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Abstract— This paper proposes a new approach for the adap-
tive functional estimation of second order infinite dimensional
systems with structured perturbations. First, the proposed
observer is formulated in the natural second order setting
thus ensuring the time derivative of the estimated position is
the estimated velocity, and therefore called natural adaptive
observer. Assuming that the system does not yield a positive real
system when placed in first order form, then the next step in
deriving parameter adaptive laws is to assume a form of input-
output collocation. Finally, to estimate structured perturbations
taking the form of functions of the position and/or velocity
outputs, the parameter space is not identified by a finite
dimensional Euclidean space but instead is considered in a
Reproducing Kernel Hilbert Space. Such a setting allows one
not to be restricted by a priori assumptions on the dimension
of the parameter spaces. Convergence of the position and
velocity errors in their respective norms is established via the
use of a parameter-dependent Lyapunov function, specifically
formulated for second order infinite dimensional systems that
include appropriately defined norms of the functional errors
in the reproducing kernel Hilbert spaces. Boundedness of the
functional estimates immediately follow and via an appropriate
definition of a persistence of excitation condition for functional
estimation, a functional convergence follows. When the system
is governed by vector second order dynamics, all abstract spaces
for the state evolution collapse to a Euclidean space and the
natural adaptive observer results simplify. Numerical results
of a second order PDE and a multi-degree of freedom finite
dimensional mechanical system are presented.

I. INTRODUCTION

The argument to support the examination of second order
infinite dimensional systems in their natural second order
setting relies on the preservation of physics. As was delin-
eated in [1], the observer design for second order systems
in the second order setting ensures that the derivative of the
position estimate is indeed the velocity estimate. This cannot
be guaranteed when a second order system is brought in a
first order form. For finite dimensional systems, this physical
relationship is attained asymptotically, but is not present in
the transient stage. For infinite dimensional systems brought
into a first order setting for the general case, the state vector
components may not directly relate to the estimated position
and estimated velocity, [2]. Additionally the strict positive
realness of a first order infinite dimensional system is difficult
to backtrack into the second order setting.

Thus, the adaptive estimation of structurally perturbed
second order infinite dimensional systems cannot directly
benefit from earlier works on adaptive techniques of positive
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real infinite dimensional systems in a first order setting [3].
The closest one can reach to the coupling of the input
and output operators, as a condition guaranteed in positive
real infinite dimensional systems, is through collocation
whereby the output (observation) operator is the adjoint of
the input operator, symbolically written in the generic form
C =B∗. A case resembling the positive realness case and also
the collocation was considered in [4] whereby a weighted
multiple of the output operator was equal to the adjoint of
the input operator, symbolically written as MC = B∗.

When unknown functions are to be estimated via adaptive
techniques do not admit a series expansion parametriza-
tion, then one must consider a Hilbert space instead of
a Euclidean space as the parameter space. The approach
to use Reproducing Kernel Hilbert Spaces in the context
of adaptive functional estimation was by spearheaded by
Kurdila and co-workers [5], [6], [7], [8]. When one considers
a finite dimensional system and utilizes adaptive techniques
along with RKHS for functional estimation, the resulting
dynamical system is rendered infinite dimensional.

Migrating to the adaptive functional estimation of infinite
dimensional using only output information to generate the
adaptive laws, was the effort in [9]. The infinite dimensional
system assumed a positive realness condition and, following
the fundamental work in [5], [6], [8], extended the RKHS-
based adaptive functional estimation results.

Following the above arguments on the current state on
the use of RKHS-based adaptive functional estimation, this
paper considers a class of structurally perturbed second order
infinite dimensional systems and presents a natural adaptive
observer with a RKHS-based adaptive functional estimation.

II. PROBLEM FORMULATION

The class of 2nd order infinite dimensional systems, often
representing structural PDEs such as beams, plates and
cables, is described by an evolution equation defined over
a five space setting and given by

ζ̈+D ζ̇+K ζ = Bu+B fp(yp)+B fv(yv) in V ∗
1 ,

ζ(0) = ζ0 ∈V1, ζ̇(0) = ζ1 ∈V2.
(1)

It follows the abstract framework considered in [4]. In
summary, one has the Gelfand quituple V1 →֒ V2 →֒ H →֒
V ∗

2 →֒ V ∗
1 with H as the pivot space and duality pairings

〈·, ·〉V ∗
i ,Vi , i = 1,2, [10]. The space V1 is continuously and

densely embedded in V2 and V2 densely and compactly
embedded in H, and their conjugate dual spaces are denoted
by V ∗

