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Abstract—Index coding can be viewed as a compression
problem with multiple decoders with side information. In such a
setup, an encoder compresses a number of messages into a com-
mon codeword such that every decoder can decode its requested
messages with the help of knowing some other messages as side
information. In this paper, we study how much information is
leaked to a guessing adversary observing the codeword in index
coding, where some messages in the system are sensitive and
others are not. The non-sensitive messages can be used by the
encoder in a manner similar to secret keys to mitigate leakage of
the sensitive messages to the adversary. We first characterize the
optimal information leakage rate of a given index coding problem
by the optimal compression rate of a related problem, which is
constructed by adding an extra decoder with certain parameters
to the original problem. Both the achievability and converse of the
characterization are derived from a graph-theoretic perspective
based on confusion graphs (Alon et al. 2008). In particular, the
achievable coding scheme is a randomized mapping exploiting
certain symmetrical properties of the confusion graph. Our sec-
ond main result is a practical deterministic linear coding scheme,
developed from the rank minimization method based on fitting
matrices (Bar-Yossef et al. 2011). The linear scheme leads to an
upper bound on the optimal leakage rate, which is proved to be
tight over all deterministic scalar linear codes. While it is shown
through an example that simultaneously achieving optimal com-
pression and leakage rates is not always possible, time-sharing
between different schemes could be used to balance the compres-
sion and leakage rates. Finally, we show how our results can be
applied to different variants of index coding.
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I. INTRODUCTION

NDEX coding [2], [3] is a canonical problem in network
Iinformation theory, which can be viewed essentially as a
compression problem with one encoder and multiple decoders
with side information. The encoder observes a number of mes-
sages and tries to efficiently compress them into a codeword
such that every decoder can decode its wanted messages from
the codeword with the help of its own side information. In this
work, we study information leakage in index coding when the
codeword is eavesdropped on by a guessing adversary. The
adversary observes the codeword and tries to maximize the
probability of correctly guessing its messages of interest within
a certain number of trials.

Our goal is to minimize the leakage to this adversary, which
is defined as the ratio between the adversary’s probability
of successful guessing affer and before observing the code-
word [4], [5]. This way of measuring information leakage was
originally introduced as the min-entropy leakage [4]. A sim-
ilar leakage metric was independently explored in a different
setup [5], where the adversary is interested in guessing some
randomized function of the messages rather than the mes-
sages themselves. Since their introductions, such information
leakage measurements and their variants have been studied
extensively from both the information-theoretic and computer
science perspectives [6]. [7], [8], [9]. [10], [11], [12], [13],
[14]. [15]. [16].

Information leakage in single-encoder single-decoder com-
pression systems has been studied considering multiple leak-
age metrics, under the assumption that the source code is
deterministic and a random secret key is shared between
the encoder and the decoder [17]. Leakage to a guessing
adversary for single-encoder single-decoder source compres-
sion has been analysed [18], where the compression level
is proven using random-coding arguments (to satisfy some
rate-distortion measure).

On single-encoder multiple-decoder compression systems,
we recently studied [19] the information leakage in index
coding, with an assumption that the encoder aims to protect
all of the messages against the adversary. This assump-
tion is applied in most existing works in index cod-
ing [20], [21], [22], [23], [24] where security and privacy
were investigated.

However, in many practical circumstances, some messages
may be sensitive while others are not, and thus secrecy
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Fig. 1. Consider four i.i.d. uniform binary messages X;, i € [4], where X1, X»
are sensitive and X3, X4 are non-sensitive. A guessing adversary eavesdrops
the codeword Y and tries to guess the sensitive messages. When guessing
blindly (without knowing Y), the probability of the adversary correctly guess-
ing (X1,X7) is only 1/4. To satisfy the legitimate decoders, the encoder
can generate ¥ as ¥ = (X; & Xp,.X3 & X4). However, such Y leads
to certain amount of information leakage as the adversary’s correct guess-
ing probability when observing it becomes 1/2. To simultaneously satisfy
the decoders and prevent any information leakage, the encoder can generate
Y= (X1 @ X3,X2 © Xy). In this way, the sensitive messages are perfectly
protected against the adversary using non-sensitive messages, where the prob-
ability of the adversary correctly guessing (X, X>) remains 1/4 even after
observing Y.

loss should be measured over only sensitive messages. For
example, consider a file storage system where some files are
private and need to be protected from any adversary, while
the other files are non-private and thus need not be protected.
These files, whether private or non-private, may be requested
by different clients, each already have some other files as side
information. The goal is to satisfy the clients’ requirements
while keeping the private files as safe as possible from the
adversary. In another example, a video streaming server pro-
vides both free and paid videos. The server aims to deliver the
requested contents to the legitimate receivers and at the same
time, protects the paid videos from an adversary. A similar set-
ting can also be motivated from the adversary’s perspective:
the encoder may know that the adversary is only interested in
a subset of messages and thus protect these messages.

The distinction between sensitive and non-sensitive mes-
sages enables the encoder to treat the non-sensitive messages
like secret keys and design a smart (possibly randomized) cod-
ing scheme to simultaneously satisfy the legitimate decoders
and mitigate information leakage to the adversary. Figure 1
serves as a toy example showing how the encoder can reduce
the information leakage by smartly designing coding schemes.

A. Organization and Contributions

In Section II, we describe the system model of index coding
in detail, explicitly define our measure of information leakage
of sensitive messages to the adversary, and provide necessary
mathematical preliminaries.

In Section III, we characterize the optimal information
leakage rate of any given problem using the optimal com-
pression rate of another related problem. The related problem
is constructed from the original problem by adding an extra
decoder that requests to decode all the non-sensitive mes-
sages and knows the others as side information. The result is
derived from a graph-theoretic perspective utilizing confusion
graphs [25], which entirely captures the decoding require-
ments imposed by the decoders in the system. In particular,

the achievability of the optimal leakage rate is proved by
constructing a randomized coding scheme, designed based
upon certain symmetries of the confusion graph of index cod-
ing. The result reveals a connection and tradeoff between
compression and secrecy.

In Section IV, we propose a more practical, determinis-
tic linear coding scheme, based on the rank minimization
method over fitting matrices [3]. The scheme is proved to
yield optimal leakage rate over all deterministic scalar linear
codes. Examples are given to show the efficacy of the scheme.
We also construct an example to show a negative result that
the optimal compression and leakage rates cannot always be
simultaneously achieved. To address this issue, a discussion on
time-sharing between different coding schemes is included.

