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A B S T R A C T   

Temperature has significant effects on thermal modal characteristics of a structure; especially, its 
distribution uncertainty makes thermal modal characteristics to be more complicated. Such un
certainty also makes definitely predicted results greatly deviate from thermal modal experimental 
results at high temperature, and even their change trends with temperature would be different. In 
this work, stochastic thermal modal characteristics of a plate with free boundary conditions 
induced by a random heating position are studied based on a thermally coupled model. Tem
perature field distributions of the plate under two-parameter Gaussian heating sources are first 
obtained. A thermally coupled dynamic model of the plate is then established based on a ther
mally coupled constitutive relation theory, and its modal parameters are obtained by a differ
ential quadrature method. A statistical analysis method with a small sample based on an 
improved Bootstrap method and folded normal distribution is proposed to study stochastic 
thermal modal characteristics of the plate induced by a random heating position, which includes 
probability density functions of natural frequencies and their confidence intervals. Relevant 
research will be of great significance to reliability evaluation of thermodynamic experimental 
results, and error analysis between experimental and theoretical results.   

1. Introduction 

Temperature causes changes in mechanical properties of materials in a high-temperature environment and generates thermal 
stresses in structures due to such factors as changes in constraints and nonuniform heating on the structures, thereby possibly 
impacting stiffnesses and vibration characteristics of the structures. Related theoretical research focuses on variation mechanisms and 
experiments of thermal dynamic characteristics of a structure at high temperature, such as beams or laminated beams [1,2], composite 
plates or stiffened plates, and so on with different boundary conditions [3–5]. The main research aspects include thermal dynamic 
models of a structure [1,3], variations of modal parameters of a structure with temperature [6–8], transient dynamic characteristics of 
a structure [4], effects of a temperature field [5,9], and so on. It can be found from theoretical and experimental results that tem
perature and its distribution have significant effects on dynamic characteristics, such as natural frequencies and mode shapes, of a 
structure. A jump phenomenon in mode shapes [4,8] and the non-monotonical behavior of natural frequencies [10–12] were found in 
dynamic experiments. 
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Although there is rich related theoretical research on thermal dynamic characteristics of a structure, there are two shortcomings: 
first, uncoupled constitutive relations by considering effects of temperature on mechanical properties of materials are used in theo
tetical and numerical analyses. Based on the theory of a thermally stressed plate and uncoupled constitutive relations where material 
parameters are constant, which do not change with temperature, thermal modal characteristics of a plate with free boundary con
ditions under non-uniform temperature fields were studied and some phenomena were found [13,14]. However, natural frequencies of 
a plate with free boundary conditions under a uniform temperature field obtained by the above mentioned uncoupled model will 
almost not change with temperature because thermal stresses under the uniform temperature field of the plate are constant. Changes of 
natural frequencies of the plate obtained by the above mentioned uncoupled model with temperature is mainly caused by gradients of 
the temperature field. Obviously, it is inappropriate to ignore effects of thermal coupling in constitutive relations on thermal modal 
characteristics of the plate. In order to consider the effect of temperature on a material, equivalent Young’s moduli and Possion’s ratios 
under different high temperatures, which are obtained by material experiments, are used in thermal dynamic models of structures. Due 
to limited experimental results of mechanical properties of materials at different high temperatures, a linear interpolation of me
chanical properties is often used to obtain mechanical properties of materials in the full temperature field, which lacks a rigorous 
theoretical basis. Further thermal modal theoretical research was to introduce nonlinear temperature influence terms into constitutive 
relations, which established a thermal modal analysis model of a structure [15]. However, direct introduction of nonlinear temper
ature influence terms into constitutive relations would make constitutive relations to not satisfy tensor characteristics on a theoretical 
basis. Therefore, it is important to study dynamic characteristics of a structure based on coupled constitutive relations. Second, 
predicted results, such as natural frequencies and mode shapes, of a structure deviate greatly from thermal modal experimental results 
at high temperature, and even their change trends with temperature would be different [12]. With the development of the aerospace 
industry, the study of thermal modal experiments at high tempertature was fast developed by contact and non-contact experimental 
methods [9,12,16,17]. The experimental reliability at high temperature is greatly increased. Many dynamic experimental phenomena 
at high temperature were found, such as some disappearing modes with an increasing rate of temperature rise [6], and occurrences of 
the non-monotonical behavior of natural frequencies and interchange of mode shapes [8,10-12]. However, predicted results are always 
not consistent with thermal dynamic experiments due to the fact that temperature and its distribution have significant effects on 
thermal modal characteristics of a structure. It is difficult to accurately control the temperature field in thermal dynamic experiments. 
Different experimental uncertainties, such as uncertainties of the heating position and environment, greatly affect thermal modal 
characteristics of a structure. Such uncertainties are more obvious in thermal dynamic experiments under working conditions of a 
structure. Recently, some researchers realized that it was not suitable to use a definite theory to analyze thermal modal characteristics 
of a structure. Histograms of natural frequencies were obtained to describe distribution characteristics of a structure at high tem
perature, which were closer to those from thermal modal experiments [11]. However, how to carry out research on statistical char
acteristics of thermal modes of a structure under a small sample, how to obtain more useful information from distribution of natural 
frequencies, and how to obtain confidence intervals of predicted results are still unanswered. 

The remaining part of this paper is organized as follows. In order to accurately predict thermal modal characteristics of a plate and 
evaluate statistical characteristics of modal parameters of the plate at high temperature, temperature field distributions of the plate 
under Gaussian heat sources with different heating positions at different heating times are obtained in Sec. 2 by a finite element 
method (FEM), and a modified Gaussian function is used there to describe temperature fields to reduce violent oscillations of numerical 
results caused by direct use of discrete temperatures for their derivative calculations and to improve the calculation accuracy. A strict 
thermally coupled constitutive relation theory is used in Sec. 3 to establish a thermally coupled dynamic model of the plate under a 
non-uniform temperature field, and its natural frequencies are obtained in Sec. 4 by a differential quadrature method (DQM). A 

Fig. 1. Physical model of a titanium plate with a Gaussian heating source and distribution of heated spots  
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statistical analysis method with a small sample is used in Sec. 5 to study statistical properties of the plate induced by a random heating 
position, which includes probability density distributions (PDFs) of natural frequencies and their confidences and confidence intervals. 
Finally, some conclusions are presented in Sec. 6. 

2. Temperature Field Distributions of the Plate under Gaussian Heat Sources at Different Heating Times 

Temperature and its distribution highly affect dynamic characteristics of a structure, which makes thermal dynamic analysis more 
complex. The uncertainty of the heating position is one of the most important factors that affect the uncertainty of the temperature 
field of the structure. In order to describe influence of the heating position on thermal modal characteristics of a titanium plate with its 
size being a × b × c, as shown in Fig. 1, it can be assumed that the Gaussian heating source acts at the heated spot P(x0, y0) of the plate. 
By considering the uncertainty of the heating position, two parameters α and β are introduced, which satisfy α, β ∼ N(0, 0.052). By 
letting x0 = a/2 + α and y0 = b/2 + β, distribution of the heat flux ̃q over the heated spot is approximately described by the Gaussian 
function [18,19] 

q̃ = Qexp
(

−
(
(x − x0)

2
+ (y − y0)

2) / (
r
/ ̅̅̅

3
√ )2

)

(1)  

where Q is the maximum heat flux and r = 0.4 m. In order to simulate the uncertainty of the heating position, 200 random samples of α 
and β are used in this work; detailed heated spots are shown in Fig. 1 and listed in Table A1 in Appendix A. It can be seen that the 
density of samples is gradually sparse from the geometrical center of the titanium plate to the edge. Unless otherwise specified, the size 
of the titanium plate is 0.6 m × 0.35 m × 0.002 m, Q = 3 × 104 W/m2, and other simulation parameters are given in Table 1. It is noted 
that three heated spots with positions A(0.3 m,0.175 m), B(0.2 m, 0.1 m) and C(0.1 m, 0.1 m) are used in this work for convenience of 
explanation. The commercial software ANSYS is used to analyze transient temperature distributions of the titanium plate under 
different Gaussian heating sources at different heating times, and the corresponding analysis process with use of ANSYS is shown in 
Ref. [19]. 

