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Adaptive RKHS-based functional estimation of structurally perturbed
second order infinite dimensional systems

Michael A. Demetriou

Abstract— This paper proposes a new approach for the adap-
tive functional estimation of second order infinite dimensional
systems with structured perturbations. First, the proposed
observer is formulated in the natural second order setting
thus ensuring the time derivative of the estimated position is
the estimated velocity, and therefore called natural adaptive
observer. Assuming that the system does not yield a positive real
system when placed in first order form, then the next step in
deriving parameter adaptive laws is to assume a form of input-
output collocation. Finally, to estimate structured perturbations
taking the form of functions of the position and/or velocity
outputs, the parameter space is not identified by a finite
dimensional Euclidean space but instead is considered in a
Reproducing Kernel Hilbert Space. Such a setting allows one
not to be restricted by a priori assumptions on the dimension
of the parameter spaces. Convergence of the position and
velocity errors in their respective norms is established via the
use of a parameter-dependent Lyapunov function, specifically
formulated for second order infinite dimensional systems that
include appropriately defined norms of the functional errors
in the reproducing kernel Hilbert spaces. Boundedness of the
functional estimates immediately follow and via an appropriate
definition of a persistence of excitation condition for functional
estimation, a functional convergence follows. When the system
is governed by vector second order dynamics, all abstract spaces
for the state evolution collapse to a Euclidean space and the
natural adaptive observer results simplify. Numerical results
of a second order PDE and a multi-degree of freedom finite
dimensional mechanical system are presented.

I. INTRODUCTION

The argument to support the examination of second order
infinite dimensional systems in their natural second order
setting relies on the preservation of physics. As was delin-
eated in [1], the observer design for second order systems
in the second order setting ensures that the derivative of the
position estimate is indeed the velocity estimate. This cannot
be guaranteed when a second order system is brought in a
first order form. For finite dimensional systems, this physical
relationship is attained asymptotically, but is not present in
the transient stage. For infinite dimensional systems brought
into a first order setting for the general case, the state vector
components may not directly relate to the estimated position
and estimated velocity, [2]. Additionally the strict positive
realness of a first order infinite dimensional system is difficult
to backtrack into the second order setting.

Thus, the adaptive estimation of structurally perturbed
second order infinite dimensional systems cannot directly
benefit from earlier works on adaptive techniques of positive
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real infinite dimensional systems in a first order setting [3].
The closest one can reach to the coupling of the input
and output operators, as a condition guaranteed in positive
real infinite dimensional systems, is through collocation
whereby the output (observation) operator is the adjoint of
the input operator, symbolically written in the generic form
C = B*. A case resembling the positive realness case and also
the collocation was considered in [4] whereby a weighted
multiple of the output operator was equal to the adjoint of
the input operator, symbolically written as MC = B*.

When unknown functions are to be estimated via adaptive
techniques do not admit a series expansion parametriza-
tion, then one must consider a Hilbert space instead of
a Euclidean space as the parameter space. The approach
to use Reproducing Kernel Hilbert Spaces in the context
of adaptive functional estimation was by spearheaded by
Kurdila and co-workers [5], [6], [7], [8]. When one considers
a finite dimensional system and utilizes adaptive techniques
along with RKHS for functional estimation, the resulting
dynamical system is rendered infinite dimensional.

Migrating to the adaptive functional estimation of infinite
dimensional using only output information to generate the
adaptive laws, was the effort in [9]. The infinite dimensional
system assumed a positive realness condition and, following
the fundamental work in [5], [6], [8], extended the RKHS-
based adaptive functional estimation results.

Following the above arguments on the current state on
the use of RKHS-based adaptive functional estimation, this
paper considers a class of structurally perturbed second order
infinite dimensional systems and presents a natural adaptive
observer with a RKHS-based adaptive functional estimation.