We investigate certain variants of the problem setup in
Section V. In Section V-A, we consider the case where the
goal is to minimize information leakage to the adversary
while satisfying certain compression rate constraints. A simple
extension of the linear coding scheme proposed in Section IV
is given to suit the case. In Section V-B, we study information
leakage in pliable index coding [26], where there is no pre-
determined desired message sets at the decoders and each
decoder is satisfied whenever it can decode any messages not
in its side information set. This variant is relevant to content
distribution networks. It turns out that results similar to that
for index coding hold for pliable index coding.

Finally, in Section VI, we conclude the paper with a few
remarks and open problems.

Notation: For non-negative integers a and b, [a] denotes the
set {1,2, ..., a}, and [a : b] denotes the set {a,a+1,...,b}. If
a > b, [a: b] = 0. For a finite set A, |A| denotes its cardinality.
For two sets A and B, A x B denotes their Cartesian product. For
a sequence of sets A1, Az, ..., A;, we may simply use ]_[je[,] Aj
to denote their Cartesian product. For any discrete random
variable Z over an alphabet Z with probability distribution
Pz. we denote realizations with the small letter z € Z. For
any K € Z, Pz(K) = ¥,k Pz ().

II. PROBLEM FORMULATION
A. System Model

We consider an encoder that has n uniformly distributed and
independent messages X;, i € [n]. Each message is a sequence
of length ¢ that takes values from X’ for some finite field
X =F,. Forany S C [n],setXs = (X;,i € §),xs = (x;,i € §),
and Xs = X Thus X{n) denotes the tuple of all n messages,
and xp,; € AJ,) denotes a realization of the message n-tuple.
By convention, Xg = x5 = X = @.

The encoder encodes the n messages to some codeword Y.
There are m decoders. Decoder i € [m] wants to decode
messages Xw,. from Y for some W; C [n] and has X, as
side information for some A; € [n]\W;. We allow degener-
ate decoders in the system, who want nothing (i.e., W; = @).
A degenerate decoder can always decode what it wants by
definition.

More formally, a (f, M, f, g) index code is defined by

« One stochastic encoding function f XM

{1, 2, ..., M} at the encoder that maps each message tuple
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X[n] € X™ to a codeword ye{l,2,..., M} according to
a conditional probability distribution Pyjx;,;, and

« m deterministic decoding functions g = (g;, i € [m]), one
for each decoder i € [m], such that g; : {1,2,... M} x
XMilt . XIWilt maps the codeword y and the side
information x4, to some estimated sequence Xw;.

We say a (t, M, f, g) index code is valid if and only if (iff)
every decoder can perfectly decode its wanted messages (i.e.,
xw; = Xw;, Vi € [m]). We call il longr the compression rate
of the (f, M, f, g) index code. We say a compression rate R is
achievable iff there exists a valid (f, M, f. g) code such that

R>1"log M. (1)
The optimal compression rate B, also referred to as the
broadcast ratc,] can be defined as [27]

t—00 valid (, M., f. g) code

2

Any index coding instance is described by the parameter
tuple (n, m, (W;,i € [m]), (A;. i € [m])).

B. Confusion Graph

Any index coding instance can also be characterized by
a family of confusion graphs, (I[;,f € Z¥%) [25]. For a
given sequence length f, the confusion graph I'; is an undi-
rected graph defined on the message sequence tuple alphabet
Xnp- That is, the vertex set V(I;) = A&f,. Vertex xp
in T'; corresponds to the realization x,. Any two differ-
ent vertices X[, Z[n) are adjacent in I'; iff xw; # zw; and
Xp; = Za; for some decoder i € [m]. We call any pair of
vertices satisfying this condition confusable. Hence, E(I'y) =
{Hxn1> Zmy} - Xw; # zZw; and xs; = Z4; for some i € [m]}.

For correct decoding at all decoders, any two realizations
X[n]» Z[m] €an be mapped to the same codeword y with nonzero
probabilities iff they are not confusable [25]. See Figure 2
below for a toy example of the confusion graph of a 3-message
3-decoder index coding instance. For the definitions of basic
graph-theoretic notions, see any textbook on graph theory (e.g..
Scheinerman and Ullman [28]).

We may denote an index coding problem whose confusion
graphs are (I';, f € VAD) simply as I'. Consider any set J € [n].
The subproblem induced by message subset J is character-
ized by the tuple (|J|.m, (W;NJ,i € [m]), (A; N J.i € [m])).
Let I'(J) and I';(J) denote the subproblem induced by J and
the confusion graph of message length f of the subproblem,
respectively.

The broadcast rate S(I') can be characterized by the
confusion graphs (I, t € Z*) as [27, Sec. 3.2]

. 1
B(I) = lim ?logqx(f‘x) = tg%?logq xxTo), Q)

where x (-) and y¢(-) respectively denote the chromatic number
and fractional chromatic number of a graph.

11t has been shown [27, Lemma 1.1] that the broadcast rate is independent
of the underlying alphabet X.

(0,0,0) (0,0,1)

(1,1,0)

(1,1,1)

Fig. 2. The confusion graph I'y with f = 1 and ¢ = 2 for the index
coding instance (3,3, ({1}, {2}, {3}). (@, {3}, {2})). Note that, for example,
X} = (0,0,0) and zpn) = (0,0, 1) are confusable because x3 =0#73 =1
and x4; =x3 =0 =22 = z45. Suppose (0,0, 0) and (0,0, 1) are mapped to
the same codeword y with certain nonzero probabilities. Then upon observing
this y, decoder 3 will not be able to tell whether the value for X3 is O or
1 based on its side information of X = 0. For this graph, it can be easily
verified that the independence number is 2, and that the chromatic number
equals the fractional chromatic number, both of which are equal to 4.

C. Information Leakage Measurement

We assume the codeword Y is eavesdropped by a guess-
ing adversary, who knows a subset of messages Xk as side
information. The rest of the messages Xgc are divided into
two groups, where the sensitive messages are denoted by Xg
and the non-sensitive ones are denoted by Xy;. The information
leakage from Y to the adversary will be measured only over the
sensitive messages Xg. Note that K, S, U are non-overlapping
and [n] = KUSUU. Let k, s, u denote the cardinality of sets
K. S, U, respectively.

Upon observing the codeword, the adversary tries to guess
the value of Xg according to the maximum likelihood rule
within a number of trials. In other words, the adversary always
guesses the most probable message tuple realization, and if not
correct, then the second most probable realization, and so on,
until it exhausts the number of guesses it can make.

