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Mail: Call box 9000 Mayagüez, Puerto Rico 00681-9018,

Fax: (787) 265-5454, and

Department of Mathematics, The Ohio State University,

Mail: 100 Math Tower 231 West 18th Avenue Columbus OH, 43210-1174,

Fax: 614 292-1479,

Email: giovanni.ferrer@upr.edu and hernandezpalomares.1@osu.edu

Abstract. Generalized Temperley-Lieb-Jones (TLJ) 2-categories asso-
ciated to weighted bidirected graphs were introduced in unpublished
work of Morrison and Walker. We introduce unitary modules for these
generalized TLJ 2-categories as strong ∗-pseudofunctors into the ∗-2-
category of row-finite separable bigraded Hilbert spaces. We classify
these modules up to ∗-equivalence in terms of weighted bi-directed fair
and balanced graphs in the spirit of Yamagami’s classification of fiber
functors on TLJ categories and DeCommer and Yamashita’s classifica-
tion of unitary modules for Rep(SUq(2)).

Keywords: Module categories, Higher categories, Representation theory,
Quantum groups.

Mathematics Subject Classification 2010: 18D05, 18D20, 20G42

1. Introduction

The Temperley-Lieb-Jones (TLJ) algebras originate in Temperley and Lieb’s article
on ice-type lattices in statistical mechanics [19], and they were formalized by Jones
in his study of finite index II1 subfactors [10]. Jones further used these algebras to
define his famous knot polynomial using the Markov trace [11]. Kauffman showed
how to define the Jones polynomial via skein theory [7], and it was later shown how
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to obtain the Jones polynomial from TLJ(δ) viewed as a ribbon tensor category
[18].

A bridge between the TLJ categories and the representation categories of quan-
tum groups are the so-called fiber functors, which are strong monoidal functors
TLJ(δ) → Vec, the category of finite dimensional vector spaces. In [20], Yamagami
classified all fiber functors TLJ(δ) → Vec using the spectra of certain associated
(positive) linear maps.

Now, each fiber functor TLJ(δ) → Vec equips Vec with the structure of a module
category for TLJ(δ) [5, §7]. In fact, module categories for TLJ(δ) were classified as
generalized fiber functors into BigVec, the rigid tensor category of bigraded vector
spaces in terms of graphs with bilinear forms [6]. In the unitary setting, DeCommer
and Yamashita ([4] and [3]) classified module C*-categories for SUq(2) which can
be thought of as unitary fiber functors of the form F : Rep(SUq(2)) → BigHilb, the

rigid C*-tensor category (RC*TC) of bigraded Hilbert spaces in terms of fair and
balanced weighted graphs. (We refer the reader to Definition 2.18 for more details
on bigraded Hilbert spaces, and we refer the reader to [12] and to section 2.1 of [9]
for more details on RC*TC’s.) Notice that for an appropriate choice of δ, TLJ(δ)
is a RC*TC unitarily equivalent to Rep(SUq(2)).

In their preprint [14], Morrison and Walker introduce a generalized notion of the
TLJ categories (see Definitions 3.1, 3.2, and 3.3 therein). A bidirected weighted graph
consists of a countable locally finite directed graph Γ together with a weight function
δ : E(Γ) → (0,∞) and an involution of the edges denoted by · , which reverses the
edges and satisfies δ(e) = δ( e ) for each edge e ∈ E(Γ). Associated to a fixed
bidirected weighted graph (Γ, δ, · ), we construct the ∗-2-category TLJ(Γ), where
tensor product is determined by concatenation of paths in Γ (see Definition 2.8 for
more details). These TLJ ∗-2-categories generalize the ordinary TLJ categories;
indeed, taking Γ as follows recovers various TLJ RC*TC’s:

• a single vertex with a single self-dual loop recovers unshaded unoriented
TLJ,

• a single vertex with two dual edges recovers unshaded oriented TLJ, and
• two vertices with two dual edges between them recovers 2-shaded TLJ.

We refer the reader to Example 2.10 for more details.
In this article, we classify generalized fiber functors and module categories for the

∗-2-category TLJ(Γ) associated to a weighted bidirected graph (Γ, δ, · ). That is, we
classify ∗-pseudofunctors [16] into the ∗-2-category of separable/countably bigraded
Hilbert spaces BigHilb (see Definition 2.19). However, one quickly runs into dif-
ficulties arising from non-strictness of this 2-category, so we introduce the strict
∗-2-category UCat of unitary countably semisimple categories with ∗-functors as
1-morphisms and uniformly bounded natural transformations as 2-morphisms (see
Definition 2.16), which is ∗-2-equivalent to BigHilb. In this context, we work with
strict ∗-pseudofunctors F : TLJ(Γ) → UCat, which are unambiguously determined
by their action on the generators of TLJ(Γ), whose images are called q-fundamental
solutions (to the conjugate equations) in [3]. We refer the reader to Proposition 3.3
for a rigorous statement.

To achieve a classification of these unitary modules, we first generalize the notion
of a fair and balanced graph [3] to balanced Γ-fair graphs [14], which can intuitively
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be thought of as E(Γ)-graded versions of ordinary fair and balanced graphs.

Definition 4.3: We say a weighted directed graph (Λ, w, π) with a graph homo-
morphism π : Λ → Γ is a Γ-fair graph if and only if π is onto V (Γ) and for each
e : a→ b in E(Γ) and every vertex α ∈ π−1(a)∑︂

{ϵ | source(ϵ)=α
and π(ϵ)=e}

w(ϵ) = δe.

A remarkable example in this definition occurs when the edge weighting comes from
a vertex weighting d : V (Λ) → (0,∞) as a ratio w(α → β) = d(α)/d(β). (Compare
with the discussion on the bottom of page 3 of [14].) In Section 4, we will more
closely explore how this notion compares to Γ-fairness. There are moreover addi-
tional desirable properties one could ask of a Γ-fair graph such as the existence of
a balanced involution:

Definition 4.6: We say a Γ-fair graph (Λ, w, π) is balanced if and only if there
exists an involution ( · ) on E(Λ) that switches sources and targets, such that for
every ϵ ∈ E(Λ)

w(ϵ)w(ϵ) = 1 and

π(ϵ) = π(ϵ).

Notice as in [3, p2 Remarks 1], that we only ask for existence of such an involution,
and do not add it as additional structure.

We are now equipped to introduce our main result.

Theorem 4.15: Every balanced Γ-fair graph arises from a Γ-fundamental solution
in BigHilb. Furthermore, there is an equivalence between isomorphism classes of
balanced Γ-fair graphs and unitary isomorphism classes of strong ∗-pseudofunctors
TLJ(Γ) → BigHilb.

We recover Proposition 2.3 in [3] for Rep(SUq(2)) for q < 0, by taking Γ to be a
single vertex and self-dual loop, which recovers unshaded unoriented TLJ. We give
more details in Example 2.10.

We now provide the reader with a brief outline of this article. In Section 2, we
establish the framework and rigorously define most of the basic notions we use. We
formally introduce bidirected weighted graphs together with an explanation on how
to construct our prototypical ∗-2-category TLJ(Γ). We then introduce abstract ∗-2-
categories, allowing us to sketch the ∗-2-equivalence between UCat and BigHilb.

In Section 3, we investigate the unitary equivalence of strong ∗-pseudofunctors
F : TLJ(Γ) → C, where C is a strict ∗-2-category (see Definition 3.4), which requires
the language of 3-categories. In the spirit of [20, §2] and [3, Def. 1.3], we define
Γ-fundamental solutions in C (Definition 3.1) as a generalization of solutions to the
conjugate equations, a.k.a. the zig-zag equations. When C is strict, Γ-fundamental
solutions determine a unique (strict) unitary module. In fact, every such strong
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∗-pseudofunctor TLJ(Γ) → C turns out to be unitarily equivalent to a strict one,
as stated in Proposition 3.5. Due to this result, it suffices to classify strict ∗-
pseudofunctors. By means of the ∗-2-equivalence BigHilb ≃ UCat, we translate
our classification to the case where C = BigHilb to understand unitary equivalence
of Γ-fundamental solutions in BigHilb. We close this section by following the tech-
niques introduced in [3], translating unitary equivalence of strict ∗-pseudofunctors
(or that of Γ-fundamental solutions in BigHilb) in terms of conjugate anti-linear
operators.

Finally, in Section 4, we prove our main classification theorem stated above.
To do so, we construct a balanced Γ-fair graph from a Γ-fundamental solution
S = (V,E,C) in BigHilb. This requires the spectral data arising from the anti-
linear forms associated to the maps {Ce}e∈E(Γ). Conversely, we demonstrate how
to construct a strong ∗-pseudofunctor F : TLJ(Γ) → BigHilb from any given
balanced Γ-fair graph. We finally prove that these processes are mutually inverse,
therefore establishing the desired equivalence.