II. PROBLEM FORMULATION

The class of 2™ order infinite dimensional systems, often
representing structural PDEs such as beams, plates and
cables, is described by an evolution equation defined over
a five space setting and given by

C+ D+ KE = Bu+ Bf,(yp) + Bfr(yy) in Py,

§0)=C% en, LO0)=Cen.
It follows the abstract framework considered in [4]. In
summary, one has the Gelfand quituple V; — V5 — H —
Vy — V)" with H as the pivot space and duality pairings
<-,~>V;7Vi, i=1,2, [10]. The space V] is continuously and
densely embedded in 7> and V> densely and compactly
embedded in H, and their conjugate dual spaces are denoted

by V" and V5, respectively. Such a five space setting allows
for a larger class of damping operators. Associated with the

(M
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above are the position and velocity measurements

yp(t) = GE(1), w(t) = GL(). @

The damping operator D € L(V,V)) is symmetric,
bounded and V> — H coercive, [10]. The stiffness operator
K € L(,V}) is symmetric, bounded and 7 coercive, the
input operator B € L(U,V;), the position output opera-
tor C, € L(V1,Y,) and the velocity output operator G, €
L(V,,Y,). The input space U = R, the position output space
Y, =R" and the velocity output space ¥, = R".

The perturbation terms f,(-) : R" — R" and f,(-) : R" —
R”" satisfy Lipschitz-type conditions in order to guaran-
tee existence of solutions for (1), (2), see [4]. Following
the conditions presented in [4] for the well-posedness of
(1), (2), one requires an Lp-type boundedness of the form
B(u()+ fy(p()) + /00 ())) € La(0,00:75).

We can now present the estimation and control objectives
in increasing complexity:

1) Set-up an adaptive natural observer to estimate the

structured perturbation terms f,(y,) and f,(yy).

2) Set up an adaptive natural observer to estimate the
terms f,(v,) and f,(y,) and use these estimates in the
control design to “cancel” their effects.

3) Set up an adaptive natural observer to estimate the
structured perturbation terms f,(y,) and £,(y,) and the
estimates of the now assumed unknown static position
G, and velocity G, gains, and use the estimates of the
terms in the control design to “cancel” their effects, and
use the estimates of static position ®, and velocity ©,
gains as a means to regulate the closed-loop system to
zero with a prescribed rate.

4) Set up an adaptive natural observer to estimate the
structured perturbation terms f,(y,) and f,(y,) and
the position {(z) and velocity {(¢) states. Use the
estimates of the structured perturbation terms in the
control design to “cancel” their effects and use the

position {(¢) and velocity {(t) state estimates in a
state controller as a means to regulate the closed-loop
system to zero with a prescribed rate.

5) Set up adaptive natural observer to ensure that the
2" order system follows a reference model described
by a 2" order infinite dimensional system. Use the
estimates of f,(y,) and f,(y,) in the control design
to “cancel” their effects. Either use the estimates of
G,,G, to ensure tracking is achieved, or use the state
estimates in a feedback controller to achieve tracking.

In this paper, we will be concerned with objective 1.

The adaptive estimation of the structured perturbation terms
Jfp(vp) and f£,(y,) will be examined in a Euclidean space R"
and which constitutes a modified case of the one presented
in [4], and also on a Reproducing Kernel Hilbert Space
(RKHS). The latter approach follows the earlier exposure by
the author for addressing structured perturbations of strictly
positive real infinite dimensional systems [9] in a first order
form. Since the system under consideration is not placed in
a first order setting and when in the first order setting it
does not immediately yield a strictly positive real system,

then one has to remain in the natural 2" order setting. The
enabling condition to extract adaptive laws for the estimates
of either the structure perturbation terms or the estimates of
the feedback gains is a modified collocation condition which
relates the input and output operators.

Assumption 1: There exist matrices M), and M, of dimen-
sions r x n, and r x n,, respectively, satisfying

M,C,=B" and M,C, = B", 3)

and min(np,n,) >r.

The other enabling condition, which may be required to
improve the coercivity of the damping operator and/or to
improve the convergence properties of an associated error
system has to do with the output injection terms.

