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Abstract— This paper considers a class of distributed param-
eter systems that can be controlled by an actuator onboard
a mobile platform. In order to avoid computational costs
and control architecture complexity associated with a joint
optimization of actuator guidance and control law, a suboptimal
policy is proposed that significantly reduces the computational
costs. By utilizing a continuous-discrete optimal control design,
a mobile actuator moves to a new position at the beginning of a
new time interval and resides for a prescribed time. Using the
cost to go with variable lower limit, the optimization simplifies
to solving algebraic Riccati equations instead of differential
Riccati equations. Adding a hardware feature whereby the
mobile sensors are constrained to stay within the proximity of
the mobile actuator, a feedback kernel decomposition scheme
is proposed to approximate a full state feedback controller by
the weighted sum of sensor measurements.

I. INTRODUCTION

This paper continues earlier efforts to minimize the com-
putational costs and reduce the controller architecture com-
plexity associated with the use of mobile actuators in the
control of PDEs. Formulated as a joint control-plus-guidance
problem, the resulting solution requires both the costate and
the guidance to be integrated backwards in time. To avoid
this, a suboptimal controller was proposed in [1], [2]. The ba-
sic idea is to use a suboptimal policy wherein the lower limit
of the cost to go performance index was used at the beginning
of a new time interval to select the next actuator position.
This required the solution to algebraic Riccati equations as
opposed to differential Riccati equations. Incorporating the
constraints of the platform dynamics which prohibited the
platform to traverse large distances in infinitely small time
intervals, the selection of the actuator location was restricted
to the locations in the spatial domain that would guarantee
approximately controllability of the resulting operator pair
(state and input operator) and respect the motion constraints
of the mobile platform. This gave rise to reachability sets
that were time-varying and dependent on the current actuator
position.

While the optimal control with the actuator motion pro-
vided significant computational savings and reduced con-
troller complexity, it required access to full state. To remove
this requirement a collocated actuator-sensor was proposed
[2] but it did not utilize any optimality for controller perfor-
mance. Instead the decision to move the actuator to a new
location was based on stability arguments. An alternative to
this is to build a state estimator using either mobile sensors
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onboard different platforms, or use fixed-in-space sensors.
Such a configuration will certainly improve the compensator
performance but it will increase the computational cost by
requiring the real-time implementation of a state observer
and heavier communication costs between the sensors and
the actuator-plus-control unit.

To avoid the implementation of a state observer, this
paper proposes to use a network of sensors hovering the
actuator that are used to approximate a dynamic full-state
controller by a static output feedback controller. This is
achieved by using computational geometry to decompose the
associated with the feedback operator used in the controller
description and replace the full-state feedback by a weighted
sum of sensor measurements. This kernel decomposition is
based on a modification of Centroidal Voronoi Tessellations
(CVT) heavily utilized in [3], [4], [5], [6] to approximate
the feedback kernel by pointwise sensor. The modification
proposed in [7], [8], [9] decomposed the spatial domain
into cells that had the same area under the feedback kernel.
Subsequently it computed the corresponding feedback gains
and implemented this approximated state feedback.

The above two are combined and constitute the contribu-
tion of this work.

1) Present a guidance scheme using time-varying reach-
ability sets to reposition the actuator platform at the
beginning of a time interval.

2) Propose a feedback kernel decomposition scheme to
compute time-varying sensor positions and their asso-
ciated gains to approximate a full-state feedback con-
troller by the weighted sum of sensor measurements.

3) Extend the results of the modified CVT method to
restrict the sensors in the vicinity of the actuator
position by coinciding the vicinity region by the time-
varying reachability set, thereby ensuring that the mo-
bile sensors are always orbiting the actuator position.

4) Demonstrate to 1D and 2D advection-diffusion PDES.