The meshed model of the titanium plate is shown in Fig. 2. Table 2 shows temperatures at the point E(0.2 m, 0.2 m) along the 
thickness of the plate at the heating time t = 250 s when heated spots are A, B and C. It can be seen that the maximum temperature 
difference along the thickness is not larger than 1.3 ◦C, as shown in Table 2. Therefore, the average temperature in the thickness 
direction is used in the following analyses instead of temperature distribution in the thickness direction. 

Table 1 
Simulation parameters  

Parameter Value 

Density 4620 kg/m3 

Isotropic Thermal Conductivity 21.9 W/m•oC 
Specific Heat 522 J/(kg• oC) 
Element Size 0.01 m 
Room Temperature 20 oC 
Film Coefficient 5 W/m2•oC 
Emissivity 0.65  

Fig. 2. Meshed model and its section along lines l1 and l2  

Table 2 
Temperatures at the point E in the thickness direction of the plate with different heated spots A, B and C  

Heating Position Node E1 /oC Node E6 /oC Difference /oC 

A 463.74 464.96 1.22 
B 459.83 461.07 1.24 
C 102.02 102.98 0.96  
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The highest and lowest temperatures on the titanium plate with different heated spots A, B and C as a function of the heating time 
are shown in Fig. 3. It can be seen that the highest and lowest temperatures take 250 s and 1000 s to reach steady state, respectively. 
Temperature field distributions of the titanium plate at heating times t = 15 s, t = 250 s and t = 1000 s are shown in Fig. 4. In order to 
reduce violent oscillations of numerical results caused by direct use of discrete temperatures for their derivative calculations and to 
obtain more accurate derivatives of the non-uniform temperature field in the following analyses, a modified Gaussian function is used 
to describe the dimensionless temperature field: 

Fig. 3. Temperature changes with the heating time at different heated spots, where (a)-(c) correspond to heated spots A, B and C, respectively  

Fig. 4. Temperature field distributions of the titanium plate with different heated spots A, B and C at different heating times, where (a)-(c) 
correspond to heating times t = 15 s, t = 250 s and t = 10000 s, respectively 
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T* = TQexp
(

− 3(x − x0)
2

+ (y − y0)
2

/
R2

Q

)
+ dQ (2)  

where dQ is an additional boundary correction term that considers influence of boundaries; T* = ΔT/T0 = (T −T0)/T0 is a dimen
sionless temperature, in which T and T0 = 20 ◦C are the present temperature and room temperature, respectively; and TQ, RQ, dQ are 
variables that need to be fitted by numerical results of a temperature field. Table 3 lists fitted values of TQ, RQ, dQ and corresponding 
coefficients of determination R2 with different heated spots and heating times. One can find that the modified Gaussian function used 
in this work has a good precision that can be used to describe temperature distributions of the titanium plate under Gaussian heating 
sources. Fitted values of temperature fields of 200 random Gaussian heating sources are given in Table A1 in Appendix A. 

3. Coupled Thermodynamic Model of the Plate 

3.1. Thermally Coupled Constitutive Relations 

The key to establish a thermal dynamic model of a structure is to use thermally coupled constitutive relations to describe a thermo- 
mechanical coupled characteristic of a material. For a simple material, the state function of a particle of the material is independent of 
motion and temperature histories, which is only determined by the current state. In general, coupled constitutive relations of a ma
terial can be obtained by a strain energy function as functions of a dimensionless temperature T* and strain invariants I1, I2 and I3. 
When the strain tensor |rij| ≪ 1, where i,j = 1,2,3, a strain energy function Φ can be expressed as a power series. It is further noted that 
effects of the strain tensor over the third order and those of products of the dimensionless temperature over the fourth order are 
neglected. The strain energy function can be simplified as [20,21] 

Φ = a1 + a2T* + a3T*2 + a4T*3 + a5T*4 + a6I1 + a7I1T* + a8I1T*2

+a9I1T*3 + a10I2
1 + a11I2

1 T* + a12I2
1 T*2 + a13I3

1 + a14I3
1 T* + a15I2

+a16I2T* + a17I2T*2 + a18I1I2 + a19I1I2T* + a20I3 + a21I3T*

(3)  

where a0, a1, ⋯, a21 are material constants of the strain energy function. Stress-strain constitutive equations can be derived as 

σij =
∂Φ
∂γij

=
∂Φ
∂I1

∂I1

∂γij
+

∂Φ
∂I2

∂I2

∂γij
+

∂Φ
∂I3

∂I3

∂γij
(4)  

where ∂I1
∂γij

= δij, ∂I2
∂γij

= I1δij − γij and ∂I3
∂γij

= I2δij − I1γij + γjkγki. By neglecting high-order strains, thermally coupled stress-strain constitutive 

equations can be obtained [21]: 

σ11 = χ(T*)T* + ψ(T*)γ11 + [ψ(T*) + ξ(T*)]γ22 (5a)  

σ22 = χ(T*)T* + [ψ(T*) + ξ(T*)]γ11 + ψ(T*)γ22 (5b)  

σ12 = −ξ(T*)γ12 (5c)  

where σ11, σ22, σ12 and γ11, γ22, γ12 are stress components and strain components, respectively, and ξ(T*) = a15 + a16T* + a17T*2, ψ(T*)

Table 3 
Fitted values of TQ, RQ, dQ and corresponding coefficients of determination R2 with different heated spots and heating times  

Heated spot Heating time /s TQ RQ /m dQ R2 

A 10 3.024141 0.231107 0.020630 0.9996  
30 8.621528 0.233605 0.080714 0.9990  
50 13.20158 0.240462 0.067387 0.9981  
250 24.72248 0.321820 2.05E-15 0.9947  
1000 22.36368 0.327503 2.185605 0.9970  
8000 22.36198 0.327489 2.187304 0.9969 

B 10 3.044806 0.232356 9.68E-16 0.9998  
30 8.711131 0.234998 1.25E-15 0.9993  
50 11.95891 0.245694 4.65E-16 0.9982  
250 24.89881 0.301823 1.04E-15 0.9912  
1000 24.73871 0.338022 2.81E-16 0.9959  
8000 24.72797 0.338419 2.63E-15 0.9960 

C 10 3.049625 0.232012 3.00E-16 0.9998  
30 8.737664 0.234250 4.59E-16 0.9996  
50 13.64971 0.237915 2.04E-17 0.9993  
250 21.84155 0.287503 1.06E-15 0.9962  
1000 25.05201 0.324783 9.59E-16 0.9959  
8000 24.97439 0.327811 1.02E-15 0.9967  
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= 2(a10 +a11T* +a12T*2) and χ(T*) = a7 + a8T* + a9T*2 are functions of the dimensionless temperature. In order to facilitate appli
cations, equivalent Young’s moduli E(T*), Poisson’s ratios υ(T*) and coefficients of thermal expansion α(T*) at different dimensionless 
temperatures are introduced. Functions of the dimensionless temperature ξ(T*), ψ(T*) and χ(T*) can be described by equivalent pa
rameters E(T*), υ(T*) and α(T*) at different dimensionless temperatures [21]: 

ξ(T*) = a15 + a16T* + a17T*2 = −
E(T*)

υ(T*) + 1
(6a)  

ψ(T*) = 2
(
a10 + a11T* + a12T*2)

=
E(T*)

1 − υ2(T*)
(6b)  

χ(T*) = a7 + a8T* + a9T*2 =
T0E(T*)α(T*)

υ(T*) − 1
(6c) 

Material constants ai, where i = 7, 8, ⋯, 12, 15, 16, 17 can be fitted by the least squares method when equivalent material pa
rameters E(T*), υ(T*) and α(T*) at different dimensionless temperatures are obtained by mechanical property experiments at high 
temperature. By use of a laser engraving technology and three-dimensional digital image correlation proposed in Ref. [22], Young’s 
moduli, Poisson’s ratios, and coefficients of thermal expansion of the titanium plate at 20◦C, 200◦C, 400◦C and 600◦C are listed in 
Table 4. 

