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Variational microcanonical estimator
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We propose a variational quantum algorithm for estimating microcanonical expectation values in models
obeying the eigenstate thermalization hypothesis. Using a relaxed criterion for convergence of the variational
optimization loop, the algorithm generates weakly entangled superpositions of eigenstates at a given target
energy density. An ensemble of these variational states is then used to estimate microcanonical averages of
local operators, with an error whose dominant contribution decreases initially as a power law in the size of the
ensemble and is ultimately limited by a small bias. We apply the algorithm to the one-dimensional mixed-field
Ising model, where it converges for ansatz circuits of depth roughly linear in system size. The most accurate
thermal estimates are produced for intermediate energy densities. In our error analysis, we find connections
with recent works investigating the underpinnings of the eigenstate thermalization hypothesis. In particular,
the failure of energy-basis matrix elements of local operators to behave as independent random variables is a
potential source of error that the algorithm can overcome by averaging over an ensemble of variational states.
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I. INTRODUCTION

Calculating the ground state and thermal equilibrium prop-
erties of large and complex quantum systems remains a central
task in contemporary quantum physics. While for integrable
systems analytical techniques can often solve the problem, in
generic nonintegrable systems such methods do not apply. In
the last two decades, however, efficient numerical methods
have been developed to calculate ground-state and thermal
properties in settings where the target state is only modestly
entangled. Tensor network (TN) methods exploit the locality
of physical Hamiltonians, in particular their area-law entan-
gled ground states [1], to find efficient representations of the
wavefunction via truncated matrix product states on classical
hardware [2]. Additionally, these efficient representations can
be extended to Gibbs states at finite temperature via ma-
trix product operators [3]. Examples of algorithms based on
TNs include the minimally entangled typical thermal state
(METTS) algorithm [4] for estimating canonical averages,
and an algorithm for estimating microcanonical averages us-
ing time-evolving block decimation (TEBD) [5]. In higher
than one spatial dimension, however, the TN contraction step
becomes hard [6], so that classical algorithms may not be suf-
ficient for the simulation of even weakly entangled quantum
systems.

It has long been believed that quantum computers are
the natural platform to simulate quantum systems [7], but to
exploit their full power it is likely that deep quantum circuits
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and error correction will be required. Currently, we have noisy
intermediate-scale quantum (NISQ) devices that cannot yet
implement deep circuits with high fidelity, but which can still
demonstrate the potential for quantum computing in cases
where low-depth circuits are sufficient [8]. There is thus a
significant need to develop algorithms that can take advantage
of these NISQ devices.

Originating with the variational quantum eigensolver
(VQE) [9], one class of algorithms that can potentially achieve
this goal in some cases are the hybrid quantum-classical vari-
ational quantum algorithms (VQAs) [10–12], which employ
a digital quantum computer aided by a classical optimizer.
Although generic VQAs suffer from the well-known barren
plateau problem [13–15] which suggests unscalability in full
generality, there is evidence that VQAs can calculate the
ground state of certain Hamiltonians using only polynomial
quantum resources, e.g., by using the Hamiltonian variational
ansatz for the transverse field Ising model [16]. Recent works
have also considered using VQAs to prepare Gibbs states us-
ing cost functions such as the relative entropy or relative free
energy between the current state and target state [17]; strate-
gies to overcome the costly evaluation of the entropic term
have also been proposed [18,19]. Other finite-temperature
VQAs prepare thermofield-double (TFD) states, which re-
quire doubling the number of qubits in the physical system
being simulated—for example, the algorithm of Ref. [20]
can prepare the TFD state of free fermions efficiently at
any inverse temperature. Alternative quantum algorithms for
preparing thermal states include a quantum version of the min-
imally entangled typical thermal states algorithm (QMETTS
algorithm) that involves imaginary time evolution on quantum
hardware [21], and an algorithm based on random quantum
circuits [22].

In this work, we task a VQA with calculating microcanon-
ical averages of local observables in a one-dimensional (1D)
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FIG. 1. The VME algorithm. In step (0), the QPU is initialized
in a random product state |ψ0

r 〉 (r = 1, . . . ,R). The VQA repeats
steps (1) and (2) that optimize the cost function C(θ) in Eq. (1.1) to
“squeeze” the state onto a microcanonical window of size δ as shown
in step (3). Steps (0–3) are repeated to produce a pseudorandom
ensemble of states |ψr〉 which for large N and R can be used to
approximate microcanonical averages of local operators A as in step
(4), where ρR = 1

R

∑
r |ψr〉 〈ψr |.

nonintegrable spin model. Our work is partially inspired by
analog quantum simulation [23] and classical tensor network
[24] algorithms for estimating microcanonical properties. The
algorithm takes advantage of the eigenstate thermalization
hypothesis (ETH), in particular the “diagonal” ETH which
states that in a nonintegrable model the energy-basis diago-
nal matrix elements 〈E |A|E〉 of an observable A approach a
smooth function A(E ) in the thermodynamic limit [25,26].

The algorithm, which we call the variational microcanon-
ical estimator (VME), works as follows (see Fig. 1). We
initialize the QPU in a random product state [step (0)] |ψ0

r 〉,
whose energy variance is typically extensive in N (the number
of sites) [24]. Given a target energy λ and microcanonical
window size δ, a classical optimizer is then tasked with mini-
mizing the cost function

C(θ) = 〈ψ (θ)| (H − λ)2 |ψ (θ)〉 (1.1)

[steps (1) and (2)] originally proposed in Ref. [9]. How-
ever, instead of trying to reach a local or global min-
imum, we stop the optimization as soon as Var(H ) =
〈(H − 〈H〉)2〉 � δ2. This produces states whose energy sup-
port is roughly limited to the microcanonical window
of interest [step (3)], and the resulting variational states
|ψr〉 are then used to compute the expectation of a lo-
cal observable A by averaging 〈ψr |A|ψr〉 over R varia-
tional states [step (4)]. The ensemble average in step (4)
enables a parametric reduction in the error and is essential to
the algorithm’s performance.

We benchmark the VME algorithm on a nonintegrable
Ising chain by comparing its estimates for local observables to
corresponding Gaussian microcanonical ensemble predictions

obtained from exact diagonalization (ED). Using numerical
evidence in combination with the phenomenology of ETH,
we conjecture that for local operators A and target energies
λ in the bulk of the spectrum, the absolute error in the VME
algorithm scales as

εR � |c| + O(R−1/2) + O(δ/N ) + O(D−1/2(λ)). (1.2)

Here, D(λ) is the density of states at the target energy λ, δ is
the microcanonical window width, N is the system size, and
c � 1 is a small empirical constant whose magnitude depends
on A and other problem parameters. The last two terms in this
formula are predicted by ETH and the first two terms we give
a phenomenological argument for that we substantiate with
numerical evidence.

We then generalize the problem to the reduced state of
small subsystems of the chain and find numerically that when
choosing R = O(N2) and for certain λ, the VME appears
to approach the corresponding microcanonical state in the
thermodynamic limit. The states prepared by the VME are
consistent with area-law entanglement for a fixed N , and
require roughly linearly deep quantum circuits to prepare. We
find that every random initial product state is able to converge,
which we attribute to the fact that the algorithm does not seek
global minima of the cost function. An additional distinction
from other current VQAs for preparing mixed states is that
we prepare pure states one at a time, thus avoiding storage
of a large ensemble of pure quantum states in a quantum
memory. The smallness of the trace distance when choos-
ing R = O(N2) implies that the microcanonical ensemble,
which involves at least one (via ETH) highly entangled (i.e.,
volume-law) eigenstate is approximately indistinguishable by
local operators from a polynomially large ensemble of weakly
entangled variational states.

The paper is organized as follows. In Sec. II, we introduce
(i) the statement of ETH and (ii) a class of states which
might be called microcanonical superposition states, which
our converged variational states fall under. We then review
related works attempting to use these states to estimate ther-
mal averages and the relationship of this problem to ETH.
In Sec. III we discuss how averaging over an ensemble of
these microcanonical superposition states could significantly
improve how well they can estimate microcanonical averages,
and then we detail the VME algorithm which can produce
these states. Finally in Sec. IV we present the numerical
results for the form of the variational ensemble, the error
in the algorithm for various local operators, the observable
independent trace distance, and finally the quantum resources
like circuit depth and entanglement.

II. MOTIVATION

A. Eigenstate thermalization hypothesis

Here we review relevant aspects of the ETH and some
recent works which attempt to exploit it to estimate thermal
averages. We assume a nonintegrable (i.e., chaotic) Hamilto-
nian H which has a nondegenerate energy spectrum so that
its eigenstates |E〉 are uniquely labeled by their energies E .
Furthermore, we will assume that all operators and states of
interest are real in the energy basis for simplicity. The variant
of ETH we consider was formulated in Ref. [27] and proposes
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FIG. 2. The energy-basis diagonal matrix elements 〈E |A|E〉 of
various local observables A acting in the middle of the chain, plotted
against energy density in the nonintegrable 1D mixed-field Ising
model, Eq. (4.1), with parameters J = 1, hx = −1.05, and hz =
−0.5. Lighter blue colored points are for system size N = 9 and
darker blue points are for N = 13. Orange curves are coarse-grained
versions of the N = 13 scatter plots which define the “smooth”
function A(E ) in the thermodynamic limit.

that in a quantum chaotic system, the energy-basis matrix
elements of observables have the form

〈E |A |E ′〉 = δEE ′A(Ē ) + D−1/2(Ē ) f (Ē , ω)REE ′ , (2.1)

where Ē = (E + E ′)/2, ω = E − E ′, D(Ē ) is the density
of states at energy Ē , A(Ē ) and f (Ē , ω) approach smooth
functions in the thermodynamic limit, and REE ′ are order-one
fluctuations. Examples of such functions A(Ē ) are shown in
Fig. 2 which demonstrates this for local spin operators in the
1D mixed-field Ising model (defined in Sec. IV).

The ansatz (2.1) captures several features of such matrix
elements that have been observed in numerical studies. First,
because the density of states is exponentially large in system
size, the off-diagonal matrix elements are exponentially small.
Second, the smooth function A(E ) is related to the statisti-
cal mechanical prediction for 〈A〉 at average energy E ; this
function will play a central role in our algorithm. Finally, the
function f (Ē , ω) controls the approach to thermal equilibrium
and is related to other spectral properties of the observable
[28]; this function figures less prominently in our analysis.

