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ABSTRACT

Significant advancements have been made in recent years in the
field of unsupervised graph representation learning (UGRL) ap-

proaches. UGRL involves representing large graphs as low-dimensional

vectors, commonly referred to as embeddings. These embeddings
can be publicly released or shared with third parties for down-
stream analytics. However, adversaries can deduce sensitive struc-
tural information from the target graph through its embedding
using various types of privacy inference attacks. This paper investi-
gates the privacy vulnerabilities of UGRL models through the lens
of link membership inference attack (LMIA). Specifically, an LMIA
adversary aims to infer whether any two nodes are connected in
the target graph from the node embeddings generated by a UGRL
model. To achieve this, we propose two LMIA attacks that leverage
the properties of node embeddings and various forms of adver-
sary knowledge for inference. By conducting experiments on four
state-of-the-art UGRL models using five real-world graph datasets,
we demonstrate the effectiveness of the two LMIA attacks against
these UGRL models. Furthermore, we conduct a comprehensive
analysis to examine how varying degrees of preserved structural
information in the embeddings impact the performance of LMIA.
To enhance the security of UGRL models against LMIA, we design
a family of defense mechanisms that perturb the least significant
dimensions of embeddings. Our experimental results show that our
defense mechanism achieves a favorable balance between defense
effectiveness and embedding quality.
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1 INTRODUCTION

Many complex systems, such as social networks, biological net-
works, and information networks, are represented as graphs. The
scale of these graphs can vary from hundreds to millions, or even
billions, of vertices [51]. Analytics of such graphs heavily relies on
the representation methods employed.

In many practical graph learning tasks, labeled data is expen-
sive [65], difficult to obtain [64], and potentially biased [10, 42].
For these scenarios, unsupervised graph representation learning
(UGRL) offers an alternative paradigm that not only enables the
use of larger (and unlabeled) datasets but has also been shown to
improve model robustness [21]. Due to the empirical success of
UGRL, it has found applications in a wide range of fields such as nat-
ural language processing [31], computer vision [9], and healthcare
[57]. Essentially, UGRL aims to learn latent, low-dimensional vector
representations of graphs in an unsupervised manner, while pre-
serving crucial information such as the topology structure, vertex
content, and other related side information. These learned repre-
sentations typically take the form of node embeddings, which are
subsequently utilized in various downstream analytical tasks like
link prediction and node classification, facilitating their execution
with ease.

One advantage of UGRL is its independence from downstream
learning tasks [60]. This allows data owners to share their data with
other parties, such as machine learning (ML) service providers, by
providing them with embeddings suitable for various types of learn-
ing tasks [34, 38]. For instance, data owners can use Google’s Em-
bedding Projector service! to interactively visualize the structure of
their graph. They can achieve this by uploading their locally-trained
embeddings through the service’s Web APIL.

In various applications, the input graph may contain sensitive
information, such as social relations [25] or mobility traces [3]. It
is occasionally presumed that sharing embeddings is a “safer” alter-
native to sharing raw data, given their lower-dimensional nature
[48]. Nevertheless, it is crucial to recognize that node embeddings
inherently encapsulate the structure and characteristics of the orig-
inal graph, thereby enabling adversaries to extract sensitive private
information from them.

Recent studies [11, 63] have present the vulnerability of graph
representations generated by supervised learning models like Graph
Neural Networks (GNNs) to a specific type of privacy attack known
as Link Membership Inference Attack (LMIA) [19, 56]. LMIA is de-
signed to deduce the presence of specific links (edges) within the

!https://projector.tensorflow.org/
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Target model
Supervised | Unsupervised Adversary knowledge
[63] GNN Graph embedding
Node embedding +
[11] GNN Auxiliary subgraph
(mandatory)
DeepWalk, Node embedding +
Ours node2vec, Shadow graph
LINE, GAE (optional)

Table 1: Comparison between our work and the existing
LMIAs against graph representation.

training graph of the target GNN model, using either access to the
entire graph embedding [63] or the node embeddings produced by
the target model itself [11]. However, prior research has not delved
into the vulnerabilities of the node embeddings generated by Unsu-
pervised Graph Representation Learning (UGRL) methods to LMIAs.
Notably, none of the existing methods for LMIAs against graph
representations [11, 19] can be readily adapted to UGRL models.
These studies either presume the availability of an auxiliary sub-
graph for the attack [11] or employ graph embeddings but not node
embeddings for the attack [63]. In contrast to these approaches,
we investigate a more realistic scenario where the adversary only
has access to node embeddings and is not equipped with any prior
knowledge about the target graph. Table 1 summarizes the key dis-
tinctions between our approach and existing studies that primarily
focus on LMIA against graph representations.

Our contributions. In this paper, we conduct an investigation into
the privacy implications of UGRL models through the lens of link
membership inference attacks (LMIAs). More specifically, we delve
into the scenario where an LMIA adversary seeks to determine
whether a specific pair of nodes in the target graph are connected,
relying on access to the embeddings of these nodes generated by a
UGRL model. We make the following contributions?.

Design of attacks and evaluation. We consider two distinct
types of adversaries: those with access solely to the node embed-
dings and those equipped with knowledge of a “shadow graph”,
which may originate from external sources such as public data
repositories. It is important to note that the structure, node at-
tributes, and distribution of the shadow graph may differ signifi-
cantly from those of the target graph. To address these scenarios,
we devise two link membership inference attacks (referred to as
Attacks 1 and 2) tailored to each type of adversary. Through an
extensive series of experiments, we demonstrate the effectiveness
of both attacks against four cutting-edge UGRL models: node2vec
[15], DeepWalk [18], LINE [51], and GAE [27]. These experiments
are conducted on five real-world graphs. Our findings reveal that
both attacks exhibit remarkable success rates against all four UGRL
models, achieving accuracy levels as high as 0.95. Notably, our
attacks surpass the approach proposed in a previous study [11],
resulting in accuracy gains of up to 0.24.

20ur code and datasets are available online: https:/gitfront.io/r/user-
8658281/Mpx6p294FzeZ/LMIA/
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Factor analysis. To gain a more profound comprehension of
the privacy vulnerabilities inherent in UGRL models, we system-
atically investigate how varying degrees of preserved structural
information in the embeddings impact the performance of LMIA.
Our analysis yields the following crucial insights: (i) Embeddings
that retain a lower level of proximity information are more sus-
ceptible to LMIA; and (ii) Embeddings characterized by higher
dimensions are more prone to LMIA. These findings illuminate the
intricate relationship between the extent of preserved structural
information in the embeddings and the effectiveness of LMIA, of-
fering valuable insights into the privacy vulnerabilities associated
with UGRL models.

Design of defense mechanisms and evaluation. We pro-
pose a family of defense mechanisms designed to alleviate privacy
vulnerabilities in UGRL models. These defense strategies revolve
around the concept of perturbing the embeddings by introducing
Laplace noise. To minimize any adverse effects on embedding accu-
racy, we judiciously apply noise exclusively to dimensions deemed
less critical. To determine the importance of embedding dimensions,
we develop three distinct estimation methods. Through compre-
hensive empirical assessments, we substantiate the efficacy of our
defense mechanisms. Our findings clearly indicate that our pro-
posed defenses strike a more favorable balance between defense
effectiveness and embedding quality when compared to baseline
methods.

