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Abstract— The problem of sensor placement for second order
infinite dimensional systems is examined within the context
of a disturbance-decoupling observer. Such an observer takes
advantage of the knowledge of the spatial distribution of distur-
bances to ensure that the resulting estimation error dynamics
are not affected by the temporal component of the disturbances.
When such an observer is formulated in a second order setting,
it results in a natural observer. Further, when the natural
observer is combined with a disturbance decoupling observer,
the necessary operator identities needed to ensure the well-
posedness of the observer, are expressed in terms of the stiffness,
damping, input and output operators. A further extension
addresses the question of where to place sensors so that the
resulting natural disturbance decoupling observer is optimal
with respect to an appropriately selected performance measure.
This paper proposes this performance measure which is linked
to the mechanical energy of second order infinite dimensional
systems. The proposed sensor optimization is demonstrated by
a representative PDE in a second order setting.

I. INTRODUCTION

This paper combines three different design aspects for the
state estimation of infinite dimensional systems. The first one
considers the observer design of infinite dimensional systems
that have disturbances. A way to decouple the disturbances
from the state estimation problem, thus removing completely
the effects of the disturbances on the learning capability
of the state estimator, is to use a disturbance decoupling
observer. This approach, extensively applied in finite dimen-
sional systems [1], aims at completely removing the effects
of the disturbance signal by utilizing the knowledge of its
distribution matrix. The enabling conditions are expressed in
terms of a Sylvester equation and associated matrix identi-
ties reflecting the decoupling of the disturbance signal and
which express observability conditions of the relevant system
matrices. This disturbance-decoupling, or unknown input,
observer design was extensively utilized in the fault detection
community [2], [3] to decouple fault detection observers
from the effects of disturbances with known distribution
matrices.

The second design aspect deals with the design of natural
observers for second order systems. Such systems represent
mechanical systems and are formulated in a second order
(in time) setting. They are called natural since they ensure
that the derivative of the estimated position is equal to
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the estimated velocity. The estimator design is made in
the second order setting in order to ensure this kinematic
relationship of the estimated states. Such a link to the physics
is lost when a second order system is placed in a first order
state space form and then an observer is designed for it.
This was first observed in [4] for single degree of freedom
systems. The design of natural observers was subsequently
extended to multi-degree of freedom systems (vector second
order) [5], [6], [7] and second order infinite dimensional
systems [8], [9]. The natural observer design was similarly
applied for fault detection [10], [11], [12].

The design of a natural observer for second order systems
to account for disturbance decoupling was considered in
[13] for finite dimensional systems and was extended to the
infinite dimensional case in [14]. However, an added design
aspect not considered was the sensor location optimization.
If more than a single sensor location ensures that the distur-
bance decoupling observer is feasible, then one must select
the better location by appropriately selecting a performance
measure. The best sensor location for disturbance decoupling
natural observers (DDNO) is then selected from the set of
feasible locations that ensure that the DDNO is feasible and
which minimize the performance measure. This is in fact the
contribution of this paper. Both finite and infinite dimensional
second order systems are considered and the appropriate
measure of the sensor location optimization is proposed to
find the optimal sensor location amongst the candidate sensor
locations that yield the “best” DDNO.

The sensor optimization for DDNO of second order finite
dimensional systems is summarized in Section II and which
uses the total energy of the error system. This translates to
a location parameterized solution to an algebraic Lyapunov
equation and the optimal sensor is found as the one that
minimizes the trace of the location-parameterized Lyapunov
matrix.

Migrating to the infinite dimensional case, care must be
exercised when considering the relevant functional spaces.
Accounting for unbounded stiffness and damping operators
that also are defined in different spaces enables one to
account for a wide range of damping in the class of second
order infinite dimensional systems. This is formulated in the
Gelfand quintuple (five space setting), [15] and is presented
in Section III. The appropriate performance measure is
similarly define energy of the system which gives rise to
an operator Lyapunov equation parameterized by the candi-
date sensor locations. Assuming nuclearity of the Lyapunov
operator allows one to represent the performance metric in
terms of the location-parameterized Lyapunov operator.
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A numerical example involving the cable PDE in a single
spatial dimension is included in Section IV to demonstrate
the proposed sensor optimization results. Conclusions with
future extensions follow in Section V.