By use of Eqs. 6(a)-(c), expressions of functions of equivalent material parameters ξ(T*), ψ(T*) and χ(T*) of the titanium plate are 

ξ(T*) = a15 + a16T* + a17T*2 = −8.309 × 1010 + 1.318 × 108T* + 7.24 × 107T*2 (7a)  

ψ(T*) = 2
(
a10 + a11T* + a12T*2)

= 2
(
5.693 × 1010 + 2.3 × 108T* − 5.9 × 107T*2)

(7b)  

χ(T*) = a7 + a8T* + a9T*2 = 2.324 × 108 − 6.415 × 107T* + 1.618 × 106T*2 (7c)  

3.2. Coupled Thermal Dynamic Governing Equation of the Plate under a Non-uniform Temperature Field 

Under the assumption of small deformation, geometrical relations can be given by 

εx = −
∂2w
∂x2 z, εy = −

∂2w
∂y2 z, γxy = −2

∂2w
∂x∂y

z (8)  

where εx, εy and γxy are normal strains in x and y directions and the shear strain, respectively, and w = w(x, y, t) is the deflection of the 
plate. Coupled thermal dynamic governing equations can be derived via Hamilton’s principle 

δ
∫ t

t0
(K − H)dt +

∫ t

t0
δRdt = 0 (9)  

where variation of the potential energy δH, variation of the kinetic energy δK, and the virtual work δR due to the mechanical load q 
= q(x, y, t) are 

δH =

∫ ∫ ∫

V
(σxδεx + σyδεy + τxyδγxy)dV (10)  

δK =

∫ ∫ ∫

V
ρẇδẇdV (11)  

δR =

∫ ∫

S
qδwds (12)  

respectively, in which ẇ is the vibration velocity, and ρ is the density of the material. By keeping Eqs. (5) and (8) in mind, substituting 
δH, δK and δR into Eq. (9), and letting w(x,y,t) = w̄(x,y)eiωt, where i is the imaginary unit and ω is the excitation frequency, the coupled 
thermal dynamic governing equation of the titanium plate under a non-uniform temperature field can be obtained, with detailed 

Table 4 
Equivalent Young’s moduli, Poisson’s ratios and coefficients of thermal expansion at different temperatures  

Temp. E(T*) /GPa v(T*) α(T*) / × 10−6 ◦C−1 

20◦C 113.14 0.263 – 
200◦C 98.77 0.299 7.59 
400◦C 71.98 0.322 9.475 
600◦C 24.76 0.347 11.75  
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derivation given in Appendix B: 

D[ψ(T*(x, y))

(
∂4w̄
∂x4 + 2

∂4w̄
∂x2∂y2 +

∂4w̄
∂y4

)

+(
∂2

(ψ(T*(x, y) + ξ(T*(x, y))))

∂y2

+
∂2ψ(T*(x, y))

∂x2 )
∂2w̄
∂x2 +

(
∂2ψ(T*(x, y))

∂y2 +
∂2

(ψ(T*(x, y) + ξ(T*(x, y))))

∂x2

)
∂2w̄
∂y2

−2
∂2ξ(T*(x, y))

∂x∂y
∂2w̄
∂x∂y

+ 2
∂ψ(T*(x, y))

∂x
∂3w̄
∂x3 + 2

∂ψ(T*(x, y))

∂y
∂3w̄
∂y3

+2
∂ψ(T*(x, y))

∂x
∂3w̄

∂y2∂x
+ 2

∂ψ(T*(x, y))

∂y
∂3w̄

∂x2∂y
] − ρhω2w̄ = 0

(13)  

where D = h3/12. Corresponding boundary conditions of the titanium plate can also be obtained, which are listed in Table 5. 
It is noted that effects of thermal coupling on the plate generally include two parts: the thermal mechanical coupled effect in 

constitutive relations, and the thermal mechanical coupled effect in the heat equation. The thermal mechanical coupled effect in 
constitutive relations is considered in the present work. Strictly speaking, the thermally coupled model should consider the thermal 
mechanical coupled effect in the heat equation. However, one can find that changes of temperature with time under Gaussian heating 
sources are slow when the change of the temperature field is not particularly violent. Therefore, similar to the treatment in Refs. [13, 
14], such a coupled effect is neglected in the present work. 

3.3. Simulation Method 

The DQM is employed to numerically solve coupled thermal dynamic governing equations in Eq. (13), with boundary conditions 
listed in Table. 5. The fundamental idea behind the DQM is to approximate an unknown function and its derivatives at any discrete 
point as linear weighted sums of its values at all discrete points chosen in the solution domain [23]. By considering a function w̄(x, y) in 
a domain {(x,y) ∈ (0 ≤ x ≤ a,0 ≤ y ≤ b)}, its rth derivative with respect to x and sth derivative with respect to y at x = xi and y = yi are 
approximated by [23] 

∂rw̄
∂xr |x=xi =

∑Nx

k=1
A(r)

ik w̄kj,
∂sw̄
∂ys

⃒
⃒
⃒y=yj =

∑Ny

l=1
B(s)

jl w̄il (14a)  

The associated (r + s)th derivative of w̄(x, y) with respect to x and y is 

∂(r+s)w̄
∂xr∂ys

⃒
⃒
⃒xi ,yj =

∂r

∂xr

(
∂sw̄
∂ys

)⃒
⃒
⃒xi ,yj =

∑Nx

k=1
A(r)

ik

∑Ny

l=1
B(s)

jl w̄kl (14b)  

where i = 1, 2, ⋯, Nx and j = 1,2,⋯,Ny, in which Nx and Ny are grid points in x and y directions on the plate; w̄ij = w̄(xj,yj); and A(r)
ik and 

B(r)
jl are weighting coefficients dependent on coordinates of discrete points only, which can be calculated through a recursive formula. It 

should be mentioned that zeros of the Chebyshev– Lobatto polynomial are taken as coordinates of grid points here due to its excellent 
convergence. The discretized governing equation can be obtained as 

Table 5 
Boundary conditions of the titanium plate  

Boundary condition Mathematical equations 

fixed end  w̄|x=0 = 0, 
∂w̄
∂x

|x=0 = 0 

hinged end  
w̄|x=0 = 0, ξ(T*(x, y))

∂2w̄
∂y2 |x=0 + ψ(T*(x, y))

∂2w̄
∂y2 |x=0 + ψ(T*(x, y))

∂2w̄
∂x2 |x=0 = 0 

free end  (
∂ξ(T*(x, y))

∂x
+

∂ψ(T*(x, y))

∂x

)
∂2w̄
∂y2 |x=0 −

(
∂ξ(T*(x, y))

∂y
+

∂ξ(T*(x, y))

∂x

)

∂2w̄
∂x∂y

|x=0 + ψ(T*(x, y))
∂3w̄

∂x∂y2 |x=0 +
∂ψ(T*(x, y))

∂x
∂2w̄
∂x2 |x=0 − ξ(T*(x, y))

∂3w̄
∂x2∂y

|x=0 + ψ(T*(x, y))
∂3w̄
∂x3 |x=0 = 0, ξ(T*(x, y))

∂2w̄
∂x∂y

|x=0,y=0 = 0  
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D

[

P1

(
∑Nx

k=1
A(4)

ik w̄kj + 2
∑Nx

k=1
A(2)

ik

∑Ny

l=1
B(2)

jl w̄kl +
∑Ny

l=1
B(4)

jl w̄il

)

+ P2

∑Nx

k=1
A(2)

ik w̄kj

+P3

∑Ny

l=1
B(2)

jl w̄il + P4

∑Nx

k=1
A(1)

ik

∑Ny

l=1
B(1)

jl w̄kl + P5

∑Nx

k=1
A(3)

ik w̄kj + P6

∑Ny

l=1
B(3)

jl w̄il

+P7

∑Nx

k=1
A(1)

ik

∑Ny

l=1
B(2)

jl w̄kl + P8

∑Nx

k=1
A(2)

ik

∑Ny

l=1
B(1)

jl w̄kl

]

− ρhω2w̄ij = 0

(15)  

where i = 3, 4, ⋯, Nx − 3 and j = 3,4, ⋯,Ny − 3, and 

P1 = ψ(T*(x, y)), P2 =
∂2ψ(T*(x, y))

∂x2 +
∂2

(ψ(T*(x, y) + ξ(T*(x, y)))

∂y2 ,

P3 =
∂2ψ(T*(x, y))

∂y2 +
∂2

(ψ(T*(x, y) + ξ(T*(x, y)))

∂x2 , P4 = −2
∂2ξ(T*(x, y))

∂x∂y
,

P5 = P7 = 2
∂ψ(T*(x, y))

∂x
, P6 = P8 = 2

∂ψ(T*(x, y))

∂y

(16)  

By rearranging Eq. (15) and considering the effect of free boundary conditions studied in this work, an assembled form is given by 