2 UNSUPERVISED GRAPH REPRESENTATION
LEARNING

Consider a graph G(V, E), where V represents a set of nodes and
E C (V x V) represents a set of edges (links) connecting the nodes.
In the context of graph representation learning (GRL), the objective
is to learn a mapping function ® : 0 — 2, € R for each node v € V.
Here, z;, denotes the learned vector representation or embedding
of node v, while d represents the dimensionality of the learned
representation. The fundamental aim of the mapping function ® is
to retain the original network structure, ensuring that nodes that
exhibit similarity in G are also represented as similar vectors in the
learned vector space.

The node embeddings in graph representation learning preserve
various types of local structure information within the graph, in-
cluding first-order, second-order, and high-order proximity. The
first-order proximity captures the similarity between directly con-
nected vertices, while the second-order and high-order proximity
capture similarities between vertices sharing common neighbors
[60].

Broadly, the existing GRL approaches can be classified into two
categories: supervised and unsupervised approaches [60]. Unsuper-
vised approaches are oriented towards preserving the inherent
structure of the graph and generating graph representations with-
out relying on labeled nodes or graphs. In contrast, supervised
methods involve the learning of graph representations using la-
beled samples. In this paper, we primarily focus on UGRL models.
It is worth noting that we exclude GNNs [16, 39, 52] as they fall
within the realm of supervised learning methods.

Existing UGRL models can be categorized into five algorithmic
perspectives: matrix factorization, random walk, edge modeling, deep
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learning, and hybrid methods [60]. For the purpose of this paper, we
primarily consider random walk-based, edge modeling-based, and
deep learning-based methods. We make this choice because they
are recognized as the most efficient and practical among the five
categories.

Random walk based methods. In random walk-based methods,
the use of random walks allows for the efficient capture of structural
relationships between vertices. By performing truncated random
walks, the original graph is transformed into a collection of paths.
Two representative random walk-based UGRL methods considered
in this paper are DeepWalk [41] and node2vec [15]. DeepWalk
employs a uniform random walk approach, where neighborhood
nodes have an equal probability of being selected for the next step
of the walk. On the other hand, node2vec follows a biased random
walk, determined by parameters p and q. Parameter p prioritizes
a breadth-first-search (BFS) procedure, while g prioritizes a depth-
first-search (DFS) procedure. Both methods use SkipGram [36]
on the random walk sequences to maximize the probability of
observing a node’s neighborhood given its embedding.

Edge modeling based methods. In contrast to approaches that
utilize random walks to capture network structure, edge modeling-
based methods directly learn node embeddings from the connec-
tions between nodes. In this paper, we focus on a representative
edge modeling-based method called LINE [51]. LINE models both
the joint probability distribution and conditional probability distri-
bution of connected nodes to learn the node embeddings.

Deep learning based methods. Some UGRL models utilize
deep learning techniques to capture the non-linearity of complex
graphs. In this paper, we examine a representative UGRL model
called GAE [27]. GAE employs an encoder-decoder scheme to learn
node embeddings. The encoder consists of a graph convolutional
network [28], which takes node features and the adjacency ma-
trix of the graph as input. It aggregates feature information from
neighboring nodes. The decoder utilizes an inner product operation
to project pairwise node embeddings onto a similarity value. The
similarity values of all node pairs are then passed through sigmoid
functions to compute the probability of entries in the adjacency
matrix, resulting in a predicted adjacency matrix. The loss is calcu-
lated using Binary Cross Entropy (BCE) loss between the predicted
adjacency matrix and the ground-truth adjacency matrix.

Table 2 summarizes the key differences in methodology and pre-
served proximity between DeepWalk, node2vec, LINE, and GAE.
These models have various user-defined parameters, such as the
length and number of random walks (for DeepWalk and node2vec),
the dimension of the target vector space, and the neighborhood
size. Different parameter choices lead to distinct node embeddings,
affecting their vulnerability to LMIA. In Section 5.3, we will dis-
cuss how the different parameters of UGRL models influence the
preservation of structural information in node embeddings and
their vulnerability to privacy attacks.

3 PROBLEM FORMULATION

In this section, we define the scope and goal of our problem.
Learning setting. Similar to the supervised GRL models, there

are two different UGRL paradigms: transductive and inductive set-

tings. In the transductive setting, all nodes in the graph are available
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Algorithm Methodology Preserved proximity
DeepWalk | Uniform random walk | 157, 2" and high-order
node2vec Biased random walk 15¢, 2nd and high-order

LINE Edge modeling 15t
GAE Deep learning based # of layers in encoder

Table 2: Comparison of Four UGRL models.

at training time [15, 51, 53]. In contrast, the inductive setting in-
cludes only a subset of nodes in the training graph [4, 16]. Since
most of the existing UGRL models, including the four models consid-
ered in this paper, are transductive, we solely focus on transductive
UGRL models in this study.

Threat model. ML models are susceptible to privacy attacks
[22, 43]. These attacks can be categorized into two groups based on
the sensitive assets in ML models that the adversary seeks to obtain
[43]: (1) Privacy attacks on training data: The adversary aims to infer
sensitive information within the training dataset. (2) Privacy attacks
on ML models: The adversary considers ML models themselves as
sensitive, such as valuable company assets, and attempts to extract
information about the model’s structure and parameters.

In this paper, our focus is primarily on privacy attacks on training
data, specifically the membership inference attack (MIA). We should
note that in the transductive UGRL setting (in particular for learning
of node embeddings), determining node-level membership (i.e.,
whether a node is included in the training graph) is straightforward
since all nodes are necessarily included. Hence, we focus on the
link membership inference, which involves determining whether
two specific nodes u and v are connected in the target graph of a
given UGRL model by employing the node embeddings of u and v
generated by the target model.

We assume that the adversary possesses the capability to access
the embeddings of nodes generated by the target UGRL model and
connect these embeddings to individual users. This feasibility arises
due to the prevalent practice in many third-party social applica-
tions, such as Flickr and Twitter, where users are allowed to link
their accounts to a common system, often facilitated by services
like Google accounts. Despite the existence of these common ac-
counts, users can maintain distinct social relationships within these
applications, and the confidentiality of these relationships is crucial
[35]. In scenarios where data owners of these social applications
collaborate to derive a “global” graph representation, they can con-
currently train a “local” graph representation of their specific data
and subsequently share it with other data owners [35]. As the local
embeddings can be easily linked to individual users by their ac-
counts (e.g., Google accounts) which are shared across the different
systems, an honest-but-curious data owner may attempt to infer
sensitive structural information from other data owners’ local data
using the shared node embeddings, thereby posing privacy risks to
individual users.

In addition to node embeddings, the adversary may possess
additional background knowledge K,4, which can be categorized
along three dimensions:

o Node embeddings Z: The adversary may have access to the
embedding of a set of nodes {v|v € Gyarget,v # vi, v} gen-
erated by the UGRL model ® on the target graph Giarget-
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These embeddings can be either complete (i.e., encompassing
all nodes) or partial (i.e., representing a subset of nodes).

o Shadow graph Ggpu40+: The adversary possesses a shadow
graph Ggpado4w With its own structure and node attributes.
The shadow graph can originate from a different domain
and exhibit different data distributions compared to Gsarge:-

o Target UGRL model ®: The adversary may have access to
the target UGRL model ® either in a white-box or black-box
fashion. White-box access to the model reveals its architec-
ture, parameters, and loss function, while black-box access
allows the adversary to only access the node embeddings.