1 and V ∗
2 , respectively. Such a five space setting allows

for a larger class of damping operators. Associated with the
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above are the position and velocity measurements

yp(t) = Cpζ(t), yv(t) = Cvζ̇(t). (2)

The damping operator D ∈ L(V2,V ∗
2 ) is symmetric,

bounded and V2 −H coercive, [10]. The stiffness operator
K ∈ L(V1,V ∗

1 ) is symmetric, bounded and V1 coercive, the
input operator B ∈ L(U,V ∗

1 ), the position output opera-
tor Cp ∈ L(V1,Yp) and the velocity output operator Cv ∈
L(V2,Yv). The input space U =R

r, the position output space
Yp = R

np and the velocity output space Yv = R
nv .

The perturbation terms fp(·) : Rnp →R
r and fv(·) : Rnv →

R
r satisfy Lipschitz-type conditions in order to guaran-

tee existence of solutions for (1), (2), see [4]. Following
the conditions presented in [4] for the well-posedness of
(1), (2), one requires an L2-type boundedness of the form
B(u(·)+ fp(yp(·))+ fv(yv(·))) ∈ L2(0,∞;V ∗

2 ).
We can now present the estimation and control objectives

in increasing complexity:
1) Set-up an adaptive natural observer to estimate the

structured perturbation terms fp(yp) and fv(yv).
2) Set up an adaptive natural observer to estimate the

terms fp(yp) and fv(yv) and use these estimates in the
control design to “cancel” their effects.

3) Set up an adaptive natural observer to estimate the
structured perturbation terms fp(yp) and fv(yv) and the
estimates of the now assumed unknown static position
Gp and velocity Gv gains, and use the estimates of the
terms in the control design to “cancel” their effects, and
use the estimates of static position Θ̂p and velocity Θ̂v

gains as a means to regulate the closed-loop system to
zero with a prescribed rate.

4) Set up an adaptive natural observer to estimate the
structured perturbation terms fp(yp) and fv(yv) and
the position ζ(t) and velocity ζ̇(t) states. Use the
estimates of the structured perturbation terms in the
control design to “cancel” their effects and use the

position ζ̂(t) and velocity ̂̇ζ(t) state estimates in a
state controller as a means to regulate the closed-loop
system to zero with a prescribed rate.

5) Set up adaptive natural observer to ensure that the
2nd order system follows a reference model described
by a 2nd order infinite dimensional system. Use the
estimates of fp(yp) and fv(yv) in the control design
to “cancel” their effects. Either use the estimates of
Gp,Gv to ensure tracking is achieved, or use the state
estimates in a feedback controller to achieve tracking.

In this paper, we will be concerned with objective 1.
The adaptive estimation of the structured perturbation terms
fp(yp) and fv(yv) will be examined in a Euclidean space R

m

and which constitutes a modified case of the one presented
in [4], and also on a Reproducing Kernel Hilbert Space
(RKHS). The latter approach follows the earlier exposure by
the author for addressing structured perturbations of strictly
positive real infinite dimensional systems [9] in a first order
form. Since the system under consideration is not placed in
a first order setting and when in the first order setting it
does not immediately yield a strictly positive real system,

then one has to remain in the natural 2nd order setting. The
enabling condition to extract adaptive laws for the estimates
of either the structure perturbation terms or the estimates of
the feedback gains is a modified collocation condition which
relates the input and output operators.

Assumption 1: There exist matrices Mp and Mv of dimen-
sions r×np and r×nv, respectively, satisfying

MpCp = B∗ and MvCv = B∗, (3)

and min(np,nv)≥ r.
The other enabling condition, which may be required to

improve the coercivity of the damping operator and/or to
improve the convergence properties of an associated error
system has to do with the output injection terms.

Assumption 2 (Matching Condition): There exist static
gains Gp ∈ L(Yp,U) and Gv ∈ L(Yv,U) such that the fol-
lowing matching conditions

D +BGvCv = Do and K +BGpCp = Ko (4)

are satisfied. The closed-loop damping Do and stiffness Ko

operators have desired coercivity bounds that improve the
convergence of the estimation errors associated with a natural
observer for the perturbation-free nominal system.
Following [2], it should be remarked that in the absence
of structured perturbations in (1), the associated natural
observer for (1), (2) with Assumption 2 will guarantee the
asymptotic convergence of the state position and velocity
estimation errors in the stronger norms.

