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ABSTRACT

A crucial step in functional genomics is identifying actively translated open reading frames
(ORFs) and linking them to biological functions. The challenge lies in identifying short ORFs, as
their identification is greatly influenced by data quality and depth. Here, we improved the
coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing
uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted
by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising
6,996 upstream ORFs (UORFs) and 209 downstream ORFs on annotated protein-coding genes,
as well as 546 ORFs in presumed non-coding RNAs. Proteomics data confirmed the production
of stable proteins from some of these unannotated translation events. We present evidence of
active translation from primary transcripts of tasiRNAs (TAS7—4) and microRNAs (pri-MIR163,
pri-MIR169), and periodic ribosome stalling supporting co-translational decay. Additionally, we
developed a method for identifying extremely short uORFs, including 370 minimum uORFs
(AUG-stop), and 2,921 tiny uORFs (2—10 amino acids), and 681 uORFs that overlap with each
other. Remarkably, these short uORFs exhibit strong translational repression as do longer
uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing,
suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are
associated with numerous important pathways. In summary, our improved Arabidopsis
translational landscape provides valuable resources to study gene expression regulation.
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INTRODUCTION

Accurately defining gene models and determining translated open reading frames (ORFs)
is fundamental for studying gene functions and monitoring cellular activity in all living organisms.
Despite extensive efforts, our understanding of the translational landscape remains incomplete
(Andrews and Rothnagel, 2014; Hellens et al., 2016; Orr et al., 2020; Wu et al., 2023). It has
become increasingly clear that a substantial fraction of the transcriptomes in diverse plant
species has prevalent unannotated translated ORFs. These unannotated translated ORFs
include small ORFs (sORFs) encoded by presumed non-coding RNAs (ncRNAs), as well as
short upstream ORFs (UORFs) present in the 5' untranslated regions (5" UTRs) of protein-
coding RNAs (i.e., mRNAs) (Liu et al., 2013; Juntawong et al., 2014; Lei et al., 2015; Hsu et al.,
2016; Bazin et al., 2017; Wu et al., 2019; Li and Liu, 2020; Kurihara et al., 2020; Sotta et al.,
2022; Guo et al., 2023b; Qanmber et al., 2023; Zhu et al., 2023). Lately, downstream ORFs
(dORFs) in the 3' UTRs of mRNAs were also reported in vertebrates (Wu et al., 2020).
Serendipitous discoveries from early forward genetic screens and recent experimental evidence
have shown that these relatively short ORFs can produce small proteins or peptides that play
important roles in various aspects of signaling and physiology (Tavormina et al., 2015; Hsu and
Benfey, 2018; Takahashi et al., 2019). In addition, the act of translation itself may have
regulatory roles, even if the protein products are not functional (Orr et al., 2020). For example,
uORFs have long been recognized as cis-regulatory elements suppressing protein synthesis of
the downstream main ORFs (mORFs) and are associated with various plant phenotypes (Von
Arnim et al., 2014; Xu et al., 2017; Zhang et al., 2018; Xing et al., 2020; Gage et al., 2022).
More recently, the association of ribosomes with sORFs on the primary transcripts of trans-
acting small interfering RNAs (tasiRNAs) has been suggested to bring the transcripts to the
rough endoplasmic reticulum (ER) for microRNA (miRNA)-mediated tasiRNAs biogenesis (Li et
al., 2016; Yoshikawa et al., 2016; Hou et al., 2016; Bazin et al., 2017; lwakawa et al., 2021).

Despite their importance, short ORFs are commonly excluded by computational genome
annotations. As a vast number of potential ORF sequences can occur randomly, computational
annotations rely on several assumptions about ORFs to minimize false positive identifications.
These assumptions typically include the translation of only one ORF, the longest one, from each
transcript, and the requirement for the ORF to be greater than 100 codons (Basrai et al., 1997;
Olsen et al., 2002; Lease and Walker, 2006). Although this approach is robust and efficient,
genuine MRNAs encoding sORFs can be misannotated as ncRNAs. Moreover, the polycistronic

potential of mMRNAs is not considered, resulting in the exclusion of uORFs or dORFs in the
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annotation. Thus, comprehensive identification of these hidden short ORFs is the first step
toward understanding and characterizing their functions.

Bioinformatic approaches based on evolutionary conservation or sequence homology to
known sORFs have been attempted (Olsen et al., 2002; Lease and Walker, 2006; Hanada et al.,
2007, 2009; Zhou et al., 2013; de Bang et al., 2017; Feng et al., 2023; Li et al., 2023). However,
accumulating evidence suggests that many sORFs have evolved recently during evolution
(Ruiz-Orera et al., 2014; Sandmann et al., 2023), and some sORFs are only conserved in
specific families or small groups of plants. For instance, the first plant peptide hormone involved
in the wounding response in tomato (Solanum lycopersicum), systemin, is only present in the
Solaneae, a subtribe of the Solanaceae (Pearce et al., 1991; Constabel et al., 1998).
Additionally, a small protein called Qua-Quine Starch (QQS, 59 amino acids [aa]), involved in
carbon and nitrogen allocation as well as pathogen susceptibility across species, is encoded by
an orphan gene that exists only in Arabidopsis (Arabidopsis thaliana) (Li et al., 2009, 2015; Qi et
al., 2019). In our previous analysis of the tomato translatome, we identified many translated
sORFs specific to the Solanaceae or exclusively present in tomato (Wu et al., 2019).