DKW − phω2W = 0 (17)  

where W = [w̄11, w̄12, ⋯, w̄1Nx , ⋯, w̄i1, w̄i2, ⋯, w̄iNx , ⋯, w̄Ny1, w̄Ny2, ⋯, w̄NyNx ], and K is the stiffness matrix. 
The calculation process in this work is to first obtain temperature fields of the plate at different heating times as shown in Sec. 2, and 

then use the thermally coupled governing equation and the DQM to study thermal modal characteristics of the plate. It should be 

Table 6 
Convergence of the numerical method of natural frequencies with different grid points with Nx = Ny  

Temperature Mode 14 nodes /Hz 21 nodes /Hz 27 nodes /Hz 30 nodes /Hz 35 nodes /Hz 

Uniform 1st 27.97 27.79 27.74 27.73 27.70  
2nd 30.51 30.56 30.32 30.17 30.13  
3rd 67.80 67.92 67.62 67.50 67.35  
4th 76.55 76.42 76.40 76.38 76.38 

Non-uniform 1st 24.61 21.96 21.70 21.62 21.60  
2nd 26.17 26.40 26.27 26.21 26.07  
3rd 60.30 57.92 57.60 57.38 57.22  
4th 67.86 62.76 63.08 63.13 63.11  

Fig. 5. First four natural frequencies of the titanium plate obtained by the present analysis, the FEM and experiments in Ref. [12], where (a) and (b) 
correspond to uniform temperatures of 25.5 ◦C and 211.3 ◦C, respectively 
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pointed out before calculating Eq. (17) by the inverse iterative method that ψ(T*(x, y)) and ξ(T*(x, y)) in Eq. (17) can be expressed by 
the dimensionless temperature field in Eq. (7), dimensionless temperature fields of the plate under Gaussian heat sources at different 
heating times can be described by Eq. (2), and their derivatives in Eq. (17) with respect to x and y can be obtained by analytical 
expressions. As indicated earlier, this approach can reduce violent oscillations of numerical results caused by direct use of discrete 
temperatures for their derivative calculations and to improve the calculation accuracy. 

Fig. 6. Natural frequencies of the titanium plate under the three Gaussian heated spots A, B and C vs. the heating time, where (a)-(c) correspond to 
heated spots A, B and C, respectively 

Fig. 7. Mode shapes of the titanium plate at room temperature, where (a)-(d) correspond to the first four natural frequencies, respectively  
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4. Numerical Results of Thermal Modal Characteristics of the Titanium Plate 

Before proceeding to stochastic thermal modal properties of the titanium plate, the present analyses are validated in Table 6 and 
Fig. 5 for the titanium plate under uniform and un-uniform temperature fields by directly comparing the present results with existing 
experimental ones reported in previous studies, and results from the FEM. The convergence of the proposed solution method is 
evaluated by varying total numbers of grid points Nx and Ny when uniform and non-uniform dimensionless temperature fields are 
T*(x, y) = 4 and T*(x, y) = 24.64exp( − ((x − 0.2)

2
+ (y − 0.1)

2
) /(0.338/

̅̅̅
3

√
)
2
) + 0.01, respectively. Excellent convergence can be 

observed from Table 6. In what follows, Nx = Ny= 27 is used unless otherwise stated. Figure 5 shows the first four natural frequencies 
of the titanium plate with its size being 0.35 m × 0.5 m × 0.002 m, obtained by the present analysis, the FEM, and experiments shown 
in Ref. [12] when uniform temperatures are 25.5 ◦C and 211.3 ◦C, respectively. It can be found that the numerical method used in this 
work is correct. It is noted that equivalent Young’s moduli E(T*), Poisson’s ratios υ(T*), and coefficients of thermal expansion α(T*) at 
different dimensionless temperatures, as shown in Table 4, are used in the following numerical simulations by use of the commercial 
software ANSYS, and the corresponding analysis process of ANSYS is shown in Ref. [24]. 

Natural frequencies of the titanium plate under three Gaussian heated spots A, B and C, as shown in Fig. 1, with respect to the 
heating time are shown in Fig. 6, where distributions of temperature fields at different heating times are given by Eq. (2) and pa
rameters in Eq. (2) are listed in Table 3. It can be found that the first four natural frequencies have a sudden decrease phenomenon 
within the heating time period from 50 s to 250 s. However, in other heating time periods, the first four natural frequencies slowly 
decrease. The sudden decrease phenomenon is independent of the Gaussian heated spot, which is caused by thermally coupled material 
properties and drastic temperature field changes in the heating time period from 50 s to 250 s under the Gaussian heating source, as 
shown in Fig. 3. Thus, the effect of the phenomenon should be fully considered in the study of the thermodynamics of a plate. 

The effect of temperature fields on modal shapes of the titanium plate is described by the modal assurance criterion (MAC), which is 

defined as MAC =
(φT

i φa)
2

(φT
i φi)(φT

a φa)
, where φa and φi are a modal shape at room temperature and the corresponding modal shape at a heating 

time, respectively. It is noted that temperature has no effect on a mode shape when the associated MAC value is equal to 1, and the 
smaller the value, the greater the effect of temperature on the mode shape. The first four mode shapes at room temperature of the plate 
are shown in Fig. 7. MAC values of the first four mode shapes of the plate at different heating positions and times are listed in Table 7. It 
can be found that the effect of the heating time on mode shapes of the plate is small when the heating positon is relatively close to the 
center of the plate. Otherwise, the effect of the heating time on mode shapes of the plate is large. 

Distributions of the first four natural frequencies with the Gaussian heating source and 200 random Gaussian heated spots, as listed 
in Table A1 in Appendix A, are shown in Figs. 8(a) and (b) when heating times are t=100 s and t=1000 s, respectively, where 
equipotential curves of natural frequencies and corresponding heating positions in a range of frequencies are also shown. It is noted 

Table 7 
MAC values of the first four mode shapes of the titanium plate with different heating positions and times  

Heated position Heating time /s 1st 2nd 3rd 4th 

A 10 0.9958 0.9966 0.9996 0.9998  
30 0.9980 0.9984 0.9995 0.9947  
50 0.9966 0.9972 0.9999 0.9998  
250 0.9995 0.9995 0.9992 0.9986  
1000 0.9985 0.9987 0.9987 0.9933  
8000 0.9994 0.9995 0.9988 0.9922 

B 10 0.9996 0.9997 0.9989 0.9995  
30 0.9938 0.9950 0.9989 0.9975  
50 0.9937 0.9949 0.9992 0.9968  
250 0.9944 0.9971 0.9791 0.9634  
1000 0.9959 0.9981 0.9927 0.9370  
8000 0.9930 0.9955 0.9926 0.9379 

C 10 0.9958 0.9966 0.9997 0.9970  
30 0.9949 0.9956 0.9982 0.9967  
50 0.9998 0.9997 0.9991 0.9894  
250 0.9979 0.9986 0.9888 0.8960  
1000 0.9955 0.9973 0.9733 0.7308  
8000 0.9914 0.9937 0.9750 0.7362  

Table 8 
Probabilities of evaluating heating positions through natural frequencies  

Frequency interval /Hz Radius interval /m NIn NTol Probability 

<21.89 <0.058 90 99 91.0% 
21.89~22.15 0.058~0.085 46 52 88.5% 
22.15~22.41 0.085~0.104 25 26 96.2% 
22.41~22.70 0.104~0.125 14 14 100.0%  
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Fig. 8. Distributions of the first four natural frequencies under Gaussian heated spots at different heating times, where (a) and (b) correspond to 
heating times t=100 s and t=1000 s, respectively 
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that distributions of temperature fields of 200 random Gaussian heated spots when heating times are t=100 s and t=1000 s are given by 
Eq. (2), and parameters in Eq. (2) are listed Table A1 in Appendix A. It can be found that: (1) there is a strong correlation between the 
value of a natural frequency and the Gaussian heated spot; (2) the natural frequency is small when a Gaussian heated spot is close to the 
center of the titanium plate; and (3) equipotential curves of the first and third natural frequencies are approximately circles, while 
equipotential curves of the second and fourth natural frequencies show elliptical trends. Due to that fact, one can use the value of a 
natural frequency to estimate the probability of the heating position. By taking the first natural frequencies with the heating time being 
1000 s into account, equipotential curves of natural frequencies, corresponding heating positions in a range of frequencies, and radii of 
equipotential curves are shown for mode 1 in Fig. 8(b). Probabilities of evaluating heating positions through natural frequencies are 
shown in Table 8, where [α1, α2] is a radius interval of equipotential curves, and α1 and α2 are lower and upper bounds of the interval; 
NIn is the number of points with predicted values within the radius interval and frequency interval, as shown for mode 1 in Fig. 8(b); 
and NTol is the number of points with predicted values within the frequency interval. The probability can be obtained by NIn /NTol ×

100%. For example, in the first natural frequency of the plate with the heating time being 1000 s, when the natural frequency interval 
is less than 21.89 Hz, the heating source position has a 91.0% probability of being in the center circle with a radius of less than 0.058 m. 
It can be found that the probability of evaluating the heating position through a natural frequency can be used to estimate the un
certainty of the offset of the heating position during a dynamic experiment by a measured natural frequency. 