To see how A(E ) is related to a thermal average, con-
sider for example a broadened microcanonical ensemble ρλ,δ

centered on energy E = λ and of width O(δ) which we will
define more precisely at beginning of Sec. IV. Under certain
assumptions about the density of states of the model and away
from λ = 0 (which corresponds to infinite temperature), and
assuming the ETH ansatz (2.1), we have in the thermody-
namic limit that (see Appendix C for details)

A(λ) = 〈A〉mc + O(δ2/N ) + O(D−1/2(λ)), (2.2)

where 〈A〉mc = tr ρλ,δA. The ETH thus suggests that, if one
could prepare even a single eigenstate |λ〉 of the Hamil-
tonian with energy λ, then one could accurately estimate
thermal averages in sufficiently large systems. However, for
a nonintegrable Hamiltonian, a generic excited eigenstate is
volume-law entangled, and thus cannot efficiently be prepared
by classical algorithms or by VQE-type algorithms [29]. Thus,
this feature of ETH does not appear practically useful, expect
perhaps in the case of an error corrected quantum computer.

B. Microcanonical superpositions

An alternative approach to using exact eigenstates for com-
puting thermal averages is using pure states of the form

|ψ〉 =
∑
E

cE |E〉 , (2.3)

where either cE are exactly zero outside the energy window
defined by |E − λ| � δ, or the states satisfy the weaker condi-
tion that 〈ψ |(H − λ)2|ψ〉 = O(δ2). We refer to states of this
type as “microcanonical superposition states” and they have
been studied in the context of thermal pure quantum (TPQ)
states [30], the foundations of quantum statistical mechanics
[31,32], algorithms for analog quantum simulators [23], and
tensor network algorithms [24].

The practical reason for considering these states is that
they appear to be significantly less entangled than exact eigen-
states. In fact, there exist matrix product state-based numerical
constructions of them such that the maximum entanglement
entropy across any cut scales as k/δ + log2

√
N for some

constant k [24] and N being the system size. Thus, by choos-
ing δ = O(1/ log2 N ), such states can have only O(log2 N )
entanglement, whereas a single excited eigenstate of a non-
integrable system is expected to have O(N ) entanglement. In
this work, by choosing δ = O(N−1/2) (for the values of N
studied in this paper N−1/2 ≈ 1/ log2 N ) we find a VQA can
generate these states using roughly linear circuit depth and
which have area-law entanglement for fixed N . In Ref. [24]
and in our findings it is clear that generically a smaller δ

requires more computational effort.
It is known that if the coefficients cE are generic, and δ

is subextensive in N ; then when a state of the form (2.3) is
evolved under H , it approaches a state in which small subsys-
tems are approximately thermal [27,33]. Given this fact, one
may wonder if a relation like (2.2) holds with A(λ) replaced
by 〈ψ |A|ψ〉, just as it did for |λ〉. A key issue, however, is that
although the off-diagonal elements of a generic operator are
exponentially small, the quantity

〈ψ |A|ψ〉 =
∑
E

c2
E 〈E |A|E〉 +

∑
E 	=E ′

cEcE ′ 〈E ′|A|E〉 (2.4)

involves summing exponentially many off-diagonal matrix
elements, so long as δ itself is not exponentially small [23].
The reason that the long-time evolved state is locally thermal
is that the off-diagonal terms become dephased just enough to
counteract the exponentially large sum [33]. As a result, the
off-diagonal contribution scales as O(D−1/2(λ)), like the off-
diagonal matrix elements themselves. Without the additional
pseudorandom phases ei(E−E ′ )t appearing in the time-evolved
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expectation value, for arbitrary δ there is no a priori reason to
expect 〈ψ |A|ψ〉 to closely approximate 〈A〉mc.

On the other hand, in discussions of ETH the off-diagonal
fluctuations REE ′ are usually stated to behave as random
variables [28]. If we take them to be actual independent ran-
dom variables, then the total off-diagonal contribution scales
as a random walk and will therefore remain typically of
the order O(D−1/2(λ)) as shown in Appendix B. However,
the validity of such an independence assumption on REE ′ is
known to depend on the energy scale δ. Sometimes this scale
is quoted as δ = O(N−2) which is the scale of |ω| below
which | f (0, ω)| reaches a plateau, so that the ETH ansatz
(at infinite temperature) becomes structureless and reduces to
the random-matrix prediction [28]. More recently, however,
Refs. [34] and [35] found numerical and analytical evidence
that “true” random matrix behavior with effectively inde-
pendent matrix elements emerges only on the parametrically
smaller scale, δ = O(N−3).

Regardless of whether the matrix elements can be treated
as independent random variables, it is in general an open
question how δ must scale in order for 〈ψ |A|ψ〉 to converge
to the thermal value in the thermodynamic limit. Reference
[24] argued that δ = O(1/ log2 N ) is sufficient for a slow con-
vergence but Ref. [23] argued that O(N−1) is needed. Finally,
in Ref. [36] it is proposed that in a quantum chaotic system,
for a fixed operator A of interest, every state of the form
(2.3) is thermal with a worst case error x obeying the relation
δ(x) = poly(x). However, for δ much larger than the random
matrix theory scale O(N−2) defined above [28], the behavior
(and in particular the N scaling) of this polynomial was not
completely settled in that work.

In summary, some source of randomness is needed to make
the off-diagonal contribution small. In the theory of canoni-
cal typicality [31,32], it is the state coefficients; under time
evolution it is the effectively random phases; if the window
δ is small enough, it is the matrix elements themselves that
are effectively random. In this work the source of randomness
arises from averaging over an ensemble of variational states
|ψr〉 that are prepared by starting from random product states
|ψ0

r 〉. Since we will ultimately use shallow quantum circuits
to prepare these variational states, we do not expect them to
be typical states on the target microcanonical subspace, nor
do we expect them to be typical states in the sense of TPQ
states, as in both cases it is likely that deep circuits would
be needed to approximate Haar-random states [37,38]. On the
other hand, we will see that the states are “random enough”
for a certain dephasing mechanism to significantly reduce the
off-diagonal contribution in the ensemble-averaged version
of Eq. (2.4). Thus we will henceforth refer to the states as
pseudorandom, reserving “random” for Haar-random states.

III. VARIATIONAL MICROCANONICAL ESTIMATOR

A. Ensemble of microcanonical superpositions
and error analysis

As discussed in Sec. II, we do not necessarily expect a
microcanonical superposition state of the form in Eq. (2.3) to
closely approximate thermal values when the microcanonical
window size δ is too large. Here we adapt known results

from the theory of ETH to our problem, and then propose
a heuristic mechanism which allows us to capture thermal
expectation values using a large pseudorandom ensemble of
microcanonical superposition states with “large” (but still
subextensive) δ.

For a fixed target energy λ and microcanonical window δ,
consider an ensemble of states {|ψr〉}Rr=1, each of the form
(2.3), and let ρR = 1

R

∑
r |ψr〉 〈ψr | be their equal weight mix-

ture. We discuss how to prepare these states using a variational
algorithm in Sec. III B. In this section, we discuss the error
between the actual microcanonical expectation value tr(ρmcA)
and its average in the ensemble ρR. Considering a local oper-
ator A, this error can be expressed as

εR = |tr(ρRA) − tr(ρmcA)|. (3.1)

Here, we have introduced a microcanonical density matrix
ρmc. The microcanonical ensemble could be defined via the
standard sharp microcanonical window, or via a smoothed
Gaussian version thereof; we will ultimately compare our
variational estimates to the latter in Sec. IV. The results of
this section do not depend on the exact form, but for now let us
take ρmc = PW /n with PW a projector onto the microcanonical
window W defined by |E − λ| � δ and n = tr PW the number
of states in the window. For our purposes, the error (3.1) is best
understood as a sum of two distinct types and we therefore
decompose it via the triangle inequality as

εR � ε
diag
R + εoff

R , (3.2a)

where

ε
diag
R = ∣∣tr(ρmcA) − 〈A〉diag

R

∣∣, (3.2b)

εoff
R = ∣∣tr(ρRA) − 〈A〉diag

R

∣∣, (3.2c)

〈A〉diag
R =

∑
E

〈E |A|E〉 〈E |ρR|E〉 . (3.2d)

The “diagonal error” ε
diag
R captures the difference between

the expectation value of A in the microcanonical ensemble
and the diagonal ensemble [33] associated with ρR. It depends
only on diagonal energy-basis matrix elements of A and ρR.
The “off-diagonal error” εoff

R captures error due to the fact that
ρR is not diagonal in the energy basis. Plugging Eq. (3.2d) into
Eq. (3.2c) yields

εoff
R =

∑
E 	=E ′

〈E |A|E ′〉 〈E ′|ρR|E〉 , (3.3)

which involves only off-diagonal matrix elements of A and ρR.
We now consider the dependence of the error εR on the

ensemble size R, window size δ, and system size N , assuming
the ETH matrix element ansatz (2.1).