Given that white-box attacks may be theoretically optimal but
inefficient in practice [44, 49], we restrict our focus to black-box
attacks in this paper.

Problem definition. Formally, given a target node pair (v;, ;)
where v;,0; € Gtarger and their embeddings z; and zj, a UGRL
model @, and the adversary’s auxiliary knowledge K4y, that pro-
vides black-box access to ®, the link membership inference attack
(LMIA) is a mapping function

f55i,ij,q>,KAug i {0,1}, (l)

where 0 (or 1) indicates that the edge e does not (or does, respec-
tively) belong to Garget-

LMIA can be formally described using the hypothetical inference
game between a challenger and an adversary [6, 44, 58, 59]. The
game is formalized below:

DEFINITION 1 (LINK MEMBERSHIP INFERENCE GAME). Let G be a
set of graphs drawn from the distribution 7. Let V be the embedding
space. A UGRL algorithm ® is a function that maps an instance
G(V,E) € G to a set of embeddings in V.

o A fresh dataset is sampled from the distribution 7, and ® is
trained on this dataset.

o A coin is flipped to determine b € {0, 1} uniformly at random.

e Ifb = 0, a disconnected node pair (v;,v;) is randomly se-
lected from 7 (non-member). Otherwise, a connected node pair
(vi,0) is randomly chosen from G (member).

o The adversary A uses the additional knowledge K 4,4 and
the embeddings Z; and zj to compute b = f(03,05,9, Kaug)
(Equation 1).

o The adversary succeeds (output 1) lfl; = b, and fails (output 0)
otherwise.

The performance of the LMIA attack is evaluated by averaging
its success rate over multiple repetitions of the inference game.

4 DETAILS OF OUR ATTACKS

Recent studies have revealed that the nodes which are connected
in the target graph (i.e., member edges) have higher similarity
in their classification posterior probabilities by the target models
(e.g., GNNs) than those which are not (i.e., non-member edges)
[19, 56]. However, as UGRL models do not produce such posterior
probabilities but node embeddings instead, we first investigate the
properties of node embeddings that can be exploited by LMIA.
We conducted experiments using four prominent UGRL algo-
rithms: node2vec, DeepWalk, LINE, and GAE. In our analysis, we
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measured three types of embedding similarity: Dot product simi-
larity, Cosine similarity, and Euclidean distance. By comparing the
embedding similarity between member and non-member links, we
aimed to identify distinguishable patterns. Our findings revealed
a consistent trend across all four UGRL models: node pairs belong-
ing to member links exhibited higher average embedding similarity
compared to node pairs in non-member links. More details of the
similarity property of node embeddings can be found in Appendix
A.

Intuitively, leveraging the property of embedding similarity,
the attacker can effectively distinguish between member and non-
member links. Building upon this intuition, we propose two black-
box attacks for adversaries with different levels of knowledge re-
garding Ggpadow: Attack 1, when Ggpq404, is unavailable to the
adversary, and Attack 2, when Ggp 4,4, 1S accessible. We will now
delve into the specifics of these two attacks.

4.1 Attack 1: without Shadow Graph

When Ggpa404 1S unavailable, the adversary only has access to
the embeddings Z;4rget of a set of nodes in Gygrget. To predict the
membership of the target link, the adversary can exploit the node
embedding similarity from Z; grget. Following this idea, we propose
an unsupervised attack that employs the k-means clustering algo-
rithm to infer whether the target node pair (v;,v;) has a link in
Gtarget based on Zygrger- The attack consists of two phases:

Clustering phase. The adversary measures the embedding sim-
ilarity for each node pair in Z;qrget, where the similarity metrics
include Dot product similarity, Cosine similarity, and Euclidean dis-
tance. Then for each node pair, the attacker generates its similarity
feature by concatenating these similarity metrics. Next, the adver-
sary applies k-means clustering with k = 2 to partition all node
pairs into two classes: members and non-members. Since member
links exhibit higher similarity in their embeddings compared to
non-member links, the cluster with a higher average pairwise em-
bedding similarity is labeled as the member cluster, while the other
cluster is labeled as the non-member cluster.

Inference phase. For the target node pair (v;,v;) and their em-
beddings z; and Zj, the adversary constructs its similarity feature
by concatenating the three similarity values (Dot product similar-
ity, Cosine similarity, and Euclidean distance). Then, the attacker
assigns the pair to the cluster whose average pairwise embedding
similarity, measured on the similarity feature, is closer to that of
the target node pair (v, vj).

4.2 Attack 2: with Shadow Graph

When Ggp 404 is available, we adapt the shadow model approach
[47] to our setting, enabling us to train a set of shadow models
from Ggpugo4 that can replicate the functionality of the target
UGRL model. By utilizing the shadow models, we design Attack 2
as a binary supervised classifier f trained on the node embeddings
generated by the shadow models and the membership information
of links in Ggp4404,- Then given the target node pair (v;, v;) and their
embeddings z; and zj, the classifier f predicts whether the edge
e(v;,v) belongs to Gygrget- Following this idea, Attack 2 comprises
three phases: shadow model training, attack model training, and
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Figure 1: Overview of Attack 2.

membership inference (Figure 1). Next, we explain the details of
these phases.

Shadow model training phase. To collect training data for the
classifier f, the adversary randomly samples k subgraphs from the
shadow graph G440+ Subsequently, k shadow models {tbf e @i}
are trained using the corresponding subgraphs.

Attack model training phase. For each shadow sample graph
and its corresponding trained shadow model CIJ‘l.S , the adver-

i
GShadow

sary selects a set of node pairs {(v}, v )} from Gf?hadow

the embeddings fo(vj) and CIJf(Uk) of vj and vy, for each node pair.

, and obtains

Next, the adversary computes the similarity sim(fbf(v i) <I>l.5(vk))
using different similarity metrics, including Dot product similarity,
Cosine similarity, and Euclidean distance. The adversary concate-
nates all measured similarity values to create the LMIA feature of
the node pair (v},vy), and labels e(v}, v;) as member (“1%) if it is an
edge in G_i?haa'aw’ and non-member (“0”) otherwise. Consequently,
the adversary constructs an attack training dataset consisting of the
derived similarity features and their member/non-member labels.
Finally, the adversary trains the binary membership attack classifier
f on the attack training dataset.

Membership inference phase. During inference, the adversary
computes the three similarity values (Dot product similarity, Cosine
similarity, and Euclidean distance) between the embedding Z; and z;
of the target node pair. The adversary then feeds the concatenation
of these three similarity values into the trained attack classifier f
and obtains probabilities for each class. By selecting a probability
threshold of 0.5, the target node pair is predicted with the label of
the class whose probability exceeds 0.5.

5 EVALUATION OF ATTACK PERFORMANCE

We conduct a comprehensive set of empirical studies with the
objective of addressing two key research questions:

e RQ1 - How effective is LMIA against the representative UGRL
models?

e RQ2 - How do the different amounts of preserved structural
information in the embedding affect LMIA performance?

5.1 Experimental Setup

All the experiments are performed on a machine with 2 X Intel(R)
Xeon(R) Silver 4116 CPU @ 2.10GHz, 12 cores, 24 processors, and
128 GB memory. All the algorithms are implemented in Python
along with PyTorch.

Datasets. We use five real-world graph datasets (DBLP, LastFm,
Cora, Citeseer, and Pubmed datasets) that are popularly used in the

literature for graph learning. More details of these datasets can be
found in Appendix B.

