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Error-mitigated simulation of quantum many-body scars on quantum computers
with pulse-level control
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Quantum many-body scars are an intriguing dynamical regime in which quantum systems exhibit coherent dy-
namics and long-range correlations when prepared in certain initial states. We use this combination of coherence
and many-body correlations to benchmark the performance of present-day quantum computing devices by using
them to simulate the dynamics of an antiferromagnetic initial state in mixed-field Ising chains of up to 19 sites. In
addition to calculating the dynamics of local observables, we also calculate the Loschmidt echo and a nontrivial
unequal-time connected correlation function that witnesses long-range many-body correlations in the scarred
dynamics. We find coherent dynamics to persist over up to 40 Trotter steps even in the presence of various sources
of error. To obtain these results, we leverage a variety of error-mitigation techniques including noise tailoring,
zero-noise extrapolation, dynamical decoupling, and physically motivated postselection of measurement results.
Crucially, we also find that using pulse-level control to implement the Ising interaction yields a substantial
improvement over the standard controlled-NOT-based compilation of this interaction. Our results demonstrate
the power of error-mitigation techniques and pulse-level control to probe many-body coherence and correlation
effects on present-day quantum hardware.
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Quantum simulation is one of the most natural problems
in which to expect a quantum computer to outperform a
classical one. In particular, simulating the time evolution of
a quantum many-body system with local interactions on a
quantum computer requires a number of local quantum gates
scaling polynomially with the number N of qubits and linearly
with the total simulation time T [1]. Classical simulation
techniques, in contrast, require resources scaling exponen-
tially with N , restricting most studies of quantum many-body
dynamics to small systems and/or early times. There is thus a
relatively clear path to quantum advantage for the quantum
simulation problem, assuming the availability of quantum
hardware that can simulate the dynamics of a quantum many-
body system with sufficiently large N and T .

The present generation of quantum hardware operates
in the so-called noisy intermediate-scale quantum (NISQ)
regime [2]. NISQ devices have enough qubits (∼101–103) to
potentially evade classical simulability, but coherence times
and gate fidelities that are too small to simulate dynamics
beyond the early-time regime, where tensor-network meth-
ods [3] are often still applicable. As hardware continues to
improve, a major challenge of the NISQ era is to determine
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strategies to maximize the utility of such devices despite
their imperfections. One approach to this problem is to use
variational quantum algorithms [4,5], which reduce the re-
quired circuit depth for tasks including time evolution [6–14]
at the cost of requiring many circuit evaluations. An alter-
native approach is to apply a growing toolbox of hardware-
and noise-aware quantum error-mitigation techniques to a
relatively simple quantum simulation algorithm, e.g., the first-
order Trotter method of Ref. [1]. Error-mitigation strategies
can be applied at the hardware level, e.g., by applying dy-
namical decoupling pulses to idle qubits [15–17] or designing
optimized pulse sequences to reduce gate execution times
[18,19]. Other strategies, such as randomized compilation
[6,20] and zero-noise extrapolation [6,21–23], run additional
circuits that are logically equivalent to the target circuit
and perform postprocessing of the data to estimate the hy-
pothetical noiseless result. Recently, Ref. [19] showed that
combining these error-mitigation techniques yields first-order
Trotter simulations of quantum dynamics whose accuracy as
measured by local observables is competitive with tensor-
network methods, at least for low bond dimensions.

In this work, we test the ability of present-day quantum
hardware to simulate nontrivial many-body dynamics and cor-
relation effects in a prototypical interacting quantum system:
the one-dimensional mixed-field Ising model (MFIM). This
model and its variants have been simulated on NISQ hard-
ware in several recent works [24–26]. Our goal here is to
model a particular physical phenomenon known as quantum
many-body scars (QMBSs) [27–30] (see Refs. [31–33] for
reviews). This phenomenon was observed experimentally in
an analog quantum simulation of the MFIM using Rydberg
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atoms in optical tweezers [34], where coherent oscillations
of the local Pauli expectation values 〈Zi(t )〉 were observed
after a quantum quench from the Néel state |Z2〉 = |010 · · ·〉
or its Z2 conjugate |Z ′

2〉 = |101 · · ·〉. This came as a surprise,
since the MFIM is known to be nonintegrable for generic
values of the transverse and longitudinal fields and the Néel
states |Z2〉 and |Z ′

2〉 have a finite energy density relative to the
ground state of the model. In such a case, reasoning based on
the eigenstate thermalization hypothesis (ETH) [35,36] leads
to the expectation that the dynamics from these initial states
should rapidly decohere [37,38]. Intriguingly, the oscillatory
dynamics also encode coherent oscillations in space: Ref. [39]
argued based on finite-size numerics that the dynamics from
the Néel state exhibits long-range connected unequal-time
correlations at wavenumber π . This finding also defies in-
tuition based on the ETH and suggests that the oscillatory
dynamics observed in the experiment [34] are fundamentally
many body in nature, and cannot be explained by the preces-
sion of free spins. QMBSs are known to occur in a variety of
other models [28,40–49], and have been observed in several
analog quantum simulation experiments [34,50,51], but we
focus here on a digital quantum simulation approach.

Motivated by these experimental and theoretical results,
we use IBM quantum processing units (QPUs) to perform a
first-order Trotter simulation of the MFIM in the regime with
QMBSs for up to 40 Trotter steps on systems of up to 19
qubits. One goal of the study is to use the coherent dynamics
in the scarred regime to benchmark the performance of these
QPUs; another is to use QPUs to verify the presence of non-
trivial connected unequal-time correlations in the dynamics
of the Néel state. Such correlations, which demonstrate the
inextricably many-body nature of the oscillatory dynamics,
are challenging to measure in analog quantum simulators
and have yet to be probed experimentally. Our QPU results
demonstrate that they can be accessed using digital quantum
simulation.

To optimize the performance of the devices, we make
use of a variety of techniques. First, we implement quan-
tum simulation of the Ising interaction using a scaled
cross-resonance pulse and show that this implementation out-
performs the naive compilation of the Ising evolution operator
using two controlled-NOT (CNOT) gates. Second, we apply
an arsenal of error-mitigation techniques, including zero-
noise extrapolation, Pauli twirling, dynamical decoupling,
readout error mitigation, and, where appropriate, physically
motivated postselection of computational-basis measurement
outcomes. Many of these methods were applied to simulate
the transverse-field Ising model on the heavy hexagon lattice
for at most 20 Trotter steps in Ref. [19]; we will comment on
areas where our implementation differs from theirs, the most
important being our use of postselection and an alternative
approach to Pauli twirling of non-Clifford gates.

We combine these techniques to calculate spatially av-
eraged local observables, as well as more sensitive probes
of the dynamics including the Loschmidt echo and a non-
trivial finite-wavenumber connected correlation function. We
find that combining pulse-level control and error-mitigation
techniques extends by roughly a factor of 2 the timescales
over which nontrivial oscillatory dynamics can be observed.
Taken together, our results demonstrate that these nontrivial

many-body effects can be probed, at least in the early-time
regime, on present-day quantum hardware.

The remainder of the paper is organized as follows. In
Sec. I we define the mixed-field Ising model and the related
observables that we will calculate on the QPU. In Sec. II,
we describe the scaled cross-resonance pulse (“scaled RZX ”
for short) implementation of the Ising interaction. We present
data benchmarking its performance against the more stan-
dard implementation of the interaction using two CNOT gates.
In Sec. III, we present data for simulations of a 12- and
19-site chain using both the two-CNOT and scaled-RZX im-
plementations, and use this to motivate a brief discussion of
the error-mitigation techniques we use. We show our main
results in Sec. IV, which includes error-mitigated results
for the staggered magnetization, the Loschmidt echo, and
the finite-wavenumber connected unequal-time correlator. Fi-
nally, conclusions and outlook are discussed in Sec. V.

I. MODEL AND OBSERVABLES

A. Model

In this work we simulate the dynamics of a chain of L spin-
1/2 degrees of freedom generated by the Hamiltonian

H = 4V
L−1∑
i=1

nini+1 + �

L∑
i=1

Xi, (1.1)

where ni = I−Zi
2 , and where Zi and Xi are Pauli operators on

site i. This model arises when studying chains of trapped
Rydberg atoms with rapidly decaying van der Waals interac-
tions, where the operator ni is interpreted as an occupation
number for the local atomic Rydberg state and the operator
Xi induces transitions between the ground and Rydberg states.
In this paper, we will label computational basis (CB) states
using the eigenstates |0〉i and |1〉i of the Zi operator for which
ni|0〉i = 0 and ni|1〉i = |1〉i. Rewriting Eq. (1.1) in terms of
Pauli matrices, we obtain

H = HZZ + HZ + HX

= V
L−1∑
i=1

ZiZi+1 − 2V
L−1∑
i=2

Zi −V (Z1 + ZL ) + �

L∑
i=1

Xi.