1. Diagonal error ε
diag
R

We begin with the diagonal contribution ε
diag
R . Plugging in

the ETH ansatz to the expression for the diagonal error gives

ε
diag
R =

∣∣∣∣∑
E

〈E |ρmc − ρR|E〉A(E )

+
∑
E

〈E |ρmc − ρR|E〉D−1/2(E ) f (E , 0)REE

∣∣∣∣. (3.4)
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The second line is O(D−1/2(λ)) [39] since both density ma-
trices have unit trace. The density of states is evaluated at λ

since this is a typical energy in W . Via the triangle inequality,

ε
diag
R � |tr[(ρmc − ρR)A(H )]| + O(D−1/2(λ)), (3.5)

where we have made the first term more compact by writing
A(H ) = ∑

E A(E ) |E〉 〈E |. Now we expand the smooth ETH
function A(E ) near the target energy λ. Repeated uses of the
triangle inequality yield

|tr[(ρmc − ρR)A(H )]| � |A(λ)tr[ρmc − ρR]|
+ |(dA/dE )(λ)tr[(ρmc − ρR)(H − λ)]| + · · · , (3.6)

where the ellipsis signifies higher-order derivatives. Both den-
sity matrices have unit trace, so the first term vanishes. But
then using the fact that the kth derivative of A(E ) with respect
to E is proportional to N−k , which follows from A(E ) =
a(E/N ) with a(x) becoming N independent in the thermody-
namic limit, we see that

ε
diag
R � χR

N
+ O(N−2) + O(D−1/2(λ)), (3.7)

where

χR =
∣∣∣∣a′

(
λ

N

)
tr[(ρR − ρmc)(H − λ)]

∣∣∣∣ (3.8)

and a′(x) = da/dx. If both ρR and ρmc have support only on
the microcanonical windowW , then χR � 2δ|a′(λ/N )| for any
R, where we have used that |tr[ρR − ρmc]| � 2. If instead they
have support on a larger energy interval which is still O(δ),
then χR is still O(δ) and we can still make the rough estimate

ε
diag
R � O(δ/N ) + O(D−1/2(λ)). (3.9)

In a very large system, we would not concern ourselves
with the difference between Eq. (3.9) and the more accurate
Eq. (3.7). However, at the relatively small systems we con-
sider in this work, we can expect that for large R, χR and
therefore ε

diag
R will be smaller than 2δ|a′(λ/N )| if we compare

the variational estimate 〈A〉diag
R to the expectation value of A

in a microcanonical ensemble that is similar to the diagonal
variational ensemble. In Sec. IV we numerically confirm this
for a Gaussian microcanonical ensemble. It is interesting to
note that any subextensive choice of δ will lead to vanishing
diagonal error in the thermodynamic limit; this is simply a
manifestation of statistical-mechanical ensemble equivalence
from the perspective of ETH.

2. Off-diagonal error ε
off
R

We now turn to the off-diagonal error εoff
R . First we observe

that if the states |ψr〉 have exactly zero energy weight outside
the microcanonical window W , the off-diagonal error (3.2c)
can be expressed as εoff

R = |trρRÃ|, where

〈E |Ã|E ′〉 =
{〈E |A|E ′〉 if E ,E ′ ∈ W and E 	= E ′

0 otherwise. (3.10)

If the variational states have some nonzero weight outside W ,
we can expect that the error is still approximately expressible
this way, by slightly expanding W . In Sec. IV, we suitably
modify the expression εoff

R = |trρRÃ| in this case. Since we
are interested in understanding how averaging over an R-state

ensemble can reduce this error, we write the average explicitly
as

εoff
R =

∣∣∣∣ 1

R

∑
r

〈ψr |Ã|ψr〉
∣∣∣∣. (3.11)

Following Refs. [35,36], let xr = 〈ψr |Ã|ψr〉. For each r ∈
{1, 2, . . . ,R} we have that

λmin(Ã) � xr � λmax(Ã), (3.12)

where the limits are the minimum and maximum eigenvalues
of the (purely off-diagonal) operator Ã. We find numerically
in Appendix E (Fig. 13) that the maximum (minimum) eigen-
values of various operators are always above (below) zero,
respectively, which is expected since Ã is traceless by con-
struction. If the ensemble of microcanonical superposition
states is “random enough” we can expect that for each r, xr
fluctuates between these limits according to some distribution.
Should the algorithm perform ideally, the states |ψr〉 would
sample Ã in an unbiased way; i.e., in the limit of infinite
samples, εoff

R → tr(Ã)/n = 0. This would happen for example
if |ψr〉 were drawn from the Haar measure on the microcanon-
ical subspace.

However, let us allow for biased sampling by modeling
xr as independent and identically distributed (i.i.d.) random
variables with covariance E(xrxs) − E(xr )E(xs) = σ 2δrs and
mean E(xr ) = c which would ideally be zero. With xr mod-
eled this way, a simple statistical measure of the size of the
off-diagonal error would be its mean-square value which has
the functional form

E
[(

εoff
R

)2] = σ 2

R
+ c2 ≡ yc,σ (R). (3.13)

For large R, a good approximation to the actual variance σ 2

should be given by the finite-size estimate

σ 2
R = 1

R

∑
r

x2
r −

(
1

R

∑
r

xr

)2

, (3.14)

which is bounded from above by the largest square singular
value of Ã which is in turn shown in Appendix E to scale down
weakly with N . Under such assumptions, the off-diagonal
error in the VME algorithm should thus behave typically as

εoff
R = |c| + O(R−1/2), (3.15)

where we have assumed that σ ≈ σR = O(1). In Sec. IV A
we demonstrate that xr are indeed well modeled by this
phenomenological description with some small nonzero |c|
always present. This implies that the variational states indeed
are not sampling the microcanonical Hilbert space perfectly
uniformly, which is consistent with them also not being close
to Haar-random states.

3. Summary

In summary, the basic idea behind our algorithm is as
follows. To prepare an approximation to ρmc, instead of
preparing an ensemble of one or more eigenstates |E〉, which
each individually require exponential quantum resources to
generate, we will prepare a polynomially large number R
of states |ψr〉 which each hopefully require only polynomial
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quantum resources to generate, such that ρR ≈ ρmc as mea-
sured by local observables.

The error in the approximation can be understood in terms
of two pieces. The first is the diagonal error, which is ulti-
mately about statistical-mechanical ensemble equivalence as
it manifests for an isolated quantum system via the diagonal
part of the ETH ansatz (2.1). The leading contribution to this
type of error thus scales as O(δ/N ), and thus any subextensive
window width δ will in principle work. The more prohibitive
error is the off-diagonal error, which for a single variational
state the ETH alone cannot guarantee to be small at the scale
of δ and N practically accessible to the VME algorithm dis-
cussed in Sec. III B. To remedy this, we propose to insert
randomness by averaging over variational states which have
been prepared by initializing the VQA with random product
states. We have so far focused on a particular observable A
and discussed the error in the context of its matrix elements.
The claim that ρR ≈ ρmc as measured by local observables
can be made more precise by introducing the trace distance
between certain reduced density matrices, which we examine
numerically in Sec. IV.

B. VME algorithm

Algorithm 1 Prepare |ψr (θ
∗)〉.

We now describe the VME algorithm for preparing micro-
canonical superposition states |ψr〉 discussed in the previous
section. At the beginning we fix a target energy λ, and micro-
canonical window size

δ = 
E

N
Nα, (3.16)

where 
E is the full energy bandwidth of the Hamiltonian
H . In the mixed-field Ising model we later consider, we find

E
N ≈ 3 independent of N . We focus our numerical studies

mainly on the case α = −1/2. We initialize the QPU (see

FIG. 3. Layer l of the ansatz circuit, Eq. (3.21), near qubit j.

Fig. 1) in a random product state∣∣ψ0
r

〉 = ∣∣ϕ1
r

〉 ∣∣ϕ2
r

〉 · · · ∣∣ϕN
r

〉
, (3.17)

with |ϕ j
r 〉 = cos(ϕ j

r ) |0〉 + sin(ϕ j
r ) |1〉 and ϕ

j
r drawn from the

uniform distribution on [0, π ), which we can expect to have
extensive energy variance [24,33]. We then minimize the
“folded-spectrum” cost function [9]

C(θ) = 〈ψ (θ)|(H − λ)2|ψ (θ)〉 , (3.18)

until Var(H ) = 〈(H − 〈H〉)2〉 � δ2, obtaining the converged
variational state |ψr〉. Note that C(θ) penalizes both large
energy variance and deviation of the average energy from the
target energy, since

C(θ) = Var(H ) + 〈H − λ〉2, (3.19)

but that the convergence criterion only concerns Var(H). We
find in practice that 〈H − λ〉2 is comparatively small when
N is large, so it is also possible to think of C(θ) � δ2 as the
convergence criterion.

The optimization is repeated R times for different initial
random product states to generate the variational ensemble.
Notice that this cost function C(θ) is zero if and only if
|ψ (θ)〉 = |λ〉, the eigenstate with energy λ [40]. Unlike pre-
vious explorations [12,29,41] with this cost function, we do
not seek local or global minima, since we minimize the cost
function only until Var(H ) � δ2, which is not a constraint
on the gradient, but on the value of the cost function itself.
Furthermore, the unique global minimum is a state completely
different from the one we target.

For simplicity we restrict our variational states to be real in
the computational basis (CB). Because we are interested in the
minimal circuit depth needed to prepare the variational states,
we employ a periodic structure ansatz (PSA) [14] circuit for
which the number of “layers” will be adaptively chosen by the
algorithm. The PSA with p layers is defined as

Up(θ) =
p∏

l=1

V (θl ), (3.20)
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where each layer is the unitary (see Fig. 3)

V (θl ) =
N∏
j=1

eiθ
l
jYj

N∏
j=1
even

eiφ
l
jYjZ j+1

N∏
j=1
odd

eiϕ
l
jYjZ j+1 (3.21)

and θ stands for the 2Np real parameters {θ l
j , φ

l
j, ϕ

l
j} jl and

Yj,Zj are Pauli operators acting on qubit j. The “brick-wall”
form of this ansatz breaks down for odd N , so in this case we
add an additional gate to entangle the ends of the chain. That
is, for odd N , we make the replacement

N∏
j=1
even

eiφ
l
jYjZ j+1 → eiφ

l
1Y1ZN

N∏
j=1
even

eiφ
l
jYjZ j+1 . (3.22)

The operators appearing in the single-layer unitary V (θl )
are chosen based on the findings of Ref. [42]. There it is
argued that the pool of 2N − 2 operators P = {iYjZ j+1}N−1

j=1 ∪
{iYj}N−1

j=1 is “complete” in the sense that for any state |ψ〉,
the set of states {Ak |ψ〉}k form a complete basis, where Ak

are nested commutators of operators in P , i.e., elements of
the dynamical Lie algebra [43] of P . We have added the
extra gates YN and (for odd N) Y1ZN to the pool, but clearly
P ∪ {Y1YN ,Y1} is still complete in the above sense.

Since our convergence criterion is based on the value of
the cost function and the native convergence criterion of a
gradient-based optimizer is based on the size of the gradient,
we “wrap” the optimizer in a simple loop (see Algorithm 1)
where we repeatedly interrupt the optimizer to check if the
convergence criterion is satisfied, which we accomplish by
having it only minimize until the gradient norm falls below
a relatively large value ε which starts at 101 and can only be
decreased down to 10−3. If the algorithm then cannot achieve
convergence using a p-layer ansatz by decreasing ε to 10−3, it
adds another layer p → p+ 1 and repeats the procedure.