By setting q={q1, q2, ⋯, q200} as a certain natural frequency with 200 sample data at a certain time, as shown in Figs. 8(a) and (b), 
letting qmin and qmax be the minimum and maximum values in q, and evenly dividing the interval [qmin, qmax] into ̄n subintervals, the ith 
subinterval can be expressed as 

Li =

[
i − 1

n̄
(qmax − qmin) + qmin,

i
n̄

(qmax − qmin) + qmin

)

, i = 1, 2, ⋯, n̄ − 1 (18a)  

and 

Ln =

[
n̄ − 1

n̄
(qmax − qmin) + qmin, qmax

]

(18b)  

The probability density PDi of each subinterval Li, where i = 1,2, ⋯, n̄, can be calculated by 

PDi =
Nnum

200
n̄

qmax − qmin
(19)  

where Nnum is the number of the value of a natural frequency in the ith subinterval, and n̄=100 is used in this work. Histograms of the 
first four natural frequencies of the titanium plate with 200 random Gaussian heated spots at different times, as shown in Table A1 in 
Appendix A, are shown in Fig. 9. 

Fig. 9. Histograms of the first four natural frequencies of the titanium plate, where (a) and (b) are heating times of 100 s and 1000 s, respectively  
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5. Random Small Sample Estimation of Thermal Modal Properties of the Titanium Plate Induced by a Random Heating 
Position 

A random small sample estimation method is used in this section to study distributions of the first four natural frequencies of the 
titanium plate induced by a random heating position. First, by considering that sample data of the first four natural frequencies with 
200 random Gaussian heated spots at heating times of 100 s and 1000 s, as shown in Fig. 8, are small, an improved Bootstrap method is 
used to expand sample data. Second, folded normal distribution is used to describe distributions of the first four natural frequencies of 
the titanium plate at heating times of 100 s and 1000 s according to histograms in Fig. 9. Finally, PDFs of natural frequencies and their 
confidence intervals are obtained. 

5.1. Folded Normal Distribution and Improved Bootstrap Method 

Let Y ∼ N(μ, σ2) and X = |Y − min| + min, where min is the minimum value in sample data; the PDF of Y ∼ FN(μ, σ2) can be 
expressed as [25] 

f (x) =
1

̅̅̅̅̅̅̅̅̅̅
2πσ2

√

(

exp
(

−
1

2σ2(x − μ)
2
)

+ exp
(

−
1

2σ2(2min − x − μ)
2
))

(20)  

where N(μ, σ2) and FN(μ, σ2) are the normal distribution and folded normal distribution, respectively; μ and σ2 are the mathematical 
expectation and variance, respectively; and x = min is a folded axis of the PDF that can be described by Fig. 10. 

It is difficult to directly use the Monte Carlo method to analyze thermal modal characteristics of the titanium plate induced by a 
random heating position due to a large amount of calculation in thermal field analyses. Therefore, with existing random small sample 
data, an improved Bootstrap method is used to expand sample data [26], which overcomes the limitation of the previous Bootstrap 
method that only relies on existing observation information, and resampled sample data can only be generated by original samples 
[26]. The Bootstrap method is only dependent on existing observation information and has no prior property in calculation, which can 
be conveniently applied to data processing. However, calculation in the Bootstrap method limits the range of the self-help sample that 
is only from the original sample data, which makes it impossible to obtain distribution characteristics outside non-observed sample 
data. Although the Bootstrap method can increase observation data through the self-help sample, no new observation information is 
actually added. In this case, the self-help sample may lose its proper significance and characteristics. However, the improved Bootstrap 
method can obtain the self-help sample that is completely different from the original sample based on minimizing the deviation from 
the real distribution. Such a method can obtain information outside observation data. It should be noted that the method cannot obtain 
accurate information beyond observation data, but only approximate information [26]. The specific implementation process of the 
improved Bootstrap method is shown below. 

Arranging 200 sample data of a certain natural frequency at a certain time q={q1, q2, ⋯, q200} in the ascending order, one can 
record them as P = {p1,p2, ⋯,p200}. A neighborhood Ui = [ai, bi] for each pi can be expressed as 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

U1 = [p1 − (p2 − p1)/m, p1 + (p2 − p1)/m]

⋮
Ui = [pi − (pi − pi−1)/m, pi + (pi+1 − pi)/m]

⋮
Un = [pn − (pn − pn−1)/m, pn + (pn − pn−1)/m]

(21)  

where m ≥ 2 and i = 2, 3, ⋯n − 1 with n = 200; m = 2 is used in this work. 
By assuming that N is the number of resampling times, the following rules are used to expand sample data:  

(1) Determine a subscript sample l of an expanded neighborhood, which satisfies uniform distribution in the interval [1, 200]. The 
probability of l = i is 

Fig. 10. Folded normal distribution  
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P(l = i) =
1
n

(22)  

By resampling the subscript in Ui N times according to the above distribution, a sample l = {l1, l2, ⋯, lN} can be obtained, where 
li is an integer in the interval [1, 200].  

(2) Self-help sample Q*
i : 

Q*
i ∼ U

(
Uli

)
, i= 1, 2⋯N (23)  

where U(Uli ) = U([ai, bi]) is uniform distribution in the interval [ai, bi]. By use of such a method, the expanded observation 

sample q* = {q*
1, q*

2, ⋯, q*
N} can be obtained by the self-help sample Q* = {Q*

1,Q*
2,⋯,Q*

N}. Such a method extends distribution 
characteristics of data to its non-observed samples while keeping original distribution characteristics as consistent as possible. 

In order to verify the feasibility of the above sampling method, folded normal distribution with different parameters is verified:  

(1) Generate a sample qo with a sample size of 200, which obeys folded distribution with the mean μo, variance σ2
o , and minimum 

value min.  
(2) An expanded sample qα can be obtained by the improved Bootstrap method with 4000 times of sampling of the sample qo.  
(3) Fit the PDF of qa by use of folded distribution to obtain the fitted mean μα and variance σ2

α. 

Based on the improved Bootstrap method, verification results are shown in Table 9. It can be found that relative errors of the mean εμ 
and variance εσ2 are small, and such a method can be used in random small sample estimation. 

Table 9 
Original parameters and fitted parameters of folded normal distribution obtained by the improved Bootstrap method  

μo σ2
o min μα σ2

α εμ /% εσ2 /% 

35 0.09 34.9 34.90 0.0897 0.286 0.333 
45 0.25 40.0 45.05 0.2540 0.111 1.600 
55 0.04 54.8 55.00 0.0378 0.000 5.500 
65 0.25 66.0 65.03 0.2578 0.046 3.120  

Fig. 11. Histograms and their PDFs of the re-sampled first four natural frequencies of the titanium plate, where (a) and (b) correspond to heating 
times of 100 s and 1000 s, respectively 

Y.-J. Hu et al.                                                                                                                                                                                                          



Journal of Sound and Vibration 552 (2023) 117581

15

5.2. Numerical results 

According to the above improved Bootstrap method, the first four natural frequencies of the titanium plate with 200 random 
Gaussian heated spots at heating times of 100 s and 1000 s, as shown in Fig. 8, are resampled 4000 times, and their histograms are 
shown in Fig. 10. Folded normal distribution given by Eq. (20) is used to describe their PDFs, as shown in Fig. 11, where the parameter 
min in Eq. (20) takes the minimum value in sample data. Values of the parameter min and fitted results in folded normal distribution are 
shown in Table 10. It can be found from Table 10 that: (1) the variance corresponding to each natural frequencies increases with the 
heating time, which shows that the random heating position has a great effect on natural frequencies of the plate when the heating time 
increases. (2) Variances corresponding to the first and second natural frequencies of the plate are the largest when heating times are 
100 s and 1000 s, respectively. This also shows that the effect of the random heating position on the first and second natural frequencies 
is larger than that on the other natural frequencies when heating times are 100 s and 1000 s, respectively. 