Similarly, although 30-70% of plant genes contain potential uORFs, only 119 uORFs
encoding conserved peptides (CPuORFs) corresponding to 81 homology groups, have been
identified in Arabidopsis despite extensive searches (Hayden and Jorgensen, 2007; Jorgensen
and Dorantes-Acosta, 2012; Vaughn et al., 2012; Takahashi et al., 2012; Van Der Horst et al.,
2019, 2020; Takahashi et al., 2020; Zhang et al., 2021). Some CPuORFs are also specific to
certain plant families. For example, MYB51 transcripts contains a Brassicaceae-specific
CPuOREF, likely because MYB51 regulates the biosynthesis of glucosinolates, secondary
metabolites mainly found in the order of Brassicales (Hou et al., 2016). Therefore, these family-
or species-specific SORFs and uORFs may have evolved to provide functions specific to certain
groups of plants. Together, the small size, low conservation, and a limited number of
experimentally characterized sORFs and uORFs available as training datasets restrict the
power of bioinformatic prediction. For these reasons, a systematic experimental approach is
necessary to uncover these hidden functional short ORFs.

Ribosome profiling (Ribo-seq) has emerged as a high-throughput approach for ORF
discovery and quantification. Essentially, Ribo-seq combines ribosome footprinting with deep
sequencing (Ingolia et al., 2009; Brar and Weissman, 2015). The procedure involves treating
ribosome-bound mRNAs with ribonuclease to obtain ribosome-protected mRNA fragments
(RPFs), or ribosome footprints. Sequencing RPFs enables the identification and quantification of

ribosome occupancy on mRNAs throughout the transcriptome. Importantly, when using one
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nucleotide (nt) to assign the position of RPFs on mRNAs, precisely digested RPFs exhibit
enrichment in the expected reading frame along the coding sequences, which is called 3-nt
periodicity. This periodic property reflects that ribosomes decode 3 nt at a time and is a
benchmark for high-quality Ribo-seq data (Ingolia et al., 2009; Jiang et al., 2022). This 3-nt
periodicity has been considered a reliable feature to distinguish real RPFs from contaminant
RNA fragments protected by non-ribosomal protein complexes and to separate actively
translating ribosomes from ribosomes stalled at certain regions of transcripts without engaging
in translation (Guttman et al., 2013; Guydosh and Green, 2014; Jiang et al., 2022). For these
reasons, the majority of ORF discovery software utilizes 3-nt periodicity as a key parameter to
identify translated ORFs (Wang et al., 2019). Notably, imprecise digestion of RPFs can lead to
out-of-frame mapping, decreasing the resolution of Ribo-seq data and the confidence of active
translation. Therefore, strong 3-nt periodicity is critical for the success of ORF identification.

We previously optimized the footprinting buffer to improve the precise digestion of RPFs,
resulting in over 90% of RPFs being enriched in the expected reading frame for samples
derived from Arabidopsis seedling roots and shoots (Hsu et al., 2016). Although the high-quality
data revealed numerous unannotated translation events, the number of relatively short ORFs,
such as sORFs and uORFs, identified based on significant 3-nt periodicity (Calviello et al.,
2016), was low (32 sORFs and 187 uORFs) (Hsu et al., 2016). This result is presumably due to
insufficient coverage within these short ORFs. Additionally, multiple high-quality Ribo-seq
datasets, including from zebrafish (Danio rerio), Chlamydomonas reinhardtii, Arabidopsis, and
tomato (Bazzini et al.,, 2014; Chung et al., 2015; Hsu et al.,, 2016; Wu et al., 2019), have
revealed specific out-of-frame mapping of RPFs at translation termination, likely resulted from
structural rearrangement upon binding of eukaryotic Release Factors (eRFs) (Alkalaeva et al.,
2006; Brown et al., 2015; Matheisl et al., 2015). This out-of-frame mapping at termination can
significantly decrease the overall 3-nt periodicity of short ORFs. Furthermore, identifying uORFs
is considered more challenging as they can be extremely short and often overlap with other
uORFs, leading to low 3-nt periodicity. Therefore, it was proposed that more specialized
software is needed for uORF identification (Wang et al., 2020).

Here, we present an improved Ribo-seq dataset with enhanced RPF coverage in
Arabidopsis seedlings. Our new data substantially improves the identification of translated
uORFs and sORFs, and provides evidence for supporting noncanonical translation associated
with various regulation events of gene expression. Additionally, we developed a new
computational method to address the issues of out-of-frame mapping at translation termination

and overlapping between uORFs for uncovering relatively short uORFs. Combining our new
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data and a new computational approach identified over 7000 unannotated translation events.
Thus, our enhanced Arabidopsis translational landscape facilitates the discovery of translated

ORFs and offers valuable resources for studying gene functions.

RESULTS
Enhanced super-resolution Ribo-seq improved the read coverage

Although our previous super-resolution Ribo-seq data revealed many unannotated
translation events, we only detected 187 uORFs and 32 sORFs with significant 3-nt periodicity
(Hsu et al., 2016), likely due to insufficient RPF coverage within these short ORFs. We propose
here that increasing RPF coverage will improve the efficiency of identifying translated ORFs,
especially for relatively short ORFs. We thus tested a new protocol using 7-d-old Arabidopsis
seedlings. We generated both Ribo-seq and RNA-seq libraries. We made two major
modifications in the Ribo-seq library preparation: 1) changing the order between RPF size
selection and ribosomal RNA (rRNA) depletion to maximize the input materials; and 2) reducing
the steps of RNA purification to minimize potential loss of RPFs (see MATERIALS AND
METHODS for details). We observed that the number of PCR cycles needed for the final Ribo-
seq library amplification dropped from 12 cycles (Hsu et al., 2016) to 9 cycles, suggesting that
RPF yield increased.

After sequencing and data analysis, we observed excellent correlations among the
respective biological replicates for Ribo-seq and RNA-seq samples (Supplemental Fig. S$1, r =
0.99-1 for Ribo-seq; r = 0.98-1 for RNA-seq). Overall, the Ribo-seq samples showed good
correlations with the RNA-seq samples (Supplemental Fig. S1, r = 0.87-0.93), as previously
reported (Hsu et al., 2016).