(1.2)

Hamiltonian (1.2) is an Ising model with transverse and lon-
gitudinal fields (the MFIM), but in which the strength of the
longitudinal field is tied to the interaction strength V as a
consequence of the model’s origin in Eq. (1.1). Note that the
model is written with open boundary conditions, and that the
longitudinal field strength is reduced by a factor of 2 on the
first and last sites of the chain (i = 1,L).

Model (1.2) is nonintegrable for generic values of V and
�. QMBSs emerge in the limitV � �, which is known in the
Rydberg-atom literature as the “Rydberg blockade” regime
[52,53]. In this limit, computational-basis states with different
eigenvalues of

∑L−1
i=1 nini+1 decouple into sectors separated by

an energy scale ∼V . When the system is initialized in a CB
state with 〈∑L−1

i=1 nini+1〉 = 0, such as the Néel states |Z2〉 and
|Z ′

2〉, the probability of finding nearest-neighbor sites in the
configuration |11〉 is heavily suppressed. The subspace of the
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FIG. 1. Schematic of the state-preparation circuit and the Trotter
circuit for one time step �t in an L = 5 site chain. The first part of
the circuit prepares the Néel state |01010〉 from the polarized state
|00000〉 using X gates. The Trotter circuit uses single-qubit rota-
tions RX (θX

i ) = e−iθXi Xi/2 and RZ (θZ
i ) = e−iθZi Zi/2 and two-qubit gates

RZZ (θZZ
i ) = e−iθZZi ZiZi+1/2. Here, θZ

1 = θZ
L = −2V�t . The remaining

angles are given by θX
i = 2��t , θZ

i = −4V�t , and θZZ
i = 2V�t for

i = 1, 2, . . . ,L.

full Hilbert space in which no two nearest-neighbor sites are
in the state |11〉 is known as the Fibonacci Hilbert space, as
the number of such states scales as ϕL, where ϕ is the golden
ratio. An effective model for the system in this limit is known
as the “PXP model,” which arises from the projection of HX

into the Fibonacci Hilbert space [27,34].
To simulate the system’s dynamics under Hamiltonian

(1.2), we employ a first-order Trotter decomposition of the
unitary evolution operator over a time �t :

U (�t ) ≈ e−iHZZ�t e−iHZ�t e−iHX�t . (1.3)

A decomposition of this circuit into single-qubit gates
RX (θX

i ) = e−iθX
i Xi/2 and RZ (θZ

i ) = e−iθZ
i Zi/2 and two-qubit

gates RZZ (θZZ
i ) = e−iθZZ

i ZiZi+1/2 is shown in Fig. 1. Evolution
over a time T = n�t is obtained by applying circuit (1.3) n
times.

B. Observables

To probe the dynamics of model (1.2) in the QMBS regime
V � �, we use the QPU to measure three dynamical prop-
erties. First, to characterize the oscillations, we measure the
dynamics of the expectation value of the staggered magneti-
zation operator,

Zπ =
L∑
i=1

(−1)iZi. (1.4)

This operator takes its extremal values 〈Zπ 〉 = ±L when the
system is prepared in the Néel state |Z ′

2〉 or |Z2〉, respectively.
Exact simulations of a quantum quench from the |Z2〉 state
show a weakly damped coherent oscillation of 〈Zπ (t )〉 with
frequency ω ≈ 1.33� [27], indicating that the system’s state
is periodically cycling between the two Néel states. In con-
trast, the expectation based on the ETH is that 〈Zπ (t )〉 would
decay rapidly, on a timescale ∼1/�, to its thermal value of
0. These coherent oscillations arise due to the presence of a
tower of eigenstates with roughly equal energy spacings in
the many-body spectrum [27]. These “scar states” have high

overlap with the Néel states, so preparing the system in one
of these initial states projects the ensuing dynamics strongly
onto this set of special eigenstates. 〈Zπ (t )〉 is calculated on
the QPU by performing Trotter evolution out to time t and
measuring the state in the computational basis.

Second, we measure the Loschmidt echo,

L(t ) = |〈ψ (t )|ψ (0)〉|2, (1.5)

where |ψ (0)〉 is taken to be |Z2〉. When the system is prepared
in this initial state, the scarred eigenstates give rise to sharp
periodic revivals of the Loschmidt echo to a value of order 1,
with period matching that of the oscillations in 〈Zπ (t )〉 [29].
This behavior is highly atypical—L(t ) is expected to decay to
zero exponentially fast in quantum quenches of nonintegrable
models from typical high-energy-density initial states [54,55].
Thus, the Loschmidt echo is a much more sensitive quantity
than 〈Zπ (t )〉, which is built from expectation values of local
observables. To measure the Loschmidt echo on the QPU, we
perform Trotter evolution of the |Z2〉 state and measure in the
CB to determine the probability to be in the state |Z2〉 after a
time t .

Third, we measure the correlation function

CY (t ) = 〈Yπ (t )Yπ (0)〉, (1.6a)

where

Yπ ≡
L∑
i=1

(−1)i(PYP)i, (1.6b)

with

(PYP)i =
⎧⎨
⎩
Y1P2, i = 1
Pi−1YiPi+1, i = 2, . . . ,L − 1
PL−1YL, i = L,

(1.6c)

and Pi = (1 + Zi )/2 such that Pi|0〉i = |0〉i and Pi|1〉i = 0.
Note that when CY (t ) is evaluated in the state |Z2〉 (or in-
deed any other initial CB state), the disconnected part of
the correlator vanishes since 〈Z2|Yπ (0)|Z2〉 = 0. Thus, CY (t )
probes nontrivial long-range correlations in space and time
with wavenumber π . In Ref. [39], it was argued that CY (t )
exhibits coherent weakly damped oscillations when the initial
state is taken to be one of the Néel states. These long-range
correlations arise due to the presence of off-diagonal long-
range order in the scarred eigenstates [39,56]. This nontrivial
correlator has yet to be measured experimentally. Measuring it
on a QPU is challenging, but achievable using the ancilla-free
protocol of Ref. [57], which we describe further in Sec. IV B.

II. PULSE-LEVEL IMPLEMENTATION OF THE ISING
INTERACTION

Implementing the Trotter circuit in Eq. (1.3) requires real-
izing the two-qubit gate RZZ (θ ) on the device. One approach
to solving this problem is to decompose RZZ (θ ) into a basis
gate set, the most standard of which includes CNOT and arbi-
trary one-qubit rotations. In this basis, RZZ (θ ) can be realized
by applying two CNOT gates on either side of an RZ (θ ) gate on
the target qubit [58,59], as shown in Fig. 2(a).

An alternative approach is to leverage knowledge of the
basic set of pulses used to generate two-qubit gates at the
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FIG. 2. Benchmarking the two-CNOT and scaled RZX implementations of the RZZ (θ ) gate. All data were taken on the IBM QPU Casablanca
(ibmq_casablanca). (a) Standard implementation of the RZZ (θ ) gate using two CNOTs. (b) Implementation of the RZZ (θ ) gate using an
RZX (θ ) gate and appropriate single-qubit rotations. (c) Duration in nanoseconds of the pulse schedule on ibmq_casablanca as a function
of θ = 2V�t � 2.5 for the two-CNOT and scaled-RZX implementations of RZZ (θ ). The scaled-RZX implementation has a substantially shorter
pulse duration for all θ considered. (d) Fidelity of the two-CNOT and scaled-RZX implementations of RZZ (θ ) obtained using quantum process
tomography on ibmq_casablanca as described in the text. The fidelity of the scaled-RZX implementation decreases with increasing θ while
that of the two-CNOT implementation remains roughly constant. Data were accumulated over two days, so fluctuations in the fidelity due to
calibration drifts are visible.

hardware level. On IBM QPUs, well-calibrated CNOT gates
are built by adding single-qubit gates before and after the
RZX (π/2) gate [60], which is defined via RZX (θ ) = e−iθZcXt /2,
where c and t denote the control and target qubits, respec-
tively. These RZX (π/2) gates are realized using an echoed
cross-resonance pulse sequence described in further detail in
Appendix A and in Ref. [60]. The ability to implement an
RZX (θ ) gate opens another route to realize the RZZ (θ ) gate
simply by dressing the RZX (θ ) gate with RY (±π/2) gates on
the target qubit [see Fig. 2(b)]. To realize the RZX (θ ) gate
with arbitrary rotation angle on the QPU, we scale the pulse
amplitudes and durations used to generate the RZX (±π/2)
gate in the manner described in Refs. [18,61] and summa-
rized in Appendix A. We therefore refer to this pulse-level
implementation of the RZZ gate as the “scaled-RZX ” imple-
mentation. The pulse sequences are programed using QISKIT

PULSE [60,62]; examples of pulse schedules used in our simu-
lations are shown in Appendix A (Fig. 8).

