0.346 0.000
111 0.317 0.268 20.939 0.257 0.000 24.032 0.342 0.450
112 0.123 0.188 21.186 0.255 0.000 25.002 0.328 0.000
113 0.286 0.273 20.941 0.257 0.000 24.017 0.342 0.464
114 0.319 0.285 20.950 0.256 0.000 24.320 0.344 0.152
115 0.304 0.172 20.902 0.260 0.000 22.408 0.328 2.140
116 0.397 0.194 21.042 0.258 0.000 24.753 0.339 0.000
117 0.367 0.288 21.003 0.256 0.000 24.593 0.341 0.000
118 0.360 0.150 20.971 0.259 0.000 24.588 0.345 0.000
119 0.278 0.203 20.917 0.260 0.000 23.560 0.340 0.947
120 0.242 0.184 20.963 0.259 0.000 24.581 0.346 0.000
121 0.309 0.182 20.903 0.260 0.000 22.596 0.330 1.944
122 0.314 0.104 20.924 0.258 0.000 23.565 0.338 0.934
123 0.285 0.179 20.906 0.260 0.000 22.886 0.333 1.644
124 0.358 0.182 20.963 0.259 0.000 24.581 0.346 0.000
125 0.293 0.158 20.905 0.260 0.000 22.551 0.329 1.991
126 0.333 0.232 20.931 0.259 0.000 24.474 0.348 0.007
127 0.429 0.072 21.102 0.255 0.000 24.820 0.334 0.000
128 0.298 0.150 20.907 0.260 0.000 22.527 0.329 2.015
129 0.313 0.210 20.914 0.260 0.000 22.981 0.334 1.543
130 0.253 0.252 20.959 0.258 0.000 24.523 0.345 0.000
131 0.319 0.185 20.909 0.260 0.000 23.179 0.336 1.341
132 0.299 0.211 20.912 0.260 0.000 22.666 0.330 1.869
133 0.330 0.186 20.919 0.260 0.000 24.128 0.345 0.365
134 0.329 0.185 20.918 0.260 0.000 24.048 0.345 0.448
135 0.260 0.202 20.937 0.260 0.000 24.507 0.348 0.000

(continued on next page)
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Table 1A (continued)