III. ADAPTIVE NATURAL OBSERVERS

The adaptive observer for (1), in a 2nd order setting, takes
the form of another 2nd order infinite dimensional system
with appropriate output injection terms

¨̂ζ(t)+D
˙̂ζ(t)+K ζ̂(t) = Bu(t)

+BGp

(
yp(t)−Cpζ̂(t)

)
+BGv

(
yv(t)−Cv

˙̂ζ(t)
)

+B
(

f̂p(yp(t))+ f̂v(yv(t))
)

ζ̂(0) = ζ̂0 ∈V1,
˙̂ζ(0) = ζ̂1 ∈V2.

(5)

The estimated position is denoted by ζ̂(t) and the estimated

velocity is
˙̂ζ(t). Due to the 2nd order structure of (5), the

derivative of the estimated position dζ̂(t)/dt is equal to the

estimated velocity ̂̇ζ(t), i.e.
˙̂ζ =

̂̇ζ. The term f̂p(yp) denotes
the adaptive estimate of the position structured perturbation
term fp(yp), and f̂v(yv) denotes the adaptive estimate of the
velocity structured perturbation term fv(yv).

The construction of the estimates f̂p(yp), f̂v(yv) in the
appropriate spaces constitutes the contribution of this work.
First, the estimates will be considered over a Euclidean space
R

m of fixed dimension m and subsequently will be defined
over a RKHS (infinite dimensional) which provides a natural
parameter space for functional estimation.

A. Functional estimation over R
m

To realize the adaptive estimates f̂p(yp), f̂v(yv), one must
provide the appropriate assumptions for their parametrization
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and subsequently extract the relevant adaptive laws via a
Lyapunov-redesign method [11]. Towards that, one makes
the following parametrization assumption.

Assumption 3 (Euclidean parametrization): The
structured perturbation terms are assumed to admit the
following parametrizations

fp(yp) = gp(yp)Θp and fv(yv) = gv(yv)Θv, (6)

where the parameters Θp,Θv are m-dimensional unknown
constant vectors and gp(·) : R+×R

np →R
r×m, gv(·) : R+×

R
nv → R

r×m, are known matrix functions.

Using Assumption 3, the adaptive observer with the pa-
rameter estimates now takes the form

¨̂ζ(t)+D
˙̂ζ(t)+K ζ̂(t) = Bu(t)

+BGp

(
yp(t)−Cpζ̂(t)

)
+BGv

(
yv(t)−Cv

˙̂ζ(t)
)

+B
(

gp(yp(t))Θ̂p(t)+gv(yv(t))Θ̂v(t)
)
,

ζ̂(0) = ζ̂0 ∈V1,
˙̂ζ(0) = ζ̂1 ∈V2,

(7)

where Θ̂p(t) denotes the adaptive estimate of the unknown
Θp and Θ̂v(t) is the adaptive estimate of the unknown Θv.

To extract the appropriate adaptive laws for Θ̂p(t), Θ̂v(t)
one considers the position error e(t) = ζ(t)− ζ̂(t). Due to the
structure of the proposed natural observer, the velocity error

is precisely ė(t) = ζ̇(t)− ˙̂ζ(t). Subtracting the above from
(1), one arrives at the error system

ë(t)+D ė(t)+K e(t) =−BGpCpe(t)−BGvCvė(t)

+Bgp(yp)
(

Θp − Θ̂p(t)
)
+Bgv(yv)

(
Θv − Θ̂v(t)

)
,

e(0) = ζ0 − ζ̂0 ∈V1, ė(0) = ζ1 − ζ̂1 ∈V2,

(8)

The error system (8) is key to extracting the update laws for
the unknown Θ̂p(t), Θ̂v(t). Using the following parameter-
dependent Lyapunov function

V (e, ė) =
γ
2

(
〈ė(t), ė(t)〉+ 〈Koe(t),e(t)〉

)

+
1
2
〈Doe(t),e(t)〉+ 〈e(t), ė(t)〉

+Θ̃T
p (t)Γ

−1
p Θ̃p(t)+ Θ̃T

v (t)Γ
−1
v Θ̃v(t),

(9)

with Θ̃p(t) , Θp − Θ̂p(t) and Θ̃v(t) , Θv − Θ̂v(t) denoting
the position and velocity parameter errors [11], the desired
adaptations are given by

˙̂Θp(t) =−Γpgp(yp)
[
MpCe(t)+ γMvC ė(t)

]
,

˙̂Θv(t) =−Γvgv(yv)
[
MpCe(t)+ γMvC ė(t)

]
.