For the classical optimizer we employ the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) optimizer which is gra-
dient based. We therefore take advantage of the “parameter
shift rule” [44] for computing analytic gradients of the cost
function. If the generators are Pauli strings (hence squaring to
I), then

∂

∂θ j
C(θ) = C

(
θ + π

4
e j

)
− C

(
θ − π

4
e j

)
(3.23)

with e j a unit vector in the jth direction. Thus, during the
optimization both the cost function and its derivatives can be
measured using the QPU.

IV. NUMERICAL RESULTS

We test the VME algorithm on the 1D mixed-field Ising
model (MFIM) with Hamiltonian

H =
N∑
j=1

(JZ jZ j+1 + hx, jXj + hzZ j ) (4.1)

and periodic boundary conditions so that site N + 1 refers
to site 1. To ensure there are no accidental degeneracies, we
consider weakly nonuniform transverse fields hx, j = hx + r j ,

TABLE I. The N = 13 broadened microcanonical best-fit
parameters (μ, σ ) at various target energy densities λ/N .

λ/N μ/N σ/δ

−0.750 −0.761 0.858
−0.500 −0.511 0.831
−0.250 −0.253 0.821

0.000 0.001 0.832

where r j ∈ [−0.01, 0.01] are drawn randomly from the uni-
form distribution. We use a single fixed configuration of the
transverse fields for our numerics. We fix parameters J = 1,
hz = 0.5, and hx = −1.05 such that the system is strongly
nonintegrable [45]. In this section we discuss the performance
of the VME with respect to this particular model.

A. Diagonal variational ensemble

Here we characterize the nature of the converged varia-
tional states in the energy basis. To do so, we first define
a “broadened” microcanonical ensemble as was done in
Ref. [5]. This ensemble is of the form

ρλ,δ = D−1
δ (λ)Gδ (H − λ), (4.2)

where Gδ (x) = (2πδ2)−1/2e−x2/2δ2
is a normalized Gaussian

function, and Dδ (λ) = tr Gδ (H − λ) is the “broadened” den-
sity of states evaluated at energy λ. Here, δ corresponds to the
convergence criterion for the VME algorithm, i.e., Eq. (3.16)
with α = −1/2. We will from now on treat Dδ (λ) as a good
approximation to the density of states in the thermodynamic
limit (see Appendix A for further justification).

We claim that the variational algorithm 1 generates diago-
nal energy-basis matrix elements ρR(E ) = 〈E |ρR|E〉 approx-
imating a broadened microcanonical ensemble. Figure 4(a)
shows the variational-ensemble diagonal energy-basis matrix
elements to which we fit the curve ρμ,σ (E ) = D−1(μ)Gσ (E −
μ) with fitting parameters μ and σ (shown in solid black).
Up to fluctuations from eigenstate to eigenstate, we can see
that the variational diagonal ensemble is well described by the
Gaussian best fit. More precisely, the coarse-grained version,
ρR(E ), of the variational-ensemble diagonal elements—where
the fluctuations are eliminated—agrees quite well with the
Gaussian best fit. The coarse-grained curve is computed as
follows: For each E in the spectrum of H , ρR(E ) is defined as
the average of 〈E ′|ρR|E ′〉 over the K eigenenergies E ′ nearest
to E . We set the “resolution” K = 64, except for E near
the edges of the spectrum where 1 � K < 64. At the largest
system size of N = 13 and for an R = 288-state ensemble, we
list the best-fit parameters μ and σ in Table I.

Note that away from λ = 0, the variational ensembles con-
verge with μ slightly differently than the target λ. This is
because the variational ensemble is generated by minimizing
the first two moments of the operator (H − λ), but the density
of states determined by the underlying model is nonuniform.
In fact if we assume the Gaussian density of states discussed
in Appendix A, we have tr(ρμ,σH ) ≈ μ − O(σ 2 μ

N ), where we
have assumed that σ decreases with N so that higher-order
terms can be neglected in the thermodynamic limit. We can
see that when μ < 0, the ρμ,σ ensemble actually has average
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FIG. 4. Analysis of diagonal error in the VME, with operator A = Z�N/2� taken as an example. (a) The variational ensemble diagonal matrix
elements ρR(E ) = 〈E |ρR|E〉 (blue) for N = 13, λ/N = −0.5, α = −1/2 [see Eq. (3.16)], and R = 288 states in the ensemble. In black, the
best Gaussian fit curve ρμ,σ (E ) [see Eq. (4.2)], and in orange a coarse-grained version of the blue scatter points for comparison. (b) The
diagonal error [see Eq. (3.2b)] with ρmc = ρλ,δ versus R � 12 for N = 11, 12, 13 where increasing N corresponds to darker blue data points.
For comparison, we include in green the ensemble-independent estimate δ|A′(λ)| = δ|a′(λ/N )|/N at N = 13, as well as the more accurate
estimate χR [Eq. (3.8)] at N = 13. (c) The diagonal matrix elements AEE = 〈E |A|E〉 in blue, their coarse graining in orange, and the best
fourth-order polynomial fit in black which defines a(E/N ). This smooth function a is used to compute χR. Vertical dashed lines show the scale
of the microcanonical window as compared to the whole spectrum.

energy larger than μ. In Appendix D we confirm this state-
ment more quantitatively. As a consequence of this analysis,
we conclude that the deviations in μ from λ are a finite-size
effect due to the nonconstant density of states, and not due to
the fluctuations around the average curve ρR(E ).

In the last row of Table I, we see that all the σ are at least
about 15% smaller than δ. This is due to a simplification we
have made in the preceding analysis. Note the form of ρR(E )
in Fig. 4(a) at the edges of the window; the orange curve has
more weight away from the window than the Gaussian best fit
(in black). A more accurate characterization of the ensemble
might be, for example, a sum of two Gaussian curves. We
nonetheless opt to consider the ensemble as roughly a single
Gaussian peak for simplicity. We discuss the quantitative con-
sequences of this simplification in Appendix C and explain
why the σ/δ shown in Table I are not closer to unity.

Up to fluctuations around the coarse-grained behavior
ρR(E ) and the slight oversimplification of the single-peak
Gaussian fit, we have thus established the form of the diagonal
part of the variational ensemble. In the following sections we
will study the error in the VME estimate of various ob-
servables. Clearly, we will need to choose an appropriate
microcanonical ensemble to compare to. This ensemble is
arguably ρμ,σ because it closely approximates the (coarse-
grained) diagonal ensemble ρR(E ). One could also imagine
comparing to the diagonal ensemble itself and focusing solely
on the off-diagonal error as was done in Ref. [46]. However,
imagining the VME as a practical algorithm for computing
broadened microcanonical ensemble averages, one could not
know ahead of time what μ and σ were. Furthermore, we
have shown that the distinction between λ/N and μ/N is
a finite-size effect that is already small at N = 13. We will
henceforth compare our numerical results to the ensemble
ρλ,δ , where λ and δ are precisely the parameters that were

initially chosen before running the algorithm; i.e., we set
ρmc = ρλ,δ in Eq. (3.2b).

B. Diagonal error

We now briefly discuss the diagonal error with respect to
the broadened microcanonical estimates. Figure 4(b) shows,
for N = 11, 12, 13, the diagonal error versus R � 12 for the
operator A = Z�N/2� at λ/N = −0.5. For comparison we plot a
simple estimate of the error (δ/N )|a′(λ/N )| at N = 13, as well
as the more accurate estimate χR defined via Eq. (3.7) which
we calculate numerically using the N = 13 variational ensem-
ble. We calculate a′(λ/N ) using a fourth-order polynomial fit
to the (coarse-grained) graph of 〈E |A |E〉 versus E/N , shown
as the solid black line in Fig. 4(c). The coarse-grained curve
AEE is computed in the same way as was ρR(E ) in Sec. IV A,
but here we use a resolution of K = 32.

For this particular operator and energy density, it is clear
that the diagonal error decays with N and is an order-one frac-
tion of the rough estimate O(δ/N ). Furthermore, we can see
that for large R its behavior is well captured by the expected
estimate χR.

In Appendix F we present further numerical results for
the four local operators Z , ZZ , X , and XX acting on the
central one or two sites of the chain at the energy densities
λ/N = −0.75, −0.5, −0.25, and 0.0. At λ/N = −0.5, all
operators have the property that ε

diag
R decays with N for large

R, and the N = 13 values are consistent with the estimate
χR/N . At other energy densities the scaling with N is not
always so well established, but the error for large R is always
smaller than (δ/N )|a′(λ/N )|. The value of χR also appears
to generally be on the correct scale of ε

diag
R except for the

operator XX , for which χR/N undershoots the value of the
diagonal error for the higher energy densities. These various
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FIG. 5. Off-diagonal error in the VME algorithm, with A = X�N/2� at λ/N = −0.5 taken as an example. (a) The broadened microcanonical
ensemble expectation value 〈A〉λ,δ = tr(ρλ,δA) and error bars indicating the associated broadened microcanonical standard deviations (obtained
from ED) are plotted in blue as a function of N . We compare this to the estimate in a single variational state, 〈A〉1 = tr(ρ1A), along with
the corresponding diagonal ensemble estimation 〈A〉diag

1 , i.e., Eq. (3.2d) with R = 1. Note that 〈A〉diag
1 can only be computed with ED, where

off-diagonal contributions can be discarded by hand. (b) The finite-sample mean-square off-diagonal error (εoff
R )2 with increasing R for N =

11, 12, 13, where increasing N corresponds to a darker blue curve as in Fig. 4. The orange curve, 〈(εoff
R )2〉N , is the N-averaged value of (εoff

R )2

as discussed in the text. The dashed black line is a two-parameter best-fit to 〈(εoff
R )2〉N , and for comparison we plot the “theoretical” error σ 2

R/R
in red. (c) Probability density functions of the N = 13 eigenvalues spec(Â) and spec(Ã) with Â and Ã as defined in the text. Panel (c) also
shows a probability density function of the collection {xr}r,N where N runs over a few system sizes as discussed in the text.

deviations are likely due to ETH not yet strongly setting in
at such small system sizes. In particular the N = 13 value of
D−1/2(λ) is never smaller than 0.04 for the energy densities
we consider, so that the ETH fluctuations, i.e., the third term
in Eq. (3.7), could be comparable to δ/N ≈ 0.06 at N = 13
depending on the relative size of A(E ) and the ETH function
f (E , 0).

