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Abstract: This work is concerned with the use of mobile sensors to approximate and replace the full state
feedback controller by static output feedback controllers for a class of PDEs. Assuming the feedback
operator associated with the full-state feedback controller admits a kernel representation, the proposed
optimization aims to approximate the inner product of the kernel and the full state by a finite sum of
weighted scalar outputs provided by the mobile sensors. When the full state feedback operator is time-
dependent thus rendering its associated kernel time-varying, the approximation results in moving sensors
with time-varying static gains. To calculate the velocity of the mobile sensors within the spatial domain,
the time-varying kernel is set equal to the sensor density and thus the solution to an associated advection
PDE reveals the velocity field of the sensor network. To obtain the speed of the finite number of sensors,
a domain decomposition based on a modification of the Centroidal Voronoi Tessellations (µ-CVT) is
used to decompose the kernel into a finite number of cells, each of which contains a single sensor. A
subsequent application of the µ-CVT on the velocity field provides the individual sensor speeds. The
nature of this µ-CVT ensures collision avoidance by the very structure of the kernel decomposition into
non-intersecting cells. Numerical simulations are provided to highlight the proposed sensor guidance.
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1. INTRODUCTION

Facing the conflict between (a) the superb performance af-
forded by full state feedback and (b) the reduced computational
load combined with simplified controller architecture provided
by static output feedback (proportional controllers), this paper
attempts to combine the positive attributes of these two distinct
controller architectures. The premise is that the state operator
associated with full state feedback for a class of PDEs, admits a
kernel representation, King (1995, 2000). Using the controller
expression that is computed as the inner product of the kernel
and the unavailable process state, a geometric control method
is used to approximate the full state feedback controller by a
finite sum of weighted output measurements. All that remains
in this full-state feedback approximation is to find (i) the sensor
locations and (ii) the associated static gains (proportional con-
trollers). The first part is attained by approximating the feed-
back kernel by a finite sum of output sensor distributions. The
enabling scheme is based on a modification of the Centroidal
Voronoi Tessellations (µ-CVT) that decomposes the feedback
kernel into a finite number of disjoint cells (domain decompo-
sition) with the property that each cell has the same area under
the feedback kernel. Decomposing the kernel into a number of
equiareal cells enables one to place a sensor in each cell with
the property that each sensor has the same level of “spatial
authority” with respect to the kernel. Once the sensor positions
within the spatial domain are identified, their associated gains
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are easily computed via a least-squares approximation. This
approach bears similarities with the sampled-in-space actuation
and sensing presented in Pisano and Orlov (2017), since the
time-varying feedback kernel is approximated by sampled-in-
space sensor information for each time.

When the state feedback is time-varying, as for example when
one uses a finite-horizon LQR cost for controller design, or
when the process operators are time-varying, then the associ-
ated kernel is rendered time-varying. The approximation of the
full state feedback control law must be implemented continu-
ously since both the sensor locations and their associated static
gains are time-varying. One approach is to use the above µ-
CVT method to decompose the spatial domain at each time
and compute the time-dependent gains at each time. Such a
computational feat can easily be achieved via the use of a fast
processor and a high-bandwidth data-acquisition-and-control
hardware. This approach is particular to the number of sensors
used. To generalize this for any number ns of sensors, a mod-
ification is considered here. Instead of declaring the location
of the mobile sensors at each time via the approximation of
the time-varying kernel, we propose to operate on the sensor
density to extract the velocity field of the sensor network. Thus,
instead of commanding the position of each sensor at each time,
the proposed work provides the speed of each sensor.

The sensor speed is obtained by substituting the sensor density
in the advection PDE representing the evolution of the sensor
network density, by the time-varying kernel. The solution of
this PDE provides the velocity of the sensor network. All is
left at this stage, is to identify the speed of each sensor in the
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distributions on time, via the time-varying locations or cen-
troids ξi(t), is made to account for the sensor motion within
the domain Ω = (0, ℓ). Thus the sensor motion is fully encom-
passed in the time variation of the centroids ξi(t). Dirichlet
boundary conditions x(t,0) = x(t, ℓ) = 0 are assumed in (8).
The function b(t,ξ) is the distribution of the actuating device
and accounts for a possibly moving actuator. The coefficients
a(ξ),a2,a3 are associated with the elliptic operator.

To simplify the analysis, a rather straightforward assumption is
made on the sensing devices and considers a network of sensing
devices that are identical and differing only on the position of
their centroid within the spatial domain Ω.

Assumption 1. (uniform sensor network). The sensor network
comprised of the ns sensing devices contains identical sensors

ci(ξ,ξi(t)) = c(ξ,ξi(t)), i= 1, . . . ,ns. (9)

The other assumption ensures that the proposed computational
geometry approach for the approximation (7’) is feasible.

Assumption 2. (kernel representation). The time varying feed-
back gain operator is assumed to admit a kernel representation.
For the PDE (8), this representation becomes

K (t)φ=
∫ ℓ

0
k(t,ξ)φ(ξ)dξ, ∀φ ∈ H1

0 (0, ℓ). (10)

This is valid for parabolic systems with any bounded control
for 1-3D and for Neumann B.C.’s for 1-2D, King (1995, 2000).