II. PROBLEM FORMULATION

The emphasis of the proposed work is on spatially dis-
tributed processes in one and two spatial dimensions. Partial
differential equations in 1D and 2D can be viewed as
evolution equations Hilbert space X and given by

ẋ(t) = Ax(t)+Bu(t), x(0) = x0 ∈ dom(A). (1)

The process state operator in (1) A ∈ L(V ,V ∗) and the
control input operator B ∈ L(U,V ∗). The use of the ad-
ditional spaces V ,V ∗ allow for unbounded operators often
representing spatial differentiation in the expression for the
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state operator. The state space X is a Hilbert space and the
two interpolating spaces are the reflexive Banach space V
that is continuously and densely embedded in X and its
conjugate dual V ∗. Following [10], we have V →֒ X →֒ V ∗

with both embeddings dense and continuous. This Gelfand
triple also allows one to define the input and output operators
in different spaces. In the definition of the input operator, the
control space U is a finite dimensional Euclidean space.

Examples of PDEs that can be represented by (1) are the
1D and 2D advection-diffusion PDEs. The 1D PDE is

∂x
∂t
(t,ξ) = α

∂x2

∂ξ2 (t,ξ)−β
∂x
∂ξ

(t,ξ)

−γx(t,ξ)+b(t,ξ)u(t),
(2)

with Dirichlet boundary conditions x(t,0) = 0 = x(t, ℓ) and
initial condition x(0,ξ) = x0(ξ). The function b(t,ξ) is the
spatial distribution of the actuating device and is explicitly
made time-dependent to reflect the time-varying nature of the
actuator position in the spatial domain Ω = [0, ℓ]. When the
actuator spatial distribution represents a pointwise-in-space
distribution, then the control term is given in weak form by

〈bu,φ(ξ)〉=
∫ ℓ

0
δ(ξ−ξa(t))u(t)φ(ξ)dξ = φ(ξa(t))u(t), (3)

where ξa(t) denotes the time-varying centroid of the actuat-
ing device and φ ∈ H1

0 (0, ℓ) is the test function.
Similarly, a typical PDE on a 2D spatial domain that can

be represented by (1), is given by

∂tx(t,ξ,ψ) = α∆x(t,ξ,ψ)−β(ξ) ·∇x(t,ξ,ψ)
−γ(ξ,ψ)x(t,ξ,ψ)+b(t,ξ,ψ)u(t),

(4)

in Ω× (0,∞) with Dirichlet boundary conditions x(t,ξ,ψ) =
0 on ∂Ω× (0,∞) and initial condition x(0,ξ,ψ) = x0(ξ,ψ).
When the actuator is mobile with centroid (ξa(t),ψa(t)) and
has a spatial distribution given by the Dirac delta function,
the control term is given by

〈bu,φ〉=
∫∫

Ω
δ(ξ−ξa(t))δ(ψ−ψa(t))u(t)φ(ξ,ψ)dψdξ

= φ(ξa(t),ψa(t))u(t),
(5)

In the ideal case of full-state availability, one can de-
sign a state feedback controller for (2) and (4) to satisfy
performance requirements often described by a performance
index. A widely used index is the one associated with the
linear quadratic regulator and the resulting full-state feedback
controller signal has the form

u(t) =−K (t)x(t). (6)

The feedback operator K (t) may or may not be time-varying.
When a time-varying input operator B(t) is assumed, as the
one associated with (3) or (5), or when the LQR performance
index is given by a finite horizon linear quadratic functional

J =
∫ T

0
〈x(τ),Q x(τ)〉X +uT (τ)R−1u(τ) dτ

+〈x(T ),M x(T )〉,

(7)

the feedback operator will be time-varying. The operators
Q ,R,M , defined in the respective spaces are assumed coer-
cive operators. The particular case of a time-varying input

operator arises when the actuator device is continuously
repositioned within Ω, see (3) or (5).

While the problem of joint optimal control and actuator
motion has been summarized in [2] and as the dual problem
of the optimal filtering with mobile sensor established in
[11], [12], [13], this work will handle the actuator guid-
ance problem separately from the derivation of the optimal
controller. For a prescribed actuator guidance, resulting in
a given input operator B(t), one would need to find the
optimal controller corresponding to the associated operator
B(t). Thus, the optimal control problem with a prescribed ac-
tuator guidance becomes a suboptimal controller of the joint
actuator-plus-controller optimization problem. However, the
optimality comes in the form of real-time implementability.