II. PROBLEM FORMULATION FOR SECOND ORDER FINITE

DIMENSIONAL SYSTEMS

While n-degree of freedom systems (DOF), also known as
vector second order systems, may not have the complexity
of second order infinite dimensional system, they nonetheless
share physical traits; the former can be viewed as the finite
dimensional approximation of the latter. Such systems are
governed by

Mẍ(t)+Dẋ(t)+Kx(t) = Bu(t)+Ew(t),

y(t) =Cx(t).
(1)

In the above, M = MT > 0 denotes the mass matrix, D =
DT ≥ 0 denotes the damping matric, K = KT > 0 denotes the
stiffness matrix and all are n×n matrices. The input matrix
B is an n× n matrix and describes how the r-dimensional
control signal u enters into the equations of motion. The
position output vector y is obtained via the m position sensors
via the m× n position output matrix C. The n-dimensional
vector x is the position vector and ẋ is the n-dimensional
velocity vector. The term Ew denotes disturbance terms with
w being the unknown input. The n×q matrix E denotes the
manner in which the disturbance signal w is distributed in
the states. The matrix E is assumed known.

The goal is to set up an observer that, despite the presence
of the unknown disturbance signal w, can still provide an
asymptotic estimate of the position and velocity vectors.
This of course leads to a disturbance-decoupling observer,
known also as an unknown input observer. If the above
system is brought in a first order formulation, the link to the
physical interpretation is lost. Thus, one must stay within
the second order setting to design an observer; such an
observer is termed a natural observer, because of its structure
it ensures that the time derivative of the estimated position
vector, denoted here by x̂ will be equal to the estimated
velocity v̂ where v = ẋ denotes the velocity. Such a relation
is mathematically described by the identity

dx̂
dt

= v̂ =
d̂x
dt

, (2)

or more compactly as ˙̂x = ̂̇x.
The natural observer for vector order systems was consid-

ered in [9] and its extension to unknown input observers was
presented in [14]. However, the sensor optimization for such
a disturbance decoupling natural observer (DDNO) has not
been addressed. This optimization will be summarized here
since it bears many similarities with its infinite dimensional
counterpart.

The sensor location is reflected in the output matrix C.
Thus we parameterized the output matric by the vector of
candidate locations and henceforth use the notation C(θ).
The goal is to select the sensor locations belonging to some
parameter set θ ∈ Θ that not only render the unknown-input

natural observer feasible, but also minimize an appropriately
selected performance measure; i.e., select the sensor location
θ from the set of feasible locations that makes the resulting
DDNO optimal.

The proposed θ-parameterized DDNO is given by

Mz̈(t)+Do(θ)ż(t)+Ko(θ)z(t) = T (θ)Bu(t)

+L(θ)y(t)+N(θ)ẏ(t)

x̂(t) = z(t)+H(θ)y(t).

(3)

The estimate of the position state x(t) is x̂(t) and the state
variables z, ż are the position and velocity states of the
observer. Due to its natural setting, the above disturbance
decoupling observer ensures that the velocity estimate is
simply given by the time derivative of x̂(t).

For each θ ∈ Θ, the parameter-dependent matrices
Do(θ),Ko(θ),T (θ),L(θ),N(θ),H(θ) satisfy the following
conditions

M (I −H(θ)C(θ))M−1E = 0

T (θ) = M (I −H(θ)C(θ))M−1

Do(θ) = T (θ)D+N1(θ)C(θ),

Ko(θ) = T (θ)K +L1(θ)C(θ),

N1(θ) =−Do(θ)H(θ),

L1(θ) =−Ko(θ)H(θ),

L(θ) = L1(θ)+L2(θ),

N(θ) = N1(θ)+N2(θ),

(4)

and which ensure that the DDNO is feasible for all θ ∈
Θ. Central to the stability and convergence of the above
parameter-dependent DDNO is the estimation error equation
e = x− x̂, expressed in a natural form

Më(t)+Do(θ)ė(t)+Ko(θ)e(t) = 0,

ε(t) =C(θ)e(t).
(5)

If for each θ ∈ Θ the conditions (4) are satisfied, then the
error equation (5) is a stable system with both the position
and velocity errors converging to zero asymptotically, despite
the presence of the unknown disturbance input in (1). The
conditions to ensure (4), are given in [11] and summarized
in [14]. They are stated here for the case of θ-dependent
matrices

• The first condition T (θ)E = 0 for each θ ∈ Θ with
the transformation matrix T (θ) given by T (θ) =
I − MH(θ)C(θ)M−1, has a solution if and only if
rank(C(θ)M−1E) =rank(M−1E) for each θ ∈ Θ.