Problem Statement: Using Assumptions 1,2, the approximation
(7’) for the scalar control case, viewed in weak form, becomes

∫ ℓ

0

(
k(t,ξ)−

ns

∑
i=1

γi(t)c(ξ,ξi(t))

)
φ(ξ)dξ≈ 0, (11)

for all φ ∈ H1
0 (0, ℓ). The optimization problem seeks to pro-

duce the static gains γi(t) and the associated sensor locations
ξi(t) that minimize the difference in the above integrant in an

appropriate sense. Once the optimal gains γopti (t) and optimal

locations ξopti (t) for each time t are produced, then the control

u(t) =−
∫ ℓ

0
k(t,ξ)x(t,ξ)dξ (12)

which corresponds to (2) is replaced by the approximate static
output feedback controller

us(t) = −
ns

∑
i=1

γopti (t)
∫ ℓ

0
c(ξ,ξopti (t))x(t,ξ)dξ

= −
ns

∑
i=1

γopti (t)yi(t;ξopti (t))

(13)

Joint gain and sensor location optimization: The optimization
described by (11) is formally expressed as

min
φ∈H1

0 (0,ℓ)

∣∣∣∣∣

∫ ℓ

0

(
k(t,ξ)−

ns

∑
i=1

γi(t)c(ξ,ξi(t))
)
φ(ξ)dξ

∣∣∣∣∣

2

. (14)

Equation (14) seeks ways to approximate the feedback kernel
for each time t ∈ [0,T ] so that the difference is minimized.
Expanding the approach presented in Demetriou (2021), we
present three different methods to solve the optimization (14):

(1) (Kernel decomposition) using computational geometry
approaches: In this case, a modification of the Centroidal
Voronoi Tessellations (µ-CVT) is used to partition the ker-
nel into ns cells Ii(t), each containing a sensor at location

ξi(t) ∈ Ii(t) and use a least-squares approach to solve for
the associated feedback gains γi(t). The outputs here are
the locations ξi(t) and the gains γi(t) for each t ∈ [0,T ].

(2) (Sensor network density propagation:) In this case, the
kernel is viewed as equivalent, up to a constant, to the
sensor network density. The solution to the associated ad-
vection PDE that propagates the sensor density forward in
time, yields the network velocity. Once the sensor network
velocity is obtained, any decomposition (partitioning) of

the velocity will yield the speed ξ̇i(t) and direction of each
sensor. Subsequently, the same decomposition provides
the associated feedback gains. The outputs here are the

speeds ξ̇i(t) and the gains γi(t) for each t ∈ [0,T ].
(3) (Bilinear tracking control:) In this case, the advection

PDE describing the sensor density is considered and the
goal is to design a velocity controller for the bilinear
control problem to ensure that the state of the density PDE
tracks the feedback kernel. The outputs here are the speeds

ξ̇i(t) and the gains γi(t) for each t ∈ [0,T ].

3. SOLUTION TO OPTIMIZATION (14)

The approaches above are detailed here. The first two are taken
from Demetriou (2021) and are included here for completeness,
whereas the third one represents new work by the authors.

3.1 Kernel decomposition

The approach here follows directly from Demetriou (2021).
The idea is to decompose the feedback kernel k(t,ξ) for each
time t into ns equi-areal cells. Each cell will have an area
equal to 1/ns of the total area of the kernel k(t,ξ). Then in
each cell, place a sensor ξi(t) so that in turn decomposes the
cell into two equi-areal subcells. The algorithm presented in
Demetriou (2021) and adapted for time-variation of the kernel
is summarized. A further simplification assumes that the sensor
distributions in (9) are described by the Dirac delta functions

c(ξ,ξi(t)) = δ(ξ−ξi(t)), i= 1, . . . ,ns.

Sensor position ξi(t) in each time

(a) Time varying domain decomposition: At each time t ∈
[0,T ], partition the domain Ω in ns cells Ii(t) ∈ Ω with

the property Ii(t)∩I j(t) = /0 and
⋃ns

i=1 I i(t) =Ω so that at
each cell Ii(t), the area of the kernel k(t,ξ) satisfies

∫

Ii(t)
k(t,ξ)dξ=

∫

Ω
k(t,ξ)dξ

ns
=

(
A(t)

ns

)
, i= 1, . . . ,ns. (15)

(b) Sensor placement: Place a sensor ξi(t) in each cell Ii(t),
using the method in step (a) which ensures that the loca-
tion ξi(t) in cell Ii(t) is such that it subsequently divides

the cell into two subcells Ii(t) = I ai (t)∪ I bi (t) of equal
areas of the kernel, with each being equal to 0.5A(t)/ns.

As presented in Demetriou (2021), there ia simple graphical
approach for the 1D case. For each time t ∈ [0,T ], one defines
the normalized kernel k(t,ξ) and the associated normalized area
function under the kernel via

k(t,ξ) =
k(t,ξ)

max
ξ∈Ω

k(t,ξ)
, A(t,ξ) =

A(t,ξ)
A(t, ℓ)

, A(t,ξ) =
∫ ξ

0
k(t,ξ)dξ.

For each time t ∈ [0,T ], the area function at ξ = ℓ, A(t, ℓ) is
the total area under the kernel at that time and represents the

network. This is achieved by applying the decomposition used
for the feedback kernel, to the velocity field. By its nature, this
µ-CVT based decomposition ensures collision avoidance, thus
simplifying the mobile sensor guidance.

Operating on the sensor density, a similar approach considers
the advection PDE representing the evolution of the sensor
density, but formulates the network velocity as a bilinear control
tracking problem whereby one selects the network velocity as
the control signal in order to ensure that the sensor density
tracks the time-varying feedback kernel. The highlights of the
three kernel approximation schemes are given below.