In any case, the diagonal error is always quite small across
all operators and energy densities, when compared, for ex-
ample, against the scale of the microcanonical fluctuations
themselves. For example, see Fig. 5(a) where in purple we
can see that even for a single variational state, the diagonal
ensemble estimate is highly accurate. We observe this across
every considered operator and energy density, as shown in
Appendix G.

C. Off-diagonal error

We now turn to discuss the numerical details of the off-
diagonal error and how ensemble averaging reduces it. First,
Fig. 5(a) illustrates the main problem with using a single
variational state with a large δ. We take as an example the
operator A = X�N/2� at the energy density λ/N = −0.5 and
compare a single variational state estimate 〈A〉1 = 〈ψ1|A|ψ1〉
to the smooth microcanonical average 〈A〉λ,δ = tr(ρλ,δA). The
estimate is poor even for the largest system size. In Fig. 5(b)
we examine how this error is reduced by averaging. It is clear
that averaging always reduces the off-diagonal error; however,
since we anticipate it to behave as a random variable, we need
to measure a statistical quantity to make the analysis precise.
Given the finite data set {xr}288

r=1 of samples, we calculate a
finite-size estimate of the mean-square error in whatever un-
derlying distribution xr is sampled from as a function of R as

follows. For each fixed R ∈ R = {1, 2, . . . , 288} we calculate

(εoff
R )2 = 1

S

S∑
k=1

∣∣∣∣∣ 1

R

∑
r∈Pk (R)|R

xr

∣∣∣∣∣
2

, (4.3)

where Pk (R)|R are the first R elements of a random permu-
tation of the ordered index set R. Choosing S = 100, we
plot (εoff

R )2 versus R for N = 11, 12, 13 on a log-log scale in
anticipation of observing an R−1 scaling of the off-diagonal
error. Across various operators and energy densities (shown in
Appendix G), we observe an initial R−1 scaling with prefactor
approximately independent of N . However, the large R value
can either be larger or smaller depending on N in a nonsystem-
atic way. To remove this dependence we focus our analysis on
a system-size averaged version

〈(
εoff
R

)2〉
N

= 1

5

13∑
N=9

(
εoff
R

)2
, (4.4)

which is shown in orange. The data are well described by a
two-parameter best-fit function of the form yc,σ (R) = σ 2/R +
c2 which corresponds to xr being effectively i.i.d. random
variables as discussed in Sec. III. The values of |c| and σ

are shown in Fig. 5(b). We can see that for the operator X
at λ/N = −0.5 shown here in the main text, the value of
|c| = 0.014 is quite small. In other cases, in particular for XX ,
it can be slightly larger: |c| = 0.071. Data for all operators
and energy densities are shown in Appendix G. We also find
that the best-fit parameter σ is on the same scale as the finite-
sample estimate σR as demonstrated by the collapse of the
red curve σ 2

R/R and the best-fit line in the small-R regime.
Here σR is calculated for Ã having nonzero energy-basis ma-
trix elements only on an energy window of half width 3δ
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[see Eq. (3.10)]. This approximation of computing σR based
only on the matrix elements of ρR and A in energy eigenstates
near λ is numerically justified in Appendix E. These results
imply that for small R, the statistics of the off-diagonal error
are controlled by Ã.

Reference [34] inferred correlations between energy-basis
matrix elements of local operators A by the form of the
eigenvalue statistics of certain submatrices of A. To help un-
derstand the nature of the off-diagonal error, in Fig. 5(c) we
also examine the eigenvalue distribution of the operator Ã
defined on an energy window of half width 3δ and centered on
energy λ, i.e., as in Eq. (3.10) but with W slightly expanded
to accommodate the tails of the roughly Gaussian variational
states. See Appendix E for a graphical representation of how
this energy window is defined. For comparison we also show
in Fig. 5(c) the eigenvalue distribution of the operator Â,
which is simply the operator A with its energy-basis diagonal
elements deleted. There are a number of interesting qualitative
properties displayed by these eigenvalue distributions that are
relevant to the off-diagonal error in the VME.

First, we observe that the eigenvalue distribution of Ã does
not appear to qualitatively change shape as N is varied, except
for a slight reduction in the total width for increasing N , as
demonstrated in Appendix E. Since it is Ã which roughly
determines the off-diagonal error, the qualitative lack of
N dependence agrees with the fact that the off-diagonal error
does not depend on N in a systematic way at the system sizes
we examine.

Interestingly, we observe a correlation between the single-
state variational estimates in Fig. 5(a) as N is varied and the
eigenvalue distribution of Ã. When 〈A〉1 overestimates (un-
derestimates) the microcanonical value across many system
sizes, the eigenvalue distribution is biased to the right (left)
of zero. For further evidence that this correlation is not an
artifact of this energy density or the choice of operator, see
Appendix G. To demonstrate this further, we there also plot a
histogram of the off-diagonal error present in many individual
variational state samples, including samples across a window
of system sizes: specifically we show a normalized histogram
of the values in the set

{xr}r,N =
13⋃

N=9

{
xNr

}288

r=1, (4.5)

where xNr is the off-diagonal error in variational state r when
the system size is N . Using the statistics across multiple sys-
tem sizes is justified here since the off-diagonal error varies
erratically with the system size. On a qualitative level, this
latter histogram confirms that the variational states sample
spec(Ã) uniformly enough that a bias in spec(Ã) on the left
or right of zero is reflected in the statistics of xr . This fact is
not too surprising since, roughly speaking, Ã determines the
off-diagonal error via

xr ≈
∑
ã

ã|〈ã|ψr〉|2 (4.6)

with ã and |ã〉 the eigenvalues and eigenvectors of Ã. How-
ever, it is not obvious that | 〈ã|ψr〉 |2 is a uniform distribution
and, furthermore, this approximation should only be under-
stood statistically since in actuality, it is the properties of Â

which precisely determine the error:

xr =
∑
â

â|〈â|ψr〉|2 (4.7)

and the truncation of Â to Ã is only shown in Appendix E to
rigorously hold for the quantity σR as opposed to individual
realizations xr .

At all energy densities, the eigenvalue distribution of X̃X
is much flatter than the other three considered operators, and
the histogram of xr is also qualitatively different for XX , two
observations which could be related to the fact that the off-
diagonal error for A = XX generally saturates sooner and to a
larger value than the other operators do. However, we leave an
identification of the precise underlying mechanism to future
work.

We conclude the discussion of the off-diagonal error with
some observations about the eigenvalue statistics of the full-
spectrum off-diagonal operator Â. Even though the variational
states in principle have support on the entire energy spectrum,
we can see that it is the statistics of Ã and not of Â that
are correlated with the off-diagonal error, further justifying
the truncation to a local energy window. Interestingly, we
can see that Â still has a similar spectral form to that of a
Pauli string with eigenvalues ±1, but the otherwise highly
degenerate peaks have been smeared out by removing the
diagonal energy-basis elements. In Appendix G we show the
eigenvalue distributions of Â for other A, and note that XX
looks the most similar to that of a Pauli string; i.e., its peaks
have been broadened the least. When the window is reduced
to the scale δ, the distribution becomes less similar to that of a
Pauli operator, and we can expect that as δ → 0, the spectrum
approaches that of a random matrix, i.e., the semicircle law
[34,35,47]. The fact that the eigenvalue distribution is so far
from a semicircle law on the scale δ = O(N−1/2) provides
further confirmation that 〈E |A|E ′〉 are not effectively inde-
pendently distributed and thus we cannot rely on randomness
of the matrix elements alone to make the off-diagonal error
small.

D. Explicit microcanonical estimates and trace distance

Having examined in some detail the scaling of the absolute
diagonal and off-diagonal errors, we now take a step back and
consider what the overall statistics of the variational estimates
look like when compared to the microcanonical averages and
their associated microcanonical fluctuations. For example, in
Fig. 6 we show for various system sizes the variational esti-
mate tr(ρRA) for R = 288 along with the standard error. This
is compared against the broadened microcanonical average
calculated from ED, with error bars indicating one micro-
canonical standard deviation 
Aλ,δ , i.e.,

(
Aλ,δ )2 =
∑
E

〈E |ρλ,δ|E〉 〈E |A|E〉2 − (trρλ,δA)2, (4.8)

which is another scale to which the error can be compared.
Running the VME two different times yields two dif-

ferent variational ensembles ρR and ρ ′
R. The orange error

bars measure how much tr(ρRA) and tr(ρ ′
RA) would differ

when R = 288. We find the energy densities λ/N = −0.75
and λ/N = −0.5 generally have more accurate estimates than
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FIG. 6. In blue, smooth microcanonical averages 〈A〉λ,δ =
tr(ρλ,δA) and their thermal fluctuations, Eq. (4.8). In orange, the
corresponding variational estimates for α = −1/2 and R = 288 with
standard error. Averages and their error are plotted as a function of
system size N at a fixed energy density of λ/N = −0.5.

λ/N = −0.25 and λ/N = 0 (see Appendix H for further re-
sults). For a fixed R, the error certainly does not systematically
decrease with N . In some cases, it appears to increase with N ,
for example X at λ/N = −0.5, shown in Fig. 6, or in some
cases for XX as discussed in Appendix H. We do not consider
these observations for a fixed R at odds with the off-diagonal
error analysis where we stated that over a large range of R
the error does not appear to systematically depend on N . We
note that the operator XX generally appears to deviate at the
larger system sizes more than Z , X , and ZZ across various
energy densities, which agrees with the previous observations
that XX behaves differently than the other operators.