Before we go into the details of the leakage measure, we
define the following notation which will be used repeatedly
later. Consider any valid (f, M, f, g) index code. For any y
value and any Jy,J2 C [n], let

Xn (XJ’E.,’\-’) — [IJI € Ay ¢ PY'X-’IU-’z (y, x;lu_,rz) > 0} 4)

denote the set of x;, values jointly possible with (xy,, ¥). For
example, As(xk, y) denotes the set of xs values jointly possible
with (xg. y). That is, upon observing a certain side information
and codeword tuple (xg,y), the adversary has only the values
in Xs(xg,y) left to guess from.

We characterize the adversary’s number of guesses using a
function of sequence length, ¢ : Z+ — Z7T. It is natural to
assume ¢ to be a non-decreasing function of f. Consider any
function c¢ such that for any encoding scheme f and generated
codeword Y,

c(f) > max |As(xg, Y, 1=1,2,3,... &)
XK-¥
The right hand side of (5) denotes the maximum number

of possible xg values given a (xg, y) tuple. Thus, (5) means
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that, upon observing any (xg,y), the number of guesses the
adversary can make is larger than the number of possible
values of sensitive messages. Hence, the adversary is guar-
anteed to successfully guess the sensitive messages and the
problem becomes trivial. Therefore, we consider only the case
where there exists some encoding scheme f such that c(f) is
upper-bounded by max,, , |Xs(xg. y)|.

Consider any valid (f, M, [, g) index code. Before eaves-
dropping the codeword Y, the expected probability of the
adversary successfully guessing xs within c(f) number of
guesses, denoted by Ps(Xg), is

Ex, max

£ xs|1Xk) |-
JEXs:I.ﬂgc(r)Z xsixx (4s1Xx)

xset

The expected successful guessing probability after observing
Y, denoted by Ps(Xg, ¥), is

Ey xx L ZPXSW,XK (xs|Y, Xk)
Ul=etn *s<!

The leakage to the adversary, denoted by L, is defined as
the logarithm of the ratio between the expected probabili-
ties of the adversary successfully guessing xs after and before
observing Y. That is,

L = tog, HEED ©

It should be noted that the definition of L carries a clear
operational meaning. A leakage of L = £ simply means that
observing the codeword increases the adversary’s probabil-
ity of successfully guessing the value of sensitive messages
by qE times. Generally speaking, whenever we consider a
hard decision (i.e., guessing) adversary, the ratio between the
correct guessing probabilities after and before eavesdropping
describes the amount of the increase in the adversarial power,
and thus can be a reasonable measure of the information
leakage.

Remark 1: The idea of measuring leakage as the ratio of
the adversary’s successful guessing probabilities has been
introduced and explored in various contexts [4], [5]. The min-
entropy leakage [4] quantifies the leakage when the adversary
tries to guess the information source in one try, while the max-
imal leakage [5] is a measurement of the worst-case one-try
leakage of any function of the source. Our definition is closer
to the min-entropy leakage in the sense that the adversary is
interested in the messages themselves rather than some func-
tions of the messages, yet with the key difference that we allow
the adversary to make multiple guesses. Note that various
versions of multiple-guess leakage have been formulated and
studied in different settings [5, Sec. III], [13], [29], [30], [31].

Remark 2: Although carrying different operational mean-
ings, given the fact that the messages are uniformly distributed
in our index coding system, the leakage L in (6) turns out to
be equal to the min-entropy leakage [4] from Xg to ¥ given
Xk, which is also equal to the maximal leakage [5] from Xg
to Y given side information Xg. Given such relationships, it
can be shown that L in (6) is zero iff the codeword Y and the

sensitive messages Xy are stochastically independent given the
side information Xk [5, Corollary 2].

Remark 3: In secure index coding [20], [21], [22],
[23], [24], the encoder tries to achieve perfect secrecy against
the adversary while satisfying the legitimate decoders’ require-
ments. However, such a strictly secure coding scheme may not
always exist, even with the help of secret keys [23], [24].

Given the definition of L in (6), the leakage rate of the
(f, M. [, g) index code is

E—F% 7

and the optimal leakage rate for the problem can then be
defined as
L* = lim inf i
t—00 (1, M, f, g) codes
Remark 4: The choice of the base of the logarithm in (6)

is arbitrary. Selecting a different base will incur a correction
term when calculating the leakage rate (7).

®)

I1I. A CHARACTERIZATION OF L*

In this section, we present our first main result in Theorem 1,
which is a characterization of the optimal leakage rate L*.
Detailed graph-theoretic proofs are given right after the the-
orem, which are then followed by a few discussions of
interesting points. We also identify two classes of index cod-
ing instances that satisfy certain structural properties, leading
to further simplifications of the result in Theorem 1.

For any index coding problem I', we define a related
problem r by adding an extra decoder to I'. The extra
decoder is indexed by m + 1 (as there are m original decoders
in I'), which knows side information indexed by the set
Amy1 = KUS and requests to decode messages indexed by
the set Wy, = U.

We have the following theorem.

Theorem 1: For any index coding problem I', we have

£y =p(FsU DY) —u. ©)

We first prove an intermediate result regarding [, which
will prove useful in later proofs.

Lemma 1: Consider any valid (f, M, f, g) index code for I'.
We have

max | X5(xx. )| < @(TSUD)). (10)
where «(-) denotes the independence number of a graph.

Proof: Consider an arbitrary (xg, y) realization. By the def-
inition of the confusion graph, Asuy (xk, ¥) is an independent
set in the induced subgraph I';(SU U). Consider a vertex sub-
set Z of Asup(xk.y) such that for every xs € As(xk, y), there
is exactly one vertex vsyy € I satisfying vs = xs. Thus
|Z| = |As(xk, y)|. Also note that since T € Xsuy(xk,y), I is
also an independent set in I';(S U U). For a visualization of
the construction of Z, see the schematic graph in Figure 3.