UGRL algorithms. We employ four state-of-the-art UGRL algo-
rithms, namely DeepWalk [41], node2vec [15], LINE [51], and GAE
[27]. The encoder of the GAE model is set as a 2-layer neural net-
work with 64 neurons in each layer. Both DeepWalk and node2vec
models preserve the 1st- to 5th-order proximity in the embeddings,
while LINE preserves the 1st-order proximity, and GAE preserves
the 1st- to 2nd-order proximity (with a 2-layer neural network).

Shadow graph. Two settings are considered in the experiments:
(1) Non-transfer setting: where both shadow graph and target graph
are sampled from the same dataset, and (2) Transfer setting: where
the shadow graph and the target graph are sampled from two
different datasets. The performance of LMIA is evaluated under
both settings.

Metrics. For assessing the attack effectiveness of LMIA, we
employ three metrics: (1) Attack accuracy: The ratio of correctly
predicted member/non-member edges by LMIA over the total num-
ber of node pairs in the testing data; (2) Area Under the Curve (AUC):
Measured over the true positive rate (TPR) and false positive rate
(FPR) at various settings of thresholds of the attack classifier; and (3)
True-Positive Rate at False-Positive Rates (TPR@FPR) [6]: Measures
TPR at various FPR values.

Regarding the performance of UGRL models, we measure the
performance of downstream tasks on node embeddings, specifically
focusing on node classification. We train an MLP classifier on the
node embeddings and measure the AUC as the embedding quality.

Setup of attack classifier. We use three types of attack classi-
fiers, namely Multi-layer Perceptron (MLP), Random Forest (RF),
and Support Vector Machine (SVM). The MLP consists of three
hidden layers with 64, 32, and 16 neurons, respectively. The activa-
tion functions used are Relu for the hidden layers and Sigmoid for
the output layer. The classifier is trained for 1,000 epochs with a
learning rate of 0.001 using cross-entropy loss and the Adam opti-
mizer. For RF, the maximum depth is set as 150, and for SVM, the
radial basis measurement (RBF) kernel is used with a regularization
parameter of 1 and a degree of the polynomial kernel measurement
set to 3. The kernel coefficient y is set to 1. The implementation of
these classifiers is obtained from the sklearn package 3.

Training and testing data of LMIA. In terms of the training
and testing data for LMIA, we first generate a data pool that consists
of 70% of the edges (Epmem) randomly sampled from the original
graph and the same number of disconnected node pairs (Ejop) that

Shttps://scikit-learn.org/
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are randomly sampled from the original graph. Next, we generate
the LMIA training dataset which consists of 30% edges randomly
sampled from E;erm as members and an equal number of edges
randomly chosen from Ej,, as non-members. Similarly, we gener-
ate the LMIA testing dataset that consists of an equal number of
member and non-member edges. The size ratio between the LMIA
training and testing data is 7:3.

Baselines. The paper considers four baselines for comparison
with the LMIA attack:

e Baseline-1. This baseline involves an ensemble of three sub-
attacks, each using a different similarity metric (Dot product
similarity, Cosine similarity, and Euclidean distance). For each
sub-attack, we use the threshold-based MIA model [11] to mark
the target link as a non-member/member by comparing its node
similarity with a given threshold. The best threshold value that
delivers the optimal attack performance is chosen empirically.
Finally, links in the testing data with node embedding similarity
higher than the threshold are marked as members, and the rest
as non-members.

o Baseline-2. This baseline uses the link inference attack proposed
in [11]%. It involves reconstructing the adjacency matrix of the
target graph using an encoder-decoder network and adversary
knowledge of the auxiliary graph. The decoder setup is the same
as in [11], and the encoder architecture is the same as the target
model. An auxiliary graph containing 70% of the edges from the
target graph is used.

e Baseline-3. In this baseline, we modify the input feature of
Attack 1 by employing the concatenation of embeddings (i.e.,
placing the embeddings side-by-side) instead of the concatena-
tion of embedding similarities.

e Baseline-4. This baseline utilizes the concatenation of node
embeddings as the input feature for the Attack 2 classifier.

5.2 Effectiveness of LMIA (RQ1)

Before proceeding with the attacks on the UGRL algorithms, we
first evaluate the quality of the embeddings generated by these al-
gorithms to justify why these algorithms are worthy to be attacked.
The evaluation results can be found in Appendix C. We observe
that, in general, the AUC values for all four UGRL algorithms are
substantially higher than what would be achieved by random guess-
ing for classification. This indicates that the embeddings produced
by these algorithms exhibit commendable performance. Given the
satisfactory performance of the UGRL models, we can proceed with
launching the LMIA on these models.

Next, we assess the effectiveness of both Attacks 1 and Attacks
2 by evaluating their performance. Figure 2 illustrates the accuracy
of both attacks across the five datasets. A cursory look reveals that
the attack accuracy consistently exceeds 0.5, which is the accuracy
obtained by random guessing. This substantiates the effectiveness
of LMIA in targeting network embeddings.

Moving forward, we delve into a detailed discussion on the per-
formance of Attacks 1 and 2.

4We use the implementation provided by the authors of [11], which is available at
https://github.com/vasishtduddu/GraphLeaks.
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5.2.1 Performance of Attack 1. Figure 2 presents the results of
Attack 1. Remarkably, as an unsupervised attack model, Attack 1
demonstrates outstanding performance against node2vec, Deep-
Walk, LINE, and GAE across most datasets, yielding attack accuracy
ranging from 0.62 to 0.93. Notably, in certain settings, such as when
the LINE model is trained on the Cora dataset (Figure 2 (c)), the
attack accuracy can reach as high as 0.93. Moreover, our attack out-
performs all four baseline methods in terms of attack accuracy in
the majority of settings. Notably, its performance surpasses that of
Baseline-3 across all settings significantly. Besides the overall accu-
racy of the attack, we measure the attack accuracy of the clustering
phase of Attack 1 and include the results in Appendix D.

5.2.2  Performance of Attack 2. Moving on to the performance of
Attack 2, we consider two distinct settings for the shadow graph:

e Setting 1 (Non-transfer setting): In this setting, both the
shadow and target graphs are sampled from the same dataset.

o Setting 2 (Transfer setting): This setting involves sampling
the shadow and target graphs from different datasets.

Among the three types of attack classifiers (MLP, SVM, RF), we
observe that the MLP attack consistently achieves the highest attack
accuracy in the majority of settings. Hence, we solely present the
attack accuracy of MLP in the subsequent discussions.

Setting 1 (Non-transfer setting). Figure 2 illustrates the results
of Attack 2 under Setting 1 for the four UGRL models. First, similar
to Attack 1, Attack 2 proves to be effective against node2vec, Deep-
Walk, LINE, and GAE, achieving attack accuracy within the range of
[0.67,0.95]. Notably, the attack accuracy can reach as high as 0.95, as
observed in the case of the LINE model on the Cora dataset (Figure
2 (c)). Second, our attack outperforms the baselines in the majority
of settings. Particularly, our attack’s accuracy can be 0.13 higher
than that of Baseline-2 [11]. Moreover, we observe that Baseline-4
has comparable performance as ours in some settings. This is attrib-
uted to the utilization of all embeddings by Baseline-4. However,
as its feature dimension is much larger than ours, Baseline-4 suf-
fers from overfitting in some settings and consequently has worse
performance than ours in these settings. Additionally, we observe
that LINE is more vulnerable to our attack compared to node2vec,
DeepWalk, and GAE. We will delve into the reasons behind LINE’s
high vulnerability in Section 5.3.