To see if converged ensembles tend towards the mi-
crocanonical state with increasing N in an observable-
independent way, we check if, for a subsystem S of the chain,
the state ρS

R = trS̄ (ρR) approaches the subsystem broadened
microcanonical state ρS

λ,δ = trS̄ (ρλ,δ ). As a distance mea-
sure we consider the trace distance, T (ρ, ρ ′) = 1

2 ||ρ − ρ ′||1,
which measures the distinguishability of ρ and ρ ′ in an op-
erationally meaningful way [48]. More importantly for our
purposes, however, it also bounds the difference in the ex-
pected value of any observable A as

T (ρ, ρ ′) � |tr(ρA) − tr(ρ ′A)|
2σmax(A)

, (4.9)

where σmax(A) is the maximum singular value of A. This
can be derived by using von Neumann’s trace inequality
|tr(XY )| � ∑

i σi(X )σi(Y ). In particular for a Pauli string op-
erator, we have σmax(A) = 1. We plot T (ρS

R, ρ
S
λ,δ ) versus N ,

averaged over all contiguous subsystems S of fixed size |S|.
We observe that the trace distance for a single-site subsystem
|S| = 1 is always smaller (by about a factor of 1/2) than for
a system of two nearest-neighbor sites |S| = 2. In light of the

FIG. 7. Spatially averaged trace distance between variational
ensembles of size R(N ) = �1.5N2� and for α = −1/2 and the cor-
responding broadened microcanonical ones. The blue curves are for
|S| = 1 and the orange ones for |S| = 2. Error bars correspond to
the standard deviation of this averaged quantity over 20 different
ensemble realizations.

previous analysis where the off-diagonal error did not appear
to depend systematically on N , we choose R to scale with N
as R(N ) = O(N2), and further average over 20 ensemble re-
alizations in each case. Since we have only 288 samples total,
we compute the statistics of 20 random (possibly overlapping)
subsets of size R.

The reason one may want to increase R with N is that the
trace distance satisfies the inequality

T
(
ρS
R, ρ

S
λ,δ

)
� 1

R

R∑
r=1

T
(
ρS
r , ρ

S
λ,δ

)
, (4.10)

with ρS
r = trS̄ |ψr〉 〈ψr |, so that a large-R variational ensemble

can only do better than single pure states can on average.
Since we are interested in understanding the behavior of the
algorithm in the thermodynamic limit, and in light of our
above results suggesting that the off-diagonal error does not
appear to depend strongly on N , we consider the case of
R = O(N2) so that we can observe a continual decrease of
the trace distance with N at the lower energy densities. It is
possible, however, that for a larger number of samples the
spatially averaged trace distance will also eventually saturate
to a finite value as it did for A = (XX )�N/2� in particular.

The trace distance results in Fig. 7 are consistent with the
estimates for particular local operators; for example, when
comparing Fig. 6 at N = 13, we checked numerically that the
deviation of the average estimate (corresponding to R = 288)
from the microcanonical one never exceeds twice the trace
distance at the corresponding energy density. However, the
N = 13 value of the trace distances shown correspond to
R = 253, whereas the observables correspond to R = 288.
Furthermore, the trace distance is averaged over all contiguous
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FIG. 8. [(a) and (b)] The entanglement entropy SvN of a contiguous subregion S for different energy densities, where the blue, orange,
green, and red curves correspond to λ/N = −0.75, −0.5, −0.25, and 0, respectively. Panel (a) contains the ensemble average entanglement
entropy of converged variational states at N = 13 for an R = 144-state variational ensemble with error bars indicating the standard error. For
comparison, panel (b) shows the average entanglement entropy in the corresponding broadened microcanonical ensembles [see Eq. (4.12)].
The gray dashed curve is the Page entropy for a Haar-random state. (c) Graph of the number of layers in the PSA circuit for λ/N = −0.5,
averaged over R = 144 samples with error bars indicating the standard error. The dashed gray line is the best linear fit p(N ) = 0.26N − 0.52.

subsystems of size |S| so in principle this value no longer
exactly upper bounds the observables as in Eq. (4.10), which
are obtained for a given site j = �N/2�, but in this case the
results are nonetheless consistent.

E. Quantum resources

In Fig. 8(a) we plot the ensemble-averaged von Neumann
entanglement entropy for a contiguous subsystem S of the
chain

〈SvN〉R = 1

R

∑
r

SvN(|ψr〉) (4.11)

versus |S| at N = 13. Here, the von Neumann entanglement
entropy of a pure state |ψ〉 is SvN(|ψ〉) = −tr(ρSlnρS ) with
ρS = trS̄ |ψ〉 〈ψ |. We find that on average the variational states
appear to be area-law entangled because the values saturate
with increasing |S|. Regardless of the scaling with |S|, we note
that the entanglement of the variational states is much smaller
than the average entanglement of eigenstates within the broad-
ened microcanonical window. In particular, in Fig. 8(b) we
compute the broadened microcanonical average of the von
Neumann entropy,

〈SvN〉λ,δ =
∑
E

D−1(λ)Gδ (E − λ)SvN(|E〉). (4.12)

Comparing Figs. 8(a) and 8(b), we observe that the variational
states have an order of magnitude less entanglement than the
eigenstates which they are superpositions of. Figure 8(b) also
contains the Page entropy, i.e., the average entanglement of
states drawn Haar-randomly from the full Hilbert space [49].
We find that the λ = 0 microcanonical average of the entan-
glement entropy is quite close to the Page value, providing an
additional check that the MFIM is highly nonintegrable for
the chosen parameters.

The low entanglement of the variational states can be
attributed to the fact that they are generated by low-depth
circuits, which makes them atypical. In Fig. 8(c) we plot the
average number of layers yielding convergence, which is a
proxy for the circuit depth needed to prepare the converged

variational state (the depth of a p-layer ansatz circuit is 3p;
see Fig. 3). We show the behavior for λ/N = −0.5, but we
find a linear scaling in N for the other energy densities as well
(with slightly different slopes) such that they require a similar
circuit depth. Since the total number of variational parameters
is 2Np∗, the total number of gates scales roughly quadratically
in N . The actual number of variational parameters at N = 13
and λ/N = −0.5 is only about 78.

We also briefly consider how the entanglement and the
number of layers in the variational ansatz depend on the
tolerance δ. In particular we consider exponents α = −0.5,
−0.75, −1 [see Eq. (3.16)]; the addition of tolerances stricter
than α = −0.5 used elsewhere in this work limits the nu-
merically accessible system sizes to around N = 8, similar to
Ref. [29]. Figure 9 shows that both entanglement and circuit
depth increase with |α|. For example, for |α| = 1, already
at N = 8 we need p∗ ≈ 5 layers for convergence, making
this scaling prohibitive for the classical optimizer. It appears
that p∗(N ) grows much faster with N at |α| = 1 than it does
for |α| � 0.75. The fact that larger entanglement and higher
circuit depths would be needed to prepare variational states

FIG. 9. Effect of the tolerance parameter on the half-chain (|S| =
4) entanglement entropy and circuit depth of the VME, for N = 8 at
target energy density λ/N = −0.75. The results are averaged over 48
variational states with error bars being the standard error.
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with smaller energy variance is consistent with other studies
(e.g., Ref. [24]).

V. CONCLUSION AND OUTLOOK

In this work we propose a VQA for estimating Gaussian
microcanonical averages of local operators at intermediate
energy density. Given the target average energy λ and a mi-
crocanonical width of O(N−1/2), the variational algorithm
evolves random product states into weakly entangled states
whose diagonal ensembles are approximately Gaussian mi-
crocanonical on average. We have systematically examined
what we call the diagonal and off-diagonal contributions to the
error in this estimation, and found that the latter is the domi-
nant source of error. The mean-square off-diagonal error is on
the one hand parametrically reduced by ensemble averaging
as R−1 for small R, but on the other hand for large R saturates
to a small value |c| whose size depends principally on the
observable under consideration. We have left the identification
of the mechanism behind this bias and methods to remove it
for future work.

We have also examined the performance of the algorithm
in an observable-independent way by computing the trace
distance between the subsystem variational ensemble and the
subsystem microcanonical one, which appears to continu-
ally decrease with N when we take R = O(N2) and λ/N =
−0.75,−0.5 (though we cannot rule out saturation), whereas
for λ/N = −0.25, 0 there is not a consistent decay. We find
this result interesting because for other finite-temperature
VQA methods, intermediate temperatures (as opposed to infi-
nite temperature) are more difficult to simulate [17,19]. Since
the number of variational parameters appears to scale roughly
as O(N2), this suggests that a classical optimizer could handle
the optimization at larger system sizes. The main bottleneck in
the classical simulation of our proposed VQA is the repeated
evaluation of the cost function; it would be useful to imple-
ment a more sophisticated classical simulation of the QPU,
for example by tensor network methods so that larger systems
could be reached. This would help to decide if the trend in the
trace distance continues for larger N .

Before concluding, let us briefly discuss the complexity of
the VME algorithm. Neglecting the nonzero bias constant |c|
on the basis that it is small, we note that the computational
time complexity of VME is O(MRGS) where M is the number
of times the cost function is requested during the optimization,
R is the number of states in the variational ensemble, G is the
number of gates in the variational circuit, and S is an upper
bound on the number of shots needed to estimate the cost
function during each evaluation.

Let � = (H − λ)2. In the beginning of the optimization,
when the state |ψ (θ)〉 is basically a product state, we have

Var(�) ∼ O(N2), (5.1)

implying that O(N2) shots are needed to get a system-size-
independent statistical error. This can then be further reduced
to the desired tolerance by an O(1)-in-system-size multiplica-
tive factor. Towards the end of the optimization, we will end
up with a state having

Var(�) ∼ O(N−2) (5.2)

(neglecting the small non-Gaussian tails of ρR(E ) that were
discussed in Sec. IV B). Thus, the most “shot costly” part of
the optimization is in the beginning. To simply upper bound
the resources, we thus take S = O(N2).

Now, we have observed empirically that G = O(N2), and
that the off-diagonal error scales as R−1/2 (again neglecting
|c|). Therefore, since the diagonal error is O(N−1), we may
take R = O(N2) and conclude that the time complexity of
VME is O(MN6) in achieving a statistical error of O(N−1).
Whether or not the number of calls, M, is exponentially large
in N is still an open question for all variational quantum
algorithms.

In Sec. IV A we saw that the diagonal error vanishes as
O(δ/N ) with increasing system size, so that even product
states [whose typical energy width is O(

√
N )] with target

energy λ would suffice for a vanishing diagonal error, pro-
vided the ETH holds. An ensemble of R random product states
would also yield an off-diagonal error proportional to R−1/2,
but it is unclear if one can variationally squeeze those states
onto a microcanonical window without violating the unbiased
condition E[xr] = 0.