(1) Use a computational geometry scheme to decompose the
feedback kernel into ns cells and place a sensor in each
cell. The position of each sensor and the static gain is
provided at each time t.

(2) Set the kernel equal to the solution of a density advection
PDE and solve for the velocity of the associated sensor
network. The speed of each sensor and the static gain is
provided at each time t.

(3) Solve the bilinear tracking control problem in the density
advection PDE. The control signal is the velocity function
and the sensor density is forced to track the feedback
kernel. The speed of each sensor and the static gain is
provided at each time t.

This paper presents the three approximation schemes that allow
one to replace a full-state feedback controller by the weighted
sum of measurements provided by mobile sensor network.
Section 2 formulates the problem for 1D PDEs. Section 3
presents the three schemes to allow one to replace a full-
state feedback controller by a static feedback where both the
gains and the sensor locations are time-varying. Numerical
results showcasing one approach are presented in Section 4 and
conclusions with future extensions follow in Section 5.

2. PROBLEM FORMULATION

The class of PDEs represented by this framework encompasses
advection-diffusion equations primarily in 1D spatial domains
with the 2D spatial domain case being easily extendable. Such
PDEs are abstractly written as evolution equations

ẋ(t) = Ax(t)+Bu(t), x(0) = x0 ∈ dom (A), (1)

where the state and input operators are A ∈ L(V ,V ∗) and
B ∈ L(U,V ∗), respectively. To account for unbounded input
and state operators, the Gelfand triple with V →֒ H →֒ V ∗ is
considered with the embeddings dense and continuous, Showal-
ter (1977). The input space U is considered to be a finite
dimensional Euclidean space, Curtain and Zwart (1995). Since
a single actuator is considered here, thenU = R

1.

For the above system, it is assumed that a suitable controller
can be designed to satisfy certain performance objectives. Such
a controller, assumed to have a time-varying operator gain, is

u(t) =−K (t)x(t). (2)

The time variation for such a feedback operator gain may come
from either a time varying input operator or the one associated
with a finite horizon linear quadratic cost functional

J =
∫ T

0
�x(τ),Q x(τ)�X +uT (τ)R u(τ)dτ. (3)

As summarized in Demetriou (2021), such a time-varying feed-
back operator is obtained from the solution to an associated
Operator Differential Riccati Equation

−Ṗ = A∗P +PA−PB(t)R−1B∗(t)P +Q , (4)

where for simplicity, a zero terminal condition is assumed with
P (T ) = 0. In this case, one can express the feedback operator

in terms of the above Riccati equation K (t) = R−1B∗(t)P (t).

In the absence of full state information, the controller (2) cannot
be implemented. The alternatives are to either produce a state
estimate �x(t) by employing a state estimator for the process (1)
supplemented with sensor measurements

y(t) =



y1(t)

...

yns(t)


=



C1x(t)

...

Cnsx(t)


= Cx(t), (5)

as provided by ns sensors, or implement an appropriately de-
signed reduced order controller that uses the measurements (5).

The latter is considered here, as a means to minimize the com-
putational costs associated with the implementation of a state
estimator and additionally as a means to reduce the complexity
of the controller architecture. The basic elements of such an
alternate controller for a system (1) employing a controller (2)
with a time varying feedback gain are summarized below

(i) Assume that the time-varying feedback operator admits a
time-varying feedback kernel representation.

(ii) Replace the controller (2) by its static output feedback
controller approximation

us(t) =−
ns

∑
i=1

γi(t)yi(t) (6)

where yi(t), i= 1, . . . ,ns denote the sensor measurements
in (5) and γi(t) are the corresponding time-varying gains.

(iii) Given that the feedback operator is available, provide a
solution to the gain approximation

(K (t)−Γ(t)C )x(t)≈ 0, (7)

in order to obtain at each time t, the time varying static
gains γi(t), i= 1, . . . ,ns.

To improve and to perhaps ensure that the approximation (6) is
made feasible, an added level of optimization is incorporated
in element (ii) above to allow the sensor measurements be
delivered by mobile sensors and thus (7) is replaced by

(ii)’ Given that the feedback operator is available, provide a
solution to the gain approximation

(K (t)−Γ(t)C (t))x(t)≈ 0, (7’)

in order to obtain at each time t, the time varying static
gains γi(t), i= 1, . . . ,ns and the sensor locations associated
with the time-varying output operator C (t) given in (5).

To address the above, we consider an advection PDE in 1D and
formulate the optimization of both the static gains and the time-
varying sensor locations in weak form. The advection PDE is

xt(t,ξ) = (a(ξ)xt(t,ξ))ξ+a2xξ(t,ξ)
+a3x(t,ξ)+b(t,ξ)u(t)

y(t) =




y1(t;ξ1(t))
...

yns;ξns (t)(t)


=




∫ ℓ

0
c1(ξ,ξ1(t))x(t,ξ)dξ

...
∫ ℓ

0
cns(ξ,ξns(t))x(t,ξ)dξ



,

(8)

where ci(ξ;ξi(t)) denotes the ith sensor spatial distribution at
the location ξi(t) ∈ [0, ℓ]. The explicit dependence of the sensor
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distributions on time, via the time-varying locations or cen-
troids ξi(t), is made to account for the sensor motion within
the domain Ω = (0, ℓ). Thus the sensor motion is fully encom-
passed in the time variation of the centroids ξi(t). Dirichlet
boundary conditions x(t,0) = x(t, ℓ) = 0 are assumed in (8).
The function b(t,ξ) is the distribution of the actuating device
and accounts for a possibly moving actuator. The coefficients
a(ξ),a2,a3 are associated with the elliptic operator.