Apart from attack accuracy, we also measure TPR@FPR with
FPR=1% of our Attack 2, Baseline-2, and Baseline-4. We do not con-
sider Attack 1, Baseline-1, and Baseline-3 as they are not supervised
MIA attacks and thus cannot be evaluated with TPR and FPR. The
results are presented in Table 3. Overall, our Attack 2 outperforms
both Baseline-2 and Baseline-4 methods in all the settings in terms
of TPR@1% FPR. Furthermore, LINE consistently exhibits higher
vulnerability to LMIA than the other three UGRL models, which
aligns with the attack accuracy results (Figure 2). We will elaborate
on LINE’s vulnerability to LMIA in Section 5.3.

Beyond attack accuracy and TPR@FPR, we measured the attack
AUC of our attacks and compare it with the baselines. The results
can be found in Appendix E. Our main observation is that the
attack AUC of our attacks (ranging from 0.71 to 0.99) surpass the
performance of both baseline methods across all settings.
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Figure 2: Attack accuracy of Attack 1 & Attack 2 under Setting 1 (non-transfer setting).
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Figure 3: Accuracy of Attack 2 under Setting 2 (transfer setting).
Settings node2vec DeepWalk LINE GAE
Attack2 | B2 | B4 | Attack2 | B2 | B4 | Attack2 | B2 | B4 | Attack2 | B2 | B4

DBLP 0.04 | 0.06
LastFm 0.06 | 0.12
Cora 0.06 | 0.04
Citeseer 0.07 | 0.03
Pubmed 0.05 | 0.13

Table 3: TPR@1% FPR performance of our attack under Setting 1. We do not consider Attack 1, Baseline-1, and Baseline-3 as
they are not supervised MIA attacks and thus cannot be evaluated with TPR and FPR. The best TPR@ 1% FPR performance for
each UGRL model and each dataset is highlighted with olive color.

Setting 2 (Transfer setting). Figure 3 showcases the results
of MLP Attack 2 under Setting 2. The following observations can
be made. First, for each target dataset, LMIA achieves the highest
attack accuracy when the shadow and target graphs are sampled
from the same dataset (i.e., within the same column). Second, Even
under the transfer setting (i.e., when the shadow and target graphs
are sampled from different datasets), the attack remains successful,
with attack accuracy ranging from 0.56 to 0.95. Notably, the accu-
racy can reach as high as 0.954 when the target dataset is sampled
from the Cora dataset and the shadow dataset is sampled from the

Citeseer dataset (Figure 3 (c)). This demonstrates LMIA’s ability to
learn knowledge from the shadow data, where node embeddings
of member links exhibit higher similarity than non-member links,
and successfully transfer such knowledge to the target graph.

5.3 Impact of Preserved Structural Information
in Embeddings on LMIA Performance (RQ2)
It is evident from our observations that different UGRL methods

exhibit varying levels of vulnerability to LMIA. In particular, LINE
consistently displays higher vulnerability compared to the other
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Figure 4: The impact of the order of the proximity preserved in embeddings on attack accuracy.

three UGRL methods (Figure 2). This suggests that the vulnerability
of these UGRL models is influenced by the amount of preserved
structural information in their embeddings. Hence, in this section,
we investigate how the preservation of structural information in
embeddings affects LMIA performance.

Considering the stochastic nature of UGRL models, the output
of their embeddings depends on several parameters, such as the
neighborhood size, dimension of the target vector space, and length
of random walks (for random-walk based models). These parame-
ters determine the amount of preserved structural information in
the embeddings. For instance, the neighborhood size determines
the order of proximity preserved in the embedding. Consequently,
we focus on two types of UGRL model parameters: (1) the order
of proximity preserved in the embeddings, and (2) the number of
dimensions of the embedding vector space.

Embeddings that preserve a lower order of proximity are
more vulnerable. To examine the impact of preserved proximity
order in embeddings on attack accuracy, we vary the neighborhood
size parameter for node2vec and DeepWalk, as well as the number
of layers for GAE, to control the order of proximity preserved in
their embeddings. We exclude LINE as it only preserves 1st-order
proximity.

Figure 4 presents the attack accuracy results of node2vec, Deep-
Walk, and GAE embeddings that preserve proximity from 1st to 4th
order. A consistent observation across the three models is that em-
beddings preserving lower orders of proximity are more vulnerable
than those preserving higher orders. Notably, the largest vulnera-
bility disparity occurs when the preserved proximity changes from
1st- to 2nd-order. After reaching 2nd-order proximity, the vulner-
ability of embeddings becomes stable irrespective of the increase
in proximity order for most cases. Consequently, we expect LMIA
to be more successful against UGRL models that solely preserve
1st-order proximity compared to those preserving higher-order
proximity. This finding also explains why LINE consistently ex-
hibits the highest vulnerability among the four studied models
(Figure 2).

Embeddings of higher dimensions are more vulnerable.
To examine the impact of embedding dimensions on attack per-
formance, we vary the embedding size (e.g., 32, 64, 128, and 256)
for the four UGRL models and measure the attack accuracy. The
results, presented in Figure 5, indicate that embeddings with higher
dimensions are more vulnerable to LMIA. This can be attributed to

the fact that embeddings with more dimensions encode additional
structural information that LMIA can leverage during the attack.

6 DEFENSE MECHANISMS

In order to defend against LMIA, one intuitive approach is to add
noise to the UGRL models, which can confuse the adversary and
provide privacy protection. However, our empirical evaluation re-
vealed that existing defense mechanisms, such as differential pri-
vacy, which add noise to gradients or parameters during model
training, or adding noise directly to posteriors/embeddings, can re-
sult in significant accuracy loss on node embeddings. To address this
issue, we propose a defense mechanism that selectively adds noise
only to the dimensions of embeddings that are deemed least impor-
tant. This aims to minimize the quality loss on embeddings while
providing sufficient privacy protection against LMIA. Next, we first
present the details of estimating the importance of embedding di-
mensions (Sec. 6.1). Then we describe our defense mechanism (Sec.
6.2) and the empirical results of the performance of the defense
mechanism (Sec. 6.3).

6.1 Estimating Importance of Embedding
Dimensions

To estimate the importance of embedding dimensions, we consider
three widely used methods: the permutation-based method, the
SHapley Additive exPlanations (SHAP) value-based method, and the
mean decrease in impurity (MDI) based method. We adapt these
methods to our setting to find the importance of embedding di-
mensions by treating node embeddings as features for the node
classifier in the downstream task.

Permutation-based importance (PERM). At the high level,
the permutation-based methods [2] assign a score to each feature.
A higher score indicates that perturbing that feature would result
in a greater accuracy loss for the prediction. In other words, the
model heavily relies on the information provided by that feature to
make accurate predictions.

SHAP value based importance. SHAP is a technique used to
explain the prediction of a data sample by computing the contribu-
tion of each feature to the prediction. It is based on Shapley values,
which employ game theory to assign credit to features or feature
values [32]. Higher Shapley values indicate greater importance of
the corresponding features to the model’s output.
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Figure 5: The impact of the number of embedding dimensions on attack accuracy.