Importantly, our new Ribo-seq data displayed characteristics expected for high-quality
data, with strong 3-nt periodicity (92% in-frame reads for 28-nt RPFs), high enrichment for
coding sequences (CDSs), and expected RPF lengths with 28 nt being the most abundant (Fig.
1A-C). To examine RPF diversity and coverage globally, we examined how many P-sites (the
peptidyl tRNA-binding sites within translating ribosomes) these RPFs mapped to. From 20
million randomly selected reads, the number of unique P-sites detected in our new data was
4.01-fold higher than that in our previous dataset from Arabidopsis seedling shoots and roots
grown under similar conditions (Fig. 1D), indicating an increased RPF diversity in the new data.
The improved coverage was also evident in individual transcript profiles when comparing genes

of similar mRNA levels. The overall RPF coverage within mORFs (and expected uORFs, if any)
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was improved, and RPF levels were less noisy in our current data compared to the previous
data (Figs. 1E, and 8A-B).

OREF identification based on significant 3-nt periodicity

As the six samples were highly correlated (Supplemental Fig. S1), we pooled them to
create one large Ribo-seq dataset and one large RNA-seq dataset for ORF identification, with
the goal of identifying short ORFs and ORFs potentially translated at lower levels. In total, we
obtained 298 million mapped Ribo-seq reads, corresponding to 11.2 million unique P-sites.

To capture translation events arising from unannotated transcripts, we also performed a
reference-guided de novo transcriptome assembly using Araport11 annotation (Supplemental
Fig. S2, workflow for ORF identification; Supplemental File S1, newly assembled
transcriptome GTF). We then used RiboTaper (Calviello et al., 2016), a spectrum analysis
software, to assess whether a significant 3-nt periodicity can be detected within each potential
AUG-initiated ORF along both the transcripts annotated in Araport11 and the newly assembled
transcripts. Theoretically, the smallest ORFs that RiboTaper could identify encode at least two
amino acids.

Our new data dramatically increased the number of translated ORFs detected by
RiboTaper (using the default cutoff, Multitaper F-test, P < 0.05). Among annotated protein-
coding genes, we identified the translation of 2,113 uORFs, 35,191 annotated ORFs (referred to
as ‘Conventional CDSs [CCDSs] by RiboTaper), and 209 dORFs (Fig. 2A, 2B and
Supplemental Dataset S1A-C). Additionally, we identified 546 ORFs (referred to as ‘ncORFs’
by RiboTaper) from transcripts that were not previously considered as protein coding (Fig. 2A,
2B and Supplemental Dataset S1D). These ncORFs comprised 164 from newly assembled
transcripts, 246 from annotated IncRNAs, miRNA precursors, other RNAs, and 136 from
annotated pseudogenes (Fig. 2C). The number of ORFs identified in this study is in strong
contrast to our previous datasets (187 uORFs, 10 dORFs, 64 ncORFs). Overall, these
unannotated ORFs tend to be small in size. The median lengths for encoded peptides from
ncORFs, dORFs, and uORFs were 46, 29, and 21 aa, respectively (Fig. 2E), which is consistent
with the notion that ORFs smaller than 100 aa are often excluded from the annotation (Basrai et
al., 1997).

The flanking sequence surrounding the start codon, termed the Kozak sequence, is
known to be enriched for specific nucleotides (Kozak, 1981). We investigated whether these
unannotated ORFs possess an optimal Kozak sequence. While the mORFs clearly showed an

enrichment of A/G at the -3 position and G at the +4 position (Supplemental Fig. S3A-B),
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consistent with a previous study (Liu et al., 2013), other types of ORFs (UORFs, sORFs, and
dORFs), generally did not exhibit strong nucleotide preferences at the -3, +4, or other
surrounding positions (Supplemental Fig. S3C-J). Lacking a predictable Kozak sequence in
these non-canonical ORFs highlights the need for empirical approaches to identify these
translation events.

Proteomic analysis using mass spectrometry confirmed the production of stable proteins
from at least some of these ncORFs, dORFs, and uORFs, as evidenced by the detection of
multiple peptides from each ORF (4™ column in Fig. 2C and Supplemental Dataset S2A-B).
Note that despite our proteomic analysis being relatively deep as indicated by the number of
annotated ORFs detected, we only detected a small fraction of ncORFs, dORFs, and uORFs by
this approach. In our previous study, three out of four sORFs tested in Arabidopsis were
detected by immunoblot analysis (Hsu et al., 2016). The discrepancy between these two protein
detection approaches suggests that a proteomic method specifically optimized for short ORFs is
required.

Among the 467 ncORFs that were at least 20 aa, TargetP v2.0 (Armenteros et al., 2019)
predicted that 4, 28 and 128 are targeted to chloroplasts, mitochondria, or are secreted,
respectively (Fig. 2D, Supplemental Dataset S3), suggesting their potential function in these
subcellular localizations.

We analyzed the evolutionary conservation of 255 single-exon ncORFs using tBLASTn.
Notably, only 22 of these ncORFs had homologs outside of the Brassicaceae among the 13
genomes we searched (Supplemental Fig. S4). These results are consistent with our previous
findings in tomato, where most of the identified tomato sORFs were family- or species-specific
(Wu et al., 2019). Together, these observations align with the notion that many sORFs are likely
de novo genes that have emerged recently in evolution in eukaryotes (Ruiz-Orera et al., 2014,
Sandmann et al., 2023).