To simplify the analysis, a rather straightforward assumption is
made on the sensing devices and considers a network of sensing
devices that are identical and differing only on the position of
their centroid within the spatial domain Ω.

Assumption 1. (uniform sensor network). The sensor network
comprised of the ns sensing devices contains identical sensors

ci(ξ,ξi(t)) = c(ξ,ξi(t)), i= 1, . . . ,ns. (9)

The other assumption ensures that the proposed computational
geometry approach for the approximation (7’) is feasible.

Assumption 2. (kernel representation). The time varying feed-
back gain operator is assumed to admit a kernel representation.
For the PDE (8), this representation becomes

K (t)φ=
∫ ℓ

0
k(t,ξ)φ(ξ)dξ, ∀φ ∈ H1

0 (0, ℓ). (10)

This is valid for parabolic systems with any bounded control
for 1-3D and for Neumann B.C.’s for 1-2D, King (1995, 2000).

Problem Statement: Using Assumptions 1,2, the approximation
(7’) for the scalar control case, viewed in weak form, becomes

∫ ℓ

0

(
k(t,ξ)−

ns

∑
i=1

γi(t)c(ξ,ξi(t))

)
φ(ξ)dξ≈ 0, (11)

for all φ ∈ H1
0 (0, ℓ). The optimization problem seeks to pro-

duce the static gains γi(t) and the associated sensor locations
ξi(t) that minimize the difference in the above integrant in an

appropriate sense. Once the optimal gains γopti (t) and optimal

locations ξopti (t) for each time t are produced, then the control

u(t) =−
∫ ℓ

0
k(t,ξ)x(t,ξ)dξ (12)

which corresponds to (2) is replaced by the approximate static
output feedback controller

us(t) = −
ns

∑
i=1

γopti (t)
∫ ℓ

0
c(ξ,ξopti (t))x(t,ξ)dξ

= −
ns

∑
i=1

γopti (t)yi(t;ξopti (t))

(13)

Joint gain and sensor location optimization: The optimization
described by (11) is formally expressed as

min
φ∈H1

0 (0,ℓ)

∣∣∣∣∣

∫ ℓ

0

(
k(t,ξ)−

ns

∑
i=1

γi(t)c(ξ,ξi(t))
)
φ(ξ)dξ

∣∣∣∣∣

2

. (14)

Equation (14) seeks ways to approximate the feedback kernel
for each time t ∈ [0,T ] so that the difference is minimized.
Expanding the approach presented in Demetriou (2021), we
present three different methods to solve the optimization (14):

(1) (Kernel decomposition) using computational geometry
approaches: In this case, a modification of the Centroidal
Voronoi Tessellations (µ-CVT) is used to partition the ker-
nel into ns cells Ii(t), each containing a sensor at location

ξi(t) ∈ Ii(t) and use a least-squares approach to solve for
the associated feedback gains γi(t). The outputs here are
the locations ξi(t) and the gains γi(t) for each t ∈ [0,T ].

(2) (Sensor network density propagation:) In this case, the
kernel is viewed as equivalent, up to a constant, to the
sensor network density. The solution to the associated ad-
vection PDE that propagates the sensor density forward in
time, yields the network velocity. Once the sensor network
velocity is obtained, any decomposition (partitioning) of

the velocity will yield the speed ξ̇i(t) and direction of each
sensor. Subsequently, the same decomposition provides
the associated feedback gains. The outputs here are the

speeds ξ̇i(t) and the gains γi(t) for each t ∈ [0,T ].
(3) (Bilinear tracking control:) In this case, the advection

PDE describing the sensor density is considered and the
goal is to design a velocity controller for the bilinear
control problem to ensure that the state of the density PDE
tracks the feedback kernel. The outputs here are the speeds

ξ̇i(t) and the gains γi(t) for each t ∈ [0,T ].

3. SOLUTION TO OPTIMIZATION (14)

The approaches above are detailed here. The first two are taken
from Demetriou (2021) and are included here for completeness,
whereas the third one represents new work by the authors.

3.1 Kernel decomposition

The approach here follows directly from Demetriou (2021).
The idea is to decompose the feedback kernel k(t,ξ) for each
time t into ns equi-areal cells. Each cell will have an area
equal to 1/ns of the total area of the kernel k(t,ξ). Then in
each cell, place a sensor ξi(t) so that in turn decomposes the
cell into two equi-areal subcells. The algorithm presented in
Demetriou (2021) and adapted for time-variation of the kernel
is summarized. A further simplification assumes that the sensor
distributions in (9) are described by the Dirac delta functions

c(ξ,ξi(t)) = δ(ξ−ξi(t)), i= 1, . . . ,ns.

Sensor position ξi(t) in each time

(a) Time varying domain decomposition: At each time t ∈
[0,T ], partition the domain Ω in ns cells Ii(t) ∈ Ω with

the property Ii(t)∩I j(t) = /0 and
⋃ns

i=1 I i(t) =Ω so that at
each cell Ii(t), the area of the kernel k(t,ξ) satisfies

∫

Ii(t)
k(t,ξ)dξ=

∫

Ω
k(t,ξ)dξ

ns
=

(
A(t)

ns

)
, i= 1, . . . ,ns. (15)

(b) Sensor placement: Place a sensor ξi(t) in each cell Ii(t),
using the method in step (a) which ensures that the loca-
tion ξi(t) in cell Ii(t) is such that it subsequently divides

the cell into two subcells Ii(t) = I ai (t)∪ I bi (t) of equal
areas of the kernel, with each being equal to 0.5A(t)/ns.