Since the scaled-RZX approach uses fewer cross-resonance
pulses than the two-CNOT implementation of RZZ , we expect
the former to yield pulse schedules with shorter overall du-
ration than the latter. The duration of the pulse schedule that
realizes the two-CNOT implementation of RZZ (θ ) is indepen-
dent of the rotation angle θ , since the RZ (θ ) gate is simply
realized as a phase shift on the pulse schedule [60]. In contrast,
in the scaled-RZX implementation of RZZ , the cross-resonance
pulse duration depends roughly linearly on θ for θ above a
certain threshold and is constant below that threshold (see
Appendix A). The pulse durations in nanoseconds of the
two-CNOT and scaled-RZX implementations of RZZ (θ ) on the
IBM QPU Casablanca (ibmq_casablanca) are shown as a
function of θ in Fig. 2(c). Despite the θ dependence of the
scaled-RZX pulse duration, there is a wide range of interac-
tion strengths V and Trotter time steps �t giving an angle
θ = 2V�t such that the scaled-RZX implementation has the
shorter pulse duration of the two methods.

The total duration of the pulse schedule that realizes a
given quantum gate is positively correlated with the gate’s
error rate. We therefore expect that the scaled-RZX implemen-
tation of RZZ should have a lower error rate than that of the

two-CNOT implementation of the same gate. To compare the
error rates of the RZZ gates realized using the two approaches,
we measure the fidelity of RZZ (θ ) at 12 different angles from
θ = 0.2 to θ = 2.4 using quantum process tomography (QPT)
[63,64], which is built into IBM’s Ignis module, with state-
preparation basis {|0〉, |1〉, |X+〉, |Y+〉} and measurement basis
{X,Y,Z} for each qubit. In order to obtain an estimate of the
gate error that is decoupled from state preparation and mea-
surement (SPAM) errors, we use a simple scheme relying on
gate folding. Letting G = RZZ (θ ), we consider the sequence
of logically equivalent gates G, GG†G, and GG†GG†G, which
correspond to a “scale factor” of λ = 1, 3, and 5, respectively.
For each λ, we use QPT to estimate the average gate fidelity,
which includes SPAM errors. This fidelity decreases with λ

because gate folding increases the gate noise in the circuit.
We then fit the resulting data points to a linear model F0 − ελ,
which is justified under the assumptions that ε is small and
that G and G† have identical error rates. The slope ε is an
estimate of the error rate that is free of SPAM errors, since
these errors do not scale with λ. To obtain the results plotted
in Fig. 2(d), we ran the above procedure on the IBM QPU
Casablanca using qubits q1 and q3, with 1024 shots for each
measurement and using complete readout error mitigation
[65] (see also Appendix A). We also repeated QPT four times
for each scale factor to collect better statistics; the linear fit
to extract ε was performed over the full data set. The error
bars for each θ value represent the standard deviation of the
slope calculated from the covariance matrix of the linear fit for
that θ .

Figure 2(d) shows that the fidelity of the scaled-RZX im-
plementation of RZZ (θ ) decreases with increasing θ , while
the fidelity of the two-CNOT implementation remains almost
constant. Because the experiment was implemented across
two days, there are also fluctuations in the fidelity due to
calibration drifts (see also Ref. [18]). At the smallest value
of θ = 0.2, our fidelity results indicate that the scaled-RZX

approach realizes an ∼80% reduction in the error rate of the
RZZ (θ ) gate relative to the two-CNOT implementation. This
decreases to a ∼50% error reduction at the largest value of
θ = 2.5. This is consistent with the pulse duration results
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plotted in Fig. 2(c), which show that the pulse durations of
the two-CNOT and scaled-RZX implementations approach one
another with increasing θ .

We now comment on our choice of Hamiltonian param-
eters V and � for simulating the system’s dynamics in the
regime with QMBS. As mentioned in Sec. I, we need V �
� in order to be in the QMBS regime. However, accord-
ing to Fig. 2(c), reducing V yields a shorter pulse duration
for the scaled-RZX implementation of RZZ , thereby reducing
the gate error. Moreover, � determines the frequency of the
oscillations that are characteristic of QMBS, so choosing a
larger � is desirable in order to manifest more oscillation
periods within a fixed time window. The choice of �t is
essential as well, since the Trotter error scales to leading
order as V�(�t )2. After trying many sets of parameters,
we settled on V = 1, � = 0.24, and �t = 1 as optimal pa-
rameters to simulate the system’s dynamics in the QMBS
regime. These parameters correspond to an RZZ rotation angle
θ = 2.0, where the data in Fig. 2(d) indicate that the scaled-
RZX approach yields a ∼57% error reduction relative to the
two-CNOT implementation. Although the sizable value of �t
incurs substantial Trotter error (see Appendix A for a compar-
ison between Trotter and exact dynamics), the Trotter circuit
with �t = 1 nevertheless exhibits pronounced coherent os-
cillations with period 2π/(1.33�) ≈ 19.68 for this choice of
parameters. For this choice of parameters, the dimensionless
quantity Vt is simply the number of Trotter steps.

We note in passing that our Trotter circuit (1.3) could al-
ternatively be viewed as a Floquet circuit due to the relatively
large value of �t . That is, we can view this circuit as simulat-
ing not the dynamics under the time-independent Hamiltonian
in Eq. (1.2), but rather the time-dependent Hamiltonian

H (t ) = f+(t )HX + f−(t ) (HZZ + HZ ), (2.1)

where f±(t ) = [1 ± sgn(sin 2π
�t t )]/2, whose evolution opera-

tor over a time �t is precisely the right-hand side of Eq. (1.3).
QMBSs have been studied in several Floquet variants of the
mixed-field Ising and PXP models (see, e.g., Refs. [66–70]),
so it is by now well established that they can exist in this peri-
odically driven setting. Our results demonstrate their existence
in model (2.1).

III. ERROR-MITIGATION TECHNIQUES

Based on the discussion in the previous section, we ex-
pect that the scaled-RZX implementation of the RZZ gate will
outperform the two-CNOT implementation when performing
Trotter evolution of the Néel state |Z2〉 under Hamiltonian
(1.2). We test this hypothesis by running Trotter simula-
tions using both approaches on the IBM QPUs Guadalupe
(ibmq_guadalupe) and Toronto (ibmq_toronto) for chains
with L = 12 and 19 sites, respectively. For each RZZ imple-
mentation, we execute 40 Trotter steps using the parameters
� = 0.24, V = 1, and �t = 1. At each time t , we measure
〈Zi(t )〉 for all sites i using 8192 shots. We repeat the time
evolution procedure 20 times and average the results over
these trials [71]. To quantify the accumulation of error during

FIG. 3. Unmitigated Trotter simulation of the staggered magne-
tization density 〈Zπ (t )〉/L [(a), (b); see Eq. (1.4)] and accumulated
error D(t ) [(c), (d); see Eq. (3.1)] from the initial state |Z2〉. Data for
chains of [(a), (c)] 12 and [(b), (d)] 19 qubits were obtained using
ibmq_guadalupe and ibmq_toronto, respectively. Data for both
the two-CNOT (red) and scaled-RZX (blue) implementations of the
Trotter circuit are shown, with noiseless Trotter simulation results
(black) for reference. No error mitigation was used here to directly
compare the two RZZ implementations. Error bars for each point
in (a) and (b) represent the standard deviation of the data over 20
trials. Error bars in (c) and (d) are calculated from those in (a) and
(b) by propagation of errors. Oscillations of 〈Zπ (t )〉/L over roughly
one period are observed for the scaled-RZX implementation and are
barely discernible for the two-CNOT implementation. The two-CNOT

implementation also accumulates more error than the scaled-RZX

implementation.

the simulation, we define

D(t ) = 1

t

∫ t

0
dt ′

1

L

L∑
i=1

|〈Zi(t ′)〉SV − 〈Zi(t ′)〉QPU|2, (3.1)

where 〈Zi(t )〉SV is the result obtained from Trotter evolution
on a noiseless state-vector simulator and 〈Zi(t )〉QPU is the
result from the QPU. The results of these simulations are
shown in Fig. 3.

Figs. 3(a) and 3(b) show the dynamics of the staggered
magnetization density 〈Zπ (t )〉/L [see Eq. (1.4)] for the 12-
and 19-qubit simulations, respectively. Note that we did not
apply any error-mitigation techniques here in order to di-
rectly compare the two implementations of the RZZ gate.
For both simulations, both implementations clearly fail to
reproduce the expected oscillations. The simulation using
the scaled-RZX approach does slightly outperform the two-
CNOT approach—in particular, one weak oscillation over a
scar period Vt ≈ 20 is barely observable for the scaled-RZX

data. However, both approaches perform poorly compared
to the ideal Trotter results from the state-vector simulator.
For the 12-qubit system, the results begin to deviate strongly
from the ideal Trotter curve after Vt = 8. For the 19-qubit
system, the calculations disagree markedly even at early
times. Figures 3(c) and 3(d) show that the accumulated error
grows dramatically before Vt = 25, after which it appears to
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saturate. The saturated value of the error is nearly the same for
the 12- and 19-qubit calculations.