In the way of proving this result, we address the question posed by Morrison and
Walker [14] with regards to weighted graphs obeying a Perron-Frobenius type con-
dition. (See Remark 4.9.) We do so by providing necessary and sufficient conditions
for a balanced Γ-fair graph to be of the type considered by Morrison and Walker.
We conclude this last section by suggesting a connection between Corollary B as
found in [2] involving right pivotal cyclic TLJ(d)-modules and our own work in the
scope of Morrison and Walker’s.

2. Background

2.1. Graph generated Temperley-Lieb Jones Categories.

Notation 2.1. For a graph Γ, we denote by V (Γ) and E(Γ) the vertex set and
edge set of Γ, respectively.

Definition 2.2. [14] A weighted bidirected graph (Γ, δ, · ) is a countable locally
finite directed graph together with a weight function

δ : E(Γ) → (0,∞)

and an involution called duality given by the map

· : E(Γ) → E(Γ).

Duality reverses sources and targets and the weight function has the property that
δ(e) = δ(e). Note that an edge with the same source and target might be self-dual,
as loops are allowed in Γ. For simplicity, we will denote (Γ, δ, · ) by Γ and δ(e) by
δe.

Example 2.3. Here, we present an example of a bidirected graph where the edges
d and e are self-dual.

Remark 2.4. In the extent of this article, we only consider connected locally finite
graphs.
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δc

δcδa

δa

δd

δe

δb

δb

Fig. 1. Weighted bidirected graph Γ.

Definition 2.5. Let Γ be a weighted bidirected graph, and let a = (ai)
n
i=1 and

b = (bj)
m
j=1 be finite ordered sequences in E(Γ) defining paths in Γ. This is, if

e, f are consecutive elements in either path, then the source of f equals the target
of e. Consider the unit square [0, 1] × [0, 1] with n and m points distinguished on
the bottom and top ends, respectively. We correspond the ith bottom point from
left to right with ai and the jth top point with bj . A Γ-Temperley-Lieb-Jones
(TLJ(Γ)) diagram from a to b consists of non-crossing smooth arcs starting from
a point corresponding to an edge e of Γ and ending on either a point on the same
unit square edge corresponding to e, or on a point on the opposite unit square edge
corresponding to e.

• A string in a diagram represents an edge of Γ (from Example 2.3), where
the shading of the region to the left of a string represents its source while
the shading to the right represents its target.

c c c

d d c

c c c

d d c

Fig. 2. Examples of TLJ(Γ) diagrams.

• By choosing one edge out of each duality pair whose source and target
are the same, we assign orientations in order to distinguish the strings
representing them.

Fig. 3. Example of an oriented TLJ(Γ) diagram.

• Vertical and horizontal composition of TLJ(Γ)-diagrams are given by ver-
tical stacking and horizontal juxtaposition, respectively. We remark that
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one can only vertically compose if the top and bottom ends of the given di-
agrams are labeled by the same path in Γ, and that horizontal composition
is only possible whenever the target of the last edge on the right-bottom
(right-top) corner of the first diagram matches the source of the first edge
on the left-bottom (left-top) corner of the second diagram. We illustrate
these operations in the following equations:

= , (2.1)

and

⊗ = . (2.2)

• An involution of TLJ(Γ)-diagrams is given by reflecting around an horizon-
tal axis and reversing any string orientations, as displayed below:⎛⎜⎜⎝

⎞⎟⎟⎠
∗

= . (2.3)

Remark 2.6. Similar to the standard Kauffman-diagrams, these TLJ(Γ)-diagrams
are generated by families of cups and caps through vertical and horizontal compo-
sition.

Remark 2.7. Through these graph-generated categories, one can obtain any simple
Temperley-Lieb-like diagrams, with any number of string shadings, orientation, and
region shadings.

Definition 2.8. [14] Let Γ be a weighted bidirected graph. We define TLJ(Γ), the
Temperley-Lieb Jones Category generated by Γ, as the ∗-2-category defined
as follows:

• Objects are vertices of Γ
• 1-Morphisms are paths on Γ. In particular, for a, b ∈ V (Γ),

hom(a, b) := {paths in Γ starting at a and ending at b} .

Namely, the previously defined objects together with this collections of
1-morphisms make up the free category generated by Γ. Notice that 1-
composition becomes concatenation of paths, whenever the endpoint of the
first path equals the starting point of the second, and is undefined otherwise.

• 2-Morphisms from path a to path b are formal C-linear combinations of
equivalence classes of simple TLJ(Γ)-diagrams from a to b up to isotopy,
modulo the δe-equivalence relation, which trades closed e-loops and e-loops
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for the scalar δe.

= δa = δaδb . (2.4)

• Furthermore, we define horizontal and vertical composition of 2-morphisms
as the linear extension of horizontal and vertical stacking of TLJ(Γ)-diagrams
respectively, and we define an involution ∗ on the 2-morphisms of TLJ(Γ)
as the anti-linear extension of the involution of TLJ(Γ)-diagrams.

Remark 2.9. We warn the reader that this is simply a ∗-2-category, as opposed to
a 2-category with further analytic properties, such as being C*/W*.

Example 2.10. The standard Temperley-Lieb Jones categories TLJ(δ), Temperley-
Lieb Jones categories with oriented strings, string-colored TLJ, and shaded TLJ are
generated by the following weighted bidirected graphs Γ0, Γ1, Γ2, and Γ3, respec-
tively:

δ

δ
,

δ

δ
,

δb

δr
and

δ

δ

.

Fig. 4. Examples of weighted bidirected graphs.

We include examples of TLJ(Γ)-diagrams corresponding to each of the previous
graphs:

, , and .

Fig. 5. Diagrams corresponding to the graphs above.

2.2. Unitary Modules for TLJ(Γ).

Notation 2.11. In this paper, we use the terms bicategories and 2-categories in-
distinguishably. So we make no general assumptions on the strictness of our 2-
categories. We will make our assumption of strictness explicit whenever required.
We denote the composition of 1-morphisms by ⊗ and also for horizontal composition
of 2-morphisms. We denote the vertical composition of 2-morphism with ◦.

Notation 2.12. For any given 2-category C, say TLJ(Γ) or UCat, we will write
f ∈ 1C to simply mean f is a 1-morphism between two objects in C, without
necessarily specifying the objects. We do similarly for 2-morphisms.
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Definition 2.13. A ∗-2-category C is a dagger-category enriched category. Namely,
for each pair κ, η ∈ 2C we have that (κ ◦ η)∗ = η∗ ◦ κ∗, whenever the 2-morphisms
can be composed. Furthermore one requires (κ ⊗ η)∗ = κ∗ ⊗ η∗ whenever the 2-
morphisms can be tensored. (See section 2 in [12] for a more detailed discussion on
dagger/C*-categories.)

Definition 2.14. Given 2-categories C and D, a pseudofunctor F : C → D consists
of a triplet (F , µ, ι), defined as follows:

• For each 0-morphism x ∈ C, a 0-morphism F(x) ∈ D;
• For each hom-category C(x, y) in C, a functor Fx,y : C(x, y) → D(F(x),F(y));
• For each 0-morphism x of C, an invertible 2-morphism (or 2-isomorphism)
ιx : idF(x) ⇒ Fx,x(idx).

• The tensorator is a natural isomorphism µ given by a collection of 2-
isomorphisms of the form µφ,ψ : F(φ) ⊗ F(ψ) ⇒ F(φ ⊗ ψ), where φ,ψ
are 1-morphisms in C.

We limit ourselves to mention there are some coherence axioms involved, but we do
not mention them here. Rather, we direct the interested reader to the description
found in nLab.[16]
Furthermore, if C,D are ∗-2-categories, for every 0-morphism x ∈ C we have that ιx
is unitary, for every pair of 1-morphisms φ,ψ in C the tensorator µφ,ψ is unitary, and
if F(κ∗) = F(κ)∗ holds for every κ ∈ 2C, we then say that F is a ∗-pseudofunctor.
We conclude this definition by reminding the reader that in a ∗-2-category, unitarity
for a 2-morphism u means that u∗ = u−1.

Notation 2.15. We use the terms unitary categories and countably semisimple
C∗-categories indistinguishably. For a detailed explanation on C∗-categories see
[12].

Definition 2.16. Let UCat be the 2-category whose 0-morphisms consist of uni-
tary categories, with ∗-functors as 1-morphisms, and (uniformly) bounded natural
transformations as 2-morphisms. We turn UCat into a ∗-2-category as follows. Let
α : F ⇒ G be a 2-morphism in UCat, where F ,G : C → D are ∗-functors. Namely,
α = {αc : F(c) → G(c)}c∈C is a family of morphisms in D indexed by the objects
of C. We then define the involution ∗ in UCat as α∗ := {α∗D

c : G(c) → F(c)}c∈C ,
where ∗D in the involution in the unitary category D.

Remark 2.17. Notice that UCat is strict, as tensoring 1-morphisms is given as
composition of functors. We will also suppress all associators and unitors.