Considering that folded distribution is a variant of normal distribution, one can study confidence intervals of natural frequencies of 
the titanium plate induced by the random heating position from the 3-sigma criterion with some modifications. By letting X ∈

[min, +∞) when X ∼ NF(μ, σ2), lower bounds of confidence intervals χ can be defined as 

χ =

{
μ − ησ, min ≤ μ − ησ

min, min > μ − ησ (24)  

where η = 1, 2, 3 correspond to three conditions whose confidences are 0.683, 0.955 and 0.997, respectively. Thus, upper bounds of 
confidence intervals can be obtained by PDFs in Eq. (20) with parameters in Table 10. Confidence intervals for η = 1, 2, 3 are given in 
Table 11. It is noted that confidence intervals can be used to estimate reliability of thermal modal experiments when measured natural 
frequencies are obtained. If measured natural frequencies fall within a confidence interval, it can be believed that the random heating 
position affects thermal modal experiments. If they do not, it means that there are errors in thermal modal experiments or there are 
other important uncertainties that have not been considered in the analysis. 

6. Conclusions 

Stochastic thermal modal characteristics of a titanium plate induced by a random heating position are studied by a random small 
sample estimation method that combines the improved Bootstrap method and folded normal distribution. The research mainly in
cludes the following work: (1) temperature distributions of the plate under two-parameter Gaussian heating sources with different 
heated spots are obtained by a simulation method, and a modified Gaussian function is used to describe temperature fields to reduce 
violent oscillations of numerical results caused by direct use of discrete temperatures for their derivative calculations and to improve 
the calculation accuracy. (2) A coupled thermal dynamic governing equation of the plate is established by a thermally coupled 
constitutive relation theory, and modal parameters of the plate at different high temperatures are obtained by the DQM. By comparing 
the present numerical results with those from the FEM and experimental results, the accuracy of the numerical results is verified. (3) 
The first four natural frequencies of the plate under 200 Gaussian heating sources with different heating positions and times are 
obtained. By use of the improved Bootstrap method to expand sample data of natural frequencies, folded normal distribution is used to 

Table 10 
Values of the parameter min and fitted results in folded normal distribution  

Heating time /s Mode min /Hz μ /Hz σ2 /Hz2 

100 1st 24.5189 24.5108 0.0939  
2nd 28.3460 28.3395 0.0122  
3rd 63.1711 63.1638 0.0376  
4th 70.2965 70.5008 0.0106 

1000 1st 21.6436 21.6327 0.1582  
2nd 26.2220 26.3566 0.0163  
3rd 57.5029 57.4904 0.2269  
4th 63.1657 63.1486 0.1622  

Table 11 
Confidence intervals of the first four natural frequencies of the titanium plate when heating times are 100 s and 1000 s  

Heating time /s Mode Confidence interval for η=3 /Hz confidence interval for η=2 /Hz confidence interval for η=1 /Hz 

100 1 [24.5189, 25.4286] [24.5189, 25.1336] [24.5189, 24.8254]  
2 [28.3460, 28.6745] [28.3460, 28.5679] [28.3460, 28.4567]  
3 [63.1711, 63.7471] [63.1711, 63.5601] [63.1711, 63.3652]  
4 [70.2965, 70.7836] [70.2965, 70.6754] [70.3978, 70.6032] 

1000 1 [21.6436, 22.8245] [21.6436, 22.4412] [21.6436, 22.0415]  
2 [26.2220, 26.7074] [26.2220, 26.5732] [26.2289, 26.4278]  
3 [57.5029, 58.9175] [57.5029, 58.4581] [57.5029, 57.9794]  
4 [63.1657, 64.3620] [63.1657, 63.9738] [63.1657, 63.5688]  
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Table 1A 
Positions of heated spots and fitted parameters of temperature fields  

No. x /m y /m Heating time=100 s Heating time=1000 s 
TQ RQ /m dQ TQ RQ /m dQ 

1 0.247 0.179 20.954 0.260 0.000 24.560 0.346 0.000 
2 0.347 0.128 20.944 0.259 0.000 24.527 0.347 0.000 
3 0.318 0.196 20.911 0.260 0.000 23.149 0.336 1.372 
4 0.299 0.209 20.910 0.260 0.000 22.630 0.330 1.907 
5 0.309 0.218 20.917 0.259 0.000 22.936 0.333 1.589 
6 0.222 0.140 21.001 0.258 0.000 24.666 0.342 0.000 
7 0.296 0.197 20.906 0.260 0.000 22.527 0.329 2.015 
8 0.380 0.180 21.001 0.259 0.000 24.682 0.342 0.000 
9 0.305 0.216 20.915 0.260 0.000 22.792 0.331 1.738 
10 0.302 0.202 20.907 0.260 0.000 22.542 0.329 1.999 
11 0.263 0.220 20.940 0.259 0.000 24.492 0.348 0.000 
12 0.298 0.168 20.902 0.260 0.000 22.380 0.328 2.168 
13 0.312 0.168 20.904 0.260 0.000 22.709 0.331 1.828 
14 0.321 0.225 20.916 0.259 0.000 23.666 0.340 0.835 
15 0.281 0.069 20.948 0.257 0.000 24.257 0.343 0.217 
16 0.288 0.150 20.909 0.260 0.000 22.833 0.332 1.697 
17 0.401 0.111 21.056 0.257 0.000 24.747 0.338 0.000 
18 0.187 0.156 21.082 0.257 0.000 24.821 0.336 0.000 
19 0.411 0.207 21.079 0.257 0.000 24.809 0.337 0.000 
20 0.317 0.216 20.919 0.259 0.000 23.292 0.337 1.221 
21 0.350 0.124 20.951 0.259 0.000 24.539 0.346 0.000 
22 0.217 0.151 21.010 0.259 0.000 24.692 0.341 0.000 
23 0.270 0.182 20.918 0.260 0.000 24.087 0.345 0.408 
24 0.286 0.160 20.907 0.260 0.000 22.873 0.333 1.657 
25 0.321 0.190 20.912 0.260 0.000 23.395 0.338 1.118 
26 0.216 0.195 21.010 0.259 0.000 24.695 0.341 0.000 
27 0.324 0.129 20.927 0.259 0.000 23.778 0.341 0.720 
28 0.239 0.166 20.968 0.259 0.000 24.592 0.345 0.000 
29 0.303 0.068 20.943 0.257 0.000 24.006 0.341 0.474 
30 0.333 0.232 20.930 0.259 0.000 24.453 0.348 0.028 
31 0.316 0.144 20.914 0.260 0.000 23.156 0.335 1.363 
32 0.354 0.115 20.962 0.258 0.000 24.553 0.345 0.000 
33 0.350 0.162 20.949 0.260 0.000 24.547 0.347 0.000 
34 0.267 0.104 20.938 0.258 0.000 24.479 0.347 0.000 
35 0.313 0.174 20.904 0.260 0.000 22.769 0.332 1.765 
36 0.253 0.147 20.948 0.259 0.000 24.533 0.347 0.000 
37 0.234 0.284 21.000 0.256 0.000 24.589 0.342 0.000 
38 0.346 0.232 20.948 0.259 0.000 24.524 0.346 0.000 
39 0.300 0.050 20.955 0.256 0.000 24.309 0.343 0.162 
40 0.297 0.197 20.905 0.260 0.000 22.498 0.329 2.045 
41 0.346 0.105 20.953 0.258 0.000 24.519 0.346 0.000 
42 0.330 0.162 20.919 0.260 0.000 24.113 0.345 0.382 
43 0.318 0.183 20.908 0.260 0.000 23.093 0.335 1.430 
44 0.363 0.212 20.968 0.259 0.000 24.595 0.345 0.000 
45 0.346 0.161 20.943 0.260 0.000 24.531 0.347 0.000 
46 0.312 0.254 20.928 0.258 0.000 23.641 0.339 0.854 
47 0.265 0.151 20.928 0.260 0.000 24.487 0.349 0.000 
48 0.267 0.191 20.907 0.260 0.000 23.925 0.344 0.570 
49 0.360 0.208 20.961 0.259 0.000 24.583 0.345 0.000 
50 0.219 0.179 21.002 0.259 0.000 24.684 0.342 0.000 
51 0.299 0.219 20.916 0.259 0.000 22.790 0.331 1.739 
52 0.203 0.191 21.044 0.258 0.000 24.758 0.339 0.000 
53 0.351 0.136 20.947 0.259 0.000 24.546 0.346 0.000 
54 0.343 0.085 20.960 0.257 0.000 24.510 0.345 0.000 
55 0.300 0.268 20.935 0.257 0.000 23.740 0.339 0.750 
56 0.296 0.145 20.909 0.260 0.000 22.604 0.330 1.934 
57 0.176 0.180 21.109 0.257 0.000 24.866 0.335 0.000 
58 0.329 0.203 20.923 0.260 0.000 24.090 0.345 0.404 
59 0.190 0.181 21.074 0.258 0.000 24.811 0.337 0.000 
60 0.184 0.130 21.088 0.257 0.000 24.818 0.336 0.000 
61 0.258 0.199 20.938 0.260 0.000 24.512 0.348 0.000 
62 0.235 0.160 20.978 0.259 0.000 24.611 0.344 0.000 
63 0.330 0.213 20.928 0.259 0.000 24.160 0.345 0.330 
64 0.182 0.210 21.094 0.257 0.000 24.832 0.336 0.000 
65 0.298 0.195 20.905 0.260 0.000 22.469 0.328 2.075 
66 0.304 0.170 20.902 0.260 0.000 22.409 0.328 2.138 
67 0.341 0.142 20.940 0.259 0.000 24.508 0.348 0.000 