There are many error sources that contribute to these re-
sults. One source is quantum thermal relaxation, whose effects
are quantified by the qubit relaxation time T1 and the qubit de-
phasing time T2. On IBM QPUs, these timescales are roughly
T1,2 ∼ 100 μs, which limits the total circuit depth that can be
executed on the device. Another source of error comes from
imperfect operation of the physical gates. On IBM QPUs,
single-qubit gates have error rates of ∼10−4 to 10−3, while
CNOT gates (which involve the use of RZX gates as described
in Sec. II) have error rates of ∼5 × 10−3 to 1.5 × 10−2. Thus,
two-qubit gates provide the dominant source of gate error.
Finally, readout errors can occur in which the device misre-
ports the state of a qubit as |0〉 when it is actually |1〉 and
vice versa. Readout error rates can range from ∼2 × 10−2

to 6 × 10−2, which is even larger than the CNOT error rate.
However, readout only occurs once per circuit, whereas each
circuit can use many two-qubit gates. (Note that readout error
likely accounts for the majority of the difference between the
QPU and ideal Trotter results for both the 12- and 19-qubit
simulations at time t = 0.)

The average two-qubit error rates were nearly identical
for ibmq_guadalupe and ibmq_toronto (1.8 × 10−2 and
1.6 × 10−2, respectively) when the data shown in Fig. 3
were obtained. However, the average readout error rate for
ibmq_guadalupe was 3.6 × 10−2, while for ibmq_toronto
it was 5.4 × 10−2. In fact, the highest readout error rate among
the qubits we used on ibmq_guadalupe was 9 × 10−2, while
on ibmq_toronto it was 2.16 × 10−1. Therefore, we believe
that the poorer agreement with the ideal Trotter simulation
at early times that was observed for the results obtained for
the 19-qubit chain on ibmq_toronto is due to the increased
readout error rate on that device at the time the experiments
were performed.

To reduce the impact of these various error sources, we
implemented an arsenal of error-mitigation techniques. The
simplest of these techniques is readout error mitigation, which
is built into QISKIT IGNIS. We also implement dynamical
decoupling using an Xπ − X−π pulse sequence to reduce deco-
herence errors [15–17]. To reduce the effect of stochastic gate
error in a circuit execution, we use the MITIQ package [72]
to implement zero-noise extrapolation (ZNE) using random
gate folding. This method scales the gate noise by performing
gate folding G → GG†G on randomly chosen two-qubit gates
throughout the circuit. This results in a noise scale factor λ

that can be noninteger, in contrast to the simpler global gate
folding procedure described in Sec. II. ZNE is best justified
in the case where gate errors result in a stochastic quantum
channel. For this reason, we also implement Pauli twirling
[6,21,73], in which two-qubit gates are dressed with random
Pauli gates chosen so as not to affect the outcome of a circuit
execution in the zero-noise limit. Averaging the results of
many of these random circuit instances reduces the gate noise
to a stochastic form. The details of our implementation of
these techniques are explained in more depth in Appendix A.

Finally, to enhance the signatures of the characteristic
oscillatory dynamics, we implement postselection of mea-
surement data to exclude CB measurement outcomes in which
nearest-neighbor sites were measured to be in the state |11〉.

As discussed in Sec. I, the probability of such configurations
appearing when evolving the Néel state under Hamiltonian
(1.2) is heavily suppressed whenV/� is large. In Appendix A,
we show strong numerical evidence that this is the case for
the ratio V/� ≈ 4.17 used in this work. There we also show,
however, that the Trotter error due to the large step size
�t = 1 substantially increases the probability of generating
these “forbidden” configurations. Thus, postselection miti-
gates the effect of both Trotter and gate error. In this paper
we will always compare QPU results using postselected data
with exact results in which the Trotter dynamics generated by
Eq. (1.3) are projected into the Fibonacci Hilbert space before
calculating the observable of interest.

We note that the set of error-mitigation techniques we use
for this work (including the scaled-RZX implementation of the
RZZ gate) is similar to that used in Ref. [19]. We highlight
here a few important differences upon which we expand in
Appendix A. First, Ref. [19] takes a different approach to
ZNE wherein the noise is scaled by scaling the duration and
amplitude of the cross-resonance pulses. In contrast, our ZNE
scheme treats the scaled-RZX pulse schedule for the RZZ (θ )
gate as a custom gate which is folded in the same way as
other gates, including CNOT. Reference [19] also takes a dif-
ferent approach to Pauli twirling of the RZZ (θ ) gate, which
is a non-Clifford gate for generic θ . In particular, Ref. [19]
performs Pauli twirling using only random Pauli operators
from the set {II,XX,YY,ZZ}. Our Pauli twirling method,
described in Appendix A, uses the full set of two-qubit Pauli
operators to perform the twirling, and we prove that it results
in a stochastic noise channel.

IV. ERROR-MITIGATED RESULTS

A. Zπ and Loschmidt echo

We now test the degree to which the error-mitigation strate-
gies outlined in Sec. III improve the results shown in Fig. 3.
The results of fully error-mitigated calculations of 〈Zπ (t )〉/L
and D(t ) on ibmq_guadalupe and ibmq_toronto are shown
in Fig. 4. For these simulations, we performed ZNE with
random gate folding scale factors λ ∈ {1, 1.5, 2.0} and per-
form Pauli twirling with ten random circuit instances. As in
Fig. 3, we evolve for 40 Trotter steps and use 8192 shots per
circuit execution. Unlike Fig. 3, we use postselected QPU data
and compare with the Fibonacci-projected Trotter evolution
(black). With the extra circuits needed to perform ZNE and
Pauli twirling, the total number of circuits run on each device
is now 40 × 10 × 3 = 1200. ZNE is performed with a linear
extrapolation to λ = 0 for each Trotter step, with ten data
points for each scale factor. Each data point in Figs. 4(a) and
4(b) corresponds to the value of the y intercept obtained from
the extrapolation, and the error bars on each point are standard
deviations calculated from the covariance matrix of the data
set. In Figs. 4(c) and 4(d), the error bars on D(t ) [see Eq. (3.1)]
are standard deviations calculated by propagation of errors. In
Appendix B, we show data for individual qubits to illustrate
how the simulation quality varies from qubit to qubit.

Figures 4(a) and 4(b) show a substantial improvement
over the results shown in Figs. 3(a) and 3(b). The scaled-
RZX implementation of RZZ still outperforms the two-CNOT
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FIG. 4. Error-mitigated Trotter simulation of the staggered mag-
netization density 〈Zπ (t )〉/L [(a), (b); see Eq. (1.4)] and accumulated
error D(t ) [(c), (d); see Eq. (3.1)] from the initial state |Z2〉. Data
for chains of [(a), (c)] 12 and [(b), (d)] 19 qubits obtained using
ibmq_guadalupe and ibmq_toronto, respectively. Data for both
the two-CNOT (red) and scaled-RZX (blue) implementations of the
RZZ gate are shown, with noiseless Fibonacci-projected Trotter sim-
ulation results (black) for reference. Each data point in (a) and (b) is
the result of linear ZNE with scale factors λ ∈ {1.0, 1.5, 2.0} for ten
random Pauli-twirling circuits. Error bars for all data points represent
uncertainty in the ZNE and are calculated as described in the main
text. The error-mitigation strategies outlined in Sec. III result in a
substantial improvement for both implementations of the RZZ gate
relative to the results shown in Fig. 3.

implementation. In particular, for the 12-qubit calculation per-
formed on ibmq_guadalupe, the scaled-RZX approach yields
a staggered magnetization density 〈Zπ (t )〉/L that is in good
agreement with the Trotter simulation until roughly Vt = 15.
This is roughly a twofold improvement relative to the case
without error mitigation. For both the 12- and 19-qubit calcu-
lations, the scaled-RZX approach yields visible oscillations up
to the final time Vt = 40, which covers about two oscillation
periods. In contrast, even with error mitigation the two-CNOT

implementation of the Trotter circuit yields visible oscillations
only over one period. In Figs. 4(c) and 4(d), we see that the
accumulated error D(t ) is substantially reduced as compared
to the unmitigated results shown in Fig. 3. For the scaled-RZX

implementation of the Trotter circuit, error mitigation leads
to a reduction of the total accumulated error D(t = 40V−1)
by 56% (29%) for the 12-qubit (19-qubit) calculation. In
contrast, error mitigation of the two-CNOT implementation
of the Trotter circuit results in a 37% (22%) error reduction
for the 12-qubit (19-qubit) calculation. Compared to results
where only postselection is applied (see Appendix A), the
results in Fig. 4 show an error reduction of 37% (29%) for the
scaled-RZX implementation and 23% (20%) for the two-CNOT

implementation for the 12-qubit (19-qubit) calculation. As in
Figs. 3(c) and 3(d), the rate of error accumulation for the
scaled-RZX implementation is always less than it is for the
two-CNOT implementation. Interestingly, with error mitigation
the final accumulated error is larger for the 19-qubit calcula-
tion than for the 12-qubit calculation (cf. Fig. 3).