From this point on, we focus our attention into classifying those unitary TLJ(Γ)-
modules which we present as strong ∗-pseudofunctors F : TLJ(Γ) → UCat. In
order to do so, we introduce an auxiliary ∗-2-category, which is ∗-2-equivalent to
UCat, allowing us to use linear-algebraic tools in the spirit of [20] and [3].

Definition 2.18. Let J and K be countable sets. We denote by HilbJ×Kf the
category of J ×K-graded Hilbert spaces

H =
⨁︂
v∈J
w∈K

Hvw,
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such that
∑︁
v dim(Hvw) < ∞. In other words, Hvw is finite dimensional for every

pair v, w and only a finite number of them are non-trivial when fixing the second
index. (One can think of “column finite” matrices of finite dimensional Hilbert
Spaces.) The morphisms are then defined as bounded operators

f =
⨁︂
v∈J
w∈K

fvw : H → G ,

where fvw : Hvw → Gvw are morphisms in Hilbf.d.. The composition of morphisms

f, g ∈ HilbJ×Kf is then given by entry-wise composition, namely

g ◦ f :=
⨁︂
v∈J
w∈K

gvw ◦ fvw. (2.5)

Definition 2.19. We defineBigHilb as the ∗-2-category of bigraded Hilbert spaces
with countable sets as 0-morphisms and hom(J,K) = HilbJ×Kf . The composition
of 1-morphisms denoted by ⊗ for H : J → K and G : K → L is defined as

H ⊗ G :=
⨁︂
v∈J
w∈L

⨁︂
k∈K

Hvk ⊗ Gkw,

where the ⊗ on the right side is the tensor product of Hilbert spaces. This operation
is analogous to matrix multiplication. Note that for each object J , the identity 1-
morphism idJ is given by

idJ =
⨁︂
v,w∈J

δv,w · C,

where δv,w := 1 when v = w and δv,w := 0 otherwise. Recall that the composition of
2-morphisms was defined in Equation (2.5). We turn BigHilb into a ∗-2-category
as follows. For each 2-morphism f =

⨁︁
v,w fvw : H → G we define its adjoint

f∗ :=
⨁︁

v,w f
∗
vw : G → H , where f∗vw is the adjoint of fvw as a bounded linear

operator.

It is well known amongst experts that the 2-category of semi-simple linear cat-
egories is 2-equivalent to the 2-category of bigraded vector spaces. In a similar
fashion, the W∗-2-category of countably semi-simple C∗-categories is ∗-2-equivalent
to the W∗-2-category BigHilb. We will only provide a proof sketch of the latter,
as proving these statements here would take us too far afield.

Proposition 2.20. There exists a unitary ∗-2-equivalence of 2-categories Θ−1 :
UCat → BigHilb.

Sketch of proof. For C ∈ UCat, by countable semi-simplicity together with the
axiom of choice, there exists a countable set Irr(C) defining a complete set of rep-
resentatives of isomorphism classes of simple objects in C. Now, if C,D ∈ UCat,

for a 1-morphism F : C → D in UCat, we produce the category Hilb
Irr(C)×Irr(D)
f

as follows: for ej ∈ Irr(C), fi ∈ Irr(D), we turn the i, j vector space component
Hi,j := D(fi → F(ej)) into a Hilbert space by means of the sesqui-linear form
⟨φ,ψ⟩ := ψ∗ ◦ φ ∈ End(fi) = C, which defines an inner product. Notice that
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(Hi,j) does define a column finite bigraded Hilbert space, as determined by the
semi-simplicity of D. Finally, if η : F ⇒ G is a 2-morphism in UCat presented as a
family of functions η = {ηa}a∈C , we construct a 2-morphism in BigHilb using the
expression ηeji ◦ − := (D(fi,F(ej))i,j ⇒ (D(fi,G(ej))i,j . We spare the remaining

details on why the structure maps are unitary and Θ−1 is essentially surjective on
objects and fully faithful, thus being part of an equivalence of 2-categories. □

3. Equivalences of Pseudofunctors

In this section, we develop the tools necessary to classify unitary modules for
TLJ(Γ). Afterwards we rephrase the equivalence of unitary modules in terms of
certain anti-linear operators and state some useful properties.

Definition 3.1. Let C be a ∗-2-category which need not be strict. We define
a Γ-fundamental solution in C as a triplet S = (V,E,C) given as follows: V =
{V a}a∈V (Γ) are 0-morphisms in C indexed by the vertices of Γ, E = {Ee}e∈E(Γ) are

1-morphisms in C indexed by the edges of Γ, and C = {Ce}e∈E(Γ) are 2-morphisms

in C, where Ce : idV a ⇒ Ee ⊗ Ee satisfies the following zigzag relations for every
e ∈ E(Γ)

(1)
(︁
(Ce)∗ ⊗ idEe

)︁
◦
(︁
idEe ⊗Ce

)︁
= idEe and

(2) (Ce)∗ ◦ Ce = δe · ididV a

This is represented diagrammatically as follows:

e

e e e

e

=

e

e

and ee = δe· . (3.1)

Example 3.2. Given a bidirected weighted graph Γ, we shall describe Γ-fundamental
solutions in BigHilb, denoted by (J,H,C). Here, J = {Ja}a∈V (Γ) is a family

of (grading) sets indexing the vertices of Γ, H = {H e}e∈E(Γ) is a family of bi-

graded Hilbert spaces graded by the edges of Γ such that H e ∈ HilbJ
a×Jb

f , and C =

{Ce}e∈E(Γ) is a family of 2-morphisms in BigHilb such that Ce =
⨁︁

v

∑︁
w C

e
vw.

To further explain this notation trick, for each (e : a → b) ∈ E(Γ), for every
fixed v ∈ Ja, summing over w ∈ Jb collects all the cups corresponding to the triple
(e, v, w) and, as v ranks over the whole set Ja, the direct sum places each corre-
sponding combination of Cevw cups into the appropriate diagonal slot. Here, the
maps Ce are collections of linear maps of the form

Cevw : C → H e
vw ⊗ H e

wv,

where v ∈ Ja and w ∈ Jb. These form solutions to the equations (1) and (2) above,
in the following fashion:

(1)
(︁
(Ce

vw)
∗ ⊗ idH e

vw

)︁
◦
(︁
idH e

vw
⊗Ce

wv

)︁
= idH e

vw
and

(2)
∑︁
k∈Jb (Ce

vk)
∗ ◦Ce

vk = δe · 1vw.
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Here, 1vv ∈ idJ
a

v,v = (δv,w · C)v,v is the complex number one, and Ce
vw : δv=w · C →

H e
vk ⊗ H e

kw is a linear map in Hilb from the fundamental solution. Notice that
Cevw = δv=w · ⊕k∈JbCe

vk.

Proposition 3.3. A Γ-fundamental solution S = (V,E,C) in a strict ∗-2-category
C uniquely determines a canonical strict ∗-pseudofunctor FS : TLJ(Γ) → C, such
that FS(a) = V a for every vertex a, FS(e) = Ee for every edge e, and FS(e∪e) = Ce

for every cup in TLJ(Γ).

Proof. Let S be as described above. At the level of 0-morphisms, FS has been
completely described in the statement. For 1-morphisms, notice that for any path
f = (fi)i in Γ, we can unambiguously define FS(f) = FS(⊗ifi) := ⊗iF(fi), since C
is strict. Finally, every 2-morphism in TLJ(Γ) is generated by a sum of adjointing
and composing cups

{︁
e∪e
}︁

horizontally and vertically along with single strand
and empty diagrams, so we shall now use this property to show how to define the
action FS on 2-morphisms. We define FS for an empty diagram idida trivially as
FS(idida) := idFS(ida) := ididFS(a)

= ididV a . Similarly, we let FS act on diagrams

with a single strand ide by FS(ide) := idFS(e) = idEe . Let g be an arbitrary path in
Γ and α ∈ 2TLJ(Γ)(f ⇒ g) be an arbitrary Kauffmann diagram. By the strictness
of TLJ(Γ), we can freely rearrange parenthesis in either g or f . Let us choose
an arrangement of parenthesis for both so that if α contains a cup or a cap, then
both of the edges in g or f involved in the domain/codomain of any given cup/cap
appear associated. Moreover, if α contains nested cups or caps, by isotopy, we can
“vertically separate” them by stacking enough Kauffmann diagrams consisting of
horizontal composition of vertical strings and/or (colored) vacua between any two
nested cups or caps. We denote each horizontal strip in the resulting diagram by

kα :=
⨂︁Tk

ik=1 kαik . Here, each kαik must then either be an empty diagram, a string,
a cup or a cap.

We therefore expressed our Kauffmann diagram as α = ◦Lk=1 kα, dictating a
decomposition of α as a grid consisting of (colored) empty diagrams, single cups,
single caps and vertical strands, where at most one of each is found inside each
square. This is progressively depicted in the following example:

= = . (3.2)

We can thereafter define FS(α) := ◦Lk=1FS(kα) := ◦Lk+1 ⊗
Tk
ik=1 FS(kαik), which

completely determines FS on 2-morphisms. The fact that FS is well-defined follows
from the hypothesis that S is a Γ-fundamental solution in C. Indeed, by construc-
tion, for each edge e ∈ E(Γ), we have that FS(e∪e) satisfies the zigzag relations
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(Equation (1) in Definition 3.1), and therefore our definition of F on 2-TLJ(Γ) is
unambiguous, as it is invariant under planar isotopy.