Assumption 2 (Matching Condition): There exist static
gains G, € L(Y,,U) and G, € L(Y,,U) such that the fol-
lowing matching conditions

D+BG,G, =D, and K+BG,C, =%, (4)

are satisfied. The closed-loop damping D, and stiffness X,
operators have desired coercivity bounds that improve the
convergence of the estimation errors associated with a natural
observer for the perturbation-free nominal system.
Following [2], it should be remarked that in the absence
of structured perturbations in (1), the associated natural
observer for (1), (2) with Assumption 2 will guarantee the
asymptotic convergence of the state position and velocity
estimation errors in the stronger norms.

III. ADAPTIVE NATURAL OBSERVERS
The adaptive observer for (1), in a 2" order setting, takes

the form of another 2" order infinite dimensional system
with appropriate output injection terms

L)+ DL + KL = Bu(r) |
86, (1) = GL(0) + BG, (1w(0) - GL0))
+38 (Fo (1) + £,00(0)))

C0)=Cen, L0)=C .
The estimated position is denoted by E(t) and the estimated

velocity is E(t) Due to the 2" order structure of (5), the
derivative of the estimated position d{(¢)/dt is equal to the

estimated velocity {(7), i.e. { = (. The term fp(yp) denotes
the adaptive estimate of the position structured perturbation
term f,(v,), and f,(y,) denotes the adaptive estimate of the
velocity structured perturbation term f(yy).

The construction of the estimates f,(v,),f,(vy) in the
appropriate spaces constitutes the contribution of this work.
First, the estimates will be considered over a Euclidean space
R™ of fixed dimension m and subsequently will be defined
over a RKHS (infinite dimensional) which provides a natural
parameter space for functional estimation.

)

A. Functional estimation over R™

To realize the adaptive estimates fp(yp),fv(yv), one must
provide the appropriate assumptions for their parametrization
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and subsequently extract the relevant adaptive laws via a
Lyapunov-redesign method [11]. Towards that, one makes
the following parametrization assumption.

Assumption 3 (Euclidean parametrization): The
structured perturbation terms are assumed to admit the
following parametrizations

frp) =gp(yp)®, and f,(v) = gv(v)0By, (6)

where the parameters ©,,0, are m-dimensional unknown
constant vectors and g, (-) : R xR —R™", g,(-) : R* x
R™ — R"™™ are known matrix functions.

Using Assumption 3, the adaptive observer with the pa-
rameter estimates now takes the form

E<»+@c<y+xz<> Bu(r)

+BG, (y (1) — )—HBG ( ) o
+8 (2 (1p(1)8) (1) + 8 (1 (1))B (¢ >)
o =ben, Lo=ten,

where éﬁ(t) denotes the adaptive estimate of the unknown
O, and O,(¢) is the adaptive estimate of the unknown ©,.

To extract the appropriate adaptive laws for @p(t),(:)v(t)
one considers the position error e(t) = {(¢) — {(¢). Due to the
structure of the proposed natural observer, the velocity error
is precisely é(t) = (¢) — {(¢). Subtracting the above from
(1), one arrives at the error system

é(t) + Dé(t) + Ke(t) = =BG, Cpe(t) — BG,Gé(t)

+Bgp(vp) <®p _ép(t)) + Bgy() (Gv _@V(t)) s (8)

e(0)=C—Coen, €é0)=C - €,
The error system (8) is key to extracting the update laws for
the unknown © (1), 2) y(t). Using the following parameter-
dependent Lyapunov function

Vied) = 3 ((e().e()+ (Toelr),e(t)))
P (Dpelt) ) el e) O
+O7(1)T,'0,(t) + O (1), '0,(1),

with ©,(1) £ @, —©,(r) and ©,(r) £ ©, —©,() denoting
the position and velocity parameter errors [11], the desired
adaptations are given by

ép(t) =-Tpgp(vp) {Mpce(t) "FYMvCé(t)} ,
év(t) - 7Fvgv(yv) {MpCe(t) +YMVC€.(1)] .