FIG. 5. Loschmidt echo L(t ) of the initial state |Z2〉 for a chain
of 12 qubits calculated on ibmq_guadalupe using the same error-
mitigation techniques described in Fig. 4 and the text. Data obtained
from simulations using the two-CNOT implementation of the RZZ gate
(red) barely show any tendency toward a revival around Vt = 20,
whereas data obtained using the scaled-RZX implementation (blue)
show a more pronounced revival. Both revivals are nowhere near as
pronounced as the one obtained from the Fibonacci-projected ideal
Trotter simulation (black), further indicating the effect of errors on
the simulation despite the error-mitigation measures used.

To further test the extent to which error mitigation im-
proves the accuracy of the results obtained from the QPUs,
we calculate the Loschmidt echo L(t ) [see Eq. (1.5)] for a
12-qubit system using the same data set from which the results
of Figs. 4(a) and 4(c) were obtained. The results are shown in
Fig. 5. The scaled-RZX implementation of the Trotter circuit
shows a faint but noticeable revival near the first oscillation
period Vt = 2π/(1.33�) ≈ 19.68, while the two-CNOT im-
plementation shows hardly any revival at all. Note that the
fact that the Loschmidt echo is measured to take a finite value
on the device after ∼20 Trotter steps is remarkable given the
exponential sensitivity of the Loschmidt echo to changes in
the state |ψ (t )〉. The fact that the scaled-RZX implementation
of the Trotter circuit yields a substantially enhanced revival is
further evidence of the performance advantage offered by that
approach.

To enhance the Loschmidt echo signal, we also con-
sider the effect of counting shots in which the measurement
outcome differs from the Néel state |Z2〉 by a single bit
flip. This makes the metric L(t ) more forgiving by count-
ing instances where the system almost returns to the initial
state. The results, shown in Fig. 5, demonstrate that this
protocol indeed boosts the amplitude of the first revival
in L(t ). We observe greater enhancement of the first re-
vival for the scaled-RZX implementation of RZZ than for the
two-CNOT implementation, consistent with our other results.
In both cases, the signal enhancement is localized in time
near the first revival time but becomes more diffuse at later
times.

B. Connected correlation function

We now discuss how we measure the nontrivial correlation
function CY (t ) [see Eq. (1.6)] on a QPU. The correlation func-
tion CY (t ) is of the form 〈O(t )O(0)〉 where O(t ) = eiHtOe−iHt
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is a Hermitian operator that can be expanded in the basis
of Pauli strings. One way to measure such a correlator on
a quantum computer is to use a so-called indirect measure-
ment technique based on the Hadamard test [74,75]. This
approach uses an ancilla qubit and relies on the ability to
apply Pauli gates controlled by the ancilla. For an operator
like O = Yπ , which is a sum of many local Pauli strings, this
means that the ancilla qubit must be able to couple to all
qubits in the chain. Achieving this on superconducting qubit

QPUs with nearest-neighbor connectivity requires substantial
gate overhead, making this approach somewhat impractical
for our purposes. We therefore opt instead for a direct mea-
surement approach, which avoids the use of ancilla qubits at
the cost of running more circuits with fewer gates. We now
describe this approach, which is based on the proposal of
Ref. [57].

CY (t ) can be calculated as a sum of many local correlators,
i.e.,

CY (t ) =
∑
i, j

(−1)i+ j〈Z2|(PYP) j (t )(PYP)i|Z2〉, (4.1)

where the operators (PYP)i are defined in Eq. (1.6c). This can be further simplified using our knowledge that the initial state is
|Z2〉, since (PYP)i|· · · (010)i · · ·〉 = Yi|· · · (010)i · · ·〉 and (PYP)i|· · · (101)i · · ·〉 = 0. Therefore, we can simplify the above to

CY (t ) =
∑
j

∑
i even

(−1)i+ j〈Z2|(PYP) j (t )Yi|Z2〉. (4.2)

It remains to evaluate the local correlators 〈Z2|(PYP) j (t )Yi|Z2〉. In Ref. [57], it is shown that these can be calculated as

〈Z2|(PYP) j (t )Yi(0)|Z2〉 = 1

2
[〈(PYP) j (t )〉MYi=1 − 〈(PYP) j (t )〉MYi=−1] − i

2
[〈(PYP) j (t )〉+Yi − 〈(PYP) j (t )〉−Yi ], (4.3a)

with

〈(PYP) j (t )〉MYi=±1 = 1

2
〈Z2|

( I ± Yi
2

)
U †(t )(PYP) jU (t )

( I ± Yi
2

)
|Z2〉 (4.3b)

and

〈(PYP) j (t )〉±Yi
= 〈Z2|e∓i π

4 YiU †(t )(PYP) jU (t )e±i π
4 Yi |Z2〉.

(4.3c)

In the above expressions, U (t ) is the evolution operator
out to time t , which is approximated on the QPU by the
Trotter circuit. Note that both Eqs. (4.3b) and (4.3c) can be
formulated as the expectation value of (PYP) j in a particular
time-evolved state. Quantum circuits to evaluate these expec-
tation values are shown in Fig. 6. To prepare the initial state√

2
2 (I ± Yi )|Z2〉 needed to evaluate Eq. (4.3b) on the device,

we act on the ith qubit with either an identity or an X gate
(depending on the choice of + or −, respectively), followed
by a Hadamard gate and an S gate. (Note that i is even, so the
initial state of the ith qubit is always |1〉 in the |Z2〉 state.)

We have calculated CY (t ) for chains of L = 5 and L = 12
sites on ibmq_casablanca and ibmq_guadalupe, respec-
tively, for both the QMBS regime (V = �t = 1 and � =
0.24) and the chaotic regime, where we use parametersV = 1,
� = 2, and �t = 0.16. The calculation of CY (t ) on the QPU
proceeds as follows. For each i and j, we need to evaluate the
four circuits shown in Fig. 6 to calculate 〈(PYP) j (t )〉MYi=±1

and 〈(PYP) j (t )〉±Yi . Note that [(PYP) j, (PYP) j+2] = 0, so
we can measure (PYP) j for all even and all odd j in one
shot—in fact, this is one of the advantages of the direct
measurement scheme. The total number of circuits needed to
calculate CY (t ) is therefore 4 × 2 × 
L/2�, where 
·� denotes
the floor function. For each of these circuits, we employ ZNE
with random gate folding for scale factors λ ∈ {1.0, 1.5, 2.0}.
For the L = 5 calculations, we employ Pauli twirling with
eight random circuit instances in both the QMBS and chaotic
regimes for each scale factor used in ZNE. For the L = 12

calculations, we used ten random circuit instances for the
QMBS regime and nine for the chaotic regime. For all cases,
we evolve the system for 30 Trotter steps and measure the
system with 8192 shots at each step [76]. For the 5-qubit
system, we evaluate a total of 11 520 circuits to measure CY (t );

FIG. 6. Circuits used to calculate the correlation function CY (t )
on the QPU. (a) Circuit to calculate 〈(PYP)i〉MYi=±1 [Eq. (4.3b)].
(b) Circuit to calculate 〈(PYP)i〉±Yi [Eq. (4.3c)]. Here,UTrotter denotes
the Trotter circuit. In the beginning of each circuit, a different initial
state is prepared. At the end of each circuit, the expectation value of
(PYP) j is measured.