The data of a pseudofunctor requires for each 0-morphism a ∈ TLJ(Γ), an in-
vertible 2-morphism ιa : FS(ida) ⇒ idFS(a) and for each pair of composable 1-
morphisms f, g ∈ TLJ(Γ), a natural invertible 2-morphism µf,g : FS(f)⊗FS(g) ⇒
FS(f⊗g). By taking ι and µ to be identities, FS trivially satisfies the conditions re-
quired in order to be a pseudofunctor, which are namely coherence axioms between
ι and µ. Although we do not state these conditions here, we refer the interested
reader to [16]. □

The following proposition will allow us to simplify our classification problem,
asserting it is sufficient to understand strict ∗-pseudofunctors between (strict) ∗-2-
categories, as opposed to the larger family of strong ∗-pseudofunctors. Before we
state the next result, we need to introduce the notion of equivalence of pseudo-
functors between 2-categories. To do so, we must go up one level, considering the
3-category 2Cat. (See [1] for more details on the construction of this category.)

Definition 3.4. Consider pseudofunctors F ,G : B → C, between 2-categories B
and C. We say that F and G are equivalent if and only if there exist pseudonatural
isomorphisms θ : F ⇒ G and κ : G ⇒ F and invertible modifications in 2Cat,
M : θ ◦κ⇛ idG andM ′ : κ◦θ ⇛ idF . In the case where B and C are ∗-2-categories,
and F and G are ∗-pseudofunctors, we also require the 2-cells in M and M ′ be
unitary, as well all the 2-morphisms θe, κe, for every 1-morphism e in C. See [13] for
a more detailed overview of modifications. We also refer the reader to the entries
on pseudonatural transformations [15] and modifications [17] on nLab.

Proposition 3.5. Every strong ∗-pseudofunctor (F , µ) from TLJ(Γ) into a strict
∗-2-category C is unitarily equivalent to the canonical strict ∗-pseudofunctor FS
generated by the fundamental solution S = (J,H,C) defined as follows:

Ja := F(a), for every a ∈ V (Γ),

H e := F(e) and

Ce := µ−1
e,e ◦ F(e∪e), for every e ∈ E(Γ).

Proof. We shall construct the unitary psudonatural isomorphisms θ and κ from
Definition 3.4 together with the forementioned modifications. For an arbitrary
object a ∈ TLJ(Γ), we define θa := idF(a), and κa := idFS(a) = idF(a) . Let us

now consider an arbitrary 1-morphism e = ⊗Ni=1ei in TLJ(Γ). By the strictness
hypothesis on C, and strictness in TLJ(Γ), there is no loss of generality by choosing
any preferred parenthesization when expanding the path e or its image under FS .
In the following computation, we chose the rightmost grouping, obtaining:
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F

(︄
N⨂︂
i=1

ei

)︄
= F

(︄
e1 ⊗

N⨂︂
i=2

ei

)︄
∼= µe1,

⨂︁N
2 ei

(︄
F(e1)⊗F

(︄
N⨂︂
i=2

ei

)︄)︄

∼= µe1,
⨂︁N

2 ei

(︄
F(e1)⊗ µe2,

⨂︁N
3 ei

(︄
F(e2)⊗F

(︄
N⨂︂
i=3

ei

)︄)︄)︄
...

∼= µe1,
⨂︁N

2 ei

(︁
FS(e1)⊗µe2,⨂︁N

3 ei

(︁
FS(e2)⊗ µe3,

⨂︁N
4 ei . . . µeN−1,eN (FS(eN−1)⊗FS(eN ))

)︁)︁
.

From this computation, we obtain the family of 2-morphism described as follows:

ηe := ηe1,e2,...,eN : FS(e) ⇒ F(e), defined by

ηe1,e2,...,eN := µe1,⊗N
2 ei

◦ (idF(e1) ⊗µe2,⊗N
3 ei

) ◦ (idF(e1) ⊗ idF(e2) ⊗µe3,⊗N
4 ei

) ◦ . . .
. . . ◦ (idF(e1) ⊗ idF(e2) ⊗ . . .⊗ idF(eN−3

⊗µeN−2,eN−1⊗eN )◦
◦ (idF(e1) ⊗ idF(e2) ⊗ . . .⊗ idF(eN−2) ⊗µeN−1,eN ).

By defining (ηa : FS(a) −→ F(a)) := (idF(a)) for a ∈ V (Γ), we obtain a pseudonat-
ural transformation η ∈ 2Cat(FS ⇒ F). We shall sketch a proof of this assertion
in short. In addition, since all the components of η are invertible, this defines a
pseudonatural equivalence from FS to F . Notice that all the ηe are manifestly uni-
tary –as we are simply tensoring and composing the unitary 2-morphism µ with
identities– and that ηe1,...eN is natural in each of the ei conforming the path e. We
now provide a complete outline for verifying that η is a pseudonatural equivalence.
It needs to be shown that η is monoidal (with respect to the composition of 1-
morphisms), respects units, and is natural (on 2-morphisms). We shall proceed in
that order:

To prove η is monoidal with respect to the 1-composition, we need to verify that
for arbitrary composable 1-morphisms e, f in C, the following equality holds:

FS(a) FS(b) FS(c)

F(a) F(b) F(c)

idF(a)

FS(e)

ηe
idF(b)

FS(f)

ηf
idF(c)

F(e)

F(e⊗f)

µF
e,f

F(f)

=

FS(b)

FS(a) FS(c)

F(a) F(c)

FS(f)

idF(a)

FS(e)

FS(e⊗f)

id

ηe⊗f
idF(c)

F(e⊗f)

. (3.3)

However, this follows immediately from the graphical calculation:
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)︂
⊗ FS

(︂
FS

(︂ )︂
⊗ . . . ⊗ FS

(︂ )︂

. . .

= ... =

.

..
.
..

. . .
ηe2,...,eN

. . .

)︂
⊗ FS

(︂
. . .FS

(︂ )︂

...

=
...

...

. . .

. . .

. . .FS

(︂ )︂

ηe1,...,eN

(3.4)

That η respects units follows easily, as if g ∈ E(Γ), then ηg = idF(g), is the tensor
identity.

Finally, to see that η is natural, let g = ⊗N1 gi and f = ⊗M1 fj be 1-morphisms in
TLJ(Γ) and α : f ⇒ g ∈ 2TLJ(Γ)(f ⇒ g) be an arbitrary TLJ(Γ) diagram from f
to g. We shall verify the following identity holds:

FS(a) FS(b)

F(a) F(b)

FS(g)

FS(f)

FS(α)

idF(a) ηg idF(b)

F(g)

=

FS(a) FS(b)

F(a) F(b)

FS(f)

idF(a) ηf idF(b)

F(f)

F(g)

F(α)

. (3.5)

In order to do so, we decompose α as in the proof of Proposition 3.3 obtaining
α = ◦Lk=1 ⊗Tk

ik=1 kαik . Recall that each kαik is either empty, a single string, or a
single cup/cap. Since FS is a strict functor, proving the naturality of η then reduces
to show that equality 3.5 holds for each of the kαik . For the (colored) empty or the
single string diagram cases, equality holds trivially. In the cup/cap cases, equality
follows from the naturality of the given “tensorator” data from (F , µF ).

We now define θ and κ simply as

θ := η and κ := η−1,

so automatically they are both unitary pseudonatural equivalences θ : FS ⇒ F
and κ : F ⇒ FS . We are now ready to provide the data for the modifications
M : κ ◦ θ ⇛ idFS

and M ′ : θ ◦ κ ⇛ idF . For each object a ∈ TLJ(Γ), we observe
that (κ ◦ θ)a = idF(a) ◦ idF(a) = idF(a) and that idF (a) = idF(a), so we define

Ma : (κ ◦ θ)a ⇒ idF(a), by

Ma := ididF(a)
.

Similarly we define

M ′
a : (θ ◦ κ)a ⇒ idFS(a), by

M ′
a := ididFS(a)

= ididF(a)
.
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It is routine to verify this data defines a modification. (We warn the reader we
explicitly omitted all left and right unitors.) By observing these are all isomor-
phisms, we conclude M and M ′ describe the desired equivalence, thus completing
the proof. □

The following result provides necessary and sufficient conditions for 2 unitary
modules to be equivalent.