We investigated these unannotated ORFs individually using RiboPlotR (Wu and Hsu,
2021) to evaluate their translation patterns. RiboPIotR displays Ribo-seq and RNA-seq data in
the context of gene and transcript structures, and the RPFs within ORFs are color-coded
according to the reading frame. Examples of ORFs translated from the Araport11 annotated
‘novel transcribed regions’ (Fig. 2F), the primary transcripts of miR163 and miR169 (Fig. 2G-H),
and a newly identified uORF (Fig. 2I) are presented. We also confirmed the translation of QQS
(Fig. 2J), a functional sORF with de novo origin (Li et al., 2009). It has been shown that the
application of synthetic peptides encoded by the sORFs within the primary transcripts of

miRNAs increases the abundance of the corresponding miRNAs (Lauressergues et al., 2015).
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However, no significant RPFs or 3-nt periodicity had previously been detected in the primary
transcripts of miRNAs in previous Ribo-seq data in plants. The two ORFs detected in pri-
MIR163 encode peptides of 9 and 25 aa, respectively (Fig. 2G), while the ORF detected in pri-
MIR169 encodes a 50-aa peptide (Fig. 2H). Although these three peptides are not conserved,
the second peptide from pri-MIR163 is predicted to localize to mitochondria according to
TargetP.

Taken together, our new data with improved coverage expands the number of identified

translated ORFs, particularly those of smaller size that are often overlooked in the annotation.

Translation detected in plastids and mitochondria

In addition to RPFs mapped to nuclear genes (hereafter referred to as ‘nucleus RPFs’),
the sample preparation of our current study also included the addition of chloramphenicol,
enabling us to examine the RPFs mapped to plastid/chloroplast and mitochondrial genes
(hereafter referred to as ‘plastid RPFs’ and ‘mitochondria RPFs’). Consistent with previous
observations (Chotewutmontri and Barkan, 2016), plastid RPFs and mitochondria RPFs only
composed a small fraction of total RPFs (Fig. 1B and Suppiemental Fig. S5).

Unlike nucleus RPFs, which mainly mapped to CDSs (Fig. 1B and Supplemental Fig.
S5), Ribo-seQC analysis (Calviello et al., 2019) revealed that a substantial fraction of plastid
and mitochondria RPFs map to intergenic regions, particularly 33 nt for plastid RPFs and 28-nt
for mitochondria RPFs (Supplemental Fig. S5). For RPFs mapped to CDSs, the predominant
RPF length was 28 nt for nucleus and chloroplast RPFs, while it was 29 nt for mitochondria
RPFs (Supplemental Fig. S5). Overall, the size distribution of these organelle RPFs was
similar to previous observations reported in maize (Zea mays) and Arabidopsis for plastid and
mitochondrial RPFs (Chotewutmontri and Barkan, 2016; Planchard et al., 2018).

We analyzed the frame enrichment in individual RPF lengths using Ribo-seQC and

found that 28 nt provides the highest frame enrichment in all three genomes (Supplemental Fig.

S$6). However, at this length, nucleus and plastid RPFs used frame 1 (red), whereas
mitochondria RPFs used frame 3 (teal) (Supplemental Fig. $6). In general, plastid RPFs
exhibited strong 3-nt periodicity across the 22—-30-nt range, with 71-83% RPFs being in frame.
By contrast, mitochondria RPFs displayed relatively weak 3-nt periodicity, with the best in-frame
percentage being around 52% at either 28 nt or 22 nt (Supplemental Fig. S6). These
observations suggest that while our ribonuclease digestion condition works well for nucleus and

plastid RPFs, there is still room for optimization for mitochondria RPFs.
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We also examined the RPFs mapped to annotated start codons to infer the P-site
position in each RPF length (Supplemental Fig. S7-9). Overall, plastid RPFs and nucleus
RPFs behaved similarly (Fig. 3A, left). For 28-nt RPFs, their P-site was positioned 12 nt
downstream from the 5' end of the RPF, starting from the 13" nt (Fig. 3A, left, and
Supplemental Fig. S7, S8). As the RPF lengths decreased, the RPFs became shorter at the 5’
end, while the distance from the P-site to the 3' end remained constant at 16 nt (including the
first nt of the P-site) (Fig. 3A, left). By contrast, the mitochondria P-site was located 7 nt
downstream from the 5’ end for 28-nt RPFs (Fig. 3A, right and Supplemental Fig. S9), and the
distance from the P-site to the 3' end remained constant at 21 nt (Fig. 3A, right).

In agreement with the above results, metaplots showed that plastid RPFs exhibit similar
patterns as nucleus RPFs, with strong 3-nt periodicity and enrichment of frame 1 (red) (Fig. 1A
and 3B). However, plastid RPFs lacked the signature blue signal (from frame 2) observed in
nucleus RPFs at the codon preceding the stop codon (Fig. 1A and 3B). By contrast,
mitochondria RPFs showed relatively weak 3-nt periodicity and mainly used frame 3 (teal) (Fig.
3C).

Inspecting individual plastid and mitochondria genes also confirmed that plastid genes
preferentially use frame 1 (red) (Fig. 3D-E), while mitochondria genes predominantly used
frame 3 (teal) (Fig. 3F). Interestingly, two mitochondrial genes (ATMG00280 and ATMG01320)
used frame 1 (red) (Fig. 3G—H), and they were predicted to encode proteins that function in the
chloroplasts: ATMGO00280 is annotated as a large subunit of RUBISCO, while ATMG01320 is
annotated as a plastoquinone/NADH-ubiquinone protein. The usage of frame 1 (red) in these
two mitochondrial genes suggests that the detected RPFs are likely derived from their plastid-
and nuclear homologs (ATCG00490 and AT2G07689), respectively, and that ATMG00280 and
ATMGO01320 are not translated.

We observed substantial intron retentions in many plastid and mitochondrial genes;
however, the RPFs mainly mapped to the CDS/exon regions and are sparse in the intron
regions (e.g., Fig. 3E—F). These observations suggest that translation occurs after the introns
are spliced and that not all genes in plastids and mitochondria necessarily use a coupled
transcription-translation mechanism like their prokaryotic ancestors (Xiong et al., 2022; Trésch,
2022).