The symmetric positive definite matrices I',,I', are the
adaptive gain matrices [11]. Essential to the Lyapunov-based
adaptations was the matching condition in Assumption 2 that
enables one to use static output injection terms, as opposed
to full observer gain terms, to arrive at an error system that
had the appropriate stability properties. The stability and
convergence results of the proposed adaptive observer are
summarized in the following lemma. Its proof can easily
be established by following the approach for the similar

(10)

problem of model reference adaptive control of 2" order
infinite dimensional systems in [4].

Lemma 1: Consider the 2™ order infinite dimensional
system (1) with measurements (2). Assume that the colloca-
tion condition in Assumption 1 and the matching condition
in Assumption 2 are satisfied and that (1), (2) constitutes an
admissible plant in the sense that L, control signals result
in L, output signals for the Lipschitz-type nonlinearities
Jp(-) and £,,(-). Then the proposed natural adaptive observer
(7) that assumes the parameterizations (6) along with the
adaptations (10) result in a well-posed system with

lim [le(®)[l, =0 and  lim|é(r)|y =0, (11)
with the parameter estimates @p(-),@v(-) € Loo(0,00,R™).
Additionally, parameter convergence in the sense of

}Lr?o|®p(t)\Rm =0 and tlL@o|®V(t)|R,,l =0, (12)

can be established when a persistence of excitation condition
is satisfied. This takes a special form for 2" order infinite
dimensional systems [12] and which requires the existence
of Ty, 8y and € such that for each admissible parameter pair
(0,,0,) € R" x R" with unity Euclidean norm and each
sufficiently large ¢ > 0, there exists 7 € [¢,¢+ Tp] such that
T+Ty
H/t B((75(1)0) +£.04(1))0, ) dtl|  >e0. (13)
£

B. Functional estimation over RKHS

When the expansion (6) which yields parameterizations
in the Euclidean space R™ x R” is no longer guaranteed,
one must resort to Hilbert spaces for parameterizations. Fol-
lowing the earlier work on positive real infinite dimensional
[9], we extend the parameter spaces for the current class
of 2" order infinite dimensional systems. We denote by
0O, and Q, the Hilbert spaces of functions defined on the
respective output spaces ¥, and Y,, with f, : ¥, — O, and
fv : Y, — O, with the evaluation functionals over O, and Q,
which evaluate each of the functions at the points y, € Y,
and y, €Y, by

7Lyp S = o),
7byv = ),

This is interpreted as

fp()’p) = 7\')//7 (fp) and fv(yv) = 7‘% (fv)

One would like to have the evaluation functionals above to
be bounded. Indeed with the appropriate construction of their
associated kernels, one has that the evaluation functionals
Ay,,Ay, are bounded and the associated Hilbert space O,
and Q,, taking the role of the parameter spaces, are RKHS.
Via the use of the Riesz representation theorem we have that
for all position outputs y, € ¥, there is an element (kernel)

Y, = R"
with K, = K, (vp,-) that enjoys the reproducing property

Hrp) =h, (fp) = S %p0ps )0, = s K0, (15)

Vyp €Yy,

14
Yy, € 1) (14)

Ky 0 ¥y X
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for all f, € Qp, and for all y, € Y,,. Similarly, we have that
for all velocity outputs y, € Y, there is an element

K : Y, xY —-R"”
with K, = K,(yy,-) that enjoys the reproducing property

frlw) = )\'J/v(ﬁ) = (fi, % (W, ')>Qv = <fV7Kyv>Qw (16)

for all f, € Oy, and for all y, € ¥,. The extraction of the
adaptive laws in the parameter spaces (RKHS’s) via Lya-
punov redesigned methods relies on the use of the adjoints of
the evaluation functionals. Define the adjoint of the position
evaluation functional K;p 1Y, = Qp via