As far as variational algorithms are concerned, the VME
could be considered as an example of a broader class of VQAs
where the convergence criterion is based on the value of the
cost function rather than its gradient. Furthermore, the small-
ness of the cost function at convergence is only O[1/poly(N )]
while all initial random product states were able to converge,
so it would be interesting to study if the well-known barren-
plateau problem [13,14] is less significant in this setting.
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FIG. 10. The broadened density of states of the MFIM plotted
against N−1/2E so that the form of the curves is N independent. At
N = 13, a Gaussian best fit yields parameters γ = 
2/N = 2.47 and
Ē/
 = −0.03 at N = 13. The theoretical value calculated directly
from H with γth = 
2

th/N = 2.35 is also plotted and seen to agree
well. The prefactor k depends on the curve and is chosen so that the
maximum value of each curve is 1 [the factor is (2π
2)1/2 when the
width is 
].
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APPENDIX A: DENSITY OF STATES

Let Gy(x) = (2πy2)−1/2e−x2/2y2
be a normalized Gaussian

window function with zero mean and standard deviation y.
We maintain the convention that f (Q) = ∑

q f (q) |q〉 〈q| for
some Hermitian operator Q with eigenvalues q. We find
numerically that the broadened density of states Dδ (λ) =
tr Gδ (H − λ), with broadening parameter δ = (
E/N )N−1/2,
is smooth (away from the tails of the spectrum) and can
be approximated by a Gaussian of the form 2NG
(E ) =
2N (2π
2)−1/2e−E2/2
2

with 
2 = γN and γ becoming N
independent in the thermodynamic limit. The density of states
and a Gaussian best-fit curve are shown in Fig. 10. Follow-
ing the method discussed in the Appendix of Ref. [50], we
can check if this approximation is reasonable by estimating
the parameter γ from the Hamiltonian directly. Note that in
terms of the supposed form of the density of states and in the
thermodynamic limit the following equality should hold:

tr(H2) =
∫ ∞

−∞
dE D(E )E2 = 2NγN. (A1)

With periodic boundary conditions it can be checked for
the Hamiltonian (4.1) that tr(H2) = 2N [(1 + h2

z )N + ∑
j h

2
x j],

but since the random fields hx j have been chosen to all be
within 1% of the central value hx, we can safely approximate
tr(H2) ≈ 2N (1 + h2

x + h2
z )N , yielding the theoretical estimate

γth = 1 + h2
x + h2

z = 2.35, which is within about 5% of the
best-fit value of γ . We also checked that the density of states
is roughly unaffected when it is computed using the broaden-
ing parameter σ (with which the variational states converge)
instead of the broadening parameter δ.

APPENDIX B: OFF-DIAGONAL CONTRIBUTION
ASSUMING INDEPENDENT AND IDENTICALLY

DISTRIBUTED RANDOM VARIABLES

In Sec. II, we claimed that should the order-one fluctua-
tions REE ′ be actual independent and identically distributed
random variables, then the off-diagonal contribution to
Eq. (2.4) would be typically O(D−1/2(λ)). To see this,
assume for E > E ′ that REE ′ are samples from an under-
lying distribution satisfying E[REE ′] = 0, E[R2

EE ′] = 1, and
E[REE ′RE ′′E ′′′ ] = 0 for E 	= E ′′, E ′ 	= E ′′′, and E ′′ > E ′′′. We
restrict the energies to the upper triangular part of the R matrix
since REE ′ = RE ′E for energy-basis real observables. Let

x1 = 2
∑

E>E ′∈W
cEcE ′ 〈E |A|E ′〉

= 2
∑

E>E ′∈W
cEcE ′D−1/2(Ē ) f (Ē , ω)REE ′ , (B1)

where in the second equality we have inserted the ETH ma-
trix element ansatz. The above is notation consistent with
Sec. III A, where x1 is the “off-diagonal error” for a single
microcanonical superposition state supported only on the mi-
crocanonical window W . Clearly we have E[x1] = 0 and

E[x2
1] = 4

∑
E>E ′∈W
E ′′>E ′′′∈W

cEcE ′cE ′′cE ′′′D−1/2(Ē )D−1/2(Ē ′′)

× f (Ē , ω) f (Ē ′′, ω′′)E[REE ′RE ′′E ′′′ ], (B2)

where Ē ′ = (E ′′ + E ′′′)/2 and ω′′ = E ′′ − E ′′′. The indepen-
dence assumption collapses the quadruple sum, giving

E
[
x2

1

] = 4
∑

E>E ′∈W
c2
Ec

2
E ′D−1(Ē ) f 2(Ē , ω). (B3)

Normalization of the state implies c2
E = O(1/n), where n

is the number of eigenenergies in W , and the double sum
runs over n(n − 1) = O(n2) energies. Altogether we have
E[x2

1] = O(D−1(λ)) since λ is a typical energy in the window,
and where we have neglected N dependence of f (Ē , ω) (see
Ref. [39]). In the thermodynamic limit then, the central limit
theorem implies that x1 ≈ O(D−1/2(λ)).

APPENDIX C: EXPECTATION VALUE OF (H − λ)
IN BROADENED MICROCANONICAL ENSEMBLE

Here we justify Eq. (2.2), which expresses the relation
between the smooth function A(E ) appearing in the ETH ma-
trix element ansatz and the microcanonical expectation value
〈A〉λ,δ , by considering the expectation value of (H − λ) in
the smooth microcanonical ensemble. We take the density of
states to be the Gaussian function described in Appendix A.
Under such an assumption, the first few terms of the Taylor
series for the density of states D(E ) = 2N (2π
2)−1/2e−E2/2
2

near energy λ read

D(E )/D(λ) = 1 − λ


2
(E − λ) +

[(
λ


2

)2

− 1


2

]
(E − λ)2

2

+ 1


4

(
3λ − λ3


2

)
(E − λ)3

6
+ · · · . (C1)

Here, 
2 = γN with γ ≈ 1+ h2
x+ h2

z , and we have not as-
sumed that E − λ is small in any sense yet, only that the den-
sity of states admits a Taylor expansion in the thermodynamic

FIG. 11. In shaded gray, the off-diagonal-only submatrix Ã of
A relevant to off-diagonal error for microcanonical superpositions
whose weight is mostly within s standard deviations δ of the central
energy λ. Matrix elements are shown on the energy scale rather than
the eigenvalue index scale.
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FIG. 12. For various operators A, the effect of expanding the win-
dow to include s standard deviations around λ for N = 13, R = 288,
and when λ/N = −0.5. We see that at s = 3, we have captured ba-
sically all of σ̂R as shown by the percentages. Other energy densities
are unremarkable except that at λ/N = −0.75 only about 97% of XX
is captured.

limit. If we ignore any error incurred in replacing sums by
integrals in the thermodynamic limit, where the energy band-
width approaches infinity and the level spacing zero, the first
moment of (H − λ) in the broadened microcanonical ensem-
ble ρλ,δ = ∑

E D−1(λ)Gδ (E − λ) |E〉 〈E | reads

tr[(H − λ)ρλ,δ] = −δ2λ


2
+ 3δ4

6
4

(
3λ − λ3


2

)
+ · · · . (C2)

We can then use these formulas to estimate the expec-
tation value of an ETH-obeying operator in this broadened
microcanonical ensemble. In doing so, an important conse-
quence of the ETH is that the smooth function A(E ) should
be expressible as a function of energy density in the thermo-
dynamic limit (see Fig. 2 in the main text). In this paper we
consider only Pauli-string-type observables. In this case, note
that A(E ) = a(E/N ) is O(1) because A(E ) is defined via (a
best-fit curve to) the averaging procedure

1

K

∑
E ′

〈E ′|A|E ′〉 (C3)

over K eigenstates near |E〉, and | 〈E ′|A|E ′〉 | � 1 for Pauli
strings. Now since A(E ) = a(E/N ), it follows that a(x) =
O(1) and

dA

dE

∣∣∣∣
E

= 1

N

da

dx

∣∣∣∣
E/N

= O

(
1

N

)
, (C4)

and similarly for higher derivatives. Now consider a broad-
ened microcanonical ensemble at energy λ, i.e., ρλ,δ =
D−1(λ)Gδ (H − λ). Then, the expectation value of the smooth
ETH function in this ensemble is obtained by going to the
continuum and combining Eqs. (C1) and (C2). The result

FIG. 13. At various energy densities λ/N , the maximum singular
value of Ã for various A, with Ã the 3δ large submatrix of A and
δ = O(N−1/2), i.e., with s = 3 as in Fig. 11.

reads∫
dE

D(E )

D(λ)
Gδ (E − λ)A(E ) = A(λ) + O(δ2/N ). (C5)

From this and the ETH ansatz follows Eq. (2.2).

APPENDIX D: ADDITIONAL DISCUSSION
OF DIAGONAL ENSEMBLE

In this Appendix we explain the deviations in μ and σ from
λ and δ, respectively, when fitting the converged variational

FIG. 14. For the operator A = X at energy density λ/N = −0.5,
probability density functions of the eigenvalues of Ã as in the orange
histogram of Fig. 5(c) in the main text, but here shown for N = 10 in
blue and for N = 13 in transparent orange.
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FIG. 15. Diagonal error in the VME. Curves are interpreted identically to those in Fig. 4(b) in the main text, except to bring the estimate
(δ/N )|a′(λ/N )| down to scale we plot instead in some cases (δ/4N )|a′(λ/N )|. The latter are shown in orange instead of green to indicate the
use of a constant scale factor.

ensembles ρR to the best-fit curves ρμ,σ . As was described
in Sec. IV A of the main text, μ will undershoot λ be-
cause the density of states is nonuniform. We can confirm
this more precisely as follows. Using the best-fit parame-
ters to the variational ensemble (i.e., the values in Table I),
we treat the spectrum as continuous and compute the nu-
merical integral tr[ρμ,σ (H − λ)] ≈ −0.042 at λ/N = −0.5.
Doing the same for the ensemble whose central energy is

λ, we find that the value of tr[ρλ,δ (H − λ)] ≈ 0.142. In the
latter calculation, we emphasize that this value is roughly
the same whether using δ or σ for the width of the Gaus-
sian. Thus, the ensemble with central energy μ actually
minimizes the operator (H − λ) much better than the en-
semble with central energy λ. Thus the deviation in μ from
λ is a finite-size effect due to a nonuniform density of
states.
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FIG. 16. Off-diagonal error in the VME for observables A = Z , ZZ , X , XX at λ/N = −0.75. See the caption of Fig. 5 in the main text for
further explanation of what is shown in the plots.