Together these results demonstrate that our data are useful to validate the annotated

gene models in plastids and mitochondria and to study translation in these organelles.

sORFs detected in tasiRNAs
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Next, we investigated unconventional translation events in annotated ncRNAs, focusing
on tasiRNAs. The biogenesis of tasiRNAs involves miRNA-guided cleavage of the primary TAS
transcripts (reviewed in (Fei et al., 2013)). There are four TAS gene families in Arabidopsis.
Previous studies have reported the detection of RPFs on the primary transcripts of TAS71-4,
especially at a sORF upstream of the miRNA target site (Li et al., 2016; Hsu et al., 2016; Bazin
et al., 2017; Iwakawa et al., 2021). The RPF stalling associated with the sORF was shown to be
important for tasiRNA production (lwakawa et al., 2021). However, it remains unknown whether
ribosomes in fact translate these sORFs. Only the sORFs in TAS3A and TAS4 have been
detected with significant 3-nt periodicity (Hsu et al., 2016; Hsu and Benfey, 2018). With the
improved coverage of our dataset, RiboTaper identified actively translated ORFs across all four
TAS gene families (Figs. 4 and 5). It is worth noting that translation occurs not only in the ORFs
immediately adjacent to the miRNA target sites but also in ORFs upstream or downstream of
the miRNA target sites.

In TAS1A, RiboTaper identified two ORFs (Fig. 4A). Interestingly, TAS1A contains an
unannotated intron, suggesting that TAS7A may also be regulated by alternative splicing. ORF2
is located within this retained intron and overlaps with the miR173 target site (Fig. 4A).
Importantly, we observed RPF stalling 16 nt upstream of the miR173 target site (Fig. 4A).
Similarly, in TAS1B, RiboTaper detected two ORFs, and we detected strong RPF stalling 14 nt
upstream of the miR173 target site (Fig. 4B). TAS1C has three ORFs identified by RiboTaper
(ORF1, ORF2, and ORF4). Additionally, another ORF (ORF3) overlapped with the miR173
target site, and we detected strong RPF pausing signals within this ORF at 14 and 17 nt
upstream of the miR173 target site (Fig. 4C). It should be noted that ORF3 was likely excluded
by RiboTaper due to its overlap with ORF2, which uses a blue reading frame (Fig. 4C).

In TAS2, we observed strong 3-nt periodicity in ORF1, accompanied by distinct RPF
stalling 16 nt upstream of the miR173 target site (Fig. 4D). We observed another strong pausing
30 nt upstream of the pausing adjacent to the miR173 target site.

Unlike TAST and TAS2, TAS3A possesses two miR390 target sites. In line with our
previous findings (Hsu et al., 2016; Hsu and Benfey, 2018), RiboTaper identified the ORF
located entirely upstream of the first miR390 target site, with strong 3-nt periodicity (Fig. 5A).
Moreover, we detected strong stalling 16 nt upstream of the first miR390 target site (Fig. 5A).

TAS4 has relatively low expression in our data. Nevertheless, consistent with our
previous findings (Hsu et al., 2016), RiboTaper detected an ORF in the only annotated transcript

(isoform 1). However, when we visualized the RNA-seq and Ribo-seq profiles, we realized that
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TAS4 has an unannotated isoform (isoform 2). The RPFs located within the ORF in isoform 2
overlap with the miR828 target site (Fig. 5B).

Together, our data provide evidence of extensive RPFs associated with TAS7, TAS2,
TAS3, and TAS4. The significant 3-nt periodicity observed in these ORFs strongly supports their
active translation. In a previous study on TAS2, the position of ORF termination relative to the
miR173 target site was shown to be crucial for tasiRNA biogenesis (Yoshikawa et al., 2016). In
TAS1, TAS2, and TAS3, we observed that RPFs accumulate until 14—-17 nt upstream of the
miRNA target site. Considering that our RPFs were plotted using the first nt of the P-site (the
13" nt for 28-nt RPFs) and the distance between the P-site to the 3' end remained constant at
16 nt (Fig. 3A), the observed distance between RPF pausing and the miRNA target site
coincides with the approximate length of the RPF from the P-site to the 3’ end (illustrations in
Fig. 5C). In line with the previously proposed ‘ribosome stalling complex’ model (lwakawa et al.,
2021), our observations suggest that most ribosomes can translate until they encounter the
mMiRNA-ARGONAUTE (AGO)-SUPPRESSOR OF GENE SILENCING 3 (SGS3) complex,
leading to ribosome stalling in TAS1, TAS2, and TAS3 (Fig. 5C). These results are also
consistent with the previous finding that a mutation within 6 nt upstream of the miR173 target
site does not have observable effects (Yoshikawa et al., 2016), as the last ribosomal P-site is 16
nt upstream of the miRNA target site (Fig. SC). Thus, our improved coverage data enhance the

resolution and identification of translated ORFs on TAS transcripts.

Translation of dORFs

Next, we examined unannotated ORFs in protein-coding genes. In our dataset,
RiboTaper identified 209 dORFs (Fig. 2A and 2B). This class of ORFs has not been described
in detail in plants, and their functional significance remains unknown. Interestingly, we found
that the mORFs of genes containing dORFs exhibit higher translation efficiency compared to
genes without dORFs, suggesting that dORFs are associated with genes whose transcripts
exhibit high translation efficiency (Fig. 6A). Indeed, a gene ontology (GO) term enrichment
analysis on the dORF-containing genes revealed enrichment for genes expected to be highly
expressed and translated, such as ribosome and translation machinery (Supplemental Dataset
S4).

We further evaluated these dORFs by analyzing their translational profiles (Fig. 6B—F).
While we confirmed that these dORFs display strong 3-nt periodicity, we observed that most of
the dORFs have low translation levels (Fig. 6B—E). Notably, their patterns could be categorized

into two groups and the patterns suggest that they are unlikely to be reinitiation events following
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the termination of the mOREFs. In Type 1 dORFs, the mORF has relatively high translation levels
(Fig. 6B-D), and substantial RPFs are present between the mORF and the dORF
(Supplemental Fig. S10A—C). This finding suggests that the RPFs in the dORF may result from
a readthrough of the mORF using frame 1 (red) (Supplemental Fig. S10A) or continued
translation from an alternative ORF using a different frame (e.g., blue, Supplemental Fig.
S$10B-C).