(10)

The symmetric positive definite matrices Γp,Γv are the
adaptive gain matrices [11]. Essential to the Lyapunov-based
adaptations was the matching condition in Assumption 2 that
enables one to use static output injection terms, as opposed
to full observer gain terms, to arrive at an error system that
had the appropriate stability properties. The stability and
convergence results of the proposed adaptive observer are
summarized in the following lemma. Its proof can easily
be established by following the approach for the similar

problem of model reference adaptive control of 2nd order
infinite dimensional systems in [4].

Lemma 1: Consider the 2nd order infinite dimensional
system (1) with measurements (2). Assume that the colloca-
tion condition in Assumption 1 and the matching condition
in Assumption 2 are satisfied and that (1), (2) constitutes an
admissible plant in the sense that L2 control signals result
in L2 output signals for the Lipschitz-type nonlinearities
fp(·) and fv(·). Then the proposed natural adaptive observer
(7) that assumes the parameterizations (6) along with the
adaptations (10) result in a well-posed system with

lim
t→∞

‖e(t)‖V1 = 0 and lim
t→∞

|ė(t)|H = 0, (11)

with the parameter estimates Θ̂p(·), Θ̂v(·) ∈ L∞(0,∞;Rm).
Additionally, parameter convergence in the sense of

lim
t→∞

|Θ̃p(t)|Rm = 0 and lim
t→∞

|Θ̃v(t)|Rm = 0, (12)

can be established when a persistence of excitation condition
is satisfied. This takes a special form for 2nd order infinite
dimensional systems [12] and which requires the existence
of T0,δ0 and ε0 such that for each admissible parameter pair
(Θp,Θv) ∈ R

m ×R
m with unity Euclidean norm and each

sufficiently large t > 0, there exists t ∈ [t, t +T0] such that
∥∥∥∥
∫ t+T0

t
B
(

gp(yp(τ))Θp +gv(yv(τ))Θv

)
dτ
∥∥∥∥

V ∗
2

≥ ε0. (13)

B. Functional estimation over RKHS

When the expansion (6) which yields parameterizations
in the Euclidean space R

m ×R
m is no longer guaranteed,

one must resort to Hilbert spaces for parameterizations. Fol-
lowing the earlier work on positive real infinite dimensional
[9], we extend the parameter spaces for the current class
of 2nd order infinite dimensional systems. We denote by
Qp and Qv the Hilbert spaces of functions defined on the
respective output spaces Yp and Yv, with fp : Yp → Qp and
fv : Yv → Qv with the evaluation functionals over Qp and Qv

which evaluate each of the functions at the points yp ∈ Yp

and yv ∈ Yv by

λyp : fp → fp(yp), ∀yp ∈ Yp,

λyv : fv → fv(yv), ∀yv ∈ Yv.
(14)

This is interpreted as

fp(yp) = λyp( fp) and fv(yv) = λyv( fv).

One would like to have the evaluation functionals above to
be bounded. Indeed with the appropriate construction of their
associated kernels, one has that the evaluation functionals
λyp ,λyv are bounded and the associated Hilbert space Qp

and Qv, taking the role of the parameter spaces, are RKHS.
Via the use of the Riesz representation theorem we have that
for all position outputs yp ∈ Yp there is an element (kernel)

κp : Yp ×Yp → R
m

with κyp = κp(yp, ·) that enjoys the reproducing property

fp(yp) = λyp( fp) = 〈 fp,κp(yp, ·)〉Qp = 〈 fp,κyp〉Qp , (15)
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for all fp ∈ Qp, and for all yp ∈ Yp. Similarly, we have that
for all velocity outputs yv ∈ Yv there is an element