As 7 is also an independent set in /(S U U), any two
vertices in Z are not confusable at any decoder i € SU U
of the subproblem I'(S U U). Note that the extra decoder
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Fig. 3. Vertices in Xg,y(xk.y) are denoted by nodes in the figure. As
Xsuy(xk,y) is an independent set in I';(S U U), there is no edge among
the vertices in A'guy(xg.y). Note that the figure is for illustrative purpose
only; there is no limit on the number of vertices in Xg ;7 (xg. ). We partition
the nodes into subgroups according to their xg values, and each subgroup is
denoted by a dashed circle with its corresponding x5 value marked beside it.
To construct Z, one needs only to arbitrarily pick one node from each dashed
circle. It is clear that |Xg(xk, y)|. denoting the number of distinct xg values
in Xsyp(xk.y), is equal to the number of dashed circles in the graph, which
is also equal to |Z].

m + 1 knows Xg as side information. Since any two ver-
tices in Z have different xs values by construction, they are
not confusable at the extra decoder m + 1 either. In conclu-
sion, any two vertices in 7 are not confusable at any decoders
in the subproblem f‘(S U U). In other words, any two ver-
tices in 7 are not adjacent in f‘,(S U U), and hence T is also
an independent set of f‘,(S U U). Therefore, we must have
IZ] < a(T(S U U)). Recall that |Z] = |As(xk,y)|, and thus
we have [As(xx, y)| < a(f‘_f(SU U)). Since (xg, y) is arbitrary,
we have (10). |

Proof of the Converse of Theorem 1: Consider any valid
(t, M.f,g) index code for the index coding problem I'. We
have

P,(Xk, Y) = Z

P X
JcA:; Wi=e £ vxxs 0 K.5)

(@)
—_ P ; ;
Jg-; ngs(xgtgilllﬁc{:) gj v xg s (9 %K.5)

U’}) DI X (xx y):M=c(0— 2oxsed PY. Xk s (. xx.5)
= {7 € Xs@xk.y) : Wl =c@®}I

XK.y
IXs(xx ¥I-1

(c) Z ()~ —1

XK.¥

) 2 s Xstax.y) PV Xk s (v. xx.5)

(")

Z Py xi s (v, 2x.5)

x5 X5 (xg.y)

(d) c(r) Z Z By (}’ . S)

m K.Y xseXs(xg.¥)
,  EEB__
o(FisU D))

- Z c(l)—
e [Xs(xk. y)

XK.y

(11)

where ¢(f)~ = min{c(t), | Xs(xg, y)|} and

« (a) follows
Py xxs(V. Xk.s) =
definition in (4);
(b) follows since the maximum is larger than average;
(c) follows since each x5 € As(xg, y) appears in exactly
(I‘YS f"_v){ 1) subsets of Xs(xk, y) of size c(f)~;

e (d) Igollows from Lemma 1 and the following arguments

from the fact that for any xg,y,
0 for any xs ¢ As(xg,y) by the

© if c@) < A5G, Y)l. then ey = pertay =
_c(t) i
a(T:(SUl))’

e otherwise we have c(f) > |As(xk,y)| and

cltf)” 2 clf
ol = | 2 sieumy Where the last

inequality is due to the assumption that c(f) <
max,, y | Xs(k,y)] < a(T(S U U)) stated in
Section II-C.

Finally, we have

1 Pk,
L£*T) = lLim inf P&k, 1)

100 (¢, M, f, g) codes 1 Ps(Xk)
clf

. o(F5UD)) 5
- s TN, R SABAEL
= r—:go 1 qu I—Eé% ( )

G o) Ll

t—0o0 f (Fr(SU U’))

V(Fsu )1 121~

= lim ~log, _ (13)

>0 t a(F,(S U U))

1 N

— r]il:go ? logq Xf(]",(S U U)) —u (14)
=p(Fsuw)) - (15)

where (12) follows since (11) holds for any valid (¢, M.f, g)
code and P;(Xgx) = I—%{%, (13) follows from |V(f‘,(S U
U))| = |X]+9, (14) follows since confusion graphs are
vertex-transitive [28], and (15) follows from (3). [ |

Proof of the Achievability of Theorem 1: We construct a
randomized coding scheme based on the confusion graph.

Consider any sufficiently large ¢. Consider any independent
set T € Xsyy in I't(SU U) such that [Z| = a(T(SU U)).

Notice that by adding decoder m + 1 to I' to construct r,
we are essentially adding more edges to the confusion graph
(e., E(ly) < E(f‘,)). Because I';(S U U) has fewer edges
than f‘,(S U U), we know that 7 is also an independent set of
ry(SuuU).

Consider a given xsyy value. For any zsyy € Z, we gener-
ate Zsyp by adding zsyp and xsup symbol-wise. Collecting all
such Zsyy generated from some zsyy € Z, we obtain another
independent set in I';(S U U). We denote this set by ff(xmy)
because it is generated from Z and the given xsyy value.
Clearly, the size of Z(xsup) is also a(I'(SU U)).

In this way, using all possible xg,y values, we can generate
|X|"c+) independent sets Z(xs,y7), each of size a(I',(SUU)).
Moreover, it can be verified that every vertex in I';(S U U)
appears in exactly a(T(SUU)) generated independent sets.

For each xp,; = (xg, Xs, Xy), suppose there is a unique code-
word. For each value zg,py in the independent set f(xSUU),
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the message tuple realization (xg,zsyy) is mapped to this
corresponding codeword with probability 1 ,’a(f}(S u)). In
such a way, we construct a valid randomized mapping scheme
since no confusable realizations are mapped to the same code-
word and thus each decoder i € [m] can decode its wanted
messages.

With the coding scheme described above, the leakage can
be computed as

1
L= —1lo ( max
; ba [ ZJEXS(XKJ):UIEC(I)

XK.¥Y

Z Py x5 IKUS)) -

xset

1
= —log, [( max
t 1 %JEXS(XKJ)MIECG) ;

Py (yixpm) - P Xin) (x[,,])) :
xv €XU (xkUS.Y)

|X]=
(1) ]

|X|fs
c(f)

1 |X|rs
a(f‘,(su U)) X c(n)

i ].
@ ?logq(|y| -e(f) -

1 X!s
@—log L]

¢ a(f“,(su U))
@ ,s(f(su U)) -

where (a) follows since for every y there is a unique xg value
by the coding scheme construction, and that Py, (y|xq) =
— L1 ___for jointly possible y, xg. xs, and xy, (b) fol-
(I (SUU))

lows since |Y| = |A| = |X|™, and (c) follows from
the same arguments as in (13)-(15) as f is sufficiently
large. This completes the proof of the achievability of the
theorem. |

Remark 5: 1t can be shown using the generalized maximal
acyclic induced subgraph (MAIS) bound [3] that the result in
Theorem 1 is always non-negative.

Remark 6: 1t is worth noticing that the actual character-
ization of £* is independent of the number of guesses the
adversary can make as specified by the function c.