Type 2 dORFs appear to originate from unannotated small genes/transcripts that are
located downstream or overlapping with the 3' UTRs of annotated genes. These dORFs are
likely derived from independent genes/transcripts, as their mRNA levels differ from those of the
annotated genes (Fig. 6E—F). For example, there is a small gene that was annotated as part of
the 3' UTR of isoform 2 of AT3G46640 LUX ARHYTHMO (LUX, encoding a key transcription
factor in the circadian clock), and RiboTaper identified two translated ORFs of 58 and 54 aa in
this unannotated gene (Fig. 6E). Similarly, we identified a dORF in the 3' UTR of AT1G49980
(Fig. 6F). The start codon of the dORF overlaps with the stop codon of the mORF (zoomed-in
section in Fig. 6F), indicating that these two ORFs cannot be translated sequentially on the
same mRNA. Published Cap Analysis of Gene Expression (CAGE) data (Thieffry et al., 2020)
revealed additional transcription start sites associated with these dORFs (Supplemental Fig.
S$11A,B), providing further support that these unannotated ORFs, hidden within the 3' UTRs or
downstream regions of other genes, originate from independent genes/transcripts.

Interestingly, a tBLASTn search of the 153 dORFs greater than 20 aa revealed that 11 of
these dORFs are conserved throughout evolution (Supplemental Fig. $S12). Importantly, all 11
conserved dORFs belong to Type 2 dORFs (Supplemental Fig. S12). This finding suggests
that the peptide sequences encoded by these unannotated genes (dORFs) likely correspond to
functional proteins.

Taken together, the dORFs we detected are unlikely to be reinitiation events analogous
to the uUORF—mORF pairs. Type 1 dORFs potentially result from readthrough events, which
have been recently reported in Arabidopsis (Sahoo et al., 2022), or they could be part of
alternative ORFs (Fig. 6G, left); further investigation is needed to elucidate the underlying
mechanisms. Type 2 dORFs revealed the presence of unannotated small genes hidden in the 3’

region of other genes (Fig. 6G, right).

Ribosome queueing at CPuORFs links to co-translational decay
We next investigated uORFs, which represent the largest class of unannotated ORFs we

identified (Fig. 2A). CPuORFs are of great interest as they are associated with substantial
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ribosome pausing/repression, likely through an interaction between the nascent peptide and the
exit tunnel within ribosomes. Notably, several CPUORFs have been reported to interact with
certain metabolites (reviewed in (Van Der Horst et al., 2020)). CPuORFs are also a focus of co-
translational decay studies (Yu et al.,, 2016; Hou et al., 2016; Guo et al., 2023a). Co-
translational decay demonstrates that mRNAs can undergo degradation while bound by
translating ribosomes. As a result, the degraded mRNA fragments display features associated
with translation (Hu et al., 2009; Pelechano et al., 2015; Merret et al., 2015; Yu et al., 2016; Hou
et al., 2016). Global analysis of 5’ ends of mMRNA degradation fragments in Arabidopsis detected
mMmRNA fragments with ~30-nt periodicity (approximate length of RPFs) preceding the stop
codons of several CPuORFs, supporting the idea that several ribosomes tightly stack behind a
pausing ribosome in these regions (Yu et al.,, 2016; Hou et al., 2016; Guo et al., 2023a).
However, the corresponding 30-nt periodicity of RPFs was not detecied in previous Ribo-seq
data (Hou et al., 2016).

In Arabidopsis, 119 CPuORFs have been identified, classified into 81 homology groups
based on the conservation of the uUORF peptide sequences (reviewed in (Van Der Horst et al.,
2020)). We examined the RPFs in different homology groups of CPUORFs and found those in
Homology Group 1 show clear periodic ribosome pausing patterns. Specifically, we observed 2—
4 distinct RPF peak(s) in 30-nt intervals upstream of the stop codons of CPUORF1, CPuORF2,
and CPuORF3, within BASIC LEUCINE ZIPPER 2 (bZIP2), bZIP11, and bZIP53 transcripts,
respectively (Fig. 7A-C). These patterns are consistent with the expectation that multiple
ribosomes line up behind a pausing ribosome prior to the stop codon of these CPUORFs (see
illustrations of ribosome positions above the RPF peaks in Fig. 7A-C). We also observed a
similar pattern in MYB51 transcripts (Fig. 7D), which contain a Brassicaceae-specific CPuORF
(Hou et al., 2016). Therefore, our enhanced Ribo-seq data provide evidence for periodic
ribosome pausing upstream of the stop codons of CPUORFs, further supporting the occurrence

of co-translational decay in plants.

Identification of UORFs using RiboTaper

Besides CPuORFs identified by evolutionary conservation, we also investigated uORFs
identified through our experimental approach. uORFs represent the shortest unannotated ORFs
(Fig. 2E), and their identification could be most affected by RPF coverage. Our new data

substantially improved the detection of uUORFs based on the 3-nt periodicity, increasing the

number from the previous 187 uORFs to 2113 uORFs (Fig. 2A,B, Supplemental Dataset S1A).

Strong 3-nt periodicity within the uORF regions in the translational profiles supports the active
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translation of these uORFs (examples shown for RIBOSOMAL S6 KINASE 1 (S6K1) and
REPRESSOR OF GA 1 (RGAT1) in Fig. 8A,B). Comparing uORF genes with similar mRNA
levels in our previous and current datasets, it is evident that both the uORF and mORF regions
exhibited improved coverage in our current data (Fig. 8A,B).

Consistent with our expectations, these translated uORFs were associated with lower
mORF translation efficiency (Fig. 8C). Furthermore, genes that have a higher number of
translated uORFs exhibited lower mORF translation efficiency (Fig. 8C).