Proposition 3.6. Let (V,E,C) and (V, I,D) be two Γ-fundamental solutions in
UCat, and let F and G be the unique strict unitary modules determined by each,
respectively. Moreover, let us assume we have the following data:

• for every a ∈ V (Γ), the identity 1-morphisms in UCat : θa = κa = idV a ,
and identity 2-morphisms Ma =M ′

a = ididV a ;
• for every edge e ∈ E(Γ), two families of unitary 2-morphisms in UCat:
θe : Ie ⇒ Ee and κe : Ee ⇒ Ie such that (κe)

∗ = θe, introducing also
θidV a = κidV a = ididV a . (We remark that ididV a also acts as the tensor
unit.)

Then the given families of morphisms extend to unitary pseudonatural isomor-
phisms θ : F ⇒ G and κ : G ⇒ F , and M ′ extends to an invertible modification
M ′ : (κ ◦ θ) ⇛ idF , defining an equivalence of F and G if and only if for ev-
ery edge e ∈ E(Γ) we have the unitary 2-morphisms in UCat θe, κe satisfying
(θe ⊗ θe) ◦De = Ce. This is represented diagrammatically as follows:

Ce

Ee Ee

=

De

θe θe

Ee Ee

. (3.6)

Proof. We begin by proving the forward direction. Consider unitary pseudonatural
isomorphisms θ and κ and the modification M ′ as in the statement. For each edge
e ∈ E(Γ), we define a two-morphism in UCat by He := (M ′

b) ◦ (θe ⊗ κ∗e), which
is manifestly unitary. We then obtain the following chain of equations which are
heavily guided by the graphical calculus shown below in Equations 3.7:

He ◦ (idθa ⊗De ⊗ idκa
) ◦ (H ida)∗ = He ◦ (idθa ⊗κe⊗e) ◦ (idθa ⊗ idκa

⊗Ce)◦
◦ (θida

∗ ⊗ idκa) ◦ (M ′
a)

∗

= (idEe ⊗M ′
b ⊗ idEe) ◦ (θe ⊗ idκb

⊗ idEe)◦
◦ (idθa ⊗κe ⊗ idEe) ◦ (idθa ⊗ idκa

⊗Ce)◦
◦ (θida

∗ ⊗ idκa) ◦ (M ′
a)

∗

= (M ′
a ⊗ idEe ⊗ idEe) ◦ (idθa ⊗ idκa

⊗Ce)◦
◦ (θida

∗ ⊗ idκa
) ◦ (M ′

a)
∗

= Ce,
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showing that Ce and De are unitary conjugates. Now, since we are assuming that
θa = idV a = κa and M ′

a = ididV a , the unitary He can explicitly be expressed as
He = θe ⊗ κe

∗, giving the desired relation.

M ′
b

θe κ−1
e

De

θ−1
ida

κida

M ′−1
a

=

M ′
b

θe κ−1
e

κe⊗e

θ−1
ida

Ce

M ′−1
a

=

M ′
b

θe

κe

θ−1
ida

Ce

M ′−1
a

(3.7)

=

M ′
a

θ−1
ida

Ce

M ′−1
a

=
Ce

.

Conversely, we shall construct the necessary pseudonatural transformations and
modifications from the given data. First, if f = ⊗ei is a path consisting of consec-
utive edges in Γ, we can regard f ∈ 1TLJ(Γ) as a reduced word; i.e. containing no
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identities to suppress via the left or right unitors. We can then define θf := ⊗θei , ex-
tending the original definition of θ on single edges to every 1-morphism in 1TLJ(Γ).
We proceed similarly with κ, obtaining a unitary 2-morphism in UCat for every
1-morphism f in 1TLJ(Γ). We shall now verify that θ is a pseudonatural iso-
morphism. Since by definition it respects units and is monoidal with respect to
1-composition, it remains to see it is natural in 2-morphisms. However, to see this
it suffices to check naturality for single cups and single strands, as we did in the
proof of the previous proposition. Thus, that θ and κ are natural follows from
simple computation, using that (θe ⊗ θe) ◦De = Ce, for every edge e ∈ E(Γ).

Finally, that M ′ defines a modification M ′ : (κ ◦ θ) ⇛ idF , follows directly
from the hypothesis (κe)

∗ = θe for every edge in Γ, as it directly translates to
the commuting two-cell in the definition of a modification. This completes the
proof. □

Since UCat is ∗-2-equivalent to BigHilb, classifying Γ-fundamental solutions in
BigHilb –under the hypotheses of the previous proposition– is equivalent to classi-
fying ∗-pseudofunctors TLJ(Γ) → UCat. We then get the following corollary from
the equivalence of categories described in Proposition 2.20 and from Proposition
3.6:

Corollary 3.7. Consider two Γ-fundamental solutions S = (J,H,C) and T =

(J, ˜︁H, ˜︁C) in BigHilb. Pushing forward these solutions using the equivalence Θ
introduced in Proposition 2.20, we obtain Γ-fundamental solutions

Θ[S] := (Θ[J ],Θ[H ],Θ[C]) and Θ[T ] := (Θ[J ],Θ[ ˜︂H ],Θ[ ˜︁C]) in UCat,

defining corresponding strict ∗-pseudofunctors in UCat, denoted F and G.
Then F and G are unitarily equivalent modules if and only if for each edge e ∈

E(Γ), there exists unitary isomorphisms Ue ∈ 2BigHilb(˜︃H e ⇒ H e) such that

Ce = (Ue ⊗ Ue) ◦ ˜︁Ce.
Proof. It is easy to see that Θ[S] and Θ[T ] define Γ-fundamental solutions in UCat,
and this follows from the monoidality of Θ. Hence, by Proposition (3.3), we obtain
canonical strict ∗-pseudofunctors F and G associated to Θ[S] and Θ[T ], respectively.

For the remaining assertions, let’s first assume that F and G are unitarily equiv-
alent via the unitary pseudonatural isomorphism θ : F ⇒ G. This provides us a

family of unitaries θe ∈ 2UCat(Θ(H e) ⇒ Θ( ˜︂H e)). Therefore, by Proposition 3.6,

for each e ∈ E(Γ), we obtain the relation Θ(Ce) = (θe⊗θe)◦(Θ( ˜︁Ce)). Thus, defining
Ue := Θ−1(θe), we obtain the desired family of unitaries in BigHilb witnessing the
desired equivalence.

For the reversed direction, notice that the hypotheses in the converse of Propo-
sition 3.6 are met via the given family consisting of unitaries Ue. This provides
the desired modifications and unitary pseudonatural isomorphisms. The proof is
therefore completed. □

Remark 3.8. Observe that in the Corollary 3.7 we asked for the indexing sets
of S and T to be identical. However, this need not always be the case, as ex-
plained in the proof of Proposition 3.9. Say we have S = (J,H,C) and T =
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( ˜︁J, ˜︁H, ˜︁C) determining equivalent unitary modules. One can prove that for each

a ∈ V (Γ), there exists a bijection φa : Ja → ˜︁Ja. We can then introduce φ−1[T ] :=

({Ja} = {(φa)−1[ ˜︁Ja]}a∈V (Γ), { ˜︂Hφa(v)φb(w)}, {Ceφa(v)φb(w)}) and observe this is still

a Γ-fundamental solution in BigHilb. By doing this, we managed to switch to
matching indexing sets for both S and φ−1[T ], disregarding relabeling of such sets.

In the remaining part of this section, we introduce yet another technique de-
scribing equivalence of unitary modules in terms of antilinear maps between Hilbert
Spaces:

Φevw : H e
vw → H e

wv

defined by

Φevw(ξ) := (ξ∗ ⊗ idH e
wv
)(Cevw(1)), (3.8)

where ξ∗ := ⟨ · , ξ⟩.
We now restate the equivalence of unitary modules in terms of these associated

antilinear operators.

Proposition 3.9. Consider two Γ-fundamental solutions S = (J,H,C) and T =

( ˜︁J, ˜︁H, ˜︁C) in BigHilb,with associated anti-linear maps {Φevw} and {Ψe˜︁v ˜︁w} , respec-
tively. Moreover, let F ,G be the unique strict unitary modules associated with Θ[S]
and Θ[T ], respectively. Then F and G are unitarily equivalent if and only if for each

a ∈ V (Γ) there exists a bijection φa : Ja → ˜︁Ja and for every edge e : a → b there
exists a unitary

Uevw : ˜︂H e
φa(v)φb(w) → H e

vw

such that

Φevw = Uewv ◦Ψeφa(v)φb(w) ◦ (U
e
vw)

∗. (3.9)

In other words, there exist unitaries such that the following diagram commutes for
every e ∈ E(Γ)

˜︂H e
φa(v)φb(w)

˜︂H e
φa(w)φb(v)

H e
vw H e

wv

Ψe

φa(v)φb(w)

Ue
vw Ue

wv

Φe
wv

. (3.10)

Proof. First assume that F and G are unitarily equivalent via the pseudonatural
isomorphism θ. For each edge e ∈ E(Γ), we have unitary 2-morphisms in 2BigHilb

given by Θ−1(θe) : H e ⊗ θb ⇒ θa ⊗ ˜︂H e. (We remind the reader that the notation
2BigHilb is used to simply denote a 2-morphism space BigHilb, without specify-
ing the underlying 1-morphisms, as introduced in Notation 2.12.) Additionally, for

each a ∈ V (Γ), the invertible Ja × ˜︁Ja-graded Hilbert space θa induces a bijection