No. x /m y /m Heating time=100 s Heating time=1000 s
Tq Rq /m do Tq Rq /m do

136 0.289 0.110 20.919 0.259 0.000 23.369 0.337 1.137
137 0.327 0.155 20.918 0.260 0.000 23.854 0.343 0.646
138 0.228 0.173 20.992 0.259 0.000 24.643 0.343 0.000
139 0.307 0.131 20.917 0.259 0.000 22.889 0.332 1.637
140 0.283 0.220 20.922 0.259 0.000 23.372 0.337 1.138
141 0.291 0.180 20.903 0.260 0.000 22.565 0.330 1.976
142 0.294 0.119 20.912 0.259 0.000 23.063 0.334 1.454
143 0.218 0.117 21.014 0.258 0.000 24.669 0.341 0.000
144 0.278 0.106 20.928 0.258 0.000 23.921 0.342 0.569
145 0.349 0.128 20.947 0.259 0.000 24.536 0.346 0.000
146 0.207 0.150 21.034 0.258 0.000 24.736 0.340 0.000
147 0.338 0.167 20.928 0.260 0.000 24.498 0.348 0.000
148 0.391 0.157 21.029 0.258 0.000 24.731 0.340 0.000
149 0.280 0.130 20.923 0.259 0.000 23.524 0.339 0.982
150 0.334 0.244 20.939 0.258 0.000 24.484 0.347 0.000
151 0.196 0.185 21.059 0.258 0.000 24.786 0.338 0.000
152 0.350 0.234 20.954 0.258 0.000 24.535 0.346 0.000
153 0.225 0.147 20.992 0.259 0.000 24.655 0.343 0.000
154 0.316 0.136 20.918 0.260 0.000 23.205 0.336 1.311
155 0.282 0.175 20.908 0.260 0.000 23.155 0.336 1.367
156 0.288 0.159 20.906 0.260 0.000 22.796 0.332 1.736
157 0.376 0.190 20.992 0.259 0.000 24.663 0.342 0.000
158 0.387 0.248 21.028 0.257 0.000 24.684 0.340 0.000
159 0.326 0.162 20.916 0.260 0.000 23.805 0.342 0.697
160 0.293 0.216 20.915 0.260 0.000 22.848 0.332 1.680
161 0.286 0.135 20.917 0.260 0.000 23.133 0.335 1.385
162 0.307 0.118 20.913 0.259 0.000 23.102 0.334 1.414
163 0.202 0.203 21.047 0.258 0.000 23.695 0.340 0.800
164 0.283 0.105 20.926 0.258 0.000 23.695 0.340 0.800
165 0.406 0.202 21.065 0.258 0.000 24.789 0.338 0.000
166 0.233 0.195 20.983 0.259 0.000 24.618 0.344 0.000
167 0.372 0.118 20.993 0.258 0.000 24.626 0.343 0.000
168 0.364 0.250 20.985 0.257 0.000 24.587 0.343 0.000
169 0.315 0.194 20.909 0.260 0.000 22.992 0.334 1.534
170 0.286 0.120 20.915 0.259 0.000 23.341 0.337 1.168
171 0.326 0.077 20.947 0.257 0.000 24.379 0.345 0.094
172 0.413 0.152 21.082 0.257 0.000 20.205 0.650 0.000
173 0.291 0.164 20.904 0.260 0.000 22.616 0.330 1.924
174 0.392 0.180 21.031 0.258 0.000 24.738 0.340 0.000
175 0.324 0.191 20.914 0.260 0.000 23.640 0.341 0.866
176 0.298 0.263 20.932 0.258 0.000 23.640 0.338 0.853
177 0.378 0.138 21.000 0.258 0.000 24.663 0.342 0.000
178 0.264 0.189 20.927 0.260 0.000 24.493 0.349 0.000
179 0.298 0.176 20.901 0.260 0.000 22.375 0.328 2.174
180 0.309 0.181 20.903 0.260 0.000 22.578 0.330 1.964
181 0.304 0.110 20.918 0.259 0.000 23.220 0.335 1.290
182 0.366 0.226 20.980 0.258 0.000 24.606 0.344 0.000
183 0.330 0.121 20.926 0.259 0.000 24.235 0.346 0.251
184 0.289 0.117 20.915 0.259 0.000 23.252 0.336 1.259
185 0.247 0.091 20.970 0.257 0.000 24.542 0.344 0.000
186 0.263 0.246 20.943 0.258 0.000 24.491 0.347 0.000
187 0.346 0.204 20.946 0.259 0.000 24.527 0.347 0.000
188 0.359 0.173 20.965 0.259 0.000 24.587 0.345 0.000
189 0.380 0.180 20.999 0.259 0.000 24.680 0.342 0.000
190 0.273 0.202 20.921 0.260 0.000 23.906 0.343 0.591
191 0.260 0.128 20.934 0.259 0.000 24.502 0.347 0.000
192 0.364 0.146 20.969 0.259 0.000 24.605 0.344 0.000
193 0.274 0.155 20.917 0.260 0.000 23.809 0.342 0.692
194 0.362 0.230 20.974 0.258 0.000 24.587 0.344 0.000
195 0.148 0.158 21.160 0.256 0.000 24.947 0.331 0.000
196 0.311 0.166 20.904 0.260 0.000 22.705 0.331 1.832
197 0.329 0.214 20.928 0.259 0.000 24.142 0.345 0.349
198 0.298 0.158 20.904 0.260 0.000 22.445 0.328 2.100
199 0.242 0.221 20.962 0.259 0.000 24.571 0.345 0.000
200 0.289 0.195 20.907 0.260 0.000 22.766 0.332 1.768
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obtain stochastic characteristics of natural frequencies of the plate induced by a random position based on expanded sample data. In
summary, this work proposes a complete statistical analysis process for thermodynamic problems with small sample data. Relevant
research will be of great significance to reliability evaluation of thermodynamic experimental results, and error analysis between
experimental and theoretical results.
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Appendix A: Fitted Parameters of Temperature Fields

Fitted parameters of temperature fields as shown in Eq. (2), which are induced by 200 random heating positions, are listed in
Table Al.

Appendix B: Governing Equation of the Plate at High Temperature
A coupled thermal dynamic governing equation of the titanium plate under a non-uniform temperature field can be derived via
Hamilton’s principle. Substituting thermally coupled stress-strain constitutive equations in Egs. 5(a)-(c) and geometrical relations in
Eq. (8) into the potential energy H in Eq. (9) yields
1 1
=3 /// (0:8c + 0,8y + Ty, )dV = 5 (H, + H, + Hs + H,) (B.1)
\4

where

2

me [ o | (G2) ¢ (52 Jpevn = [ [ [rer(25) 2o
/Z/ZW’*)+5<T*’>]‘3”Z‘§yw’ /// (@+§—W)zdv

Variations of H; with i = 1,2, 3,4 can be obtained as
ow\ Fw . 0 [Fw
o T)-6 dx
/ < )ay2 v W(dy(dy v )>>
1 ow\ *w
SH, = —h’ — )= B.3
=5 +/5<0x> 0x2 w(T") - 6W<()x< ) dy (B.3)

o o) o) o

(B.2)

H,
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6H2 =

Jo(5e) G iy a3 (G2 w70 Jax
& |+ [o(3) Sewiry e -s (63(%[( D))o (B.4)
/ / (5w(0x2 (32[ @ ) ( [W(T*)+6(T*)])))dxdy
[ e [ e
/[ (axay ))dxdy

and 6H4 = 0. Variation of the kinetic energy 6K is

5K = / / / p%(W&w)dV— / / / pdwdV (B.6)

Due to arbitrariness of 5w, the governing equation of the plate can be obtained from Eq. (9), as shown in Eq. (13). Boundary conditions
of the plate can also be obtained, as shown in Table 5.

(B.5)
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