• The solution to T (θ)E = 0 is given via the pseudoin-
verse of the matrix C(θ)M−1E via

E = MH(θ)C(θ)M−1E ⇒ M−1E = H(θ)C(θ)M−1E ⇒

H(θ) = M−1E
(
C(θ)M−1E

)†
=

M−1E
[(

C(θ)M−1E
)T (

C(θ)M−1E
)]−1 (

C(θ)M−1E
)T

This is feasible since C(θ)M−1E is a full column rank
matrix.
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The other conditions that are imposed are (C(θ),T (θ)K) and
(C(θ),T (θ)D) be detectable uniformly for each θ ∈ Θ.

To find the optimal θ∈Θ, one considers the error equation
(5). When viewed in a first order form, it becomes[

Ko(θ) 0

0 M

][
ė

ë

]
+

[
0 Ko(θ)

Ko(θ) Do(θ)

][
e

ė

]
=

[
0

0

]
.

The appropriate metric to optimize the DDNO is to consider
the energy of the above error system and minimize this
energy with respect to θ ∈ Θ. This takes the form of a θ-
dependent Lyapunov equation.

The above system can be compactly written as

Ė(t) = A(θ)E(t), (6)

where

E =

[
e

ė

]
, A(θ)=−

[
Ko(θ) 0

0 M

]−1[ 0 Ko(θ)

Ko(θ) Do(θ)

]
.

For this θ-parameterized dynamical system, the natural opti-
mization measure is the cost function which is based on the
mechanical energy

J(θ) =
∫ ∞

0
ET (τ)Q(θ)E(τ)dτ, (7)

where the weight matrix Q(θ) is

Q(θ) =

[
Ko(θ) I

0 M

]
, θ ∈ Θ.

The weighted inner product in the optimization measure
represents the kinetic (eT Koe) and potential (ėT Mė) energies
of the closed-loop error system (5) and constitutes the natural
selection for the optimization measure. The solution to this
minimization problem is

min
θ∈Θ

J(θ) = min
θ∈Θ

ET (0)Π(θ)E(0), (8)

where Π(θ) is the solution to the θ-parameterized Lyapunov
equation

AT (θ)Π(θ)+Π(θ)A(θ)+Q(θ) = 0, ∀θ ∈ Θ. (9)

A further simplification removes the dependence on the
initial data E(0) by assuming that E(0) is a Gaussian random
vector in R2n with a zero mean and unit covariance. In such a
case, the above optimization simplifies and hence the optimal
value of the parameter is

θopt = arg min
θ∈Θ

tr (Π(θ)) . (10)

The construction of the optimal disturbance decoupling ob-
servers is summarized in Algorithm 1.

III. PROBLEM FORMULATION FOR SECOND ORDER

INFINITE DIMENSIONAL SYSTEMS

The analysis of second order systems involves a five-space
setting in order to allow the damping operators defined over
different spaces than the stiffness operators. The second order
infinite dimensional systems are described by the evolution

Algorithm 1 Optimal natural DDO-finite dimensional case

1: initialize: Determine the set of admissible sensor loca-
tions Θ ensure the solvability of the natural disturbance
decoupled observer in (4). Implicitly embedded in the
solvability conditions are the observability conditions for
the pairs (C(θ),T (θ)L) and (C(θ),T (θ)D).

2: iterate: For each θ ∈ Θ, set up the 2n×2n matrix A(θ)
3: solve: For each θ ∈ Θ, solve the Lyapunov equation (9)
4: select: Select the optimal sensor location using

θopt = arg min
θ∈Θ

tr (Π(θ)) .

5: implement: Implement natural DDO (3) with θ = θopt

equation

ẍ(t)+Dẋ(t)+Kx(t) = Bu(t)+Ew(t), in V ∗
1 ,

x(0) = x0 ∈V1, ẋ(0) = v0 ∈ H,

y(t) =Cx(t),

(11)

where the five-space setting V1 →֒ V2 →֒ H →֒ V ∗
2 →֒ V ∗

1
allows one to appropriately define the damping and stiff-
ness operators. The Hilbert space H serves as the pivot
space and the embeddings are compact with the follow-
ing norm bounds: |φ|H ≤ c1‖φ‖V1 , |φ|H ≤ c2‖φ‖V2 and
|φ|V2 ≤ c2‖φ‖V1 . Using the above, we have that the damp-
ing operator D ∈ L(V2,V ∗