Example 1: Consider the toy example in Figure 1, where
n=m=4 W, =iiec [4], Ay = {2,3}, A, = {1,4},
A3 ={1,4}, A4={2,3L, and K =6, 5= {1,2}, U = {3,4}.
We have £*(T") = B(T'(SUU)) —u = B(I') —2. To find B(T),
we first lower bound it using the generalized MAIS bound [3],
which gives ﬁ(f‘) > |{1,4}| = 2 as decoders 1 and 4 do not
know each other’s wanted message as side information. On the
other hand, the coding scheme Y = (X1 & X3,X72 @ X4) can
satisfy the decoding requirement at every decoder, including
the extra decoder i = m + 1 = 5 who knows X5 = X; > and
wants to decode Xy = X3 4. This indicates an upper bound
of 2 on ﬁ(f‘), which, combined with the lower bound, gives
B(I') =2 and thus £*(T) =2 —2=0.

Remark 7: An intuition behind the characterization of
L*(I') using the broadcast rate of a related problem T is
as follows. For simplicity of exposition, we assume K = @,
[n] = SUU, and Theorem 1 states that £*(I") = ,S(f') —u. At
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first glance, some sort of connection between data compression
and secrecy preservation for a given problem seems expected,
as compression removes redundancy from the source and thus
less information is exposed to the adversary. In particular, with
a guessing adversary, better compression in general means
more message realizations being mapped to each codeword,
making the adversary less likely to guess the true realization
from its observation of the codeword. However, with a more
careful look, the goal of data compression is to compress all
the messages in the system to satisfy the decoders, while the
goal of secrecy preservation is to protect the sensitive messages
from the adversary. That is, for compression, the sender wants
to map as many X[, values as possible to each y, while for
reducing information leakage, the sender needs to map more
xs to each y. These two goals do not necessarily perfectly
align for a given problem I'. Therefore, we establish connec-
tions between the compression and leakage by constructing
an auxiliary problem T, for which the two goals do align. For
f‘, the extra decoder requires that Xy must be a deterministic
function of (¥, Xs). Consequently, for a given y, the number
of x[;; = (xs.xy) being mapped to it equals to the number
of xs being mapped to it. This means that the compression
goal becomes equivalent to the secrecy preserving goal for i
which makes the characterization of £“(f‘) using ,S(f‘) intu-
itively understandable. As a final step, one needs to link £*( )
back to £*(I"), which turn out to be equal. The intuition behind
this equivalence comes from the fact that the existence of the
extra decoder does not impose any extra decoding constraint
on the number of xg being mapped to each y, since it does not
require any message in Xs to be decoded.

Given Theorem 1, various bounds and properties on B estab-
lished in the literature [27] can be directly applied to L*.
Arbabjolfaei and Kim [32] showed that the broadcast rate of
an index coding instance can be computed from the broadcast
rates of its subproblems if certain structural properties hold
among the decoders’ side information sets. These properties
were proved using confusion graphs in the scope of unicast
index coding, where every decoder wants one unique mes-
sage. We can apply similar techniques to our multicast problem
setup, and simplify the characterization of £* in Theorem 1
when certain structural properties hold.

In the following we consider the case when the set of
decoders can be separated into two parts, one part requesting to
decode messages within set Xg x and the other part requesting
to decode messages within set Xyyg, and the decoders in the
former part know nothing in Xy as side information. Intuitively
speaking, in such a case, the non-sensitive messages Xy are
not known by the decoders requesting sensitive messages in
X, and thus Xy become “useless™ as they cannot be effectively
used like secret keys to be combined with X since doing so
violates the decoding requirements. For a visualizing example,
see Figure 4(a). In the figure, we consider unicast index cod-
ing problems where n = m = 4 and decoder i wants message
i for every i € [4]. With this unicast condition, the problem
can be represented by a directed graph, commonly known as
the side information graph [27, Sec. 1.2]. Every node in the
graph denotes a unique message and an edge from node i to
j means that decoder j knows message X; as side information.
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(a)

Fig. 4. Visualizing examples for the two special scenarios under consider-
ation: (a) the side information graph of a four-message four-decoder unicast
index coding problem, where decoders requesting messages in Xg = X -
know nothing in Xj; = X3 4 as side information; (b) the side information graph
of another four-message four-decoder unicast index coding problem, where
decoders requesting messages in Xg = X; 5 know everything in Xy = X3 4
as side information, and vice versa.

In Figure 4(a), suppose § = {1,2} and U = {3, 4}. It can be
seen that neither decoder 1 nor 2 knows X3 4.

Corollary 1: Consider any problem I' such that every
decoder i € [m] satisfies either W; € UUK or W;UA; C SUK.
We have

L) = BT (S)). (16)

Proof: Consider the problem ['(S U U). One way is to
split the problem into two subproblems I'(S) and I'(U), and
separately compress the messages in § and U. Thus, we have

B(Fsuw) <8(F®) +8(F®) 2 r©) +1.

where (a) follows from S (f‘(S)) = B(I'(S)) since the exfra
decoder m + 1 is a degenerate decoder who wants nothing in
f'(.S'), and ,S(f‘(U)) = u since the extra decoder m + 1 needs
to decode all the messages in Xy and has no side information
at all in T'(U). In the following, we show that B(I'(SUU)) >
BTO) +u.

The decoders in I'(S U U) can be divided into two parts,
one consisting of those requesting messages within Xy and
the other consisting of those requesting messages within Xs.
We simply call the former the U part and the latter the S
part. We add some side information to the decoders in the U
part in ['(SUU) to construct another problem I with mes-
sages Xgyup such that every decoder in the U part knows Xg.
Clearly, BIESuUU)) > BI).InT, every decoder in the U
part knows all Xy as side information, and no decoder in the §
part knows anything in Xy as side information as specified in
the corollary statement. Hence, for any 7, any two realizations
Xsuw. Zsuu € Asup are confusable iff xs and zs are confusable
for T';(S) or xs = zs and xy and zy are confusable for I';(U).
Therefore, the confusion graph I'; is the lexicographic prod-
uct [33] of the two confusion graphs I';(S) and I';(U). Then,
we have [28, Cor. 3.4.5]

x¢(T7) = x¢(T7(®) - xe(T()).
Combining the above result and (3), we have
B(Fsu D)) = B(I)
= ]- r
= lim —log, x(T7)

1
= Jim (10g, x(r¥(5) + log, x{T/(©)))

=B(r'®) + B(r'())
=8(F®) +8(f )
=BT (S)) +u

Therefore, we have proved ,B(f‘(S U l)) = BI'(S) + u, and
thus by Theorem 1 we have £*(I") = ,B(f‘(S ut)) —u =
BT(S)) +u—u= B(I(S)). u

Remark 8: An extreme case of the scenario considered
in Corollary 1 is when there are no non-sensitive messages in
the system (i.e., U = ). In such a case, the extra decoder in
['(SU U) becomes degenerate as it knows all the messages
in the system and wants nothing, and the result in Corollary 1
reduces to that in [19, Corollary 1].