φa : Ja → ˜︁Ja, such that for each v ∈ Ja, we have (θa)vφa(v) = C, and every other

entry is zero. We therefore obtain Uevw := [Θ−1(θe)]vw : H e
vw → ˜︂H e

φa(v)φb(w), defin-

ing a unitary between Hilbert spaces, where v ∈ Ja and w ∈ Jb. Furthermore, by
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Corollary 3.7, it follows that Cevw = (Uevw⊗Uewv) ◦ ˜︁Ceφa(v)φb(w). Now, for any vector

ξ, by expanding each Cevw(1) in an arbitrary chosen basis for each Hilbert space, we
obtain the following chain of equalities:

Φevw ◦ Uevw(ξ) = (⟨·, Uevw(ξ)⟩ ⊗ id)
(︁
Cevw(1)

)︁
=
[︁
⟨·, Uevw(ξ)⟩ ⊗ id

]︁(︃∑︂
i

ai ⊗ bi

)︃
=
∑︂
i

⟨ai, Uevw(ξ)⟩ · bi

=
∑︂
i

Uewv
[︁
⟨·, ξ⟩ ⊗ id

]︁[︁
((Uevw)

∗ai)⊗ ((Uewv)
∗bi)

]︁
= Uewv

[︁
(⟨·, ξ⟩ ⊗ id)

]︁
[(Uevw)

∗ ⊗ (Uewv)
∗]

(︃∑︂
i

ai ⊗ bi

)︃
= Uewv

[︁
(⟨·, ξ⟩ ⊗ id)

]︁(︁ ˜︁Ceφa(v)φb(w)(1)
)︁

= Uewv ◦Ψeφa(v)φb(w)(ξ).

This proves the forward direction.
The converse follows by computation, by choosing orthonormal bases for each

Hilbert space and concluding by applying the converse of Corollary 3.7. □

By similar arguments as those found in [3], we find the following necessary and
sufficient conditions in order for families of anti-linear maps to be associated to
fundamental solutions, allowing us to pass back and forth between these two.

Proposition 3.10. Suppose we have a Γ-fundamental solution S = (J,H , C) and

{Φ} as in Equation (3.8). Then the family of operators {Φevw}
e∈E(Γ)
vw satisfy

Φewv ◦ Φevw = idH e
vw

and (3.11)

∑︂
w∈Jb

Tr ((Φevw)
∗ ◦ Φevw) = δe, for every v ∈ Ja. (3.12)

Conversely, if a collection of antilinear operators {Φevw} satisfy these conditions,
then the family {Cevw} defined by Cevw(1) :=

∑︁
i ξi⊗Φ(ξi), satisfy the zigzag relations

(Definition 3.1), where {ξi} is an ONB. (We remark that the definition of Cevw is
independent of the choice of ONB {ξi}.)

Proof. Let us first check that (3.11) holds. Unwinding the definition of Φevw, we
have for any ξ ∈ H e

vw

Φewv ◦ Φevw(ξ) = Φewv [(ξ
∗ ⊗ idH e)(Cevw(1))] =

(︁
(Cewv)

∗ ⊗ idH e

)︁
(ξ ⊗ Cevw(1)) .

Using the first equality in Example 3.2, we obtain that the right hand side is equal
to idH e

vw
. We now verify equation (3.12). First choose orthonormal bases (ξi)i of
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the Hilbert spaces H e
vw. Then∑︂

w

(Cevw)
∗ ◦ Cevw =

∑︂
w

∑︂
i

((ξ∗i ⊗ idH e)Cevw)
∗
((ξ∗i ⊗ idH e)Cevw)

=
∑︂
w

∑︂
i

⟨Φevwξi,Φevwξi⟩

=
∑︂
w

Tr((Φevw)
∗ ◦ Φevw).

By the second equality in Example 3.2, we have that
∑︁
w Tr((Φevw)

∗Φevw) = δe for
every v. The converse holds by similar arguments, taking each Cevw to be the unique
map such that Equation (3.8) holds for Φevw. □

Remark 3.11. The above conditions imply that H e
vw and H e

wv have the same di-
mension for every v, w and edge e ∈ E(Γ), since Φevw is invertible.

4. Classification of Unitary TLJ-modules by Graphs

We use the equivalences from the previous section to classify certain unitary mod-
ules of graph-generated Temperley-Lieb categories in terms of edge-colored oriented
weighted graphs. We first introduce notation and basic definitions. Throughout this
section we let Γ be a fixed but arbitrary weighted bidirected graph, as in Definition
2.2. We reserve the symbols S = (J,H,C) for a Γ-fundamental solution in BigHilb.
Furthermore, we denote the associated anti-linear maps of S by {Φevw} as defined
in (3.8). We also reserve e for edges in Γ and ϵ for edges in the graphs we will use
to classify our unitary modules.

Notation 4.1. Let (λ
(e,vw)
k )k denote the eigenvalues of the bounded linear trans-

formation [(Φevw)
∗Φevw] : H e

vw → H e
vw counted with multiplicity.

Now we construct a weighted oriented graph using the spectral data of these
operators.

Definition 4.2. We define the graph (ΛS , wS , πS) generated by a Γ-fundamental
solution S in BigHilb as the weighted oriented graph, which has the vertex set
V (ΛS) := ⊔J (the disjoint union of the sets Ja ∈ J produces the indexed collection
of all points in the sets in the collection J) and for each edge e : a → b in Γ we

trace dim(H e
vw) arrows {ϵ

(e)
k }k from v ∈ Ja to w ∈ Jb with weights (λ

(e,vw)
k )k given

by the spectrum of [(Φevw)
∗Φevw], counted with multiplicity. Notice this specifies a

weight function wS : E(ΛS) → (0,∞). We then define πS : ΛS → Γ as the graph

homomorphism that sends every v ∈ Ja to a and every ϵ
(e)
k to e.

We now show a simple example to explain the relevance of the disjoint union
in the previous paragraph. Say, J = {Ja = {v, w}, Jb = {w, z}}. We then have
that ⊔J = {va, wa, wb, zb} ̸= {v, w, z} = ∪J. Notice how the advantage of taking a
disjoint union is that it “remembers” where every element came from.

Definition 4.3. We say a weighted directed graph (Λ, w, π) with a graph homo-
morphism π : Λ → Γ is a Γ-fair graph if and only if for each e : a → b ∈ E(Γ) and
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every vertex α ∈ π−1(a) ∑︂
source(ϵ)=α
π(ϵ)=e

w(ϵ) = δe.

Remark 4.4. We observe that if (Λ, w, π) is a Γ-fair graph, then necessarily π is
surjective onto E(Γ), as otherwise the summation condition in Definition 4.3 would
give an edge e ∈ E(Γ) with δe = 0, contradicting the initial assumption that Γ is a
weighted bi-directed graph.

Definition 4.5. We say two Γ-fair graphs (Λ1, w1, π1), (Λ2, w2, π2) are isomorphic
if and only if there exists a graph isomorphism φ : Λ1 → Λ2 such that π1 = π2 ◦ φ
and w1 = w2 ◦ φ.

Definition 4.6. We say a Γ-fair graph (Λ, w, π) is balanced if and only if there
exists an involution ( · ) on E(Λ) that switches sources and targets, such that for
every ϵ ∈ E(Λ)

w(ϵ)w(ϵ) = 1, and

π(ϵ) = π(ϵ).

Note that the involution on the left hand side of the last equation is that of Λ,
and the involution on the right hand side is the involution on Γ. We conclude this
Definition by remarking that the existence of such an involution is a property and
not extra structure, as in ([3], p2 Remark 1).

We provide an example of a balanced Γ-fair graph for a chosen bi-directed graph
Γ.

Example 4.7. Let Γ1 be the following weighted bidirected graph:

2

21

1

2

1

2

2

Fig. 6. Weighted bidirected graph Γ1.

Then the weighted bidirected graph Λ1 shown below is a balanced Γ1-fair graph

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
1

.

Fig. 7. Γ1-fair and balanced graph.
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Remark 4.8. In the case where Γ has only one vertex and one edge, being a balanced
Γ-fair graph is the same as being a fair and balanced δ-graph, as in [3].

Remark 4.9. At this stage, it is important to mention the graphs studied in [14],
which we denote by MW-type graphs. Consider a graph homomorphism π : Λ → Γ
onto E(Γ), where Λ comes equipped with a Perron-Frobenius dimension data for
π, d : V (Λ) → (0,∞), satisfying the following two conditions: for every (e : a →
b) ∈ E(Γ) we have that

δe =
∑︂

β∈π−1(b)

⎧⎨⎩ ∑︂
(α→β)∈π−1[e]

d(β)

d(α)

⎫⎬⎭ ,

for each α ∈ π−1[a], and

δe =
∑︂

α∈π−1(a)

⎧⎨⎩ ∑︂
(α→β)∈π−1[e]

d(α)

d(β)

⎫⎬⎭ ,

for each β ∈ π−1[b].
It is easy to see that MW-type graphs together with all the information listed

above constitute examples of balanced Γ-fair graphs by setting w(α
ϵ−→ β) := d(β)

d(α)

on E(Λ). However these conditions are not exactly equivalent as we will see in the
following proposition, which is based on the discussion on top of page 12 of [8].