043027-8



ERROR-MITIGATED SIMULATION OF QUANTUM … PHYSICAL REVIEW RESEARCH 4, 043027 (2022)

FIG. 7. Dynamics of the correlator CY (t ) [see Eq. (1.6)] from
the initial state |Z2〉 in [(a), (c)] the QMBS regime (V = �t = 1,
� = 0.24) and [(b), (d)] the chaotic regime (V = 1, � = 2, �t =
0.16). Panels (a) and (b) are calculated for a chain of 5 qubits
using ibmq_casablanca, and panels (c) and (d) are calculated for
a chain of 12 qubits using ibmq_guadalupe. The calculation uses
ZNE for scale factors λ ∈ {1.0, 1.5, 2.0} with [(a), (b)] eight, (c) ten,
and (d) nine random circuit instances for Pauli twirling. Error bars
representing the uncertainty in the ZNE were calculated as in Fig. 4.
For L = 5, oscillations with relatively slowly decaying amplitude are
clearly visible throughout the simulation time window in the QMBS
regime (a). For L = 12, these oscillations remain coherent but exhibit
a more rapid decay due to the accumulation of gate and readout
errors. In the chaotic regime [(b), (d)], the correlator rapidly decays
after a single approximate revival and exhibits good agreement with
the ideal Trotter simulation results over the full simulation time
window.

for the 12-qubit system, we evaluate 43 200 circuits for the
QMBS case and 38 880 circuits for the chaotic case. We use
the scaled-RZX implementation of the Trotter circuit, since the
results of Sec. IV A indicate that this approach outperforms
the two-CNOT implementation.

The results of these calculations are shown in Figs. 7(a)
and 7(c) for the QMBS regime and in Figs. 7(b) and 7(d) for
the chaotic regime. We show results for |CY (t )| for ease of vi-
sualization, as Eqs. (4.3) demonstrate that CY (t ) is generically
complex. [Error bars on individual data points are calculated
as described at the beginning of Sec. IV A.] In Fig. 7(a),
we see that for L = 5 the calculation of CY (t ) exhibits good
quantitative agreement with the ideal Trotter calculation out to
Vt ≈ 15, and qualitative agreement is maintained throughout
the full time window until Vt = 30. In particular, oscilla-
tions with the expected period π/(1.33�) ≈ 9.84 are visible
throughout the time evolution window (recall that we plot
the absolute value of the correlation function). In contrast,
in the chaotic regime for L = 5 shown in Fig. 7(b), we find
that |CY (t )| exhibits one approximate revival followed by
a rapid decay and incoherent dynamics after time Vt = 2.
Note that, in the chaotic regime, Trotter dynamics involves a
smaller RZZ rotation angle than in the QMBS regime, resulting
in shorter cross resonance pulse durations and higher RZZ

gate fidelities. Consequently, the dynamics exhibit excellent
quantitative agreement with the ideal Trotter simulation for

approximately 22 Trotter steps. The results of the L = 12
calculation are shown in Figs. 7(c) and 7(d) for the QMBS and
chaotic regimes, respectively. While the results for the chaotic
regime remain in very good agreement with the ideal Trotter
simulation due to the smaller RZZ rotation angle discussed
above, the results in the QMBS regime begin to differ from
the ideal Trotter results around Vt = 9. This is likely due
to the fact that the calculation of CY (t ) involves summing
O(L2) terms, each of which suffers from gate and readout
errors and is the result of a separate zero-noise extrapolation.
Despite the more drastic accumulation of error for L = 12,
underdamped oscillations close to the correct frequency are
clearly visible throughout the simulation time window. These
results provide a clear demonstration that the coherence and
long-range many-body correlations present in the dynamics of
the Néel state in the QMBS regime can be probed on current
quantum devices.

V. CONCLUSIONS AND OUTLOOK

In this work, we have used pulse-level control and a va-
riety of quantum error-mitigation techniques to simulate the
dynamics of a spin chain with QMBS on IBM QPUs for
chains of up to 19 qubits. QMBSs constitute an intriguing
quantum dynamical regime characterized by nontrivial many-
body coherence and long-range correlations. We probed this
physics by measuring the dynamics of three quantities: the
staggered magnetization 〈Zπ (t )〉, the Loschmidt echo L(t ),
and the connected unequal-time correlation function CY (t ).
We found that 〈Zπ (t )〉 and CY (t ) exhibit reasonable quantita-
tive agreement with the ideal Trotter simulation at early times,
and visible oscillations with the correct frequency out to 40
Trotter steps. In contrast, the Loschmidt echo L(t ) exhibits
only the faintest of revivals, indicating the substantial impact
of various noise sources including thermal relaxation and gate
and readout errors. Nevertheless, the qualitative features of
QMBSs are pronounced on time scales beyond which L(t )
decays to zero, indicating the presence of coherent many-
body dynamics with long-range correlations that cannot be
explained by the precession of free spins. To obtain these re-
sults, we found it essential to use a pulse-level implementation
of the Trotterized Ising interaction relying on amplitude- and
duration-scaled cross-resonance pulses and to apply a number
of error-mitigation techniques.

These results provide a physics-based benchmark of QPU
performance in the NISQ era. Thus, it would be interesting
to repeat these experiments on systems with higher quantum
volume (QV ), which is a metric that takes into account the
number of qubits as well as the error rate of the device
[77]. Such devices include ibmq_washington (127 qubits,
QV = 64) or ibmq_kolkata (27 qubits, QV = 128), which
was used in Ref. [19]. In contrast, the IBM QPUs used
for our 12- and 19-qubit simulations, ibmq_guadalupe and
ibmq_toronto, have QV = 32. Furthermore, given the vari-
ety of available tools for error mitigation, it will be important
to undertake a systematic exploration of the optimal imple-
mentations of techniques like ZNE and Pauli twirling for
non-Clifford gates defined at the pulse level. As part of this
effort, it would also be worthwhile to consider alternatives
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to ZNE including probabilistic error cancellation [21,78–81],
virtual distillation [82–84], or Clifford data regression [24,85].

As devices with higher QV become available, it will be
interesting to pursue further the calculation of nontrivial
multi-time-correlation functions on quantum devices. One
quantity that can be computed using the methods proposed
in Ref. [57] and further developed here is the transport of
conserved quantities. For example, in the MFIM (1.2), the
most natural conserved quantity to consider is the energy.
The two-point correlation function of the energy density can
be used to measure the timescales associated with energy
transport. In the chaotic regime of the model, such transport
is expected to be diffusive. Higher-order correlation functions
associated with transport beyond the linear-response regime
can also be considered, as well as out-of-time-ordered corre-
lation functions (OTOCs) which can be used to characterize
quantum chaos [86–90].
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APPENDIX A: DETAILS ON SIMULATION METHODS

1. Scaled-RZX implementation of the RZZ gate

In this section, we discuss how to scale the amplitude and
duration of the cross-resonance (CR) pulses used to realize
the RZX (π/2) to obtain the more general gate RZX (θ ) with
arbitrary rotation angle. The RZX (π/2) gates used to generate
the CNOT gate are realized by echoed cross-resonance pulses
composed of CR(±π/4) sandwiching an X-echoed π pulse
on the control qubit to eliminate the ZI and IX terms in the
cross-resonance Hamiltonian [60]. Rotary pulses are applied
to the target qubit to suppress the interaction IY and ZZ
terms [91]. The CR pulse has a square-Gaussian shape con-
sisting of a square pulse with width W ( π

2 ) whose boundaries
are smoothed into Gaussians with standard deviation σ . We
denote the amplitude of the pulse by A( π

2 ). The total area
enclosed by the square-Gaussian pulse is therefore

α =
∣∣∣A(π

2

)∣∣∣W(π

2

)
+

∣∣∣A(π

2

)∣∣∣σ√
2π erf(nσ ), (A1)

where nσ is the number of standard deviations of the Gaussian
tails that are chosen to be included in the pulse shape. An
example of a pulse schedule for the two-CNOT implementation
of the RZZ gate on ibmq_casablanca is shown in Fig. 8(a).
This pulse schedule contains one copy of the echoed CR pulse
schedule described above for each CNOT gate.

FIG. 8. Pulse schedules for the two implementations of the
RZZ gate. (a) Pulse schedule for the two-CNOT implementation
of RZZ (θ = 2.0) on ibmq_casablanca. Pulse durations are mea-
sured in units of dt = 0.2222 ns. Pulses labeled “CR(π/4)” and
“CR(−π/4)” are the cross-resonance pulses described in the text.
Other Gaussian pulses correspond to single-qubit gates. On the D1
channel, the overlapping symbols above two circular arrows read
VZ (π ). This denotes that a “virtual” rotation by π around Z [92] has
been implemented using a pulse delay. The symbols below the two
central Gaussian pulses read X (π/2) (dark pulse) and Y (π/2) (light
pulse), respectively, indicating rotations by π/2 around the X and Y
axes, respectively. On the D3 channel, the overlapping symbols be-
low the two central Gaussian pulses read Y (−π/2) (light pulse) and
X (π/2) (dark pulse), respectively. (b) Pulse schedule for the scaled-
RZX implementation of RZZ (θ = 2.0) on ibmq_casablanca. Pulses
labeled “GaussianSquare” are the scaled cross-resonance pulses dis-
cussed in the text. The scaled-RZX implementation uses half as many
cross-resonance pulses as the two-CNOT implementation.