κv : Yv ×Yv → R
m

with κyv = κv(yv, ·) that enjoys the reproducing property

fv(yv) = λyv( fv) = 〈 fv,κv(yv, ·)〉Qv = 〈 fv,κyv〉Qv , (16)

for all fv ∈ Qv, and for all yv ∈ Yv. The extraction of the
adaptive laws in the parameter spaces (RKHS’s) via Lya-
punov redesigned methods relies on the use of the adjoints of
the evaluation functionals. Define the adjoint of the position
evaluation functional λ∗

yp
: Yp → Qp via

〈Cpφ,λyp( fp)〉Yp = 〈Cpφκyp , fp〉Qp = 〈λ∗
yp
(Cpφ), fp〉Qp , (17)

for φ ∈ V1. Similarly, define the adjoint of the velocity
evaluation functional λ∗

yv
: Yv → Qv via

〈Cvφ,λyv( fv)〉Yv = 〈Cvφκyv , fv〉Qv = 〈λ∗
yv
(Cvφ), fv〉Qv , (18)

for φ ∈V2. Using (14), the 2nd order system (1) is written as

ζ̈+D ζ̇+K ζ = Bu+Bλyp(t)( fp)+Bλyv(t)( fp) in V ∗
1 ,

ζ(0) = ζ0 ∈V1, ζ̇(0) = ζ1 ∈V2.
(19)

The natural adaptive observer (7) is now redefined as
¨̂ζ(t)+Do

˙̂ζ(t)+Koζ̂(t) = Bu(t)+BGpyp

+BGvyv +Bλyp(t)( f̂p)+Bλyv(t)( f̂v),

ζ̂(0) = ζ̂0 ∈V1,
˙̂ζ(0) = ζ̂1 ∈V2.

(20)

Using (4), the error system resulting from (19), (20) is

ë(t)+Doė(t)+Koe(t) = Bλyp(t)( f̃p)+Bλyv(t)( f̃v)

e(0) = ζ0 − ζ̂0 ∈V1, ė(0) = ζ1 − ζ̂1 ∈V2.
(21)

The adaptive laws for the functional estimates are made
possible via a different Lyapunov function, given by (cf. (9))

V (e, ė) =
γ
2

(
〈ė(t), ė(t)〉+ 〈Koe(t),e(t)〉

)

+
1
2
〈Doe(t),e(t)〉+ 〈e(t), ė(t)〉

+〈G−1
p f̃p, f̃p〉Qp + 〈G−1

v f̃v, f̃v〉Qv ,

(22)

where now the positive self-adjoint linear operators Gp ∈
L(Qp,Qp) and Gv ∈ L(Qv,Qv) acquire the role of the
adaptive gain matrices Γp,Γv in the adaptations (10). With
the above Lyapunov function, the adaptive laws are extracted
via the following identities

〈ϕ,Bλyp( fp)〉V1,V ∗
1
= 〈B∗ϕ,λyp( fp)〉Yp

= 〈λ∗
yp
(B∗ϕ), fp〉Qp , ϕ ∈V1, fp ∈ Qp,

(23)

〈ϕ,Bλyv( fv)〉V2,V ∗
2
= 〈B∗ϕ,λyv( fv)〉Yv

= 〈λ∗
yv
(B∗ϕ), fv〉Q2 , ϕ ∈V2, fv ∈ Qv.

(24)

For short, by defining the position and velocity output errors

εp(t) = Cpe(t), εv(t) = Cvė(t),

and using (23), (24) we have

〈e(t),Bλyp(t)( f̃p)〉V1,V ∗
1
= 〈λ∗

yp(t)
(Mpεp(t)), f̃p〉Qp ,

〈ė(t),Bλyp(t)( f̃v)〉V2,V ∗
2
= 〈λ∗

yv(t)
(Mvεv(t)), f̃v〉Qv .

The adaptive laws, expressed in weak form, are

〈 ˙̃fp, p〉Qp =−〈Gpλ∗
yp(t)

[Mpεp + γMvεv], p〉Qp

=−〈[Mpεp + γMvεv],λyp(t)(Gp p)〉Qp

(25)

for all test functions p ∈ Qp, and

〈 ˙̃fv,v〉Qv =−〈Gvλ∗
yv(t)

[Mpεp + γMvεv],v〉Qv

=−〈[Mpεp + γMvεv],λyv(t)(Gvv)〉Qv

(26)

for all test functions v ∈ Qv. In strong form they are
˙̃f p =−Gpλ∗

yp(t)

[
Mpεp(t)+ γMvεv(t)

]
(27)

˙̃f v =−Gvλ∗
yv(t)

[
Mpεp(t)+ γMvεv(t)

]
. (28)

The well-posedness of the natural adaptive observer (20)
with adaptations (25), (26) can be established by con-
structing arguments similar to those presented in [4] for
natural observers of structurally perturbed 2nd order infinite
dimensional systems with adaptation in R

m, and in [9] for
adaptive observers of structurally perturbed positive real
infinite dimensional systems with adaptations in RKHS.