As presented in Demetriou (2021), there ia simple graphical
approach for the 1D case. For each time t ∈ [0,T ], one defines
the normalized kernel k(t,ξ) and the associated normalized area
function under the kernel via

k(t,ξ) =
k(t,ξ)

max
ξ∈Ω

k(t,ξ)
, A(t,ξ) =

A(t,ξ)
A(t, ℓ)

, A(t,ξ) =
∫ ξ

0
k(t,ξ)dξ.

For each time t ∈ [0,T ], the area function at ξ = ℓ, A(t, ℓ) is
the total area under the kernel at that time and represents the
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∫

Ii(t)
v(t,ξ)dξ≈ υi(t)

∫

Ii(t)
1dξ.

Therefore, the location of each sensor in a cell Ii(t) is implicitly
found by defining its initial position ξi(0) using the approach in
Section 3.1 only once (at the initial time) and then defining its

trajectory via its speed ξ̇i(t) = υi(t) given by

υi(t) =

∫

Ii(t)
v(t,ξ)dξ

∫

Ii(t)
1dξ

, i= 1, . . . ,ns. (23)

The corresponding static gains are found, in a way similar to
the one given in Demetriou (2021), via

γi(t) =

∫

Ii(t)
ρ(t,ξ)dξ

∫

Ii(t)
1dξ

=

∫

Ii(t)
k(t,ξ)dξ

∫

Ii(t)
1dξ

, i= 1, . . . ,ns. (24)

3.3 Bilinear tracking control

Assume that all sensors are moving within the spatial domain
and will not move across the boundary. Here we set

v(0) = v(ℓ), (25)

which makes ξ stay in Ω = [0, ℓ] for all t, DiPerna and Lions
(1989). Enforcing the density to track the feedback kernel is a
natural way to ensure that (25) is justified. In fact, it is easy to
check that in this case

∂
∂t

∫ ℓ

0
ρ(t,ξ)dξ+

∫ ℓ

0

∂
∂ξ

(vρ) dξ=

∂
∂t

∫ ℓ

0
ρ(t,ξ)dξ+(v(l)ρ(l)− v(0)ρ(0)) = 0,

which follows ∫ ℓ

0
ρ(t,ξ)dξ=

∫ ℓ

0
ρ0(ξ)dξ.

This guarantees that the number of sensors is conserved.

To find the solution ρ(t,ξ) to (19), one may design the track-
ing control signal v in an admissible velocity space Uad =
H1
0 (0,T ;H

1
0 (0, ℓ)) that minimizes

J(v,ρ) =
1

2
�ρ(T )− k(T )�2

L2
+

α
2

∫ T

0
�ρ− k�2

L2
dt

+
β
2

∫ T

0
�∂v
∂ξ

�2
L2
dt+

γ
2

∫ T

0
�∂v
∂t
�2
L2
dt, (P)

subject to (19), where α,β,γ > 0 are the weight parameters.
The second and third terms are used to control the acceleration
of the sensor movement in space-time as to have a smooth
trajectory. Due to the advection term ∇ · (vρ), the control-to-
state map v �→ ρ is bilinear. As a result, problem (P) becomes
nonconvex. The proofs for the existence of an optimal solution
(v∗,ρ∗) and the differentiability of the control-to-state map
follow the similar procedures as in Barbu and Marinoschi
(2016); Hu (2020). However, the optimal solution may not be
unique in general.

To derive the first order necessary optimality conditions for
solving problem (P), we shall use a formal Euler-Lagrange
approach. The rigorous arguments can be found in Barbu and
Marinoschi (2016); Hu (2020). First, introduce the Lagrangian

L(φ,v,ρ) = J(v,ρ)+
∫ T

0
(
∂ρ
∂t

+
∂
∂ξ

(vρ) ,φ)dt

for φ ∈ H1
0 (0, ℓ). Applying integration by parts and Green’s

formula to the second term of L follows∫ T

0
(
∂ρ
∂t

+
∂
∂ξ

(vρ) ,φ)dt = (ρ(T ),φ(T ))− (ρ(0),φ(0))

−
∫ T

0
(
∂φ
∂t

,ρ)dt+
∫ T

0
(v(ℓ)ρ(ℓ),φ(ℓ))− (v(0)ρ(0),φ(0))dt

−
∫ T

0

∫ ℓ

0
(vρ)

∂φ
∂ξ

dξdt

= (ρ(T ),φ(T ))− (ρ(0),φ(0))

−
∫ T

0
(
∂φ
∂t

,ρ)dt−
∫ T

0

∫ ℓ

0
(vρ)

∂φ
∂ξ

dξdt.

Thus

L(φ,v,ρ) =J(v,ρ)+(ρ(T ),φ(T ))+(ρ(0),φ(0))

−
∫ T

0
(
∂φ
∂t

,ρ)dt−
∫ T

0

∫ ℓ

0
(vρ)

∂φ
∂ξ

dξdt.