(continued on next page) 
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Table 1A (continued ) 

No. x /m y /m Heating time=100 s Heating time=1000 s 
TQ RQ /m dQ TQ RQ /m dQ 

68 0.318 0.142 20.916 0.260 0.000 23.268 0.337 1.248 
69 0.316 0.270 20.940 0.257 0.000 24.025 0.342 0.457 
70 0.372 0.105 20.997 0.258 0.000 24.620 0.342 0.000 
71 0.216 0.126 21.016 0.258 0.000 24.683 0.341 0.000 
72 0.253 0.151 20.946 0.260 0.000 24.533 0.347 0.000 
73 0.247 0.232 20.959 0.258 0.000 24.551 0.345 0.000 
74 0.273 0.148 20.920 0.260 0.000 23.901 0.343 0.597 
75 0.236 0.124 20.975 0.258 0.000 24.594 0.344 0.000 
76 0.354 0.124 20.957 0.259 0.000 24.553 0.346 0.000 
77 0.302 0.212 20.912 0.260 0.000 22.681 0.330 1.853 
78 0.300 0.221 20.917 0.259 0.000 22.816 0.332 1.712 
79 0.316 0.154 20.910 0.260 0.000 23.026 0.334 1.498 
80 0.267 0.225 20.927 0.259 0.000 24.477 0.348 0.005 
81 0.208 0.171 21.029 0.258 0.000 24.734 0.340 0.000 
82 0.286 0.222 20.921 0.259 0.000 23.193 0.335 1.322 
83 0.295 0.142 20.910 0.260 0.000 22.661 0.330 1.875 
84 0.279 0.281 20.949 0.257 0.000 24.335 0.344 0.138 
85 0.438 0.205 21.134 0.256 0.000 24.902 0.333 0.000 
86 0.299 0.174 20.901 0.260 0.000 22.368 0.328 2.181 
87 0.275 0.187 20.914 0.260 0.000 23.694 0.341 0.811 
88 0.390 0.128 21.031 0.258 0.000 24.713 0.340 0.000 
89 0.297 0.112 20.916 0.259 0.000 23.149 0.334 1.365 
90 0.348 0.100 20.960 0.258 0.000 24.528 0.345 0.000 
91 0.308 0.029 20.970 0.255 0.000 24.482 0.342 0.000 
92 0.254 0.185 20.941 0.260 0.000 24.530 0.347 0.000 
93 0.377 0.273 21.014 0.256 0.000 24.630 0.341 0.000 
94 0.289 0.131 20.918 0.259 0.000 23.023 0.334 1.498 
95 0.319 0.173 20.908 0.260 0.000 23.180 0.336 1.340 
96 0.215 0.132 21.019 0.258 0.000 24.694 0.341 0.000 
97 0.387 0.154 21.019 0.258 0.000 24.711 0.341 0.000 
98 0.329 0.204 20.924 0.260 0.000 24.096 0.345 0.397 
99 0.392 0.207 21.033 0.258 0.000 24.729 0.340 0.000 
100 0.292 0.246 20.922 0.258 0.000 23.402 0.337 1.102 
101 0.312 0.095 20.929 0.258 0.000 23.655 0.339 0.839 
102 0.233 0.200 20.974 0.259 0.000 24.620 0.344 0.000 
103 0.298 0.235 20.914 0.259 0.000 23.082 0.334 1.434 
104 0.256 0.151 20.942 0.260 0.000 24.521 0.347 0.000 
105 0.287 0.223 20.921 0.259 0.000 23.172 0.335 1.344 
106 0.260 0.139 20.941 0.259 0.000 24.506 0.348 0.000 
107 0.302 0.218 20.915 0.259 0.000 22.780 0.331 1.749 
108 0.351 0.142 20.955 0.259 0.000 24.545 0.346 0.000 
109 0.346 0.122 20.945 0.259 0.000 24.523 0.347 0.000 
110 0.248 0.197 20.954 0.259 0.000 24.552 0.346 0.000 
111 0.317 0.268 20.939 0.257 0.000 24.032 0.342 0.450 
112 0.123 0.188 21.186 0.255 0.000 25.002 0.328 0.000 
113 0.286 0.273 20.941 0.257 0.000 24.017 0.342 0.464 
114 0.319 0.285 20.950 0.256 0.000 24.320 0.344 0.152 
115 0.304 0.172 20.902 0.260 0.000 22.408 0.328 2.140 
116 0.397 0.194 21.042 0.258 0.000 24.753 0.339 0.000 
117 0.367 0.288 21.003 0.256 0.000 24.593 0.341 0.000 
118 0.360 0.150 20.971 0.259 0.000 24.588 0.345 0.000 
119 0.278 0.203 20.917 0.260 0.000 23.560 0.340 0.947 
120 0.242 0.184 20.963 0.259 0.000 24.581 0.346 0.000 
121 0.309 0.182 20.903 0.260 0.000 22.596 0.330 1.944 
122 0.314 0.104 20.924 0.258 0.000 23.565 0.338 0.934 
123 0.285 0.179 20.906 0.260 0.000 22.886 0.333 1.644 
124 0.358 0.182 20.963 0.259 0.000 24.581 0.346 0.000 
125 0.293 0.158 20.905 0.260 0.000 22.551 0.329 1.991 
126 0.333 0.232 20.931 0.259 0.000 24.474 0.348 0.007 
127 0.429 0.072 21.102 0.255 0.000 24.820 0.334 0.000 
128 0.298 0.150 20.907 0.260 0.000 22.527 0.329 2.015 
129 0.313 0.210 20.914 0.260 0.000 22.981 0.334 1.543 
130 0.253 0.252 20.959 0.258 0.000 24.523 0.345 0.000 
131 0.319 0.185 20.909 0.260 0.000 23.179 0.336 1.341 
132 0.299 0.211 20.912 0.260 0.000 22.666 0.330 1.869 
133 0.330 0.186 20.919 0.260 0.000 24.128 0.345 0.365 
134 0.329 0.185 20.918 0.260 0.000 24.048 0.345 0.448 
135 0.260 0.202 20.937 0.260 0.000 24.507 0.348 0.000 

(continued on next page) 
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Table 1A (continued ) 