For a given time-varying B(t) associated with (3) or (5),
one must solve the Operator Differential Riccati Equation

−Ṗ = A∗P +PA −P B(t)R−1B∗(t)P +Q = 0, (8)

in order to obtain the corresponding the time-varying feed-
back gain operator K (t) : V → U. The terminal condition
for (4) is P (T ) = M , and upon successful solution to (4) via
backwards-in-time integration, one obtains the feedback op-
erator in terms of the solution P (t) as K (t) = R−1B∗(t)P (t).

To realize (6) using (8), one must also generate in real-
time the state estimate of the process state x(t). An alternate
to state reconstruction, as presented in [9], [14], is to
approximate the optimal full state controller (6) by a linear
combination of measurements as follows

u(t) =−
ns

∑
i=1

gi(t)yi(t), (9)

where yi(t), i = 1, . . . ,ns denotes the ns scalar measurements
and gi(t) are their corresponding time-varying gains. In (9),
it is assumed that there are ns measurements given by

y(t) =
[

y1(t) · · · yns(t)
]T

. (10)

Summarizing, the controller (6) requires either full state
information or the implementation of an estimator whereas
the controller (9) requires ns output measurements. Thus, to
eliminate the computational cost, one must ensure that

K (t)x(t)≈
ns

∑
i=1

gi(t)yi(t), (11)

is an appropriate sense. This approximation includes multi-
level optimization since both the gains and the sensor
locations associated with each output measurement yi(t)
can be selected to minimize the difference K (t)x(t) −
∑ns

i=1 gi(t)yi(t). In the event that the gain K (t) is time-
varying, then the above can be optimized by moving the
sensors associated with the output measurements yi(t).

Summarizing the earlier results in [9], [14], one assumes
that the feedback operator K (t) admits a kernel representa-
tion and tries to simultaneously select the sensor locations
and the gains to minimize the L2 norm of this difference for
all tests functions. In particular, when the sensor network is
uniform, in the sense that the sensing devices are identical
differing only on the location of their sensor, then the
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approximation (11) becomes∫ ℓ

0
k(t,ξ)x(t,ξ)dξ ≈

ns

∑
i=1

gi(t)yi(t), (12)

for the 1D case, and∫∫
Ω

k(t,ξ,ψ)x(t,ξ,ψ)dξdψ ≈
ns

∑
i=1

gi(t)yi(t), (13)

for the 2D case. Continuing, using identical pointwise-in-
space sensors, the output measurements are given by

yi(t) =
∫ ℓ

0
δ(ξ−ξi(t))x(t,ξ)dξ,

for the 1D case, or for the 2D case by

yi(t) =
∫∫

Ω
δ(ξ−ξi(t))δ(ψ−ψi(t))x(t,ξ,ψ)dξdψ.

The approximations (12) or (13), in weak form, are given by

min
φ∈V

∣

∣

∣

∫
Ω

(

k(t,ξξξ)−
ns

∑
i=1

gi(t)δ(ξξξ−ξξξi(t))

)

φ(ξξξ)dξξξ
∣

∣

∣
, (14)

where ξξξ = ξ ∈ (0, ℓ) in 1D and ξξξ = (ξ,ψ) in 2D.

The idea presented in [9], [14], is to partition the kernel
k(t,ξξξ) in each time t in such a way that each partition
carries the same level of control “authority”. A pointwise
sensor is placed in each partition for each time t and
when the partitions become time-varying due to the time
variation of k(t,ξξξ), then the sensors within partition are
also rendered time varying. This time-variation provides the
spatial repositioning of the sensors within Ω. The second part
of the optimization (14) is to find the time-varying gains gi.