MDI-based importance. The MDI method [5] is commonly
used for decision tree models. It measures the reduction in impu-
rity (e.g., entropy or Gini index) when a feature is used to split a
branch in the decision tree. To assess the importance of embedding
dimensions, we construct a node classification classifier in the form
of a decision tree, with the embedding as the input.

6.2 Perturbation-based Defense

To defend against LMIA, we introduce a perturbation-based de-
fense by adding noise to the node embeddings. To mitigate the
embedding quality loss of the UGRL models, we selectively add
Laplace noise to the least important dimensions of the embeddings.
Here’s an overview of our defense mechanism: First, we measure
the importance of each embedding dimension by using one of the
three estimation methods described in Section 6.1. Second, we rank
the embedding dimensions based on their importance. Third, we
add noise to a subset of the embedding dimensions with the low-
est importance. Specifically, we perturb [d X r]| dimensions of the
lowest importance, where d is the total number of dimensions in
the embedding, and r € (0,1] is the perturbation ratio. A higher
perturbation ratio leads to perturbing more dimensions, resulting
in a higher embedding quality loss for the UGRL models. The added
noise A follows the Laplace distribution with a density function
defined as below.

1 _x-u
= %e b (2)
where b is the noise scale, and y is the location parameter of the
Laplace distribution A higher b indicates a stronger noise scale,
leading to a stronger defense against LMIA.

A

6.3 Performance of Defense

In this section, we present the performance evaluation of our de-
fense mechanisms. Specifically, we focus on the defense perfor-
mance of Attack 2, as it exhibits superior attack performance com-
pared to Attack 1.

Baselines. To provide a comparative analysis, we consider the
following two baselines alongside our LMIA defense mechanisms.

e Baseline-1 (DP). Differential privacy (DP) [13] has demon-
strated effectiveness against inference attacks on ML models
[23, 47]. Hence, we adopt a differentially private deep learn-
ing method [1] as our first baseline. This method incorporates
Laplace noise into the gradients during model training, where

the Laplace noise follows the same distribution as our methods
(Eqn. 2). The e-differential privacy can be achieved by using
the noise scale b = 1/e. At each iteration of the model training,
the process involves computing the gradients for a batch of ex-
amples, clipping each gradient based on the L2 norm, adding
Laplace noise to the gradients with a privacy budget, and subse-
quently updating the UGRL model parameters using stochastic
gradient descent.

¢ Baseline-2 (AdvR). We employ an adversarial regularizer, which
utilizes a discriminator to predict the link membership from the
node embeddings. This approach has been used as an attack de-
fense mechanism in prior literature [37]. The objective function
is fomulated as a min-max problem:

®)

min max Leyp — ALgis,
0 6p

Here, L,,,; represents the loss of a UGRL algorithm, and L ;¢
represents the loss of the discriminator used to infer link mem-
bership. The parameters 0 and 0p correspond to the UGRL
model and the discriminator, respectively, while A controls the
strength of regularization. During the training of 0, we first
fix O and train fp several times until Ly;; no longer decreases
over the last 50 epochs. Then, with 6p fixed, we calculate the
total loss of O as L.y, — ALy;s and update O using stochastic
gradient descent computed from the total loss. The training pro-
cess terminates when the total loss of 6 no longer decreases
over the last 50 epochs. The loss function of the discriminator is
Binary Cross Entropy.

Setup. We evaluate the performance of our defense mechanisms
using different perturbation ratios, r = {0.2,0.4,0.6,0.8, 1} (where
r = 1 implies noise added to all embedding dimensions without
considering their importance), and noise scale b = {0.1,0.5, 1,5, 10}.
Higher values of r and b indicate stronger privacy protection. For
Baseline-1, we use the same noise scale b values as ours, while
for Baseline-2, we employ regularization parameter values A =
{0.5,1,5,10,20}. Lower values of € and higher values of A corre-
spond to stronger privacy protection.

Metrics. To evaluate the performance of our defense mecha-
nisms, we employ the attack accuracy measurement (Section 5.1) to
assess the attack performance after defense. Additionally, we mea-
sure the embedding quality as the AUC of node classification(Section
5.1). Higher AUC values indicate better embedding quality.
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Figure 6: Impact of the perturbation ratio r and noise scale b on defense performance (Cora dataset).

Defense effectiveness. We present the defense effectiveness of
our approach in Figure 6. Firstly, we explore the impact of varying
the perturbation ratio r and present the corresponding attack accu-
racy results in Figure 6 (a) to (d). Our observations are as follows.
First, our perturbation methods exhibit significant effectiveness
against LMIA, notably reducing the attack accuracy. The defense
strength increases with higher perturbation ratios (r). Remarkably,
even with a modest perturbation ratio of 0.2 (perturbing only 20% of
embedding dimensions), the attack accuracy can be reduced to 0.62.
The three importance-based methods demonstrate similar defense
performance.

Next, we assess the effectiveness of our defense methods by
varying the noise scale b and comparing it with the baseline meth-
ods. Since our methods employ a different privacy parameter than
Baseline-2 (AdvR), we focus our comparison on Baseline-1 (DP).
The defense performance of AdvR can be found in Appendix F.
Figure 6 (e) to (h) reveal the following insights. First, our pertur-
bation methods remain effective against LMIA as the noise scale
varies, with their defense power increasing at higher noise scales.
For noise scale values equal to or greater than 1, the attack accuracy
can be reduced to below 0.6. By perturbing only 20% of dimensions
(r = 0.2), our methods provide defense capabilities comparable to
those of Baseline-1 in most settings, even though Baseline-1 can
offer a formal guarantee of differential privacy. Our methods exhibit
stronger defense capabilities than Baseline-1 for the GAE model.
This is attributed to the fact that, despite the presence of noise, GAE
embeddings preserve certain fundamental structural information
since the noise is injected into the gradients directly, leaving the ad-
jacency matrix unaltered during computation. Consequently, GAE
embeddings remain vulnerable to attacks.
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Trade-off between defense effectiveness and embedding
quality. While perturbation is effective in protecting against LMIAs,
it carries the potential risk of degrading the quality of embeddings
generated by UGRL models. To assess the delicate balance between
defense effectiveness and embedding quality, we have gathered a set
of results concerning defense effectiveness (quantified as 1-Attack
Accuracy, where AC represents the attack accuracy) and embedding
quality for the defense methods across various privacy parameters.
These results are employed to construct the defense-quality ROC
curve, where each point corresponds to a collected pair of defense
effectiveness and embedding quality values. Ultimately, we measure
the trade-off between defense effectiveness and embedding quality
as the Area Under the Curve (AUC) of the defense-quality ROC
curve.

Table 4 showcases the trade-off between attack accuracy and
embedding quality for our three defense mechanisms (PERM, MDI,
and SHAP-based perturbations) as well as the two baselines (DP
and AdvR). Our observations indicate that our defense mechanisms
consistently outperform both baselines concerning the trade-off
between attack performance and embedding quality. Notably, our
MDI-based perturbation methods exhibit the most favorable trade-
off in most scenarios, underscoring the advantage of selectively
introducing noise into the dimensions considered least important
for defense purposes.