Proposition 4.10. Let (Λ, w, π) be a balanced Γ-fair graph such that for each loop

α0
ϵ0→ β0 = α1

ϵ1→ β1 = α2
ϵ2→ . . .

ϵn→ βn = α0 in Λ we have that Πni=0w(ϵi) = 1. Then
π : Λ → Γ gives an MW-type graph.

Proof. First define the dimension function d on all of V (Λ). Start by fixing an
arbitrary vertex α ∈ V (Λ) and defining d(α) = 1. Now if (ϵ : α → β) ∈ E(Λ),
we simply define d(β) = d(α) · w(ϵ). We shall then show that we can extend this
function to any arbitrary vertex β ∈ V (Λ). Let l = (ϵ0, ϵ1, . . . , ϵn) be a path in
Λ starting at α and ending at β. We then define d(β) := Πni=0w(ϵi). Notice that
this indeed yields a well-defined function on V (Λ), as made possible by the loop
condition stated above; this is, the definition of d(β) is independent of the choice
of path joining α with β. It is now immediate that the function d is indeed a
Perron-Frobenius dimension function. □

Proposition 4.11. Let S be a fundamental solution in BigHilb. Then the graph
(ΛS , wS , πS) generated by S is a balanced Γ-fair graph.

Proof. From Proposition 3.10, we have for every v ∈ Ja∑︂
source(ϵ)= v
πS(ϵ)= e

w(ϵ) =
∑︂
w

∑︂
k

λ
(e,vw)
k =

∑︂
w

Tr
(︁
(Φevw)

∗Φevw
)︁
= δe.

Moreover, if there are no arrows from v to w, then dim(H e
vw) = 0. By the remark

following Proposition 3.10 we conclude that dim(H e
wv) = 0 as well, so there are

no edges from w to v either. Assume now that we are not in this trivial case. We
consider the left polar decomposition of the maps Φevw = V evw|Φevw| and so that

V evw : H e
vw → H e

wv
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are isometric anti-linear maps and

|Φevw| : H e
vw → H e

vw

are positive linear maps. From dim(H e
vw) = dim(H e

wv), we know that V evw is an
anti-unitary since it is an anti-linear isometry. Now from the first equation in
Proposition 3.10, it follows that

Φewv = (Φevw)
−1

= |Φevw|−1(V evw)
−1

= (V evw)
∗⏞ ⏟⏟ ⏞

anti-unitary

V evw|Φevw|−1(V evw)
∗⏞ ⏟⏟ ⏞

positive

.

By uniqueness of left polar decomposition we obtain that

Uewv = (Uevw)
∗,

|Φewv| = Uevw|Φevw|−1(Uevw)
∗.

Let us consider the spectrum of (Φevw)
∗Φevw counted with multiplicity. We find that

σ
(︁
(Φevw)

∗Φevw
)︁
= σ

(︂(︁
(Φevw)

∗Φevw
)︁−1
)︂−1

= σ
(︂(︁

|Φevw|
)︁−1(︁|Φevw|∗)︁−1

)︂−1

= σ
(︁
(Φewv)

∗Φewv
)︁−1

.

by using the relations between the polar decompositions of Φevw and Φewv found
above. First, note that each term above is well-defined, as these are invertible
operators. Second, notice that our use of the sprectral theorem is justified, as we
are dealing with bounded self-adjoint operators. Thus, for every edge ϵ : v → w
in ΛS with π(ϵ) = e, there exists another edge ϵ′ : w → v with the property that
π(ϵ′) = e such that w(ϵ)w(ϵ′) = 1. Hence ΛS is a balanced Γ-fair graph. □

Definition 4.12. Given a balanced Γ-fair graph (Λ, w, π), we generate a funda-
mental solution SΛ in BigHilb as follows:

• Take Ja := π−1(a) for every a ∈ V (Γ).
• We define H e

vw := C[{(ϵ : v → w) ∈ E(Λ) | π(ϵ) = e}] taking the formal
complex linear span. By regarding the edges as an orthonormal basis, H e

vw

is then turned into a Hilbert space. Now take H e := ⊕vwH e
vw. We notice

that since Λ is a balanced Γ-fair graph, H e must be row and column finite

by Remark 3.11. Thus H e ∈ HilbJ
a×Jb

f .

• Let · be a fixed but arbitrary involution on E(Λ), satisfying the condi-
tions in Definition 4.6, whose existence is guaranteed by hypothesis. No-
tice that this involution naturally extends to a well-defined anti-linear map
· : H e

vw → H e
wv, for which we keep the same notation. We similarly take

Φevw : H e
vw → H e

wv as the unique anti-linear map, defined on the standard
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basis vectors as ϵ ↦→ w(ϵ)1/2 ϵ. Now we find

ΦewvΦ
e
vwϵ = Φewvw(ϵ)

1
2 ϵ

= w(e)
1
2w(ϵ)

1
2 ϵ

= ϵ.

Hence ΦewvΦ
e
vw = idH e . Furthermore, for each edge e ∈ E(Γ) we have that∑︂

w∈ Jb

Tr
(︁
(Φevw)

∗Φevw
)︁
=

∑︂
source(ϵ)= v
π(ϵ)= e

w(ϵ) = δe.

It then follows by Proposition 3.10 that the family {Φevw} uniquely define
{Cevw} that satisfy the zigzag relations described in Definition 3.1.

Remark 4.13. We remark that if we have two balanced involutions ( · 1 ) and ( · 2 )
on a given Γ-fair and balanced graph (Λ, w, π), the associated Γ-fundamental so-
lutions to families of anti-linear maps, {Φevw} and {Ψevw} define isomorphic canon-
ical strict ∗-pseudofunctors from TLJ(Γ) into UCat. To see this it suffices to
verify it on the (basis) edges. Consider the associated Hilbert space H e

vw. If
we assume e = e and v = w, we need to construct a unitary Uevv : H e

vv →
H e
vv such that Φevv = Uevv ◦ Ψevv ◦ (Uevv)

∗. Notice how if {ϵi : α → α}Mi=1 are
all the loops in Λ coming out of α ∈ V (Λ) projecting onto e in Γ, we can re-
enumerate them starting by the fixed edges ( ϵi 1 = ϵi) as {ϵi0}i0∈I0 , and the re-
maining edges in such a way that ϵ2i−1

1 = ϵ2i. We can therefore express {ϵi}Mi=1 =
{ϵi0}i0∈I0

⨆︁
{ϵi1}i1∈I1

⨆︁
{ϵix}ix∈Ix

⨆︁
. . .
⨆︁
{ϵiz}iz∈Iz , corresponding to the fibers of

the weight. Here 1 < x < . . . < z, and moreover, I0 denotes the edges fixed by
( · 1). Notice then that both involutions simply permute these sets, respecting the
partition by weights. We therefore express our involutions as the disjoint product
of transpositions:

( · 1 ) : (1)(2) . . . (n1 − 1)⏞ ⏟⏟ ⏞
fixed points (weight 1)

· (n1 n1 + 1) . . . (nx − 2 nx − 1)⏞ ⏟⏟ ⏞
weight 1

·

· (nx nx + 1)(nx + 2 nx + 3) . . . (ny − 2 ny − 1)⏞ ⏟⏟ ⏞
weight x or 1/x

· . . . ·

· . . . · (nz nz + 1) . . . (M − 1 M)⏞ ⏟⏟ ⏞
weight z or 1/z

,

and ( · 2 ) in the symbols ξk, expressed as

( · 2 ) : (ξ1)(ξ2) . . . (ξn1−1)⏞ ⏟⏟ ⏞
fixed points (weight 1)

· (ξn1
ξn1+1) . . . (ξnx−2 ξnx−1)⏞ ⏟⏟ ⏞

weight 1

·

· (ξnx ξnx+1)(ξnx+2 ξnx+3) . . . (ξny−2 ξny−1)⏞ ⏟⏟ ⏞
weight x or 1/x

· . . . ·

· . . . · (ξnz
ξnz+1) . . . (ξM−1 ξM )⏞ ⏟⏟ ⏞

weight z or 1/z

.
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For each weight x with 1 < x, we denote by gx the uniquely determined permu-
tation such that

gx(ξnx
ξnx+1) . . . (ξny−2 ξny−1)g

−1
x = (nx nx + 1) . . . (ny − 2 ny − 1).