In parallel to the approximation (11) which may lead to
mobile sensors, the actuator also moves and thus renders
the feedback operator time varying. As summarized in [1],
the application of an integrated optimal control and actua-
tor guidance results in a computationally intensive control
solution since it requires the backward-in-time integration
of both a Riccati equation (8) and the actuator guidance.
To reduce the control complexity, a suboptimal full-state
feedback controller was proposed wherein the finite horizon
cost (7) was substituted by an infinite horizon cost with the
lower time switched at the beginning of a time-interval. This
substitution resulted in a suboptimal controller but improved
the real-time implementability since it required the solution
to algebraic Riccati equations. The index (7) is now

J(ti,x(ti)) =
∫ ∞

ti
〈x(τ),Q x(τ)〉X +uT (τ)R−1u(τ) dτ (15)

where the lower limit ti is changed every ∆t time units and
replaced by ti → ti +∆t. At the beginning of a new interval
[ti, ti+∆t), a new actuator location is selected by minimizing
the optimal cost over the set of admissible actuator loca-
tions. In the earlier works, the set of admissible locations
consisted of all locations that rendered the associated pairs
(A ,B) approximately controllable. Incorporating realistic
constraints resulting from the inclusion of vehicle motion,
the set of admissible actuator locations was further restricted
to the set of actuator locations that render the pair (A ,B)
approximately controllable and ensure that the locations can
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Fig. 1. Depiction of a mobile actuator (✷) with its mobile sensors (◦)
orbiting its current position in the spatial domain at different time instances.
Sensors are contained within a proximity region (circle) of the actuator.

be reached by the mobile platform within the ∆t time units.
The decomposition of the spatial domain Ω using kernel

partitioning is summarized in the next section. The actuator
selection at the beginning of a new interval [ti, ti +∆t) will
then be presented in Section IV.

III. SPATIAL DOMAIN DECOMPOSITION VIA FEEDBACK

KERNEL PARTITIONING

The feedback kernel associated the feedback operator K
in (6) is desired to be decomposed according to (14). The
basic idea is to divide Ω into ns regions that have the same
level of control “authority”. This is interpreted as having the
same area under the feedback kernel and this is determined
by dividing the total area of the kernel k(ξ) by ns. For the
2D case, this is interpreted as evaluating the volume of the
kernel k(ξ,ψ) over Ω and dividing by ns, [9].

The approach presented in [14] is summarized here and
demonstrated for the 1D case. The spatial domain Ω =
[0, ℓ] = [0,1] is partitioned into ns cells, each of which has
the same area under the kernel and is equal to the total area
A divided by ns. Each cell in Ω is denoted by Ii, i = 1, . . . ,ns

with the property Ii ∪ I j = /0 and
⋃ns

i=1 Ii = Ω and found via∫
Ii

k(ξ)dξ =
∫

Ω
k(ξ)dξ/ns = (A/ns) , i = 1, . . . ,ns.

Once the cells are found, one then places a single sensor ξs

in each cell Ii. One way to achieve this is to place a sensor
ξs in the cell Ii with the property that it further divides the
cell Ii = IL

i ∪ IR
i into two equiareal subcells with respect to

the kernel. In each subcell, one has∫
I L

i

k(ξ)dξ =
∫

I R
i

k(ξ)dξ =
1
2

∫
Ii

k(ξ)dξ, i = 1, . . . ,ns.

Following [14], there is a very simple graphical method
to compute the sensor locations ξi, i = 1, . . . ,ns for the 1D
case. For the 2D case, which produces level sets thereby
suggesting multiple choices for sensor locations has been
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Fig. 2. Normalized kernel k(ξ) and its normalized areal function
A(ξ). Domain Ω = [0,1] is partitioned into ns = 2 equiareal cells Ii with∫

Ii
k(ξ)dξ = 1

ns

∫ 1
0 k(ξ)dξ. Sensor coordinates are found as the abscissae

points on the normalized areal function A(ξ) having ordinates 0.25,0.75.

presented in [9]. Given a feedback kernel k(ξ) associated
with a feedback operator K , define the normalized kernel
and the associated normalized area function via

k(ξ) =
k(ξ)

maxξ∈Ω k(ξ)
, A(ξ) =

A(ξ)
A(ℓ)

, A(ξ) =
∫ ξ

0
k(ξ)dξ.