To change the angle of rotation of the RZX gate from π/2 to
an arbitrary θ , we follow the method outlined in Ref. [18] (see
also Ref. [61]). When θ > π

2α
|A( π

2 )|σ√
2πerf(nσ ), one can

change the area under the square-Gaussian pulse to α(θ ) =
θ

π/2α by adjusting the width of the square pulse as follows:

W (θ ) = 2αθ

π
∣∣A(

π
2

)∣∣ − σ
√

2πerf(nσ ). (A2)
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FIG. 9. Comparison of the dynamics of the staggered magneti-
zation density 〈Zπ (t )〉/L in the QMBS regime (V = 1, � = 0.24)
obtained from exact diagonalization (ED) (light green) and ideal
Trotter simulations (grey) with �t = 1. Although the large time step
incurs substantial Trotter error, clear long-lived oscillations of the
staggered magnetization are visible for both evolutions. The green
and black curves indicate Fibonacci-projected ED and ideal Trotter
dynamics, respectively.

If θ < π
2α

|A( π
2 )|σ√

2πerf(nσ ), one can set W (θ ) = 0 and re-
duce the amplitude to

|A(θ )| = 2αθ

πσ
√

2πerf(nσ )
. (A3)

Therefore, just like in the circuit depicted in Fig. 2(b), we can
sandwich the RZX (θ ) with RY (π/2) and RY (−π/2) pulses on
the second channel to create the RZZ (θ ) gate pulse schedule
shown in Fig. 8(b). As discussed in the main text, this pulse
schedule can have a substantially shorter duration than the
pulse schedule that implements RZZ (θ ) using two CNOT gates.

2. Trotter evolution

In Fig. 9, we compare exact diagonalization (ED) results
for the dynamics of the staggered magnetization under Hamil-
tonian (1.2) with the results of a Trotter simulation at L = 12
and �t = 1. Both simulations use model parameters V = 1
and � = 0.24, which are appropriate for the QMBS regime.
Significant differences between the ED and Trotter curves are
visible starting around Vt = 5. However, note that the Trotter
circuit dynamics retains the coherent oscillations visible in
the ED result. Thus, despite the large time step and the ap-
preciable Trotter error, the Trotter circuit still exhibits strong
signatures of QMBS.

We also plot for reference the dynamics of 〈Zπ 〉 calcu-
lated with respect to the Fibonacci-projected ED and Trotter
dynamics. The projection has much less effect on the ED
dynamics than on the Trotter dynamics. This indicates that
postselection of measurement outcomes (as described below)
has a larger effect when a larger Trotter step size is used.

3. Readout error mitigation

To mitigate the effect of readout errors on QPU results,
one can use readout error mitigation methods as described in
Ref. [65] and built into QISKIT IGNIS. Suppose that Cideal is
a vector containing the list of measurement counts for each

computational basis state in the absence of readout error,
and that Cnoisy is the same quantity with readout error. The
relationship between Cideal and Cnoisy can be characterized by
a readout error matrix M defined as

MCideal = Cnoisy. (A4)

To obtain the ideal result from the noisy result, one can invert
the readout error matrix:

Cideal = M−1Cnoisy. (A5)

QISKIT IGNIS supports several methods to obtain the readout
error matrix M. One is to approximate M as the tensor product
of readout error matrices for each qubit as follows:

M =
[

1 − ε1 η1

ε1 1 − η1

]
⊗ · · · ⊗

[
1 − εn ηn

εn 1 − ηn

]
, (A6)

where ε j and η j are the readout error rates for 0 → 1 and
1 → 0, respectively. This method is attractive because the ε j

and η j can be estimated by executing two circuits to prepare
the states |0 · · · 0〉 and |1 · · · 1〉 and then measuring all qubits
in the CB. Another method that we call “complete readout
error mitigation” prepares and measures all 2L CB states from
|0 · · · 0〉 to |1 · · · 1〉. This allows the elementwise extraction
of M for all computational basis states, but is more costly
to perform as it involves measuring exponentially many CB
states. In this paper, we apply complete readout error mitiga-
tion for smaller systems (L = 5) and use the tensor-product
approximation for larger systems (L = 12, 19).

4. Postselection

In the QMBS regime of Hamiltonian (1.2), the probability
of the system being in a CB state with two consecutive 1s
is heavily suppressed by the strong nearest-neighbor inter-
action, as discussed in the main text. Figure 10(a) shows
the dynamics of 〈∑L−1

i=1 nini+1〉 starting from the |Z2〉 state
under Hamiltonian (1.2) with � = 0.24V for L = 12 and 19
(dark and light green curves, respectively). This indicates that
the Hamiltonian dynamics generated by Eq. (1.2) produces a
negligible number of pairs of consecutive 1s over the times
we aim to simulate with the quantum device. However, the
large Trotter step �t = 1 used in our QPU simulations means
that Trotter error can induce a more substantial growth of
〈∑L−1

i=1 nini+1〉 starting from the same state, as is visible in
the ideal Trotter dynamics curves for L = 12 and 19 (black
and grey, respectively). Nevertheless, for both system sizes
considered, the excitation-pair number 〈∑L−1

i=1 nini+1〉 remains
�1 over the course of the dynamics.

That 〈∑L−1
i=1 nini+1〉 remains subextensive indicates that

the Trotter dynamics retains a finite weight in the Fibonacci
Hilbert space. This is confirmed by Fig. 10(b), which plots
the time dependence of the weight of the time-evolved |Z2〉
state in the Fibonacci space, 〈ψ (t )|Pfib|ψ (t )〉. The Hamilto-
nian dynamics for L = 12 and 19 remain almost entirely in
the restricted Hilbert space, while the Trotter dynamics with
time step �t = 1 remain roughly 70–80 % within the space
on average.

Since the scarred dynamics we are trying to model take
place primarily within the Fibonacci Hilbert space [27,29], we
take this as evidence that we can amplify their signatures by
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FIG. 10. (a) The dynamics of the number of nearest-neighbor pairs of Rydberg excitations,
∑L−1

i=1 nini+1, obtained from ED and ideal Trotter
with �t = 1 at L = 12 and L = 19. The number of such nearest-neighbor pairs is subextensive even for the Trotter dynamics. (b) The weight
of the time-evolved state |ψ (t )〉 in the Fibonacci Hilbert space, 〈ψ (t )|Pfib|ψ (t )〉, plotted using ED and ideal Trotter at L = 12 and L = 19.
Even though the Trotter dynamics loses more weight in the subspace over the simulation window than the ED dynamics, the Trotter-evolved
state retains a finite weight in the subspace at these system sizes. Taken together, these results justify our use of the postselection technique
described in this Appendix.

calculating observables with measurement outcomes postse-
lected to lie within this space. To calculate the postselected
dynamics, we remove CB measurement results containing
two or more consecutive 1s from the counting dictionary and
calculate the expectation value using the rest of the data.

The effect of postselection on our QPU results is shown in
Fig. 11, which plots the same data set as in Fig. 3 with posts-
election applied. These results already show an enhancement
of the oscillatory signal relative to Fig. 3, even with no error
mitigation measures besides postselection applied. The results
of Fig. 4 clearly demonstrate the utility of applying further
error-mitigation techniques beyond postselection.

5. Zero-noise extrapolation and Pauli twirling

In order to reduce the effect of gate noise on the calculation
of, e.g., an expectation value on a QPU, one can measure this
expectation value at different noise scales and extrapolate to

FIG. 11. Postselected QPU results without further error mitiga-
tion. See the caption of Fig. 3 for a description of panels (a)–(d). The
red and blue curves are calculated using the same QPU data set as
Fig. 3 with postselection applied, while the black curve denotes the
Fibonacci-projected ideal Trotter dynamics for comparison. The data
points on the black curve are used to calculate D(t ).

the zero-noise limit to estimate the ideal expectation value
[6,21–23]. To increase the noise scale we can use unitary
folding, which acts on a gate G as

G �→ GG†G. (A7)

Here G† = G−1 so the above operation increases the depth
of the circuit without changing its logical action on the input
state in the unrealistic case where G is implemented noise-
lessly on the QPU. In the realistic case where G is noisy, this
folding operation increases the effect of noise for that gate by
a factor of ∼3. In this paper, we use the MITIQ package [72]
to randomly fold the gates in our circuit to achieve noise scale
factors λ ∈ {1.0, 1.5, 2.0} for the full circuit. Since MITIQ does
not support folding of the RZZ (θ ) gate, we first generate folded
circuits using CNOT gates as placeholders for RZZ (θ ) gates,
and then replace all CNOT gates with RZZ (θ ) and RZZ (−θ )
gates as appropriate.