To validate that these uORFs function as translational repressors, we performed a dual-
luciferase assay comparing wild-type uORFs with mutated uORFs, where the start codon ATG
was mutated to AGG, in S6K7 and RGA1 (Fig. 8D and 8E). Upon mutating the uORFs, the
downstream firefly luciferase (FLUC) reporter showed increased protein levels/activity (Fig. 8E),
while FLUC transcript levels showed no significant changes (Fig. 8F). These results suggest

that these uORFs normally repress the translation of their downstream mORFs.

Identification of uUORFs using CiPS

Although the uORFs identified by RiboTaper show significant 3-nt periodicity, we
observed that globally, uORFs have the lowest 3-nt periodicity compared to CCDSs and
ncORFs (Fig. 9A), and the 3-nt periodicity appears to be inversely correlated with ORF length
among these ORF groups (Fig. 9A and Fig. 2E). We reasoned that the overall 3-nt periodicity is
affected by the atypical RPFs observed at the codon proceeding the stop codon (the —1 codon).
In this position, the P-sites of many RPFs mapped to frame 2 (blue) instead of the expected
frame (red) (Fig. 1A and illustrations in Fig. 9B—E). This pattern likely arises from the binding of
release factors, rather than a charged tRNA, to the A-site during termination, leading to a
different ribosomal conformation and resulting in distinct RPF patterns (Alkalaeva et al., 2006;
Brown et al., 2015; Matheisl et al., 2015). In addition, given that termination is a major rate-
limiting step during translation, more RPFs are associated with this position (Wolin and Walter,
1988; Ingolia et al., 2009). Importantly, this out-of-frame signal (blue) can disproportionally and
substantially lower the 3-nt periodicity of short ORFs and influence their identification based on
3-nt periodicity (illustrations in Fig. 9B-E). Indeed, comparing the size distribution of predicted
uOREFs (i.e., AUG-initiated ORFs in the 5' UTR) and those identified by RiboTaper revealed that
RiboTaper clearly biases towards longer uORFs (Fig. 9F, median length of 9 and 21,
respectively).

To improve the identification of short uUORFs, we developed a new approach called CiPS

(Count, in-frame Percentage and Site). In brief, we first classified the blue signal at the -1
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codon as being in frame. We then applied three criteria to consider if a uORF is translated by
evaluating 1) RPF counts, 2) in-frame RPF percentage, and 3) the percentage of occupied in-
frame sites (see MATERIALS AND METHODS for detail).

In total, CiPS identified 6,539 translated uORFs (Supplemental Dataset S5A), including
370 minimum uORFs (1 aa) and 388 uORFs of 2 aa in length (Supplemental Dataset S5B, C).
By contrast, RiboTaper identified no minimum uORFs and only one 2-aa uORF (Supplemental
Dataset S1A). CiPS successfully identified a substantial number of short uORFs (Fig. 9H-I).
Notably, the uORFs identified by CiPS exhibited a similar size distribution as predicied uORFs
(Fig. 9F). RiboTaper and CiPS identified 1653 uORFs in common, while 460 uORFs only
detected by RiboTaper and 4,886 uORFs only detected by CiPS (Fig. 9G). The uORFs
identified exclusively by RiboTaper had a marginal effect on the translation efficiency of their
mORFs (Fig. 9J). By contrast, the uORFs identified by CiPS only or by both methods showed
significantly stronger repression (Fig. 9J).

CiPS also improved the number of uORFs identified within individual transcripts, with the
highest number of 7 uORFs detected within a transcript (Fig. 9K). In the example of AUXIN
RESPONSE FACTOR 6 (ARF6) transcript (Fig. 9L), there are six potential AUG-initiated
uORFs. CiPS identified uORF-1, uORF-4, uORF-5, and uORF-6. By contrast, RiboTaper only

identified UORF-6. We also observed a noncanonical uORF initiated by an AUA start codon (Fig.

9L). uORF-1 and 4 were excluded by RiboTaper, likely due to the strong blue signal at the —1
codon, as well as the partial overlap between uORF-4 and neighboring uORFs (Fig. 9L).

Consistent with our expectations and the findings of RiboTaper (Fig. 8C), genes
containing a higher number of CiPS-identified uORFs showed a correlation with lower mORF
translation efficiency (Fig. 9M).

A previous survey of 23 plant uORFs in the literature suggested that longer uORFs are
associated with stronger repression of their mMORFs (Von Arnim et al., 2014). As the 23 uORFs
characterized are enriched for CPUORFs, which are known to have special properties (Van Der
Horst et al., 2020), we investigated whether there is a general relationship between uORF
length and repression among diverse uORFs. We compared genes with one translated uORF
encoding 1, 2-10, 11-20, 21-30, or > 30 aa, and found that they similarly repress the
translation efficiency of their mORFs, compared to genes without any translated uORFs (Fig.
9N). This result suggests that these translated uORFs, regardless of their length, are equally

powerful translational repressors on a global scale.

Characterization of minimum uORFs and tiny uORFs
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By definition, ‘AUG-stop’ represents the shortest possible uORF, known as a minimum

UOREF (illustrations in Fig. 9C). In our dataset, 746 minimum uORFs contained at least one RPF.

As minimum uORFs only have 1 codon, we removed the in-frame site criterion of CiPS
accordingly and uncovered 370 minimum uORFs that passed the remaining criteria
(Supplemental Dataset S5B). This list included the two minimum uORFs previously reported in
NOD26-LIKE INTRINSIC PROTEIN 5;1 (NIP5;1) (Fig. 10A), and the minimum uORFs reported
in SKUS and BORZ2 (Fig. 10B,C), which are all related to boron transport and response (Tanaka
et al., 2016; Sotta et al.,, 2021). Our data did not detect the reported minimum uORF in
ABNORMAL SHOOT 2 (ABS2), as in our experimental conditions, ABS2 uses a transcription
start site downstream of the potential minimum uORF (Fig. S$13). Notably, we detected new
minimum uORFs in several important genes, including PBS1-LIKE 36 (PBL36), encoding a
receptor-like kinase involved in regulating shoot and root meristems; SNF1-RELATED
PROTEIN KINASE 2.2 (SnRK2.2), encoding a key kinase in the ABA signaling pathway; and
NONEXPRESSER OF PR GENES 1-LIKE PROTEIN 3 (NPR3), encoding a salicylic acid
receptor and a negative regulator of plant pathogen response (Fig. 10D—F). As expected, these
minimum uORFs showed the characteristic blue signal at the —1 codon, since minimum uORFs
consist of only one codon, which is also immediately upstream of the stop codon (Fig. 10A-F,
illustrations in Fig. 9C).