2 ) is symmetric and bounded
with |〈Dφ,ψ〉V ∗

2 ,V2 | ≤ δu‖φ‖V2‖ψ‖V2 , and V2-H coercive with
〈Dφ,φ〉V ∗

2 ,V2 +λℓ|φ|2H ≥ δℓ‖φ‖2
V2

, for φ,ψ ∈V2. Similar condi-
tions are satisfied by the stiffness operators in the larger space
V1 with a stronger coercivity condition: symmetric, bounded
with |〈Kφ,ψ〉V ∗

1 ,V1 | ≤ κu‖φ‖V1‖ψ‖V1 , and V1-coercive with
〈Kφ,φ〉V ∗

1 ,V1 ≥ κℓ‖φ‖2
V1

, for φ,ψ ∈ V1. The output operator
C ∈ L(V1,Y ) where Y is the finite dimensional output space,
the control input operator B ∈ L(U,V ∗

1 ) where U is the finite
dimensional control space and the disturbance input operator
E ∈ L(W,V ∗

1 ) where W is the finite dimensional disturbance
space. Finally, with Bu + Ew ∈ L2(0, t;V ∗

2 ) one can claim
well-posedness meaning that x ∈ L2(0, t;V1), ẋ ∈ L2(0, t;V2)
and ẍ ∈ L2(0, t;H), see [15], [16].

Unlike the finite dimensional counterpart (3), the infinite
dimensional case of a disturbance-decoupling observer re-
quires the following assumption.

Assumption 1 (output differentiability): The output oper-
ator is such that

d
dt

y(t) =Cẋ(t) (12)

Additionally, it is assumed that the counterpart of the
DDNO in (3) can be realized for more than a single sensor
location. Thus, it is assumed that the set of candidate sensor
locations Θ consists of all points that render the system (11)
exponentially detectable. For each sensor location θ ∈ Θ, the
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corresponding DDNO for (11) is given by

z̈(t)+Do(θ)ż(t)+Ko(θ)z(t) = T (θ)Bu(t)

+L(θ)y(t)+N(θ)ẏ(t), in V ∗
1 ,

x̂(t) = z(t)+H(θ)y(t),

V ∗
1 ∋ z(0) 6= x0 −HCx0,

H ∋ ż(0) 6= v0 −HCv0.

(13)

The constraints on the initial conditions are imposed to avoid
the trivial case. The state x̂(t) is the estimated state position
and by its construction, the DDNO (13) ensures that the
estimated velocity is exactly equal to ˙̂x(t). The state z(t) is
the state of the DDNO. The location parameterized operators
Do,Ko,T,L,N,H must satisfy the following conditions for
each θ ∈ Θ in order to achieve the sought after disturbance
decoupling. The counterparts of (4) are given by

(I −H(θ)C(θ))E = 0 in V ∗
1 , H(·) ∈ L(Y,V ∗

2 )

T (θ) = (I −H(θ)C(θ)), T (·) ∈ L(V ∗
1 ,V

∗
2 )

Do(θ) = T (θ)D+N1(θ)C(θ), N1(·) ∈ L(Y,V ∗
2 )

Ko(θ) = T (θ)K +L1(θ)C(θ), L1(·) ∈ L(Y,V ∗
1 )

N2(θ) =−(T (θ)D+N1(θ)C(θ))H(θ)

=−Do(θ)H(θ), N2(·) ∈ L(Y,V ∗
2 )

L2(θ) =−(T (θ)K +L1(θ)C)H(θ)

=−Ko(θ)H(θ), L2(·) ∈ L(Y,V ∗
1 ),

N(θ) = N1(θ)+N2(θ), N(·) ∈ L(Y,V ∗
2 )

L(θ) = L1(θ)+L2(θ), L(·) ∈ L(Y,V ∗
1 ).

(14)

Following the case of a fixed sensor in [14], for each θ ∈ Θ,
the pairs (C(θ),T (θ)K) and (C(θ),T (θ)D) are exponentially
detectable, uniformly for θ ∈ Θ. This ensures that for each
θ ∈ Θ the operators Do(θ) and Ko(θ) are V2 and V1 coercive,
respectively. Defining the position estimation error e = x− x̂,
the combination of (11), (13), (14) yields

ë(t)+Do(θ)ė(t)+Ko(θ)e(t) = 0, in V1, θ ∈ Θ. (15)

The well-posedness of (13) and convergence of the error
(15) easily follow from [14]. They are stated here for each
θ ∈ Θ.

Lemma 1: The proposed DDNO (13) is well-posed if the
θ-parameterized pairs (C(θ),T (θ)K) and (C(θ),T (θ)D) are
exponentially detectable for each θ∈Θ and all the conditions
in (14) are satisfied.