Now setting ∂L
∂ρ = 0 and ∂L

∂ρ(T ) = 0, respectively, we get

− ∂φ
∂t

− ∂(vφ)
∂ξ

= α(ρ− k), (26)

φ(x,T ) =−(ρ(x,T )− k(x,T )). (27)

Moreover, setting ∂L
∂v = 0 we obtain the optimality conditions

β
∂2v
∂ξ2

+ γ
∂2v
∂t2

= ρ
∂φ
∂ξ

, (28)

with boundary and initial conditions

v(t,0) = v(t, ℓ) = 0, v(0,ξ) = v(T,ξ) = 0. (29)

In summary, to solve problem (P) one has to solve the state
equations (19)–(20) and (25) forward in time, coupled with
the adjoint system (26)–(27) backward in time together with
nonlinear optimality conditions, which are governed by the
wave equations (28)–(29).

4. NUMERICAL RESULTS

We consider the following advection-diffusion PDE

xt(t,ξ) =
(
a(ξ)xξ(t,ξ)

)
ξ+a2xξ(t,ξ)

+a3x(t,ξ)+b(t,ξ)u(t)
where [0, ℓ] = [0,1],

a(ξ) = 5×10−3

(
e−g/2

√
2πσ

+1+3sin(3πξ)sin2(ξ− 1

4
)

)
,

σ = ℓ/18, g = ( ξ−µ
σ )2, µ = 0.75ℓ, a2 = −5 × 10−2, a3 =

−3× 10−3. A Galerkin scheme with 40 linear elements was
used to semi-discretize the above PDE and the resulting finite
dimensional system was integrated using the 4th order Runge-
Kutta stiff ODE solver ode23s from the Matlab� ODE library.

The mobile actuator distribution b(t,ξ) was selected as the
boxcar function b(t,ξ) = 1 if ξ ∈ [ξa(t)− ε

2
,ξa(t) + ε

2
], ε =

ℓ/20, and zero otherwise, having a centroid with path

ξa(t) = 0.5−0.45sin(4π(t f − t0)/(t− t0)),

and the initial condition was selected as x(0,ξ) = 10sin(π(1−
ξ))e−7(ξ−1)2 . The solution to (4) used Q = I and R= 10−2.

Figure 2 depicts the spatial distribution of the state at four
different time instances using the full state feedback controller
(12) and the approximated static output feedback controller
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Fig. 1. Normalized feedback kernel k(t,ξ) and normalized areal

function A(t,ξ) for a given time t ∈ [0,T ]. The spatial
domainΩ is partitioned into ns = 12 equiareal cells Ii with∫
Ii
k(t,ξ)dξ = 1

ns

∫ ℓ
0 k(t,ξ)dξ. The cell coordinates (grid

points) are found as the abscissae points on the normalized
areal function A(t,ξ) having ordinates i/12.

fraction of the area under the kernel up to the spatial point
ξ ∈ Ω. The identity A(t, ℓ) = 1 trivially follows. When the

normalized area A(t,ξ) is plotted, then the cells Ii(t) are easily
identified by first identifying the ordinate points 1/ns of A(t,ξ).
The corresponding abscissae points produce the boundaries of
the cells Ii(t). They partition Ω into ns equiareal cells under the
kernel. In fact, one does not need to use the graph, but instead
obtain the points that partition the spatial domain via

ξi(t) :
∫ ξi(t)

0
k(t,ξ)dξ=

(2i−1)

2

A(t, ℓ)

ns
, i= 1, . . . ,ns.

Figure 1 showcases the graphical method for ns = 12. The
normalized areal function A(t,ξ) is decomposed into ns = 12
cells with uniform grid points i/ns, i= 1, . . . ,ns. The abscissae
points provide the grid points on the ξ-axis that decompose the

normalized kernel k(t,ξ) into ns cells that have equal areas.

Feedback gains γi(t) in each time

The computation of the gains γi(t) is based on the finite dimen-
sional representation of (8). Their calculation uses the fact that
the time-varying kernel has the representation

k(t,ξ) =
N

∑
j=1

k j(t)φ j(ξ), ∀φ j ∈ H1
0 (0, ℓ). (16)

This approximation is replaced in the optimization (14), viewed
in weak form for the test functions φ ∈ H1

0 (0, ℓ), and which
yields the resulting finite dimensional representation
∫ 1

0

N

∑
j=1

k j(t)φ j(ξ)φ(ξ)dξ≈
ns

∑
i=1

γi(t)
∫

Ii(t)
δ(ξ−ξi(t))φ(ξ)dξ.

Replacing the test function φ by the trial functions φm(ξ), we
arrive at the finite dimensional system
∫ 1

0

N

∑
j=1

k j(t)φ j(ξ)φm(ξ)dξ≈
ns

∑
i=1

γi(t)
∫

Ii(t)
δ(ξ−ξi(t))φm(ξ)dξ

for φm ∈ H1
0 (0, ℓ), m= 1, . . . ,N. In matrix form it becomes

Mκ(t) =Φ(ξξξs(t))Γ(t) (17)

where the N-dimensional mass matrixM is

[M] jm =
∫ ℓ

0
φ j(ξ)φm(ξ)dξ, j,m= 1, . . . ,N.

The time-varying kernel coefficients vector κ(t) and the corre-
sponding time-varying static gains vector are given by

Γ(t) = [ γ1(t) . . . γns(t) ]
T
, κ(t) = [ k1(t) . . . kN(t) ]

T
.

The matrix Φ(ξξξs(t)) denotes the N×ns regressor matrix

Φ(ξξξs(t)) =



∫

I1(t)
δ(ξ−ξ1(t))φ1(ξ)dξ . . .