We are now ready to describe Uevv in terms of its action on this ordered basis: for
the basis elements whose weight is given by x > 1, we simply define Uevv to act as
the corresponding permutation gx. We are now only left with edges whose weight
is one. By observing that if an expression of the form (ξ)(γ) appears in either
involution, it can be made unitarily equivalent to the involution containing all the
same fixed points and transpositions, but containing (ξ γ). We thus define the
action of Uevv on the subspace these edges generates is described by first applying
the unitary matrix: [︃

1/
√
2 1/

√
2

i/
√
2 −i/

√
2

]︃
,

followed by the permutation switching the corresponding symbols from one involu-
tion to the other. If ξ remains fixed by both involutions, we let Uevv act trivially on
ξ. This fully determines Uevv, as we described its action on a basis.

In any other case, whenever e ̸= e or v ̸= w, we find that for each duality pair
{e, e} and each pair of vertices {v, w} we have that

Φevw(ϵ) =

[︃
( · 2 1) ◦Ψevw ◦ idH e

vw

]︃
(ϵ), and

Φewv(ϵ) =

[︃
idH e

vw
◦Ψewv ◦ ( · 2 1)∗

]︃
(ϵ) =

[︃
idH e

vw
◦Ψewv ◦ ( · 1 2)

]︃
(ϵ).

Here, Uewv := ( · 2 1) and Uevw := idH e
vw
.

These cases provide explicit unitaries witnessing the equivalence of Γ-fundamental
solutions. Finally, to be able to use Proposition 3.9, we need to verify that for each

a ∈ V (Γ) and each pair v, w ∈ Ja we have that C ida
vw = ˜︁C ida

vw . However, one can see
this by computation, using the unitaries described above and thus completing the
proof.

The following theorem further reduces the equivalence of ∗-pseudofunctors F :
TLJ(Γ) → BigHilb in terms of balanced Γ-fair graphs:

Theorem 4.14. When S, T are Γ-fundamental solutions in BigHilb with H ida =˜︂H ida and C ida = ˜︁C ida for each vertex a ∈ V (Γ), then the associated Γ-fair graphs
(ΛS , wS , πS) and (ΛT , wT , πT ) are isomorphic as Γ-fair graphs if and only if the
strict ∗-pseudofunctors TLJ(Γ) → UCat induced by Θ[S] and Θ[T ] are unitarily
equivalent.

Proof. From Proposition 3.9, two fundamental solutions S, T with associated anti-
linear maps {Φevw} and {Ψevw}, respectively, induce unitarily equivalent
∗-pseudofunctors if and only if for every vertex a ∈ V (Γ) there exists a bijection

φa : Ja → ˜︁Ja and every edge e : a→ b there exists a unitary

Uevw : ˜︂H e
φa(v)φb(w) → H e

vw
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such that

Φevw = UewvΨ
e
φa(v)φb(w)(U

e
vw)

∗.

Observe that the collection of bijections {φa}a∈V (Γ), induces an obvious bijection

between V (ΛS) and V (ΛT ). Furthermore,

σ
(︂
(Φevw)

∗Φevw

)︂
= σ

(︂
Uevw(Ψ

e
φa(v)φb(w))

∗Ψeφa(v)φb(w)(U
e
vw)

∗
)︂

= σ
(︂
(Ψeφa(v)φb(w))

∗Ψeφa(v)φb(w)

)︂
.

It then follows that ΛS and ΛT are isomorphic since there exists a graph isomor-
phism φ : ΛS → ΛT with πS = πT ◦ φ and wS = wT ◦ φ.

We shall now prove the forward direction. If Λ1 and Λ2 are isomorphic as bal-
anced Γ-fair graphs, then there exists a graph isomorphism φ : Λ1 → Λ2 intertwining
the data from these graphs. Now consider the fundamental solutions SΛ1 and SΛ2

generated by Λ1 and Λ2, respectively. By restricting φ to Ja := π−1
1 (a) we obtain

bijections between Ja and ˜︁Ja, since π1 = π2 ◦ φ. Furthermore, consider the maps
Uevw to be the (unitary) linear extension of φ : E(Λ1) → E(Λ2), as restricted to the

corresponding vertices. Thus defining unitaries Uevw : H e
vw → ˜︂H e

ϕ(v)ϕ(w). We now

observe that φ−1( φ(·) 2
) = (Uevw)

∗( Uevw(·)
2
) is another balanced Γ-fair involution

on Λ1 which is manifestly unitarily equivalent to ( · 2 ). Moreover, by Remark 4.13,
this new involution on Λ1 is unitarily equivalent to ( · 1 ). Finally, by Proposition
3.9, the graphs SΛ1

and SΛ2
induce unitarily equivalent ∗-pseudofunctors. □

We are now ready to provide a classification of our unitary TLJ(Γ)-modules.

Theorem 4.15. Every balanced Γ-fair graph arises from a Γ-fundamental solu-
tion in BigHilb. Furthermore, there is an equivalence of isomorphism classes of
balanced Γ-fair graphs and unitary isomorphism classes of strong ∗-pseudofunctors
TLJ(Γ) → BigHilb.

Proof. Let (Λ, w, π) be a fixed but arbitrary balanced Γ-fair graph. We shall now
construct a fundamental solution S in BigHilb such that Λ = ΛS . For each a ∈
V (Γ), take Ja := π−1(a). For e ∈ E(Γ) define H e

vw to be vector space spanned by
the edges in Λ having source v ∈ Ja and range w ∈ Jb such that π(a → b) = e,
and turn it into a Hilbert space by declaring these edges be orthonormal. Then
let H e := ⊕vwH e

vw. Since Λ is balanced Γ-fair, the number of edges coming in or
out of any vertex in Λ must be uniformly bounded. To see this, we observe first
that the sum of the weights of edges in π−1(e) must be equal to the sum of their
inverses, and second that the Γ-fair condition imposes that π−1(e) is a finite set,

as each conjugate adds a weight of at least 1 to that of e. Thus, H e ∈ HilbJ
a×Jb

f

is a 1-morphism in BigHilb. Finally, we define Φevw : H e
vw → H e

wv as the unique
anti-linear map, defined on the standard basis vectors as ϵ ↦→ w(ϵ)1/2 ϵ. Here, ( · ) is
a fixed but arbitrary involution arising from the balanced hypothesis. Notice that
by Remark 4.13, this definition is independent of the choice of ( · ). It then follows
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that

ΦewvΦ
e
vw(ϵ) = Φewvw(ϵ)

1
2 (ϵ)

= w(e)
1
2w(ϵ)

1
2 · ϵ

= ϵ.

Hence ΦewvΦ
e
vw = idH e

vw
. Furthermore,∑︂

w∈ Jb

Tr
(︁
(Φevw)

∗Φevw
)︁
=

∑︂
source(ϵ)= v
π(ϵ)= e

w(ϵ) = δe.

It then follows by Proposition 3.10 that the family {Φevw} uniquely define {Cevw}
that satisfy the zigzag relations. Therefore the tuple S = (J,H,C) we constructed
from Λ is a Γ-fundamental solution in BigHilb. We now check that S generates
Λ: First notice that V (ΛS) = V (Λ) and by how the maps {Φevw} were constructed,
σ
(︁
(Φevw)

∗Φevw
)︁
=
(︁
w(ϵ)

)︁
for every e ∈ E(Γ), where both sides are counted with

multiplicity. We conclude that ΛS = Λ.
We shall now show that from a balanced Γ-fair graph (ΛS , wS , πS) generated by

fundamental solution S = (J,H , C) in BigHilb, the fundamental solution TΛ =

( ˜︁J, ˜︂H , ˜︁C) we construct from (ΛS , wS , πS) is unitarily equivalent to S. It is easy

to see that J = ˜︁J and H = ˜︂H , so it suffices to exhibit the equivalence between

C and ˜︁C. We now endow ΛS with an involution. By (the proof of) Proposition
4.11, we know that there exists a balanced Γ-fair involution on ΛS coming from the
spectrum of the maps Φ associated to {C}. We denote this involution by ( · 1 ).

Now, to construct the associated linear maps Ψ of TΛ, we can make use of
any balanced Γ-fair involution on ΛS , denoted by ( · 2 ). However, as explained in
Remark 4.13, we also have that for each a ∈ V (Γ) and each pair v, w ∈ Ja we have

C ida
vw = ˜︁C ida

vw , thus obtaining unitarily equivalent families of maps {Φ} and {Ψ}.
Finally, with an application of Proposition 3.9 the proof is complete. □

In their paper (Corollary B, [2]), the authors classify right cyclic pivotal TLJ(d)
C∗-modules in terms of bipartite graphs equipped with a dimension function satis-
fying a Perron-Frobenius condition. (Compare with Remark 4.9.) There is a clear
indication that this result should generalize to the ∗-2-categorical context for uni-
tary TLJ(Γ)-modules. We leave this exploration to a future work and limit ourselves
to state the following conjecture:

Conjecture 4.16. Equivalence classes of right cyclic pivotal unitary TLJ(Γ)-modules
correspond to MW-type bipartite balanced Γ-fair graphs.
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