No. x /m y /m Heating time=100 s Heating time=1000 s 
TQ RQ /m dQ TQ RQ /m dQ 

136 0.289 0.110 20.919 0.259 0.000 23.369 0.337 1.137 
137 0.327 0.155 20.918 0.260 0.000 23.854 0.343 0.646 
138 0.228 0.173 20.992 0.259 0.000 24.643 0.343 0.000 
139 0.307 0.131 20.917 0.259 0.000 22.889 0.332 1.637 
140 0.283 0.220 20.922 0.259 0.000 23.372 0.337 1.138 
141 0.291 0.180 20.903 0.260 0.000 22.565 0.330 1.976 
142 0.294 0.119 20.912 0.259 0.000 23.063 0.334 1.454 
143 0.218 0.117 21.014 0.258 0.000 24.669 0.341 0.000 
144 0.278 0.106 20.928 0.258 0.000 23.921 0.342 0.569 
145 0.349 0.128 20.947 0.259 0.000 24.536 0.346 0.000 
146 0.207 0.150 21.034 0.258 0.000 24.736 0.340 0.000 
147 0.338 0.167 20.928 0.260 0.000 24.498 0.348 0.000 
148 0.391 0.157 21.029 0.258 0.000 24.731 0.340 0.000 
149 0.280 0.130 20.923 0.259 0.000 23.524 0.339 0.982 
150 0.334 0.244 20.939 0.258 0.000 24.484 0.347 0.000 
151 0.196 0.185 21.059 0.258 0.000 24.786 0.338 0.000 
152 0.350 0.234 20.954 0.258 0.000 24.535 0.346 0.000 
153 0.225 0.147 20.992 0.259 0.000 24.655 0.343 0.000 
154 0.316 0.136 20.918 0.260 0.000 23.205 0.336 1.311 
155 0.282 0.175 20.908 0.260 0.000 23.155 0.336 1.367 
156 0.288 0.159 20.906 0.260 0.000 22.796 0.332 1.736 
157 0.376 0.190 20.992 0.259 0.000 24.663 0.342 0.000 
158 0.387 0.248 21.028 0.257 0.000 24.684 0.340 0.000 
159 0.326 0.162 20.916 0.260 0.000 23.805 0.342 0.697 
160 0.293 0.216 20.915 0.260 0.000 22.848 0.332 1.680 
161 0.286 0.135 20.917 0.260 0.000 23.133 0.335 1.385 
162 0.307 0.118 20.913 0.259 0.000 23.102 0.334 1.414 
163 0.202 0.203 21.047 0.258 0.000 23.695 0.340 0.800 
164 0.283 0.105 20.926 0.258 0.000 23.695 0.340 0.800 
165 0.406 0.202 21.065 0.258 0.000 24.789 0.338 0.000 
166 0.233 0.195 20.983 0.259 0.000 24.618 0.344 0.000 
167 0.372 0.118 20.993 0.258 0.000 24.626 0.343 0.000 
168 0.364 0.250 20.985 0.257 0.000 24.587 0.343 0.000 
169 0.315 0.194 20.909 0.260 0.000 22.992 0.334 1.534 
170 0.286 0.120 20.915 0.259 0.000 23.341 0.337 1.168 
171 0.326 0.077 20.947 0.257 0.000 24.379 0.345 0.094 
172 0.413 0.152 21.082 0.257 0.000 20.205 0.650 0.000 
173 0.291 0.164 20.904 0.260 0.000 22.616 0.330 1.924 
174 0.392 0.180 21.031 0.258 0.000 24.738 0.340 0.000 
175 0.324 0.191 20.914 0.260 0.000 23.640 0.341 0.866 
176 0.298 0.263 20.932 0.258 0.000 23.640 0.338 0.853 
177 0.378 0.138 21.000 0.258 0.000 24.663 0.342 0.000 
178 0.264 0.189 20.927 0.260 0.000 24.493 0.349 0.000 
179 0.298 0.176 20.901 0.260 0.000 22.375 0.328 2.174 
180 0.309 0.181 20.903 0.260 0.000 22.578 0.330 1.964 
181 0.304 0.110 20.918 0.259 0.000 23.220 0.335 1.290 
182 0.366 0.226 20.980 0.258 0.000 24.606 0.344 0.000 
183 0.330 0.121 20.926 0.259 0.000 24.235 0.346 0.251 
184 0.289 0.117 20.915 0.259 0.000 23.252 0.336 1.259 
185 0.247 0.091 20.970 0.257 0.000 24.542 0.344 0.000 
186 0.263 0.246 20.943 0.258 0.000 24.491 0.347 0.000 
187 0.346 0.204 20.946 0.259 0.000 24.527 0.347 0.000 
188 0.359 0.173 20.965 0.259 0.000 24.587 0.345 0.000 
189 0.380 0.180 20.999 0.259 0.000 24.680 0.342 0.000 
190 0.273 0.202 20.921 0.260 0.000 23.906 0.343 0.591 
191 0.260 0.128 20.934 0.259 0.000 24.502 0.347 0.000 
192 0.364 0.146 20.969 0.259 0.000 24.605 0.344 0.000 
193 0.274 0.155 20.917 0.260 0.000 23.809 0.342 0.692 
194 0.362 0.230 20.974 0.258 0.000 24.587 0.344 0.000 
195 0.148 0.158 21.160 0.256 0.000 24.947 0.331 0.000 
196 0.311 0.166 20.904 0.260 0.000 22.705 0.331 1.832 
197 0.329 0.214 20.928 0.259 0.000 24.142 0.345 0.349 
198 0.298 0.158 20.904 0.260 0.000 22.445 0.328 2.100 
199 0.242 0.221 20.962 0.259 0.000 24.571 0.345 0.000 
200 0.289 0.195 20.907 0.260 0.000 22.766 0.332 1.768  
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obtain stochastic characteristics of natural frequencies of the plate induced by a random position based on expanded sample data. In 
summary, this work proposes a complete statistical analysis process for thermodynamic problems with small sample data. Relevant 
research will be of great significance to reliability evaluation of thermodynamic experimental results, and error analysis between 
experimental and theoretical results. 
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Appendix A: Fitted Parameters of Temperature Fields 

Fitted parameters of temperature fields as shown in Eq. (2), which are induced by 200 random heating positions, are listed in 
Table A1. 

Appendix B: Governing Equation of the Plate at High Temperature 

A coupled thermal dynamic governing equation of the titanium plate under a non-uniform temperature field can be derived via 
Hamilton’s principle. Substituting thermally coupled stress-strain constitutive equations in Eqs. 5(a)-(c) and geometrical relations in 
Eq. (8) into the potential energy H in Eq. (9) yields 

H =
1
2

∫ ∫ ∫

V

(
σxεx + σyεy + τxyγxy

)
dV =

1
2

(H1 + H2 + H3 + H4) (B.1)  

where 

H1 =

∫ ∫ ∫

V

ψ(T*)

[(
∂2w
∂x2

)2

+

(
∂2w
∂y2

)2]

z2dV, H3 = −

∫ ∫ ∫

V

1
2

ξ(T*)

(

2
∂2w
∂x∂y

)2

z2dV,

H2 =

∫ ∫ ∫

V

2[ψ(T*) + ξ(T*)]
∂2w
∂x2

∂2w
∂y2 z2dV, H4 = −

∫ ∫ ∫

V

χ(T*)T*
(

∂2w
∂x2 +

∂2w
∂y2

)

zdV

(B.2) 

Variations of Hi with i = 1, 2, 3, 4 can be obtained as 

δH1 =
1
6

h3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫

δ
(

∂w
∂y

)
∂2w
∂y2 ψ(T*) − δw

(
∂
∂y

(
∂2w
∂y2 ψ(T*)

))

dx

+

∫

δ
(

∂w
∂x

)
∂2w
∂x2 ψ(T*) − δw

(
∂
∂x

(
∂2w
∂x2 ψ(T*)

))

dy

+

∫ ∫

δw
(

∂2

∂x2

(
∂2w
∂x2 ψ(T*)

)

+
∂2

∂y2

(
∂2w
∂y2 ψ(T*)

))

dxdy

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(B.3)  
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δH2 =

1
6
h3

⎛

⎜
⎜
⎜
⎜
⎜
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⎜
⎜
⎜
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⎜
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∂
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(
∂2w
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∫ ∫ (
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⎟
⎟
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⎟
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δH3 = −
1
3
h3

⎛

⎜
⎜
⎜
⎜
⎝

∫

δ
(

∂w
∂y

)
∂2w
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ξ(T*)dy −

∫

δw
(

∂3w
∂x2∂y
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∂ξ(T*)

∂x

)

dx

+

∫ ∫

δw
(

∂2

∂x∂y

(
∂2w
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(B.5)  

and δH4 = 0. Variation of the kinetic energy δK is 

δK =

∫ ∫ ∫

V

ρ ∂
∂t

(ẇδw)dV −

∫ ∫ ∫

V

ρẅδwdV (B.6)  

Due to arbitrariness of δw, the governing equation of the plate can be obtained from Eq. (9), as shown in Eq. (13). Boundary conditions 
of the plate can also be obtained, as shown in Table 5. 
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