7 RELATED WORK

Membership inference attacks and defense. Shokri et al. [47]
initialized the research on membership inference attacks (MIAs)
against ML models. Yeom et al. explored the relationship between
overfitting and MIAs, while Salem et al. [45] relaxed the initial
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Method Cora Citeseer LastFm
node2vec | DeepWalk | LINE | GAE | node2vec | DeepWalk | LINE | GAE | node2vec | DeepWalk | LINE | GAE
PERM 0.253 0.326 0.365 | 0.247 0.303 0.229 0.274 | 0.243 0.153 0.207 0.204 | 0.162
MDI 0.282
SHAP 0.236 0.318 0.25 0.327 0.192 0.249 0.147 0.201 0.199 | 0.173
DP 0.211 0.271 0.361 | 0.042 0.257 0.155 0.265 | 0.04 0.129 0.186 0.177 | 0.008
AdvR 0.177 0.271 0.312 | 0.159 0.259 0.157 0.269 | 0.18 0.146 0.184 0.184 | 0.162

Table 4: Trade-off between defense effectiveness and embedding quality of our defense and baselines (DP and AdvR). The best
trade-off for each UGRL model and each dataset is marked with olive color.

assumptions of MIA. MIA has been applied to various domains,
including federated learning [38], generative models [17], language
models [48, 49], augmentation based DNN models [26], contrastive
models [30], recommender system [61], and graph neural networks
[19, 40]. Recent variants of MIAs, such as label-based MIAs [8, 29],
have also been developed and evaluated.

Several defense mechanisms have been proposed to defend against
MIAs, including the application of differential privacy [12] to ML
models [7, 8, 17, 47], Confidence Masking [37], regularization [37],
and techniques such as dropout, model stacking, and noise injection
[24, 45]. For a comprehensive survey on MIAs and defenses, we
refer readers to [22].

Privacy attacks against GNNs. Several types of privacy at-
tacks have been proposed to infer sensitive information about the
training graph of GNNs. These attacks can be categorized into three
subtypes: Membership Inference Attacks (MIA), Node Attribute Infer-
ence Attacks (AIA), and Property Inference Attacks (PIA). MIA attacks
have been addressed by various researchers [11, 19, 20, 40, 56] and
can be divided into node-level and link-level attacks. For node-level
MIA, both [20, 40] propose a black-box attack model that trains a
Multi-Layer Perceptron (MLP) classifier using the posteriors ob-
tained from shadow graphs. In the case of link-level MIA, He et al.
[19] propose several black-box attack models with different levels
of adversary knowledge. Wu et al. [56] develop a black-box attack
against GNNs by quantifying the influence of one node on another
node’s posterior. Duddu et al. [11] propose an encoder-decoder-
based attack model that reconstructs the graph structure using node
embeddings, enabling link-level MIA based on the reconstructed
graph. All these works utilize the fact that the nodes on the member
edges have more similar posterior outputs than those on the non-
member edges. Inspired by these works, our attacks also employ
the node similarity to distinguish member and non-member edges.
However, our attacks are fundamentally different from these works
in the way that our attack features are derived from the similarity
in node embeddings instead from posterior probabilities.

Regarding AIA, Duddu et al. [11] train an MLP on the node
embeddings, assuming that the attacker possesses knowledge about
a small fraction of the sensitive attribute of the target graph. For PIA,
Zhang et al. [63] train a multi-task classifier based on the posteriors
to infer graph properties (graph density, size, etc.). Suri et al. [50]
propose a generic definition for PIA, aiming to distinguish between
two possible training distributions. Zhang et al. [62] investigate
the leakage of properties of node group distribution. Wang et al.
[54] propose a set of black-box and white-box attacks to infer both
node-level and link-level group properties of the training graph.
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Privacy attacks on embeddings. Recent research has investi-
gated the privacy vulnerabilities of various types of embeddings.
Most of these studies have focused on privacy leakage in text data
[33, 48] and images [30]. There is limited work addressing the pri-
vacy risks of graph embeddings [11, 63]. In particular, Zhang et al.
[63] explore the privacy risks of graph embeddings, which repre-
sent the entire graph as a vector generated by GNNs. Their work
aims to infer the links present in the original graph using graph
embeddings. In contrast, our approach focuses on node embeddings
for privacy inference. Of the few existing works on privacy risks
in node embeddings, [11] is particularly relevant to our research.
This work performs link inference through a graph reconstruction
attack which employs an encoder-decoder model to reconstruct the
adjacency matrix of the original graph. To perform this attack, they
assume the availability of an auxiliary subgraph sampled from the
same distribution as the target graph. However, in practice, such
an auxiliary subgraph may not be readily available, and our attack
does not rely on its presence.

8 CONCLUSION

In this paper, we conduct the first comprehensive study on the
privacy leakage of UGRL models concerning link-level member-
ship inference attacks (LMIAs). We specifically focus on designing
LMIAs for two different settings and evaluating their effective-
ness against four state-of-the-art UGRL algorithms. We investigate
how the amount of preserved structural information in UGRL em-
beddings affects the accuracy of LMIA attacks. Furthermore, we
propose simple yet effective defense mechanisms that introduce per-
turbation to the least important dimensions of embeddings, aiming
to mitigate the privacy leakage caused by LMIAs. Our experimental
results demonstrate the efficacy of our defense mechanism.

Future work in this area includes exploring the vulnerability of
UGRL models to other types of attacks, such as attribute inference
attacks [11, 48] and model inversion attacks [14, 55]. Investigating
the potential of designing new attacks that leverage knowledge
transfer techniques for UGRL models is another interesting direc-
tion. This involves utilizing knowledge acquired from a teacher
model to attack a student model [46].
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APPENDIX

A PRE-ATTACK ANALYSIS: PROPERTIES OF
NODE EMBEDDINGS

Before delving into the details of the attacks, we first investigate
the properties of node embeddings that can be exploited by LMIA.
Specifically, we execute four UGRL algorithms (node2vec [15],
DeepWalk [41], LINE [51], and GAE [27] on five popular network
datasets: DBLP, LastFm, Cora, Citeseer, and Pubmed.

Since most UGRL algorithms aim to preserve the structural sim-
ilarity of nodes in the network, we measure the similarity of em-
beddings for all pairs of nodes, both in member and non-member
links. We consider three widely-used similarity measurements: dot
product similarity, cosine similarity, and Euclidean distance. The dot
product and cosine similarity measure the similarity between two
vectors, while the Euclidean distance measures the distance be-
tween two vectors. Larger dot product and cosine similarity values
indicate higher similarity, while smaller Euclidean distance values
indicate closer proximity.

Figure 7 depicts the distribution of the embedding similarity
feature for both member and non-member links in the Cora and
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Dataset | # of nodes | # of edges | # of classes
DBLP 10,000 37,430 2
LastFm 7,624 27,806 18
Cora 2,708 5,429 6
Citeseer 3,312 4,732 7
Pubmed 19,717 44,338 3

Table 5: Description of datasets

LastFm datasets. The similarity feature of each link is represented
as the concatenation of dot product similarity, cosine similarity,
and Euclidean distance between the embeddings of the two nodes
in the link. In the plot, we can observe that for all four UGRL mod-
els, the member and non-member links are distinguishable based
on the similarity feature. This indicates that there are discernible
differences in the similarity measurements of embeddings between
nodes that are connected and nodes that are not connected in the
original graph, across all the evaluated models.