Moreover, we also apply the Pauli twirling technique
which converts a two-qubit gate G’s errors into a stochastic
form characterized by the effective noise superoperator [6],

N̄G = FG[1] +
∑

(α,β ) �=(0.0)

εα,β

[
σα
c σ

β
t

]
, (A8)

where FG is the fidelity, σα
c and σ

β
t (α, β = 0, 1, 2, 3 corre-

spond to Pauli matrices 1, σ x, σ y, σ z, respectively) are Pauli
operators acting on a control qubit c and a target qubit t ,
and εα,β are error probabilities. The quantity [σα

c σ
β
t ] is a

superoperator that acts on a quantum state with density matrix
ρ as [σα

c σ
β
t ]ρ = σα

c σ
β
t ρσα

c σ
β
t . To convert the error into this

stochastic form, one sandwiches the two-qubit gate G with
Pauli gates σα

c σ
β
t and σ

γ
c σ δ

t with α, β = 0, 1, 2, 3 and γ , δ

chosen such that σ
γ
c σ δ

t = G†σα
c σ

β
t G. This ensures that the

sandwiched operator σα
c σ

β
t Gσ

γ
c σ δ

t = G. Note that choosing
γ and δ in this way is possible only if G preserves the
Pauli group, i.e., if G is a Clifford gate. After sandwiching,
one averages the true noise superoperator over the two-qubit
Pauli group [i.e., over all 16 possible pairs (α, β )] to obtain
Eq. (A8). In practice, it is sufficient to generate circuits with
randomly chosen (α, β ) for each two-qubit gate, compute the
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FIG. 12. Implementation of Pauli twirling for (a) a CNOT gate
and (b) the non-Clifford RZZ (θ ) gate. In both cases, the Pauli gates
σα
c and σ

β
t applied to the control and target qubits before the gate

being twirled are chosen randomly. Pauli gates applied after the
two-qubit gate being twirled are chosen such that the logical action
of the two-qubit gate is unaffected. For the CNOT gate, γ and δ are
chosen as γ = α + β(β − 1)( 7

2 − β )(1 − 2
3 α) and δ = β + α(α −

3)(βmod2 − 1
2 ). For the RZZ (θ ) gate, the same Pauli gates are ap-

plied before and after RZZ (θ ), but the rotation angle θ → −θ if the
randomly selected Pauli gates anticommute with σ z

c σ
z
t .

output of each circuit, and average the result over as many
randomly generated circuits as possible.

In this paper, we use two kinds of two-qubit gates, namely,
CNOT and RZZ (θ ). For the CNOT gate, we randomly select
α, β = 0, 1, 2, 3 and choose (γ , δ) so that the random Pauli
gates do not affect the CNOT operation, as described in
Fig. 12(a). As discussed above, choosing γ and δ in this way
is only possible because CNOT is a Clifford gate. However,
the RZZ (θ ) gate is a non-Clifford gate for generic values

of θ �= 0, π . To solve this problem, we divide the set of
Pauli index pairs {(α, β )} into two sets: SC , containing index
pairs corresponding to two-qubit Pauli strings that commute
with σ 3

c σ 3
t , and SA, containing index pairs corresponding to

two-qubit Pauli strings that anticommute with σ 3
c σ 3

t . If the
randomly selected pair (α, β ) ∈ SC , we replace RZZ (θ ) by
σα
c σ

β
t RZZ (θ )σα

c σ
β
t . If the pair (α, β ) ∈ SA, we replace RZZ (θ )

by σα
c σ

β
t RZZ (−θ )σα

c σ
β
t . The circuits resulting from this pro-

cedure are shown in Fig. 12. Note that this modified Pauli
twirling procedure assumes that RZZ (θ ) and RZZ (−θ ) have
the same gate error channel, which we denote by the noise
superoperator NRZZ .

To verify that the non-Clifford Pauli twirling procedure
described above still results in a stochastic error channel for
RZZ (θ ), we assume that the action of the noisy RZZ (θ ) gate can
be expressed in superoperator form as NRZZURZZ . Here, URZZ

is a superoperator that acts as URZZρ = RZZ (θ )ρRZZ (−θ ),
and the noise superoperator NRZZ is expressed in Kraus
form as NRZZρ = ∑

h EhρE
†
h with Kraus operators Eh =∑

α,β ah;α,βσ α
c σ

β
t satisfying

∑
h EhE

†
h = 1. The action of the

twirled noisy RZZ (θ ) gate on a state ρ can then be written as

1

16

{ ∑
(α,β )∈SC

[
σα
c σ

β
t

]
NRZZURZZ

[
σα
c σ

β
t

]
ρ

+
∑

(α,β )∈SA

[
σα
c σ

β
t

]
NRZZU−1

RZZ

[
σα
c σ

β
t

]
ρ

}
≡ N̄RZZURZZρ,

(A9)

and N̄RZZ is the effective noise of RZZ (θ ) after twirling.
Since two-qubit Pauli strings with (α, β ) ∈ SC commute with

FIG. 13. Complete list of error-mitigated local magnetization results 〈Zi〉 versus timeVt for a 12-site chain measured on ibmq_guadalupe
using the scaled-RZX and two-CNOT implementations (blue and red, respectively). The ideal Trotter simulation data (black) are also shown for
reference.
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FIG. 14. Complete list of error-mitigated local magnetization results 〈Zi〉 versus time Vt for a 19-site chain measured on ibmq_toronto

using the scaled-RZX and two-CNOT implementations (blue and red, respectively). The ideal Trotter simulation data (black) are also shown for
reference.

RZZ (θ ), the first term can be written as∑
(α,β )∈SC

[
σα
c σ

β
t

]
NRZZURZZ

[
σα
c σ

β
t

]
ρ

=
∑

(α,β )∈SC

[
σα
c σ

β
t

]
NRZZ

[
σα
c σ

β
t

]
URZZρ.

Since two-qubit Pauli strings with (α, β ) ∈ SA anticommute
with Rzz(θ ), the second term becomes∑

(α,β )∈SA

[
σα
c σ

β
t

]
NRZZU−1

RZZ

[
σα
c σ

β
t

]
ρ

=
∑

(α,β )∈SA

[
σα
c σ

β
t

]
NRZZ

[
σα
c σ

β
t

]
URZZρ.

Summing up two terms above, we find that the effective noise
superoperator of Rzz(θ ) is given by

N̄RZZ = 1

16

∑
(α,β )

[
σα
c σ

β
t

]
NRZZ

[
σα
c σ

β
t

]
. (A10)

Using σασβσα = [2δα,β − (2δα,0 − 1)(2δβ,0 − 1)]σβ , one
can show that this effective noise superoperator takes the
stochastic form (A8). This modified Pauli twirling procedure
can also be applied to other two-qubit unitary gates generated
by Pauli strings.

6. Dynamical decoupling

In a quantum computer, physical two-qubit gates have dif-
ferent execution times. When we stack one- and two-qubit
gates into a Trotter circuit, there are some idle qubits suffering
from thermal relaxation and white noise dephasing. To reduce
the decoherence, one can apply appropriate pulse sequences to
stabilize the idle qubits during this waiting period. Here, we
utilize the pulse sequence τiq/4 − Xπ − τiq/2 − X−π − τiq/4
with ±π pulse X±π = RX (±π ) and delay time τiq = (Tidle −
2tx,π ). Here, Tidle is the idle time of the qubit and tx,π is the
duration of the X±π pulse [15–17].
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APPENDIX B: SITE-DEPENDENT LOCAL
MAGNETIZATION RESULTS

In this Appendix we show error-mitigated results for the
sitewise local magnetization 〈Zi(t )〉 as a function of scaled
simulation time Vt for a 12-site chain in Fig. 13 and a 19-
site chain in Fig. 14. The calculations are carried out on
ibmq_guadalupe and ibm_toronto, respectively. We have
used the full set of error-mitigation techniques described in
the main text and Appendix A. Consistent with other ob-
servables discussed in the main text, the local magnetizations
measured with the scaled-RZX implementation on QPU are
generally in better agreement with the ideal Trotter simu-
lations than the results from the two-CNOT implementation.
As an example, in Fig. 13(e), the oscillatory behavior of

〈Z5(t )〉 for the 12-site model in the second oscillation cy-
cle is still visible with the scaled-RZX implementation, but
is completely washed out by noise with the two-CNOT im-
plementation on ibmq_guadalupe. The accuracy of local
magnetization measurement also shows clear site dependence,
tied to the heterogeneity of qubit quality and native gate
fidelity. For example, with the scaled-RZX implementation
in the 12-site model, an oscillation for two cycles can be
clearly observed for 〈Z2(t )〉, while 〈Z6(t )〉 shows only a
weaker first period of oscillation, as shown in Figs. 13(b)
and 13(f). The site dependence of local magnetization accu-
racy becomes more evident for the 19-site model calculations
on ibmq_toronto. For instance, while the oscillation of
〈Z3(t )〉 is still well reproduced over two cycles, 〈Z13(t )〉 is
almost entirely dominated by noise as shown in Figs. 14(c)
and 14(m).
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