We now address the deviations in σ from δ, which we
claim to be due to the slight “non-Gaussianity” of ρR(E ),
i.e., the excess weight outside the Gaussian window that
we see in Fig. 4. Best-fit curves aside, we first check that
the fluctuations of ρR(E ) around ρR(E ) contribute negligibly
to the expectation value of (H − λ)2. We directly compute
tr[ρR(H )(H − λ)2] ≈ 0.92 δ2, and we can see that this value

is consistent with the actual ensemble average value of the
cost function, tr[ρR(H − λ)2] ≈ 0.90 δ2. The fact that these
values are slightly less than δ2 can be attributed to the con-
vergence criterion only requiring that the variance (which is
approximately the cost) be at most δ2. Now comparing this
to the Gaussian model best-fit ensemble,which predicts a cost
function value of only tr[ρμ,σ (H − λ)2] ≈ 0.69δ2, we see that
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FIG. 17. Off-diagonal error in the VME for observables A = Z,ZZ,X,XX at λ/N = −0.5. See the caption of Fig. 5 in the main text for
further explanation of what is shown in the plots.

it undershoots δ2 since it is missing the contribution from the
excess energy weight.

APPENDIX E: JUSTIFICATION FOR REPLACING Â
BY Ã AND FURTHER PROPERTIES OF Ã

In this Appendix we justify deleting certain energy-basis
matrix elements of A based on the form of the variational

states, for the purposes of gaining some intuition about the
nature of the off-diagonal error. Let the operator Â be A with
its energy-basis diagonal elements set to zero, i.e.,

〈E |Â|E ′〉 =
{〈E |A|E ′〉 if E 	= E ′

0 if E = E ′. (E1)
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FIG. 18. Off-diagonal error in the VME for observables A = Z, ZZ,X,XX at λ/N = −0.25. See the caption of Fig. 5 in the main text for
further explanation of what is shown in the plots.

At this point we also define Ã for general s, where s is the
number of standard deviations δ around λ that are not deleted:

〈E |Ã|E ′〉 =
⎧⎨⎩〈E |A|E ′〉 if E 	= E ′, |E − λ| � sδ,

and |E ′ − λ| � sδ
0 otherwise.

(E2)

An equivalent definition is given graphically in Fig. 11. Since
the ensemble of variational states |ψr〉 approximates a Gaus-
sian microcanonical ensemble near with average energy near
λ on average [see Fig. 4(a)], we can anticipate that the value of
〈ψr |Â|ψr〉2

will also be unaffected on average by replacing Â
with Ã when Ã has a sufficiently large energy support. Because
of the established Gaussian form, we might expect that two
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FIG. 19. Off-diagonal error in the VME for observables A = Z, ZZ,X,XX at λ/N = 0.0. See the caption of Fig. 5 in the main text for
further explanation of what is shown in the plots.

standard deviations around λ is always sufficient to capture
95% of the average absolute error. However, there are fluctua-
tions around this behavior, and the coarse-grained variational
states have some excess energy weight beyond the Gaussian
best-fit curve. Furthermore, the variational ensembles are not
exactly centered on λ. Thus, we justify replacing Â with an
appropriately chosen Ã numerically as follows. In Fig. 12 we
compare σR when computed on a window of size 2s × 2s (see

Fig. 11 for clarification) and σ̂R, which is computed from the
entire spectrum. We show on the plots the fraction of σ̂R that
is captured by σR at s = 3, i.e., roughly three standard devi-
ations, which we consider to be sufficiently large to capture
basically all of σ̂R.

For the 3δ truncated operators Ã we have just discussed,
in this Appendix we also consider how the maximum singu-
lar value of Ã, i.e., the larger of |λmax(Ã)|, |λmin(Ã)|, scales
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FIG. 20. Ensemble-averaged VME observable expectation values (orange) and broadened microcanonical averages (blue) plotted versus
system size for the full range of energy densities and operators considered in this work. See the caption of Fig. 6 in the main text for further
explanation of what is shown in the plots.

with N . The results are shown in Fig. 13. These results provide
evidence that the numerical prefactor σR appearing in the sta-
tistical description of the off-diagonal error is O(1) in system
size. In this Appendix we also consider how the eigenvalue
statistics qualitatively vary with N , with an example shown
in Fig. 14 demonstrating that the distribution is qualitatively
independent of N , except for the slight decrease of the distri-
bution’s width with N as reflected in Fig. 13.

APPENDIX F: ADDITIONAL NUMERICAL DATA
FOR DIAGONAL ERROR

Figure 15 shows the diagonal error in the VME estimate
for operators Z , ZZ , X , XX acting in the middle of the chain.
As stated in the main text, the results for energy density
λ/N = −0.5 appear to agree best with the prediction of ETH
that the error should decay as 1/N and agree with χR/N [see
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Eq. (3.8)] for large R. While in general such a clear scaling
with N is missing, all cases show that the N = 13 diagonal
error is never larger than some order-one fraction of the rough
estimate a′(λ/N )δ/N , with XX at λ/N = 0 showing the case
where the diagonal error comes closest to the estimate. We
also note that the ETH prediction χR/N for the diagonal error
is always on the correct scale of the error for N = 13. The
operator XX is also an outlier in this sense: χR/N significantly
underestimates the actual error except for λ/N = −0.5.

APPENDIX G: ADDITIONAL NUMERICAL DATA
FOR OFF-DIAGONAL ERROR

In Sec. IV of the main text, Fig. 5 demonstrates the be-
havior of the off-diagonal error for the operator X acting on
the middle of the chain at the energy density λ/N = −0.5.
The purpose of this Appendix is to establish that the trends
observed there hold more generally across different operators
and target energy densities. The plots shown also demonstrate
that the operator XX systematically differs from the other
considered observables. We show the equivalent of Fig. 5 for

λ/N = −0.75,−0.5,−0.25, 0 and A = Z,ZZ,X,XX acting
on the central one or two sites of the chain. The results are
shown in Figs. 16–19, respectively.

APPENDIX H: ADDITIONAL NUMERICAL DATA
FOR EXPECTATION VALUES

Here we show in Fig. 20 the VME estimates for the four lo-
cal observables A = Z,ZZ,X,XX acting on the central one or
two sites of the chain. We show these estimates when targeting
four different energy densities λ/N = −0.75,−0.5,−0.25, 0
and when R = 288. As we observed in Sec. IV, the off-
diagonal error generally does not systematically depend on N .
Here we can see that for fixed R, beyond N ∼ 9, the accuracy
of the VME estimates indeed does not depend systematically
on N except again for XX where it appears to increase with N ,
consistent with the R = 288, N = 13 value of the off-diagonal
error for XX being largest in the plots in Appendix G. We
see that the microcanonical estimates can be quite good, as
for Z at λ/N = −0.5, or quite poor, as for XX at λ/N = 0.
The better results are generally for the operators Z , ZZ , and
X and at the lower target energy densities λ/N = −0.75 and
λ/N = −0.5.
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regime. For Ē away from zero, less appears to be known about
its N dependence, but in any case we neglect it, assuming that
here the exponentially large density of states will suppress any
N dependence of f (E , 0) in the thermodynamic limit.

[40] That is, assuming λ is in the spectrum of H , or else the cost
function is not zero but minimized for the nearest eigenstate,
so that the cost function will still be exponentially small in the
state |λ〉.

[41] Y. Shen, X. Zhang, S. Zhang, J.-N. Zhang, M.-H. Yung, and K.
Kim, Quantum implementation of the unitary coupled cluster
for simulating molecular electronic structure, Phys. Rev. A 95,
020501(R) (2017).

[42] H. L. Tang, V. O. Shkolnikov, G. S. Barron, H. R. Grimsley,
N. J. Mayhall, E. Barnes, and S. E. Economou, Qubit-ADAPT-
VQE: An adaptive algorithm for constructing hardware-
efficient Ansätze on a quantum processor, PRX Quantum 2,
020310 (2021).

[43] D. D’Alessandro, Introduction toQuantumControl andDynam-
ics (Chapman and Hall/CRC, New York, 2007).

[44] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran,
Evaluating analytic gradients on quantum hardware, Phys. Rev.
A 99, 032331 (2019).

[45] M. C. Bañuls, J. I. Cirac, and M. B. Hastings, Strong and Weak
Thermalization of Infinite Nonintegrable Quantum Systems,
Phys. Rev. Lett. 106, 050405 (2011).

[46] A. Çakan, J. I. Cirac, and M. C. Bañuls, Approximating the long
time average of the density operator: Diagonal ensemble, Phys.
Rev. B 103, 115113 (2021).

[47] E. P. Wigner, On the distribution of the roots of certain symmet-
ric matrices, Ann. Math. 67, 325 (1958).

[48] M. M. Wilde, Quantum Information Theory (Cambridge Uni-
versity Press, Cambridge, UK, 2013).

[49] D. N. Page, Average Entropy of a Subsystem, Phys. Rev. Lett.
71, 1291 (1993).

[50] A. Dymarsky, N. Lashkari, and H. Liu, Subsystem eigenstate
thermalization hypothesis, Phys. Rev. E 97, 012140 (2018).

033224-23

https://doi.org/10.1103/PhysRevB.101.144305
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1088/0305-4470/32/7/007
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/PhysRevB.104.075159
https://doi.org/10.1103/PhysRevLett.108.240401
https://doi.org/10.1038/nphys444
https://doi.org/10.1103/PhysRevLett.115.100402
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevE.102.042127
https://doi.org/10.1103/PhysRevLett.128.190601
https://doi.org/10.1103/PhysRevE.99.010102
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.22331/q-2022-09-08-795
https://doi.org/10.1103/PhysRevA.95.020501
https://doi.org/10.1103/PRXQuantum.2.020310
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1103/PhysRevLett.106.050405
https://doi.org/10.1103/PhysRevB.103.115113
https://doi.org/10.2307/1970008
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/PhysRevE.97.012140