<Cp¢a7‘yp (fP)>Yp - <Cp¢Kyp7fp>Qp - <7‘;p (Cp¢)vfp>Qpa (17)
for ¢ € V1. Similarly, define the adjoint of the velocity
evaluation functional A5, : Y, — O, via

(Cob, Ay, (10))y, = (CV0Ky,,, fi)o, = (A5, (Cod), fu) o, (18)
for ¢ € V5. Using (14), the 2™ order system (1) is written as
C+ DE+ KL = Bu+ Bhy, () (fp) + Bhy, (o () in V7,
L0)=Cen, §0)=¢ e
The natural adaptlve observer (7) is now redefined as

L)+ DL(0) + Kol (1) = Bult) + BGyy,
+BGuyy + By, (1) (fp) + By (1),
o =ben, to=ten
Using (4), the error system resulting from (19), (20) is

&(1) + Doée(t) + Koe(t) = BA, (1 (f) + By (o)

e(0)=C—-Coen, é0)=(—C el

The adaptive laws for the functional estimates are made
possible via a different Lyapunov function, given by (cf. (9))

Vied) = 2((e(),e() +(Kelr),e(r)))
+%<@oe(t)7e(t)> + (e(t),e(t))
Gy o T)o, Gy Fon o

where now the positive self-adjoint linear operators G, €
L(0y,0,) and G, € L(Oy,0,) acquire the role of the
adaptive gain matrices I',,I', in the adaptations (10). With
the above Lyapunov function, the adaptive laws are extracted
via the following identities

(o, ‘-Bxyp (fp»Vl,Vl* = <$*(P,7¥yp (fp)>Yp
= <7‘;p($*(P)afp>Qpa ¢c Vlafp € Qp7

(@0, By, (/) a vz = (B0, Ay, (/1))

= <}‘;‘,($*(p)vﬁ/>Q23 (ONS V27fv € QV'
For short, by defining the position and velocity output errors

gp(t) = Gpelt),  &(t) = Gie(t),
and using (23), (24) we have

(e(t). B, ) T = (6t o (M), T30,

<é(t>7 @xyp(t) (]?\/)>V2,V2* = 0\';»(0 (Mvgv(t))afv>Qv

(19)

(20)

@n

(22)

(23)

(24)

The adaptive laws, expressed in weak form, are

<f;,p>Qp ~(Goh o Moo L) Do,
<[MP8P + YMV&V]v yp (GPp»Qp
for all test functions p € 0, and
<ﬁ7 V> <GV7\-* [M 817 + YM E’V] >Q (26)
<[Mp8p YMyE ], A % ([)(ng)>Qv
for all test functions v € Q,. In strong form they are
Fo==Ghsy 0 Moo )+ @D)
Fo= =6k [Myep () +1M0(1)] (28)

The well-posedness of the natural adaptive observer (20)
with adaptations (25), (26) can be established by con-
structing arguments similar to those presented in [4] for
natural observers of structurally perturbed 2" order infinite
dimensional systems with adaptation in R™, and in [9] for
adaptive observers of structurally perturbed positive real
infinite dimensional systems with adaptations in RKHS.

The stability and convergence, in a similar fashion to
Lemma 1 for estimation in R” x R™, is given below.

Lemma 2: Consider the 2" order infinite dimensional
system (19) with measurements obtained by (2). Assume
that the collocation-like condition in Assumption 1 and the
matching condition in Assumption 2 are satisfied and that
(19), (2) constitutes an admissible plant in the sense that L,
control signals result in L, output signals for the Lipschitz-
type nonlinearities f,(-) and f,(-). Then the proposed natural
adaptive observer (20) along with the adaptations (27), (28)
result in a well-posed system with

lim [[e(?)], =0 and  lim[e()[z =0,  (29)
with the functional estimates fp() € Loo(0,0,0,), A e

Le.(0,00;0,). Parameter convergence in the sense of
lim |1 /,(6) = fyllg, =0 and  lim |£,(1) — filg, =0, (30)

can be established when a persistence of excitation condition
is satisfied [13]. This takes a special form for 2™ order
infinite dimensional systems [12] and which requires the
existence of Tp, 8y and €y such that for each admissible pair
P € Qp,ve O, with [plg, =1, [v|g, = | and each sufficiently
large ¢ > 0, there exists 7 € [¢,# + Tp] such that

‘/t Mg () () + Doyt )dr (31)

Remark 1: Central to the 1mplementat1on of the scheme
in Lemma 1 is the parametrization in (6) and for the scheme
in Lemma 2 is the property in (16).