∫

Ins (t)
δ(ξ−ξns(t))φ1(ξ)dξ

...
. . .

...∫

I1(t)
δ(ξ−ξ1(t))φN(ξ)dξ . . .

∫

Ins (t)
δ(ξ−ξns)φN(ξ)dξ



,

and which simplifies to

Φ(ξξξs(t)) =



φ1(ξ1(t)) . . . φ1(ξns(t))

...
. . .

...

φN(ξ1(t)) . . . φN(ξns(t))


 .

For each t ∈ [0,T ], the solution to (17) is given by the least-
squares solution

Γ(t) =
�
ΦT (ξξξs(t))Φ(ξξξs(t))

�−1ΦT (ξξξs(t))(Mκ(t)) . (18)

3.2 Sensor network density propagation

Here we associate the kernel k(t,ξ)with the sensor density. The
assumption made is that there is a continuum of mobile sensors
whose density ρ(t,ξ) is governed by the advection PDE

∂ρ
∂t

(t,ξ)+
∂
∂ξ

(v(t,ξ)ρ(t,ξ)) = 0, (19)

having boundary (Dirichlet) and initial conditions

ρ(t,0) = ρ(t, ℓ), ρ(0,ξ) = ρ0(ξ) = 0. (20)

The density advection PDE can be formulated on a Hilbert
space with the norm describing the energy norm. The mod-
ification needed in this formulation is that it must exclude
the non-zero constant functions that have zero derivative and
this one considers the quotient space, Taylor and Lay (1980)

H = L
2
(0, ℓ). Here L

2
(0, ℓ) is the quotient space of L2(0, ℓ).

The unknown in (19) is the velocity v(t,ξ). Once the density is
set equal to the feedback kernel, modulo a constant, then

∂k
∂t

(t,ξ)+
∂
∂ξ

(v(t,ξ)k(t,ξ)) = 0, (21)

with k(t,0)= k(t, ℓ)= 0. To obtain the unknown sensor network
velocity v(t,ξ), one must solve (21) numerically, using approx-
imating functions belonging to a finite dimensional subspace

of L
2
(0, ℓ). As an example of the approximating functions for

the kernel in (21), one may select Legendre polynomials, Got-
tlieb and Orszag (1977), shifted for Ω = (0, ℓ) and modified to
account for the constants. Viewed in weak form, (21) produces

∫ ℓ

0

∂k(t,ξ)
∂t

φ(ξ)dξ=
∫ ℓ

0
v(t,ξ)k(t,ξ)

d

dξ
φ(ξ)dξ. (22)

The finite dimensional representation of (22) provides the finite
dimensional representation of the unknown velocity v(t,ξ).

Once the network velocity is found, one can employ the domain
decomposition method used in Section 3.1 to find the speed of
a sensor in each cell Ii(t) using the approximation



	 Michael A. Demetriou  et al. / IFAC PapersOnLine 55-26 (2022) 125–130	 129

∫

Ii(t)
v(t,ξ)dξ≈ υi(t)

∫

Ii(t)
1dξ.

Therefore, the location of each sensor in a cell Ii(t) is implicitly
found by defining its initial position ξi(0) using the approach in
Section 3.1 only once (at the initial time) and then defining its

trajectory via its speed ξ̇i(t) = υi(t) given by

υi(t) =

∫

Ii(t)
v(t,ξ)dξ

∫

Ii(t)
1dξ

, i= 1, . . . ,ns. (23)

The corresponding static gains are found, in a way similar to
the one given in Demetriou (2021), via

γi(t) =

∫

Ii(t)
ρ(t,ξ)dξ

∫

Ii(t)
1dξ

=

∫

Ii(t)
k(t,ξ)dξ

∫

Ii(t)
1dξ

, i= 1, . . . ,ns. (24)

3.3 Bilinear tracking control

Assume that all sensors are moving within the spatial domain
and will not move across the boundary. Here we set

v(0) = v(ℓ), (25)

which makes ξ stay in Ω = [0, ℓ] for all t, DiPerna and Lions
(1989). Enforcing the density to track the feedback kernel is a
natural way to ensure that (25) is justified. In fact, it is easy to
check that in this case

∂
∂t

∫ ℓ

0
ρ(t,ξ)dξ+

∫ ℓ

0

∂
∂ξ

(vρ) dξ=

∂
∂t

∫ ℓ

0
ρ(t,ξ)dξ+(v(l)ρ(l)− v(0)ρ(0)) = 0,

which follows ∫ ℓ

0
ρ(t,ξ)dξ=

∫ ℓ

0
ρ0(ξ)dξ.

This guarantees that the number of sensors is conserved.

To find the solution ρ(t,ξ) to (19), one may design the track-
ing control signal v in an admissible velocity space Uad =
H1
0 (0,T ;H

1
0 (0, ℓ)) that minimizes

J(v,ρ) =
1

2
�ρ(T )− k(T )�2

L2
+

α
2

∫ T

0
�ρ− k�2

L2
dt

+
β
2

∫ T

0
�∂v
∂ξ

�2
L2
dt+

γ
2

∫ T

0
�∂v
∂t
�2
L2
dt, (P)

subject to (19), where α,β,γ > 0 are the weight parameters.
The second and third terms are used to control the acceleration
of the sensor movement in space-time as to have a smooth
trajectory. Due to the advection term ∇ · (vρ), the control-to-
state map v �→ ρ is bilinear. As a result, problem (P) becomes
nonconvex. The proofs for the existence of an optimal solution
(v∗,ρ∗) and the differentiability of the control-to-state map
follow the similar procedures as in Barbu and Marinoschi
(2016); Hu (2020). However, the optimal solution may not be
unique in general.