Lemma 2: The estimation error (15) is a stable volution
system for each θ ∈ Θ and

lim
t→∞

‖e(t)‖V1 = 0, lim
t→∞

|ė(t)|= 0,

thus rendering the θ-parameterized DDNO in (13) a natural
disturbance decoupling observer for the perturbed second
order system (11).

Following the finite dimensional case for the optimal
sensor location, the appropriate performance metric for the
location-parameterized state error (15) is the infinite horizon

energy given by

J(θ) =
∫ ∞

0
‖e(τ)‖2

V1
+ |ė(τ)|2H dτ. (16)

To arrive at a first order formulation, one first considers the
appropriate state space, given by X = V1 ×H and equipped
by the inner product and norm

〈Φ,Ψ〉X = 〈Φ1,Ψ1〉V1 + 〈Φ2,Ψ2〉H

|Φ|2
X
= ‖Φ1‖

2
V1
+ |Φ2|

2
H ,

for Φ = (Φ1,Φ2), Ψ = (Ψ1,Ψ2). Next, consider Y=V1×V2

endowed with the norm

|Φ|2
Y
= ‖Φ1‖

2
V1
+‖Φ2‖

2
V2
.

Then we have that Y →֒ X →֒ Y∗ and thus can define the
theta-parameterized state operator associated with (15) via

A(θ)Φ=

[
0 I

−Ko(θ) −Do(θ)

][
Φ1

Φ2

]
, Φ=(Φ1,Φ2)∈Y.

The error equation (15) written as a first order dynamical
system is

Ė(t) = A(θ)E(t).

The value of the cost (16) is given by

Jopt(θ) = 〈ΠΠΠ(θ)E(0),E(0)〉X, θ ∈ Θ,

where for each θ ∈ Θ, ΠΠΠ(θ) is the solution to the operator
Lyapunov equation

A∗(θ)ΠΠΠ(θ)+ΠΠΠ(θ)A(θ)+Q = 0 (17)

where Q is an appropriately selected coercive operator and
which then prompts to optimal sensor location via

θopt = arg min
θ∈T heta

trace ΠΠΠ(θ). (18)

The above is enabled via the assumption that the initial data
E(0) = (e(0), ė(0)) is a Gaussian random vector in X with
zero mean and unit covariance. The existence of a optimizer
(minimiser) to (18) depends on the Lipschitz continuity of
operator ΠΠΠ(θ) with respect to the sensor location θ ∈ Θ.
Such a condition can be satisfied if the θ-parameterized
state operator A(θ) generates an exponentially stable C0-
semigroup on X and A(θ) has compact resolvent. These
can be guaranteed via the conditions of the exponential
detectability and the relation between the operators K0(θ)
and D0(θ) (see [17, Theorem 3B.1 in Appendix 3B]).

IV. NUMERICAL EXAMPLES

To demonstrate the sensor optimization for the DDNO, we
consider the wave PDE equation in one spatial dimension
given by

∂2x
∂t2 (t,ξ)−a2

∂2∂x
∂ξ2∂t

(t,ξ)−a1
∂2x
∂ξ2 (t,ξ)

= b(ξ)u(t)+ e(ξ)w(t),
(19)

in the spatial domain Ω = [0, ℓ] = [0,1], furnished with
Dirichlet boundary conditions x(t,0) = 0 = x(t,1) and ini-
tial condition x(0,ξ) = 5sin(2πξ), xt(0,ξ) = 0. This is the
same example considered in the earlier work [14]. The
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constant parameters were selected as a1 = 0.2, a2 = 0.01.
One immediately identifies V1(0, ℓ) =V2(0, ℓ) = H1

0 (0, ℓ) and
H = L2(0, ℓ).

The spatial distribution of the actuator and of the distur-
bance inputs were selected as

b(ξ) =

{
1 if ξ ∈ [0.765,0.815]

0 otherwise
,

e(ξ) =

{
1 if ξ ∈ [0.50,0.70]

0 otherwise
,

The stiffness and damping operators for (17) are given by

〈Kφ,ψ〉V ∗
1 ,V1 =−a1

∫ ℓ

0
φ′′(ξ)ψ′′(ξ)dξ,

〈Dφ,ψ〉V ∗
2 ,V2 =−a2

∫ ℓ

0
φ′′(ξ)ψ′′(ξ)dξ,

with the control and disturbance input operators given by

〈Bu(t),φ〉=
∫ 0.815

0.765
φ(ξ)dξu(t),

〈Ew(t),φ〉=
∫ 0.70

0.50
φ(ξ)dξw(t).