From the above, it is easily observed that A(ℓ) = 1 and that
A(ξ) represents the fraction of the kernel area up to the
spatial point ξ. All is left now is to plot the normalized
area function A(ξ) and identify the ordinate points i/ns,
i = 1, . . . ,ns. The abscissae points corresponding to these
ordinate points immediately identify the cells Ii. We identify
the sensor locations ξi with the property

ξi :
∫ ξi

0
k(ξ)dξ = (2i−1))A/(2ns), i = 1, . . . ,ns.

Graphically, one identifies the ordinates (2i−1)/(2ns) on the
A(ξ) graph and the abscissae reveal the sensor locations!

As an example, assume that k(ξ) = sin(πξ)e−10(ξ−0.1)2
,

ξ ∈ [0,1]. Figure 2 depicts the normalized kernel and the
associated normalized areal function. For ns = 2, the domain
is decomposed into I1 = [0,0.283] and I2 = [0.283,1] with
the sensors placed at ξ1 = 0.188,ξ2 = 0.389.

Once the graphical method is applied to obtain the sensor
locations in the approximation (14), one must calculate the
feedback gains gi. In the 1D case with Dirichlet boundary
conditions, the space V = H1

0 (Ω) and the optimization (14)
is performed over all test functions φ ∈ H1

0 (Ω). Assume that
the feedback kernel has an expansion of the form k(ξ) =
∑N

j=1 k jφ j(ξ), ∀φ j ∈ H1
0 (0,1). Applying this in (14) with the

state x(t,ξ) replaced by the test functions φk(ξ) one has

min
φ∈V

∣

∣

∣

∫
Ω

(

N

∑
j=1

k jφ j(ξ)−
ns

∑
i=1

gi(t)δ(ξ−ξi(t))

)

φk(ξ)dξ
∣

∣

∣
,

which when evaluated for all test functions φk(ξ) obtains
the least-squares solution Mκ = Φ(ξs)G, where the N ×
N matrix M denotes the mass matrix given by [M] jk =

∫ 1
0 φ j(ξ)φk(ξ)dξ, j,k = 1, . . . ,N, and the vector of the kernel

coefficients and of the static gains are

G =
[

g1 . . . gns

]T
, κ =

[

k1 . . . kN
]T

.

The N ×ns regressor matrix Φ(ξs) is given by

Φ(ξξξs) =









φ1(ξ1) . . . φ1(ξns)

...
. . .

...

φN(ξ1) . . . φN(ξns)









.

By minimizing the L2(RN) norm of the error in Mκ =
Φ(ξs)Γ, the least squares solution produces

G =
(

ΦT (ξξξs)Φ(ξξξs)
)−1 ΦT (ξξξs)(Mκ).

For the particular example, the corresponding gain is G =
[

0.50 0.38
]

, thus approximating the full state control
signal by the weighted sum of two pointwise state evaluations∫ 1

0
sin(πξ)e−10(ξ−0.1)2

x(t,ξ)dξ ≈

0.50x(t,0.188)+0.38x(t,0.389) = 0.50y1(t)+0.38y2(t).

IV. MAIN RESULTS

Having defined the approximation of (6) by a weighted
sum of pointwise measurements in (11) enabled by the
optimization (14), we now proceed with the main result.
Combining the earlier result [1] on the use of time-varying
reachability sets to account for vehicle motion constraints in
selecting actuator locations, we extend the subsequent result
in [2] to the employment of not a single collocated sensor,
but of a network of sensors hovering the mobile actuator,
as depicted in Figure 1. In this case, the vicinity region
that the sensors are positioned with respect to the current
actuator position is taken to coincide with the reachability
region associated with the current actuator position.