Consider another scenario when the set of decoders can
again be separated into two parts, one part requesting mes-
sages within Xg x while knowing all Xy, and the other part
requesting messages within Xyx while knowing all Xg. In
such a case, the non-sensitive messages Xy can be exploited
to the maximum extent, since they can be “safely” combined
with the sensitive messages Xg without worrying about the
decoding requirements being violated. A visualizing example
can be found in Figure 4(b). Note that a special case of this
scenario is when Xy are common random keys shared among
the encoder and all the decoders.

Corollary 2: Consider any problem I' such that every
decoder i € [m] satisfies one of the following two conditions:
) W, CUUK and S CA;; 2) W; CSUK and U C A;. We
have

L*(T') = max{B(I'(5)) — u, 0}. a7

Proof: We call the set of decoders in INORY)) requesting
messages within Xy the U part, and the rest of decoders the §
part. Decoder m + 1 belongs to the U part. Every decoder in
the U part knows X as side information, and every decoder
in the § part knows Xy as side information. Then, for any
f, any two realizations xsyy, Zsuy € Asuy are confusable iff
one of the following conditions is satisfied: 1) xy = zy and
xs and zs are confusable in f}(S); 2) xs = zs and xy and
Zy are confusable in f‘,(U). Therefore, the confusion graph
f‘;(S U U) is the Cartesian product [28] of the two confusion
graphs [;(S) and T'(U). Hence, we have [34, Lemma 2.6]
xe(F:(S U U)) = max{x(I'«(S)), x¢(I'«(U))}, which together
with (3) leads to B(I'(S U U)) = max{B(I'(5)), B(T'(U))}.
'I'herefon:e, by Theorery 1, we have £*(I") = B('(SUU))—u =
max{B(I'(S)) — u, B(I'(V)) — u} = max{B(I'(S)) —u.0}. =

IV. A DETERMINISTIC LINEAR INDEX CODE

In the following, we construct a deterministic linear index
code based on the minrank method and fitting matrices, which
were developed for the original index coding problem with-
out adversary [3]. We then show that the proposed scheme
achieves the optimal leakage rate over all valid deterministic
scalar linear index codes. Throughout the section, we set f = 1
as we are considering only scalar linear codes. However, note
that the message alphabet size g can be arbitrary.

Unless otherwise stated, we use bold-faced capital let-
ters to denote matrices and vectors. In particular, Xp,;; =
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[Xi Xo5.. X,,]T. Let r(-) denote the rank of a matrix over
the Galois field F,.

Note that for any decoder i requiring more than one mes-
sage (i.e., |W;| = 2), we can transform the problem into an
equivalent problem by removing decoder i and adding |W;|
new decoders, where every new decoder has the same side
information set A; and each decoder wants a unique message
in the set W,. Therefore, we can, without loss of generality,
always assume W; = {w;} is a singleton set for every decoder
i € [m].

For any given problem, a size m x n fitting matrix M with
elements in Galois field F; is a matrix such that for any
decoder i € [m],

Ml:j: e ]-9
Ml:j: = 09

for j =w;,

for any message j € [n]\(W; U A;).

As M;; can be any element in F, if j € A;, there can be
multiple fitting matrices for a given problem. For example, for
the problem with n = 5 messages and m = 3 decoders, where
Wi ={i},Vi € [3], A1 = {3,4}, A2 = {1,4,5}, A3 = (2,5},
any matrix of the following form is a fitting matrix,

i 0 2 2 0
A DR | I e
0 @ 1. 0 2

where “7” can be any (and different) elements F,.

If the encoder generates a codeword Y by multiplying a
fitting matrix M by the message vector X, every decoderi
[m] can recover its wanted message because the i-th element
of Y is a linear combination of only X, and some of its
side information. Moreover, note that any row of M can be
generated by r(M) independent rows of M. Thus, to satisfy
the decoders, the encoder needs only to generate a codeword
Y that contains the linear combinations of the messages with
coefficients from r(M) independent rows of M. In this way, for
a given problem, the minimum rank over all the fitting matrices
establishes an upper bound on its broadcast rate, which has
been proved to be optimal over all deterministic scalar linear
codes [3].

For analysis of information leakage based on the fitting
matrix framework, we can split M into three submatrices
formed by different groups of columns in M according to sets
K, S, and U. For brevity, we simply write

M=[K S UL

The following theorem characterizes the minimal leakage
rate among all codes based on the fitting matrix framework.
Moreover, we show that this leakage rate is in fact optimal for
all deterministic scalar linear codes.

Theorem 2: For any index coding problem, there exists a
deterministic scalar linear index code that yields the following
leakage rate,

L= (s Uh-a)- (18)

Furthermore, this result is leakage-wise rate optimal for all
deterministic scalar linear codes.

Proof: We first show the achievability. Consider any fitting
matrix M =[K S U] and any encoding matrix E formed
by a set of row vectors of M such that the row space of M is
the same as that of E and thus by observing Y = EX every
decoder can decode its wanted message.

Recall that + = 1 as we are considering scalar linear
codes. Moreover, for every (xk,y), |Xs(xk,y)| remains the
same since the code is linear, and thus we always have
c(1) < |Xs(xk, y)|-

We have

L=
e ((;JEXS(X;I:\%’:(IJEC(I)
|X|
ZPYXM(}’ IKS)) c(l))

xset

= log, (|X1*‘ . (Z max
c(1) oy SXsCx .y WI=c(1)

Z Z Py (¥1¥1m) - Py (x[,,])))

xs€l xye Xy (xkus.y)

(a) |Xi (
@ |
s (c(l) ;:gxsaﬁ?fﬁnsc(n

ZZI(Y EX) - n))
xsel xy le

®) i T

2 1o (C(l) c(1) o
(ZmaxZ]l(Y EX)))
xg,y

= log ( i “ZZmaxZ]l(Y EX))
@ log, (q_k_“ Z Zq"_’(m)

Dr1s -,

where (a) is due to the code being deterministic, where 1(-) is
the indicator function, (b) follows from the fact that we have
c(1) < |X(xk,y)| for every xk.y, (c) follows from the fact
that given any fixed y and xgyus, there are g“~"(Y) possible
xy values that satisfy Y = EX, and (d) follows from the fact
that given any fixed xg, there are q’([s m possible y values.
Therefore, by minimizing over all fitting matrices, the leakage
rate in (18) can be achieved.