The stability and convergence, in a similar fashion to
Lemma 1 for estimation in R

m ×R
m, is given below.

Lemma 2: Consider the 2nd order infinite dimensional
system (19) with measurements obtained by (2). Assume
that the collocation-like condition in Assumption 1 and the
matching condition in Assumption 2 are satisfied and that
(19), (2) constitutes an admissible plant in the sense that L2

control signals result in L2 output signals for the Lipschitz-
type nonlinearities fp(·) and fv(·). Then the proposed natural
adaptive observer (20) along with the adaptations (27), (28)
result in a well-posed system with

lim
t→∞

‖e(t)‖V1 = 0 and lim
t→∞

|ė(t)|H = 0, (29)

with the functional estimates f̂p(·) ∈ L∞(0,∞;Qp), f̂v(·) ∈
L∞(0,∞;Qv). Parameter convergence in the sense of

lim
t→∞

‖ f̂p(t)− fp‖Qp = 0 and lim
t→∞

| f̂v(t)− fv|Qv = 0, (30)

can be established when a persistence of excitation condition
is satisfied [13]. This takes a special form for 2nd order
infinite dimensional systems [12] and which requires the
existence of T0,δ0 and ε0 such that for each admissible pair
p ∈ Qp,v ∈ Qv with |p|Qp = 1, |v|Qv = 1 and each sufficiently
large t > 0, there exists t ∈ [t, t +T0] such that

∥∥∥∥
∫ t+T0

t
B
(

λyp(τ)(p)+λyv(τ)(v)
)

dτ
∥∥∥∥

V ∗
2

≥ ε0. (31)

Remark 1: Central to the implementation of the scheme
in Lemma 1 is the parametrization in (6) and for the scheme
in Lemma 2 is the property in (16).

IV. ADAPTIVE RKHS-BASED FUNCTIONAL ESTIMATION

OF STRUCTURALLY PERTURBED VECTOR 2ND ORDER

SYSTEMS

The case of a 2nd order evolution system over R
n ×R

n

with structured perturbations constitutes a special case of the
natural adaptive observer (20). In this case all five spaces in
(19) collapse to a single Euclidean space with V1 =V2 =H =
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V ∗
2 =V ∗

1 =R
n. While the resulting natural adaptive observer

will be finite dimensional, the adaptive estimation will be
infinite dimensional since it is defined over the RKHS Qp

and Qv. All operators in (19), (2) and (27), (28) are replaced
with their matrix equivalents.

V. NUMERICAL EXAMPLES

2nd order PDE: We first consider a 2nd order PDE which is
representative of 2nd order infinite dimensional system, and
given by the wave equation

wtt(t,ξ)+0.001wt(t,ξ)−0.05wtξξ(t,ξ)−wξξ(t,ξ)
+b(ξ)

(
u(t)+ fp(yp)

)
, 0 < ξ < ℓ.

Dirichlet boundary conditions are assumed with w(t,0) =
w(t, ℓ) = 0 and initial conditions w(0,ξ) = 0.5sin(πξ) +
exp(−100(ξ − ℓ/3)2), wt(0,ξ) = 0.5(1 − cos(2πξ/ℓ)) +
exp(−100(ξ − 0.65ℓ)2). The spatial domain was [0, ℓ] =
[0,1]. The relevant spaces here are H = L2(0, ℓ), V1 = V2 =
H1

0 (0, ℓ) with V ∗
1 =V ∗

2 = H−1(0, ℓ).

The spatial distribution of the input is given by b(ξ) =
δ(ξ−0.5ℓ) with both the position and velocity measurements
collocated to the input and given by yp(t) = w(t,0.5ℓ),
yv(t) = wt(t,0.5ℓ). In this case, we have r = np = nv = 1
with Mp,Mv in (3) given by Mp =Mv = 1. The static gains in
the matching condition (4) were selected as Gp = 1, Gv = 2.
The unknown nonlinearities were selected as fp(y) = −y3

and fv(yv) = 0.