To derive the first order necessary optimality conditions for
solving problem (P), we shall use a formal Euler-Lagrange
approach. The rigorous arguments can be found in Barbu and
Marinoschi (2016); Hu (2020). First, introduce the Lagrangian

L(φ,v,ρ) = J(v,ρ)+
∫ T

0
(
∂ρ
∂t

+
∂
∂ξ

(vρ) ,φ)dt

for φ ∈ H1
0 (0, ℓ). Applying integration by parts and Green’s

formula to the second term of L follows∫ T

0
(
∂ρ
∂t

+
∂
∂ξ

(vρ) ,φ)dt = (ρ(T ),φ(T ))− (ρ(0),φ(0))

−
∫ T

0
(
∂φ
∂t

,ρ)dt+
∫ T

0
(v(ℓ)ρ(ℓ),φ(ℓ))− (v(0)ρ(0),φ(0))dt

−
∫ T

0

∫ ℓ

0
(vρ)

∂φ
∂ξ

dξdt

= (ρ(T ),φ(T ))− (ρ(0),φ(0))

−
∫ T

0
(
∂φ
∂t

,ρ)dt−
∫ T

0

∫ ℓ

0
(vρ)

∂φ
∂ξ

dξdt.

Thus

L(φ,v,ρ) =J(v,ρ)+(ρ(T ),φ(T ))+(ρ(0),φ(0))

−
∫ T

0
(
∂φ
∂t

,ρ)dt−
∫ T

0

∫ ℓ

0
(vρ)

∂φ
∂ξ

dξdt.

Now setting ∂L
∂ρ = 0 and ∂L

∂ρ(T ) = 0, respectively, we get

− ∂φ
∂t

− ∂(vφ)
∂ξ

= α(ρ− k), (26)

φ(x,T ) =−(ρ(x,T )− k(x,T )). (27)

Moreover, setting ∂L
∂v = 0 we obtain the optimality conditions

β
∂2v
∂ξ2

+ γ
∂2v
∂t2

= ρ
∂φ
∂ξ

, (28)

with boundary and initial conditions

v(t,0) = v(t, ℓ) = 0, v(0,ξ) = v(T,ξ) = 0. (29)

In summary, to solve problem (P) one has to solve the state
equations (19)–(20) and (25) forward in time, coupled with
the adjoint system (26)–(27) backward in time together with
nonlinear optimality conditions, which are governed by the
wave equations (28)–(29).

4. NUMERICAL RESULTS

We consider the following advection-diffusion PDE

xt(t,ξ) =
(
a(ξ)xξ(t,ξ)

)
ξ+a2xξ(t,ξ)

+a3x(t,ξ)+b(t,ξ)u(t)
where [0, ℓ] = [0,1],

a(ξ) = 5×10−3

(
e−g/2

√
2πσ

+1+3sin(3πξ)sin2(ξ− 1

4
)

)
,

σ = ℓ/18, g = ( ξ−µ
σ )2, µ = 0.75ℓ, a2 = −5 × 10−2, a3 =

−3× 10−3. A Galerkin scheme with 40 linear elements was
used to semi-discretize the above PDE and the resulting finite
dimensional system was integrated using the 4th order Runge-
Kutta stiff ODE solver ode23s from the Matlab� ODE library.

The mobile actuator distribution b(t,ξ) was selected as the
boxcar function b(t,ξ) = 1 if ξ ∈ [ξa(t)− ε

2
,ξa(t) + ε

2
], ε =

ℓ/20, and zero otherwise, having a centroid with path

ξa(t) = 0.5−0.45sin(4π(t f − t0)/(t− t0)),

and the initial condition was selected as x(0,ξ) = 10sin(π(1−
ξ))e−7(ξ−1)2 . The solution to (4) used Q = I and R= 10−2.

Figure 2 depicts the spatial distribution of the state at four
different time instances using the full state feedback controller
(12) and the approximated static output feedback controller
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Fig. 2. Spatial evolution of state at four time instances; full state
controller (blue dotted), output feedback (red solid).
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Fig. 3. Evolution of state L2 norm.

(13). The performance of the state feedback controller cannot
be surpassed by the static output feedback controller, but such
a controller is realizable and has a performance that is close to
that of the state feedback. The same is observed in Figure 3
which depicts the evolution of the state L2 norm. The path
evolution of the ns = 12 mobile sensors is depicted in Figure 4,
where it is observed that the proposed µ-CVT method ensures
collision avoidance and all sensors remain within Ω.

5. CONCLUSION AND FUTURE WORK

A way to incorporate mobile sensor networks for the control of
PDEs is to relate the density of a sensor network to the kernel
associated with a feedback operator. When the state feedback
cannot be implemented, then a sensor network can be used as
an alternate to an observer-based compensator. This takes the
form of a static output feedback and the sensor network-based
controller provides the static gains and the sensor positions as
a means to approximate a full state feedback. Three different
approaches were presented to approximate a state feedback
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Fig. 4. Evolution of the sensor network trajectories.

controller by a static output feedback controller that utilized
the measurements obtained by a mobile sensor network. An im-
mediate extension considered by the authors is the application
to 3D PDEs and the inclusion of the motion dynamics of the
mobile platforms carrying the sensors.
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