Now we prove the converse part of the theorem. Suppose
a £ x n matrix E of Galois field F, is the encoding matrix
of an arbitrary valid deterministic scalar linear index code.
Note that E need not be a fitting matrix. We split E into three
submatrices formed by different groups of columns according
to sets K, S, and U as

F::[f{ S ﬂ].

Following a similar argument as in the achievability proof of
the theorem, we can show that the leakage rate caused by the
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codeword Y = EX is

£z =r([s 0])-r(0)

It remains to show that 'Ci-: is lower bounded by (18).

According to the proof of [3, Th. 1], there exists some fitting
matrix M = [K S U] of the problem such that the row
vectors of M lie in the row space of E. In other words, there
exists some 7 x £ matrix B such that BE = M, or, if we only
consider the submatrices according to sets S and U,

B[S fj] —[S UL
Also, there exists some matrix D such that

U= [E fJ]D, U=[s U]D:B[é fJ]D,

s s (©)=rofs )+ )
2r([s 0])+(8[s O]p)=r([5 ©])+rw).

where (a) is due to Frobenius inequality [35]. By reorganizing
the above result, we have

Ly =r([S ©])-r(0)2ras vp-rq,

which, together with the fact that M is a fitting matrix,
completes the proof. |

Remark 9: Following similar arguments as in the proof of
Theorem 2, we can show that when the mutual information?
I(Xs; Y|Xk) is used as the leakage metric, miny(r([S  UJ) —
r(U)) still characterizes the minimal leakage rate over all
deterministic scalar linear index codes.

The following example shows the efficacy of the proposed
linear coding scheme.

Example 2: Consider the problem I' with n = 5 binary
messages and m = 5 decoders with W; = {i}, i € [m] and

Ay =145}, A2 = {1}, A3 = {2}, A4y = (3}, As = {4}

Assume for the adversary,

K={5, §={1.3}, U={2.4}
The fitting matrix
1 0 0 1 O
U A G000 0
M=|0 1 1 0 O (19)
0 01 1 0O
a 0 0 0 1

achieves the broadcast rate of § = r(M) = 4. For the leakage
rate, we have

L=r(S UD)—-—r@U)=3-2=1,

which is indeed the optimal leakage rate as can be verified by
Theorem 1. Therefore, the linear code given by (19) is optimal
in both leakage and compression senses for this problem.

2Note that mutual information between sensitive variables and codeword
has been commonly used as a leakage metric in the literature of information-
theoretic secrecy [17], [36], [37], [38]. [39].

As discussed in Remark 7, for an arbitrary problem, the
goals of compression and leakage prevention do not necessar-
ily align. In the following we show by a simple two-decoder
example that it is not always possible to simultaneously
achieve the optimal compression and leakage rates.

Example 3: Consider the problem I' with n = 4 binary
messages and m = 2 decoders, where

Wi ={1}, Wa = {2}, A1 ={2,3}, A2 ={1,4}.
Assume for the adversary,

K=9 S={,2}, U={3,4}.

The fitting matrix
I 1. 0 0O
o [1 1 0 0]
achieves the broadcast rate of 8 = r(M) = 1 while resulting

in a leakage rate of £L = r(M) — r(U) = 1 —0 = 1. The
following fitting matrix

- 1 0o 1 0
M:[0101]

gives L = r(M) — r(U) = 2 — 2 = 0, indicating that
zero leakage (i.e., perfect secrecy) can be achieved for the
problem. However, M leads to a suboptimal compression rate
of r(M) =2. In fact, it can be shown using Shannon-type
inequalities [40] that the compression rate of any index code
that attains zero leakage is at least 2, implying that 8 = 1
and £* = 0 can never be simultaneously achieved for this
problem.

Remark 10: Although not always optimal, the fitting matrix
based coding scheme can achieve good performance for
both compression and leakage rates for some index coding
instances. On the other hand, the randomized coding scheme
described in the proof of Theorem 1 always achieves optimal
leakage rate, at the cost of a rather high compression rate of n.
Hence, it is natural to ask if we could use time-sharing between
these two schemes (or any possible schemes) to achieve a bet-
ter trade-off between compression and leakage rates. Indeed,
it can be verified that the time-sharing property (either deter-
ministic or stochastic) holds not only for the compression rate
R but also for the leakage rate L. Therefore, time-sharing
between different schemes to balance the compression and
leakage rates is possible.

V. EXTENSIONS

In this section, we study information leakage in two
varied settings. In Section V-A, we consider the scenario
where a rate constraint is imposed on the compression, and
information leakage is to be minimized under this con-
straint. In Section V-B, we look at the pliable index coding
problem [26], and show how we can establish results similar
to those we derive for index coding by utilizing the connection
between the two problems.
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A. Minrank Coding Scheme Under a Compression Rate
Constraint

In this scenario, the encoder attempts to minimize the
information leakage rate subject to a maximum permitted
compression rate. We formalize the problem as finding

Lk, = inf E

(t,M.f, g) codes s.t. t—! 1()‘1:1,‘],‘14r < Ru

lim '
t—00
for some given compression rate threshold Ra.

Note that the parameter Ra should always satisfy Ra > B,
since otherwise there will be no index codes that satisfy
both the decoding requirements and the compression rate
constraint. On the other hand, we can assume without loss
of generality that Rn < n. Because otherwise the random-
ized achievable scheme described in the achievability proof of
Theorem 1, which is of compression rate n, can be applied,
and thus £} = L*.

While a characterization of L3 in general remains to be
investigated, the fitting-matrix-based coding scheme can be
extended to suit this case in a straightforward manner.

Proposition 1: For any index coding problem, there exists a
deterministic scalar linear (f, M, f, g) index code that satisfies
the compression rate constraint £ log,M < R and yields
the following leakage rate,
min _ (7([S U]) —r(U)).

— 20
M:r(M) < R, @

Furthermore, this result is leakage-wise rate optimal under the
compression rate constraint for all deterministic scalar linear
codes.