Using the cost-to-to at the beginning of a new time interval
[tk, tk +∆t), one minimizes the cost

J(x(tk), tk) =
∫ ∞

tk
〈x(τ),Qx(τ)〉+Ru2(τ)dτ. (16)

To select an actuator to be active over an interval [tk, tk+∆t),
one parameterizes the input operator B by the admissible ac-
tuator locations χa =(ξa,ψa). The set of admissible locations
Θa consists of all the locations in Ω that render the location-
parameterized pairs (A ,B(χa)) approximately controllable.
The location-parameterized input operator takes the form

〈B(χa)u(t),φ〉=
∫

Ω
b(t,ξ,ψ;ξa,ψa)φ(ξ,ψ)dξdψu(t). (17)

The simultaneous actuator location and feedback operator
gain can be obtained via

χopt,k
a = argminχa∈Θa〈x(tk),P (χa)x(tk)〉,

K opt,tk = R−1B∗(χopt,k
a )P (χopt,k

a ),
(18)

where P (χa) solves the location-parameterized ARE

0 = 〈Aφ1,P (χa)φ2〉+ 〈P (χa)φ1,Aφ2〉

−〈P (χa)B(χa)R−1B∗(χa)P (χa)φ1,φ2〉+ 〈Q φ1,φ2〉,
(19)
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for all φ1,φ2 ∈V .

When the vehicle carrying the actuating devices is taken
into account, then one cannot use the entire spatial domain
Ω for the next actuator location since it is almost impossible
for a mobile platform to traverse large distances over finite
time intervals. The search for an actuator in the time interval
[tk, tk + ∆t) must be constrained to the region that can be
reached within a finite amount of time. We use the following
kinematic equations to represent the motion of a mobile
platform within a 2D domain

ξ̇a(t) = v(t)cos(θa(t)), ψ̇a(t) = v(t)sin(θa(t)),

θ̇a(t) = ωa(t),
(20)

with the speed v(t) and turning rate ωa(t) the control signals.

To quantify the region where the search for the next
actuator location will take place, it is assumed that an
actuator will reside in a given position for ∆t time units
and will move to its new position at the beginning of a new
time interval. Assuming uniform time intervals

tk = t0 + k∆t, k = 1,2, . . . ,(T − t0)/∆t −1,

we require that the platform carrying the actuator will move
to its new desired position within a travel time ttravel that is
significantly less than the residence time ∆t.

In other words, at the beginning of a new time interval
[tk, tk +∆t) of duration ∆t, the mobile platform must move
to a new position within the travel time ttravel . If the actuator
optimization predicts a new position that is far away from
the current position χopt,tk

a , the platform will not be able
to move to the new position. Thus, the search for the next
actuator position, must be restricted to a subset of Θad which
consists of all the candidate locations that render the pairs
(A ,B(χa)) approximately controllable and can be reached
from the current position within ttravel . Further assuming a
constant speed for simplicity, the set of points that can be
reached from the current position (ξ(tk),ψ(tk)) within the
travel time ttravel is given by

ξ(t) = ξ(tk)+(vttravel)cos(θ(t)),
ψ(t) = ψ(tk)+(vttravel)sin(θ(t)).

(21)

Thus, the time-varying reachability sets that are used to
search for the candidate actuator locations at the beginning
of a new time interval [tk, tk +∆t) are defined via

R1(tk) = Θa ∩
{

(θ,ψ,θ) : (ξ,ψ) satisfy (21)

for −π ≤ θ(t)≤ π
}

,
(22)

As presented in [2], there are two additional time-varying
reachability sets that result by incorporating motion con-
straints; for example, when the mobile platform has to
obey angular constraints θ(t) ∈ [θa(tk)−∆θ,θa(tk +∆θ] the
associated time-varying reachability set is given by

R2(tk) = Θa ∩
{

(θ,ψ,θ) : (ξ,ψ) satisfy (21)

for θa(tk)−∆θ ≤ θ(t)≤ θa(tk)+∆θ
}

.

A third reachability set imposes both angular and angular

rate constraints and is described in [1].

One of the problems that arise is that the optimization
(18) cannot be realized since the full state is not available.
The other problem is that the sensors, as can be predicted by
the method in Section III, must be constrained also within
the time-varying residual set. The reason is that for a given
actuator location, the resulting optimal controller gain using
the approximation (11) may place the sensors far away from
the current actuator location. To address this, and essentially
realize the schematic in Figure 1, one must also restrict
the sensors to the vicinity of the current actuator location.
This vicinity is taken for simplicity to be the time-varying
reachability set associated with the actuator location.