> €.

IV. ADAPTIVE RKHS-BASED FUNCTIONAL ESTIMATION
OF STRUCTURALLY PERTURBED VECTOR 2NP ORDER
SYSTEMS

The case of a 2" order evolution system over R” x R”
with structured perturbations constitutes a special case of the
natural adaptive observer (20). In this case all five spaces in
(19) collapse to a single Euclidean space with V; =V, =H =
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V) =V =R". While the resulting natural adaptive observer
will be finite dimensional, the adaptive estimation will be
infinite dimensional since it is defined over the RKHS 0O,
and Q,. All operators in (19), (2) and (27), (28) are replaced
with their matrix equivalents.

V. NUMERICAL EXAMPLES

2" order PDE: We first consider a 2"¢ order PDE which is
representative of 2" order infinite dimensional system, and
given by the wave equation
wy (2,€) +0.001w, (¢,E) — 0.0SW,&(I,&) - W&&(t,&)
+b(&) (u(t) + f(rp)),  0<E<L.

Dirichlet boundary conditions are assumed with w(z,0)
w(t,f) = 0 and initial conditions w(0,&) = 0.5sin(m&)
exp(—100(& — £/3)?), w(0,&) = 0.5(1 — cos(2nE/¥))
exp(—100(§ — 0.65¢)?). The spatial domain was [0,/]
[0,1]. The relevant spaces here are H =L%0,0), V1 =V, =
H}(0,0) with V' =Vy =H1(0,0).

The spatial distribution of the input is given by 5(§) =
8(&—0.5¢) with both the position and velocity measurements
collocated to the input and given by y,(¢) = w(,0.5¢),
w(t) = wy(2,0.5¢). In this case, we have r =n, =n, =1
with M,,, M, in (3) given by M, = M, = 1. The static gains in
the matching condition (4) were selected as G, =1, G, = 2.
The unknown nonlinearities were selected as f,(y) = —)*
and f,(»,) =0.

A finite element based approximation scheme was used
to approximate the wave PDE, with a total of 50 linear
elements. The resulting finite dimensional vector order sys-
tem was integrated in the interval [0,600]s using the Matlab
ode45 solver. The initial conditions for the state estimates
were selected as w(0,E) = 0 = w(0,&). For the functional
estimation, radial basis functions ‘(gau‘szsian functions) were

yp—p 1
T 2/loz)
with the means p evenly distributed in the “spatial” interval
[—7,7]. To approximate f,(y,) using a finite dimensional
subspace Qg C Oy, a total of N =121 radial basis functions
were used with the kernel approximation

~ N ~
Tpp) = ;ei(t)Kyp,-().

Using the initial guess j/"\p(yp(O)) =0 yielding 6;(0) =0, i =
1,...,N, the adaptation (27) was implemented with G, = 0.1.