Proof: To show the achievability, simply consider any fit-
ting matrix M =[K S U] such that r(M) < Ra. Then by
similar arguments in the achievability proof of Theorem 2, it
can be shown that the information leakage caused by M is
L =r(S U] —r(U). Therefore, by minimizing over all fit-
ting matrices M satisfying r(M) < Rx, the leakage rate in (20)
can be achieved.

To show the converse part of the proposition, consider an
arbitrary valid deterministic scalar linear index code satisfy-
ing the compression rate constraint, whose encoding matrix is
denoted by matrix E of Galois field F,. Thus, r(ﬁ) < Ra.

According to the proof of [3, Th. 1], there exists some fitting
matrix M = [K S U] of the problem such that the row
vectors of M lie in the row space of E. Hence, we have

M) < r(ﬁz) SR

Using similar arguments as in the proof of the converse part
of Theorem 2, it can be shown that the leakage rate caused
by E is lower bounded as

Ly >r(S U -rU),

which, together with the fact that M is a fitting matrix such
that r(M) < r(E) < Ra, completes the proof. | |

B. Pliable Index Coding

In some applications, each decoder may be interested in
decoding any message it does not know as side information.
This pliable version of index coding was first formalized

and studied by Brahma and Fragouli [26], and then further
investigated in a number of subsequent works [41], [42], [43],
[44], [45]. [46]. Technically speaking, the major difference
between pliable index coding and index coding is that for the
pliable version, the desired message sets at the decoders are
not pre-determined and each decoder is satisfied whenever it
can decode some messages not in its side information set.
That is, the encoder can encode based on its own choice of
desired message sets for the decoders, and this flexibility leads
to more encoding opportunities to possibly achieve a lower
compression rate and less information leakage.

Any pliable index coding instance can be denoted by a
parameter tuple IT = (n, m, (A;,i € [m])). While the encoder
has the flexibility to choose the decoding message tuple for the
decoders, once a decoding message tuple (W;, i € [m]) is cho-
sen, the remaining problem becomes a normal index coding
problem.> The broadcast rate (i.e., the optimal compression
rate) of Il can be defined as

B)= min
(Wi ielm):W;C([n]\Ay).iclm)
B((n, m, (A, i  [m]), (W;,i € [m]))),

which can also be computed from the confusion graph per-
spective as

|
: ... .

(Wiﬁlel{:n]); ,irgo, og, x(I'y)
WiC([n]\Ai),i[m]

Bl =

= min
(W;.ic[m]):
WiC([n]\A;).1€[m]

o
lim 3 log, x£(I'y),

1—00

where I'; denotes the confusion graph corresponding to the
index coding problem (n, m, (A;,i € [m]), (W;,i € [m])) with
message length f.

Our goal is to characterize the optimal information leakage
rate to a guessing adversary in pliable index coding, which we
can simply define as

LX) = min
(Wi.ic[m]):W;C([n]\A;).ic[m]

L*((n, m, (A, i € [m]), (W;, i € [m]))).

The above definitions imply that we can characterize £*(IT)
using our established results on £*(I'), minimized over all
possible index coding problems I" generated from IT and some
decoding message tuple (W;,i  [m]). We have the following
results analogous to Theorems 1 and 2.

Proposition 2: For any pliable index coding problem I1, we
have

(1) = ﬂ(f‘(SU U)) —u, 1)

min
(W;.ic[m]):W;C([n]\A;).ic[m]

where, given a decoding message tuple (W;,i € [m]), r
denotes the index coding problem constructed by adding an
extra decoder to the index coding problem (n,m, (W;,i €
[m]), (A;,i € [m])). The extra decoder is indexed by m + 1

3without loss of generality, we can assume that |W;| = 1 for every i € [m].
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and knows side information indexed by the set A,,;1 = KUS
and wants messages indexed by the set W,,;1 = vt

Proof: Combining the definition of £*(T1) and Theorem 1
directly gives

LX) = min
(Wi, ie[m]):WiC([n]\Ai),ic[m]

L*((n, m, A, i € [m]), (Wi, i € [m])))
(p(Fsvv) -2

,B(f‘(SU U)) —u,

= min
(W;.ic[m]):W;C([n]\A;).i[m]

= min
(W;.ic[m]):W;C([n]\A;).i[m]

which completes the proof. |

Proposition 3: For any pliable index coding problem II,
there exists a deterministic scalar linear index code that yields
the following leakage rate,

= min

(Wi, ic[m]):W;C([n]\Aj).ic[m]

n‘l\_i[n(r([S u)—-r(U), (22

where, given a decoding message tuple (W;,i € [m]). M =
[K S U] denotes any fitting matrix for the index coding
problem (n, m, (W;,i € [m]), (A;,i € [m])). Furthermore, this
result is leakage-wise rate optimal for all deterministic scalar
linear codes.

Proof: Fix any decoding message tuple (W;.i € [m]),
Theorem 2 implies that there exists some deterministic scalar
coding scheme based on fitting matrices that gives

C= rrll\j;n(r([S U]) — r(U)).

And this £ is optimal for all deterministic scalar linear codes
for the index coding problem associated with (W;,i € [m]).
Then, minimizing over all possible decoding message tuples,
we know the leakage rate in (22) is achievable, and is leakage-
wise rate optimal for all deterministic scalar linear codes for
the pliable index coding problem [1. |

VI. CONCLUSION

We studied information leakage of sensitive messages in
index coding to a guessing eavesdropper. A characterization
of the optimal leakage rate using optimal compression rate
was developed from a graph-theoretic perspective. We also
proposed a deterministic linear coding scheme utilizing the
rank minimization technique based on fitting matrices. In the
following, we conclude the paper with several open questions
and concluding remarks that may motivate future studies.

« While some intuitions behind the result of Theorem 1
has been given in Remark 7, a deeper investigation of
the relationship between I' and r may lead to further
results.

« Extending the scalar linear coding scheme in Section IV
to a general vector linear code should give better
performance in both leakage and compression. However,

4Note that the extra decoder is not “pliable”. No matter what decoding
message tuple (W;,i € [m]) is for the original decoders, the extra decoder
always requests to decode Xp/.

(11
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this may incur higher computation and implementation
complexity.

A general characterization of the optimal leakage rate
under an arbitrary compression rate constraint turns out
to be quite challenging and remains open at the current

stage.
It may prove beneficial if the techniques utilized in
this paper can be extended to be used in the study of
information leakage in other related problems, such as
locally repairable distributed storage, coded caching, and
multi-terminal source coding.
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