Thus, for each t ∈ [tk, tk + ∆t), the actuator location is
selected via (18), but with the search restricted to the time-
varying reachability set (22) and given here by

χopt,tk
a = argminχa∈R1(tk)〈x(tk),P (χa)x(tk)〉,

K opt,tk = R−1B∗(χopt,k
a )P (χopt,k

a ).
(23)

Once the actuator χopt,tk
a and its associated feedback gain

K opt,tk are selected, one then locates the sensors in the
vicinity of the actuator using

min
φ∈V

∣

∣

∣

∫
R1(tk)

(

kopt,tk(ξξξ)−
ns

∑
i=1

gtk
i δ(ξξξ−ξξξtk

i )

)

φ(ξξξ)dξξξ
∣

∣

∣
, (24)

where kopt,tk(ξξξ) is the kernel associated with the feedback
operator K opt,tk and ξξξtk

i , i = 1, . . . ,ns are the sensor locations
within R1(tk) that optimize (24) with gtk

i their static gains.

One way to interpret the above is to view the mobile
sensors as following the mobile actuator and repositioning
themselves around the current actuator location within the
reachability set R1(tk). The orientation and distribution of
the sensors in the vicinity of the actuator may be different
for different times, but at each time all the sensors are within
the current reachability set R1(tk).

To address the fact that the state x(tk) in (18) or (23) is
not available, we modify the approach considered in [2]. In a
time interval [tk, tk +∆t), one computes the optimal feedback
gain associated with each candidate actuator location in
R1(tk) and find the sensors associated with the decomposition
of that feedback gain. The to select the candidate actuator
with the associated sensors and static gains, consider the
resulting closed-loop system

ẋ(t) = (A −B(χa)G(χa)C (χa))x(t), (25)

and select the energy-to-go given by

E(tk,χa) =
∫ ∞

tk
〈x(τ),M x(τ)〉dτ, (26)

whose value is given by E(tk,χa) = trace (Σ(χa)) where
Σ(χa) solves the location-parameterized operator equation

(A −B(χa)G(χa)C (χa))
∗ Σ(χa)

+Σ(χa)(A −B(χa)G(χa)C (χa)) =−M .
(27)

An alternate decision for the actuator selection with its asso-
ciated sensors is to use the sensor measurements associated
with each actuator location and compare the norm of the
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output signal as an approximation and substitute for the state
norm. This of course has to run by one time-step behind the
selection of the actuator location.

Algorithm 1 summarizes the proposed actuator selection
using time-varying reachability sets and the associated sen-
sors and feedback gains.

Algorithm 1 Actuator-sensor guidance in [tk, tk+1)

1: initialize: Determine the set of admissible actuator loca-
tions Θad that render the location-parameterized opera-
tors (A ,B(χa)) approximately controllable. Divide the
interval of interest [t0,T ] into n uniform subintervals
[tk, tk+1] with tk = t0 + k∆t and ∆t = (T − t0)/n. The ∆t
is selected using hardware and processor requirements.

2: iterate: k = 0
3: loop
4: Define the reachability set R1(tk) using (22)
5: For each χa ∈ R1(tk), compute the gains K (χa) and

the associated kernels k(χa) using the ARE (19).
6: Using (24), calculate the candidate sensor locations

and their static gains for each χa ∈ R1(tk).
7: Minimize the actuator location-parameterized energy-

to-go (26) over all χa ∈ R1(tk)
8: Select the actuator location for [tk, tk+1) using

χopt,tk
a = arg min

χa∈R (tk)
trace(Σ(χa))

where Σ(χa) solves the Lyapunov equation (27)
9: For t ∈ [tk, tk+1), use (21) move to actuator location

χopt,tk
a within the appropriate reachability set R1(tk)

and implement the static output feedback controller

u(t)=−G(χopt,tk
a )C ∗(χopt,tk

a )x(t)=−G(χopt,tk
a )yopt,tk(t)