Two sensor measurements were considered, with one fixed
at an a priori location in the spatial domain Ω and the other
one parameterized by the location θ ∈ Ω. Thus one has

y(t) =




∫ 1

0
c1(ξ)x(t,ξ)dξ

∫ 1

0
c2(ξ;θ)x(t,ξ)dξ


=

[
C1x(t)

C2(θ)x(t)

]
,

with the spatial distribution of the sensors given by the
boxcar function

C1φ = 〈c1,φ〉=
∫ 1

0
c1(ξ)φ(ξ)dξ =

∫ 0.593

0.573
φ(ξ)dξ,

C2(θ)φ = 〈c2(θ),φ〉=
∫ θ+δξ

θ−δξ
φ(ξ)dξ,

where the half-length of the sensor support is δξ = ℓ/100.
The set of candidate sensor locations consist of all locations
in the interval [δξ, ℓ− δξ] that render the resulting second
order infinite dimensional system exponentially detectable.

To simulate the system with its DDNO and perform
the sensor optimization, a Galerkin-based finite dimensional
approximation using linear elements was used. The sensor
optimization computed the finite dimensional approximation
of the operator Lyapunov equation and provided the θ-
parameterized cost. As presented in Figure 1, the normalized
cost J is plotted for all candidate sensor locations. As
observed, it predicts the optimal location of the second sensor
to be at θ = 0.583, which coincides with the fixed sensor.
Thus, the optimal sensor location was selected as the one
that provided the second smallest value of the normalized
cost J and which placed the second sensor at the optimal
location θopt = 0.6986.

Using as the disturbance input w the function w(t) = 320+

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.97

0.975

0.98

0.985

0.99

0.995

1

Fig. 1. Optimal cost J against the sensor locations.

40sin(2πω1t), where ω1 =
√

λmin(K) denotes the minimum
of the square root of the eigenvalues of the stiffness matrix,
designed as a means to represent the worst possible distur-
bance, the proposed DDNO was simulated in the interval
[0,10]s. An H∞ filter, designed for the first order formulation
of the infinite dimensional system and which used the same
sensors was simulated in order to provide a direct comparison
of the filters to provide state estimates despite the presence
of a spatially distributed disturbance.

The spatial distribution of the state position error x(t,ξ)−
x̂(t,ξ) at the final time t = 10s for both the proposed optimal
DDNO and the optimal H∞ filters is depicted in Figure 2.
Similarly, the spatial distribution of the state velocity error
xt(t,ξ)− x̂t(t,ξ) at the final time t = 10s is depicted in Fig-
ure 3. Both figures provide similar results on the successful
performance of the proposed DDNO to completely decouple
the effects of the disturbance signals in reconstructing the
process state. Such a performance cannot be duplicated by
the H∞ filter which cannot minimize the effects of the
disturbance w(t) on the successful reconstruction of the
position and velocity states of (19).

Finally, the time evolution of the state error norm given
by √

‖e(t)‖2
V1
+ |ė(t)|2H =

√∫ ℓ

0

(
a1

∂2e
∂ξ2 (t,ξ)

)2

dξ+
∫ ℓ

0

(
∂e
∂t
(t,ξ)

)2

dξ

for both filters is presented in Figure 4. The performance of
the proposed DDNO is far better than that of the robust filter
provided by the H∞ design.

V. CONCLUSIONS

The design of a disturbance decoupling, or unknown input,
observer for second order systems was combined with sensor
optimization for a class of second order finite and infinite
dimensional systems. The candidate sensor locations were
selected from the available locations that provided a form
of observability and ensure that all the conditions for the
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Fig. 2. Spatial evolution of the position error.
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Fig. 3. Spatial evolution of the velocity error.

unknown input observer were feasible. Then the optimization
provided the optimization measure to be the energy of the
resulting estimation error. The proposed optimization scheme
was demonstrated with a cable PDE in one spatial dimension.

A natural extension for the DDNO is to combine the
observer design with the controller design and thus arrive at
a closed-loop performance measure to optimize both the sen-
sors and the actuators of the second order dynamical systems.
Another direction is to consider singularly perturbed vector
second order systems as presented in [18], or semilinear
vector second order systems and include the disturbance-
decoupling feature along with the sensor optimization. These
aspects are currently being examined by the authors and will
appear in a forthcoming publication.
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