A finite element based approximation scheme was used
to approximate the wave PDE, with a total of 50 linear
elements. The resulting finite dimensional vector order sys-
tem was integrated in the interval [0,600]s using the Matlab
ode45 solver. The initial conditions for the state estimates
were selected as ŵ(0,ξ) = 0 = ˙̂w(0,ξ). For the functional
estimation, radial basis functions (gaussian functions) were

used with kernel κyp(p) = exp(− |yp−p|2
2σ2

p
) and σp =

1
2
√

log(2)
with the means p evenly distributed in the “spatial” interval
[−7,7]. To approximate f̂p(yp) using a finite dimensional
subspace QN

p ⊂ Qp, a total of N = 121 radial basis functions
were used with the kernel approximation

f̂p(yp) =
N

∑
i=1

θ̂i(t)κypi(·).

Using the initial guess f̂p(yp(0)) = 0 yielding θ̂i(0) = 0, i =
1, . . . ,N, the adaptation (27) was implemented with Gp = 0.1.

The evolution of the L2 state error norm√
‖e(t)‖2

V1
+ |ė(t)|2H is depicted in Figure 1 where it

is observed that it asymptotically converges to zero.
The time evolution of the unknown term fp(yp(t)) and
its adaptive functional estimate f̂p(yp(t) are depicted in
Figure 2a where it is observed that the adaptive functional
estimate converges to the true function. However, this does
not reveal how well the adaptive functional estimate learns
the unknown function. A way to assess the amount of
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Fig. 1. Evolution of L2 state norm
√
‖e(t)‖2

V1
+ |ė(t)|2H .

learning is via the normalized functional error given by

‖ fp(yp(t))− f̂ (yp(t))‖2
QN

p
=

∫ 7

−7

(
fp(y)− f̂p(y)

)2
dy

∫ 7

−7
f 2
p(y)dy

=

∫ 7

−7

(
−y3 − f̂p(y)

)2
dy

∫ 7

−7
y6 dy

,

and which is depicted in Figure 2b. This functional error
starts at a value of 100%, since f̂p(y) = 0 and converges to
a small value. At the final time t = 600s this error is 5.14%.
The true nonlinearity fp(y) along with the adaptive estimate
f̂p(yp) at t = 100s are plotted against the “spatial” variable y
and are depicted in Figure 3. It is observed that the adaptive
estimate identifies the function −y3.

2nd order ODE: Here, a 3DOF system is considered

Mẅ(t)+Dẇ(t)+Kw(t) = B
(

u(t)+ fp(yp(t))
)

with M = diag (1,2,1), B = [0 0 1]T , Cp =Cv = BT

K =




5 −2 0
−2 3 −1
0 −1 1


 , D =




3.6 −2.1 0
−2.1 3.6 −1.5

0 −1.5 1.5


 .

A more general version of the matching condition is con-
sidered for the finite dimensional case and which takes
the form of D + GvCv = Do and K + GpCp = Ko, with
Gp = [6 9 9]T , Gv = [17.0432 21.56 12.3]T , and γ = 3.0182,
Gp = 15. The initial condition for the plant was w(0) =[

0.50 0.25 0.15
]T

, ẇ(0) =
[

0.1 0.2 0.3
]T

, and
for the natural observer was ŵ(0) = 03×1 = ˙̂w(0). The
nonlinear function was fp(y) =−αy3 with α = 0.5.

The evolution of the energy norm of the error system is
depicted in Figure 4a and the output position error is depicted
in Figure 4b. Both plots show the convergence of the errors to
zero. The nonlinearity fp(y) along with the estimate f̂p(yp)
at t = 60s are plotted against the “spatial” variable y and
depicted in Figure 5. It is observed that the adaptive estimate
identifies the function −0.5y3.
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Fig. 2. (a) Time evolution of the unknown term fp(yp(t)) and its adaptive
functional estimate f̂p(yp(t); (b) time evolution of the functional error.
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Fig. 3. Adaptive functional estimate f̂p(yp(t) at final time t = 100s and
the actual fp(y) =−y3 versus the functional variable (“spatial variable”) y.
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Fig. 4. Evolution of L2 state norm.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-5

-4

-3

-2

-1

0

1

2

3

4

Time = 59.50

Fig. 5. Adaptive functional estimate f̂p(yp(t)) at final time t = 60s and the
actual fp(y) =−0.5y3 versus the functional variable (“spatial variable”) y.

VI. CONCLUSIONS

An adaptive functional estimation scheme for structurally
perturbed 2nd order infinite dimensional systems was pre-
sented and which utilized a RKHS-based adaptive functional
estimation. The natural adaptive observer did not require a
positive realness condition but instead imposed a collocation
condition as a means to extract the adaptive laws for the
RKHS-based functional estimation.
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