10: Propagate the relevant PDE (2) or (4) in [tk, tk+1)
11: if k ≤ n−2 then
12: k ← k+1
13: goto 2
14: else
15: terminate
16: end if
17: end loop

V. NUMERICAL EXAMPLES

PDE in 1D: Equation (2) is considered with α = 10, β =
0.05 and γ = −3 × 10−4. The spatial domain is taken as
Ω = [0, ℓ] = [0,100]m. A single actuator can move with
v = 25m/s and can reside in a given position for ∆t = 4s.
Using a travel time ttravel = 0.4s, the reachability radius is
R = 10m, meaning that at a given actuator location ξtk

a , the
reachability set is R1(tk) = {ξ : ξtk

a −R ≤ ξ ≤ ξtk
a +R }. The

LQR parameters in (19) were chosen as Q = I,R = 10−2.
A Galerkin-based finite dimensional approximation was

used to approximate (2) with 200 linear elements and the
resulting set of differential equations was simulated with the
ODE solver ode45 in Matlabr.
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Fig. 3. Actuator trajectory using the decomposition (14) over the entire Ω
and the decomposition (24) over the time-varying reachability sets R (tk).

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

Fig. 4. Evolution of L2 state norm.

Figure 3 depicts the actuator trajectories when the pro-
posed kernel decomposition method with the ns = 7 sensors
are also constrained to lie within the reachability set. For
comparison, the decomposition method with the sensors
allowed to be positioned within Ω is also included. For the
former, the decomposition (24) is used, whereas for the latter,
the decomposition (14) is used. It is observed that completely
different actuator trajectories are predicted.

To examine the performance of the decompositions (14)
and (24), the L2 norm of the closed loop state is presented in
Figure 4. It is observed that when the sensors approximating
the kernel are allowed to be located within Ω, via (24),
the performance of the closed-loop system is slightly better
as expected. However, the benefit in using the time-varying
reachability set to perform the kernel decomposition (24) lies
with the realistic situation of the mobile sensors lying in the
vicinity of the current position of the actuating device.

PDE in 2D: The PDE in (4) was considered with α =
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Fig. 5. Actuator trajectory using the kernel decomposition (14) over the
entire domain and the decomposition (24) over the time-varying reachability
sets R (tk).
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Fig. 6. Evolution of L2 state norm.

10,β = 1.5× 10−4,γ = −3× 10−4 over the spatial domain
Ω= [0,Lξ]∪ [0,Lψ] = [0,100]∪ [0,60]m. The mobile platform
carrying the actuator had a speed of v = 25/s and can take
ttravel = 0.4s to travel to a new position, thereby resulting in
a reachability radius R = 10m. For a given actuator position
χtk

a , the resulting reachability set (22) is given by a circle of
radius R centered at χtk

a . The LQR parameters in (19) were
similarly taken as Q = 10I and R = 10−2.

The PDE (4) was approximated by a Galerkin scheme
using nx = 41 and ny = 26 elements over [0,Lξ] and [0,Lψ].

The trajectories using the reachability set for kernel de-
composition (24) and using the entire domain for kernel
decomposition (14) are presented in Figure 5. As in the 1D
case, the trajectories are very different for the decomposition
using the entire domain and the time-varying reachability set.

VI. CONCLUSIONS

A method for decomposing a feedback kernel based on
a computational geometry method was proposed for a class
of PDEs. The state feedback controller was replaced by a
weighted sum of sensor measurements in order to reduce
controller complexity and minimize computational load. At
the beginning of a new time interval, a mobile actuator
is repositioned to a new location using an LQR actuator
optimization restricted to a time-varying reachability set that
took into account vehicle dynamics. Ensuring that the sensors
used to approximate the kernel decomposition, a further
restriction was imposed which force the mobile sensors to
remain in the vicinity of the current position of the actuator.

The feedback kernel decomposition and the constrained
sensor positioning within the time-varying reachability set of
the mobile actuator constituted the novelty of the reported
results.
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