The evolution of the L, state error norm
VeI, +e(0)[F; is depicted in Figure 1 where it
is observed that it asymptotically converges to zero.
The time evolution of the unknown term f,(y,(¢)) and
its adaptive functional estimate fp(yp(t) are depicted in
Figure 2a where it is observed that the adaptive functional
estimate converges to the true function. However, this does
not reveal how well the adaptive functional estimate learns
the unknown function. A way to assess the amount of

=+ + 1

used with kernel K, (p) = exp(

) and 6, =

4.5

state error norm \/He(t)va +e(t)[%

35

0 10 20 30 40 50 60 70 80 90 100
time ¢ (s)

Fig. 1. Evolution of L, state norm He(t)HIz,l +1e(0)|%

learning is via the normalized functional error given by
7 - 2
[ (50 -7) @
7
[ 7f,3 (v)dy
7 ~ 2
Y
L ; ( y fp(y)) dy

— ap ,
/ydy
-7

and which is depicted in Figure 2b. This functional error
starts at a value of 100%, since f,(y) =0 and converges to
a small value. At the final time ¢ = 600s this error is 5.14%.
The true nonlinearity f,(y) along with the adaptive estimate
fp(yp) at ¢t = 100s are plotted against the “spatial” variable y
and are depicted in Figure 3. It is observed that the adaptive
estimate identifies the function —y°.

2" order ODE: Here, a 3DOF system is considered
Mi(e) + Do(e) + Kw(e) = B (u(e) + £, (1))

with M = diag (1,2,1), B=[001)", C,=C, =B

5 =2 0 3.6 2.1 0
K=|-2 3 —-1|,D=|-21 36 -15

0 -1 1 0 —15 15
A more general version of the matching condition is con-
sidered for the finite dimensional case and which takes
the form of D+ G,C, = D, and K + G,C, = K,, with
G,=1699]", G, =[17.0432 21.56 12.3]", and y=3.0182,
Gp = 15. The initial condition for the plant was w(0) =
[050 025 0.15]", %(0)=[01 02 03], and

for the natural observer was w(0) = 0357 = w(0). The
nonlinear function was f,,(y) = —op® with o= 0.5.

Hﬁz(yp(t))—f(yp(t))llzgg =

The evolution of the energy norm of the error system is
depicted in Figure 4a and the output position error is depicted
in Figure 4b. Both plots show the convergence of the errors to
zero. The nonlinearity f,(y) along with the estimate f,(y,)
at t = 60s are plotted against the “spatial” variable y and
depicted in Figure 5. It is observed that the adaptive estimate
identifies the function —0.5)".
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Fig. 2.

functional estimate fp (vp(t); (b) time evolution of the functional error.

N L AT
unknown term 7, (, (1)) 4

Adaptive functional estimate f,(y,(t)) [

5 10 15

0 30
time ¢ (s)
100 ! ! :
evolution of relative functional error (%) |
50 1
0 ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600
time ¢ (s)
(a) Time evolution of the unknown term £, (v,(¢)) and its adaptive

A Time = 100.00|

true function f,(y) = —y* ~
= = =estimated function f,(y)
initial guess f,(y(0))

Fig. 3.
the actual f,(y) = —y3 versus the functional variable (“spatial variable”) y.

-1.5 -1 -0.5 0 0.5 1
functional variable y

Adaptive functional estimate ﬁ,(yp(t) at final time ¢ = 100s and

N
T

error norm /T () Ke(t) + 7 (1) Mé(h) |

o
T

poslt)on error 1/,,(f)
posmuu output yp(t)

(1)

WViv
VVVVVV

10 20 30 40 50 60
t

Fig. 4. Evolution of L, state norm.

4
°f Time = 59.50]
2 [ 4
1 [ 4
0r -
Ak
2+
3+
true function f,(y) = —ay®
-4 - |= = = estimated function fA,,(y)
initial guess fp(y(o))
5 I I | . . ) ‘
2 15 4 05 0 05 1 15 2

functional variable y

Fig. 5. Adaptive functional estimate fp (vp(1)) at final time ¢ = 60s and the
actual f,(y) =

—0.5)% versus the functional variable (“spatial variable”) y.

VI. CONCLUSIONS

An adaptive functional estimation scheme for structurally
perturbed 2" order infinite dimensional systems was pre-
sented and which utilized a RKHS-based adaptive functional
estimation. The natural adaptive observer did not require a
positive realness condition but instead imposed a collocation
condition as a means to extract the adaptive laws for the
RKHS-based functional estimation.
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