B DETAILS OF DATASETS

We conduct our experiments on five datasets, each with its own
characteristics. The datasets used in our experiments are as follows:

e DBLP co-authorship dataset’: The DBLP co-authorship graph
is constructed from the DBLP bibliography database. Each node
in the graph represents a unique author and is associated with
a gender feature. An edge exists between two author nodes if
they have collaborated on a publication together. We randomly
sampled a subgraph with 10,000 nodes and 45,646 edges from
the dataset. The subgraph consists of a mix of male and female
authors.

e LastFm dataset®: The LastFm dataset represents a social network
of users. It contains 7,624 nodes representing users, and the
edges indicate mutual follower relationships between users. This
dataset provides insights into user interactions in the LastFm
music platform.

o Cora dataset: The Cora dataset is a citation network where the
nodes represent scientific publications, and the edges represent
citation links between publications. It consists of 2,708 scien-
tific publications classified into seven classes, along with 5,429
citation links.

o Citeseer dataset: The Citeseer dataset is another citation net-
work where the nodes represent scientific documents, and the
edges represent citation links between documents. It consists of
3,312 nodes classified into six classes, with 4,732 citation links.

e Pubmed dataset: The Pubmed Diabetes dataset is a citation
network constructed from scientific publications in the field of
diabetes. The nodes represent documents, and the edges repre-
sent citation links. The dataset includes 19,717 scientific publica-
tions from the PubMed database, classified into three classes. It
contains a total of 44,338 citation links. Each publication in the
dataset is described by a TF/IDF weighted word vector.

Table 5 provides statistical information about these datasets, includ-
ing the number of nodes, number of edges, and number of classes.

Shttps://data.mendeley.com/datasets/3p9w84t5mr/1
®http://snap.stanford.edu/data/feather-lastfm-social.html
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Figure 7: Distribution of LMIA input features for node pairs in both member and non-member links on both Cora and LastFm
datasets. The blue dots are member node pairs, red dots are non-member node pairs.

Dataset | node2vec | DeepWalk | LINE | GAE
DBLP 0.65 0.66 0.70 0.71
LastFM 0.70 0.69 0.63 0.68
Cora 0.87 0.86 0.79 0.9
Citeseer 0.84 0.85 0.73 | 0.85
Pubmed 0.83 0.81 0.83 0.84

Table 6: Quality of the embedding by four UGRL models.
Embedding quality is measured as AUC of node classification.

Dataset | node2vec | DeepWalk | LINE | GAE
DBLP 0.72 0.7 0.82 0.65
LastFm 0.78 0.71 0.82 0.64
Cora 0.8 0.72 0.94 | 0.71
Citeseer 0.81 0.67 091 | 0.74
Pubmed 0.91 0.83 0.82 0.77

Table 7: Attack accuracy of the clustering phase in Attack 1.

These datasets serve as representative examples for evaluating the
performance and privacy implications of our proposed methods.

C ACCURACY OF UGRL MODELS

Before conducting attacks on the UGRL algorithms, we first evalu-
ate the quality of the embeddings generated by these algorithms.
This evaluation helps to justify why these algorithms are worth
targeting. Table 6 presents the results of the embedding quality eval-
uation. Since the classification tasks for the LastFm, Cora, Citeseer,
and Pubmed datasets are multi-label classifications, we measure
the macro average AUC as an indicator of embedding quality. We
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observe that the AUC values for all four UGRL algorithms are sig-
nificantly higher than random guesses. Note that the macro average
AUC of random guesses for multi-label classification is 0.5.

D ATTACK ACCURACY OF CLUSTERING
PHASE IN ATTACK 1

Table 7 presents the attack accuracy of the clustering phase of At-
tack 1 (Section 4.1). The accuracy is assessed on the attack training
dataset. We observe that the clustering accuracy ranges from 0.64
to 0.94. There is a strong correlation between the accuracy of the
clustering phase and the accuracy of the attack. In particular, we
observe higher (lower, resp.) attack accuracy during the inference
phase when the clustering accuracy is higher (lower, resp.). For
instance, when GAE model is used as the target model and DBLP
dataset as the target graph, the clustering accuracy and the attack
accuracy are 0.65 and 0.63 respectively. Similarly, with LINE as the
target model and Cora dataset as the target graph, the clustering
accuracy and the attack accuracy are 0.94 and 0.93 respectively. Fur-
thermore, we consistently observe that the attack accuracy remains
lower than that of the clustering accuracy.

E ATTACK AUC OF ATTACK 2 UNDER
SETTING 1

Table 8 displays the AUC values of Attack 2, Baseline-2 and Baseline-
4 methods under Setting 1. We do not consider Attack 1, Baseline-1,
and Baseline-3 as they are not supervised MIA attacks and thus
cannot be evaluated with AUC. We have the following observations.
First, our attack is highly effective as the attack AUC values are
within the range of [0.71, 0.99], which is significantly higher than
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Figure 8: Defense performance of Baseline-2 with different regularization parameter A.

Settings node2vec DeepWalk LINE GAE
Attack2 | B2 | B4 | Attack2 | B2 | B4 | Attack2 | B2 | B4 | Attack2 | B2 | B4
DBLP 0.67 0.64 | 0.61 0.65 | 0.65
LastFm 0.69 | 0.68 0.62 | 0.60 0.69 | 0.68
Cora 0.72 | 0.75 0.6 | 0.62 0.73 | 0.67
Citeseer 0.77 | 0.76 0.58 | 0.58 0.73 | 0.71
Pubmed 0.86 0.61 | 0.61 0.73 | 0.74

Table 8: Attack AUC of Attack 2, Baseline-2, and Baseline-4 under Setting 1 (non-transfer setting). We do not consider Attack
1, Baseline-1, and Baseline-3 as they are not supervised MIA attacks and thus cannot be evaluated with AUC. The best AUC
performance for each UGRL model and each dataset is highlighted with olive color.

the random guess values (0.5). Second, similar to the results shown
in Figure 2, LMIA demonstrates significantly higher AUC against
LINE compared to node2vec, DeepWalk, and GAE. This is consistent
with our observations of other accuracy metrics (attack accuracy
and TPR@FPR) in Section 5. Third, our attack outperforms the two
baselines in all the settings. The difference in AUC values between
our method and the baselines can be as high as 0.41 (e.g., Attack 2
vs. Baseline-2 with the Citeseer dataset in Table 8.).

15

F DEFENSE PERFORMANCE OF BASELINE-2

We present the defense performance of Baseline-2 (AdvR) in Figure
8. We observe that, while the defensive effectiveness strengthens
with increasing values of A, AdvR can downgrade the attack per-
formance to around 0.5 (random guess) when the regularization
parameter A grows to no less than 10.



	Abstract
	1 Introduction
	2 Unsupervised Graph Representation Learning
	3 Problem Formulation
	4 Details of Our Attacks
	4.1 Attack 1: without Shadow Graph
	4.2 Attack 2: with Shadow Graph

	5 Evaluation of Attack Performance
	5.1 Experimental Setup
	5.2 Effectiveness of LMIA (RQ1)
	5.3 Impact of Preserved Structural Information in Embeddings on LMIA Performance (RQ2)

	6 Defense Mechanisms
	6.1 Estimating Importance of Embedding Dimensions
	6.2 Perturbation-based Defense
	6.3 Performance of Defense

	7 Related Work
	8 Conclusion
	9 Acknowledgement
	References
	A Pre-attack Analysis: Properties of Node Embeddings 
	B Details of Datasets
	C Accuracy of UGRL Models
	D Attack accuracy of Clustering Phase in Attack 1
	E Attack AUC of Attack 2 under Setting 1
	F Defense performance of Baseline-2