As shown in Fig. 9N, globally, minimum uORFs showed similar repression effects on
downstream mOREF translation, compared to longer uORFs. To validate the functions of these
minimum uORFs, we performed a dual-luciferase assay to test the uORFs in BOR2, ShRK2.2
and NPR3 (Fig. 10G and 10H). We observed that mutations in the uORFs lead to increased
FLUC activity levels without significantly affecting FLUC transcript levels (Fig. 10H and 10l).
These results support the notion that these minimum uORFs normally repress the translation of
their downstream mORFs.

Like minimum uORFs, other uORFs of extremely short lengths are difficult to identify
based on 3-nt periodicity (illustrations in Fig. 9D-E). CiPS successfully identified 2,921 tiny
uORFs (2-10 aa) (Supplemental Dataset S5C). Examples of 2-, 3-, 4-, 5-, and 8-aa uORFs
are shown in Fig. 11A-D and Supplemental Fig. S14A-B. Similar to minimum uORFs,
mutations in these tiny uORFs result in increased FLUC activity levels without significantly
increasing FLUC transcript levels (Fig. 11E, Supplemental Figs. $15 and S14C,D). These
results support the idea that these tiny uORFs normally repress translation of their mORF and

are consistent with their repressive effects observed in global analysis (Fig. 9N).
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Overlap of translated uORFs

Case studies using reporter assays have suggested that the CPuORFs in Homology
Groups 1 and 3 can be regulated by their overlapping uORFs (Hanfrey et al., 2002; Wiese et al.,
2004; Hanfrey et al., 2005). In our dataset, we detected thousands of transcripts that possess
multiple translated uORFs (Fig. 9K), with some uORFs overlapping with each other (e.g., Fig.
9L). However, the extent of UORF overlapping at a genome-wide scale has remained unclear,
especially since a comprehensive list of translated uORFs was previously lacking. As CiPS
permits some level of overlap between uORFs, our new dataset offers an opportunity to identify
uORF stacking globally. We systematically identified the overlapping events of translated
uORFs on the most abundant transcript isoforms in our data, resulting in the identification of 681
overlapping uORFs in 317 transcripts (Supplemental Dataset S6A).

It Is noteworthy that out of the 92 CPuORF transcripts detected in our data, 18
possessed additional translated uORFs that stack with the CPUORF. Remarkably, we detected
stacking uORFs in all five members of Homology Group 1 CPuORFs within bZIP1, bZIP2,
bZIP11, bZIP44, and bZIP53 mRNAs (Supplemental Dataset S6B). This result is in line with
the notion that the five members in Homology Group 1 contain an overlapping uORF upstream
of the CPuOREFs, which is also conserved (Wiese et al., 2004). Examples of uUORF/CPuORF
overlapping  within ~ bZIP11  (Homology @ Group 1), S-ADENOSYLMETHIONINE
DECARBOXYLASE 2 (SAMDC2, Homology Group 3), and CBL-INTERACTING PROTEIN
KINASE 6 (CIPK6, Homology Group 27) are presented in Fig. 12A-C. The translational
regulation of bZIP11 by uORFs has been extensively studied (Rook et al., 1998; Wiese et al.,
2004; Rahmani et al., 2009; Roy et al., 2010). In bZIP11, three other uORFs stack with the
CPuORF, but only the first uUORF (18 aa) was detected as translated (Fig. 12A), which is
consistent with the previous observation that the first uUORF regulates the CPuORF in reporter
assays (Roy et al., 2010). Similarly, in SAMDC?2, one 3-aa uORF was translated and stacked
with the CPUORF (Fig. 12B); in CIPK6, one 12-aa uORF was translated and stacked with the
CPuOREF (Fig. 12C). These uORF stacking events, particularly the conserved stacking pattern
in Homology Group 1, suggest that these upstream stacking uORFs potentially regulate the
translation of CPuORFs.

Translated uORFs affected by alternative splicing
As the presence of potential uORFs is determined by the 5" UTR sequences, the
occurrence of translated uORFs may be regulated by alternative splicing in the 5' UTRs. Two

such examples have been reported in HCS17, encoding a holocarboxylase synthetase, and
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PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), encoding a repressor of light responses.
In the case of HCS1, the presence or absence of the isoform-specific UORF leads to different
translational initiation sites and alters the subcellular targeting of HCS1 (Puyaubert et al., 2008).
In the case of PIF3, an intron retention within the 5" UTR is regulated by phytochrome B to
repress the translation of PIF3 transcript (Dong et al., 2020). Although the particular isoforms
reported to affect the uORFs in HCS7 and PIF3 were not significantly expressed under our
experimental conditions (Supplemental Fig. S16A-B), by examining the two most abundant
isoforms of expressed genes in our data, we identified 594 translated uORFs that are affected
by alternative splicing within 399 genes (Supplemental Dataset S7A, 7B).

These uORFs are linked to specific isoforms through various alternative splicing events,
including intron retention, alternative 5' donor site, alternative 3" acceptor site, and exon skipping
(Fig. 13A-D). Notably, TOPLESS, an important regulator in the auxin and jasmonic acid (JA)
signaling pathways, contained a cassette exon, which includes a translated uORF in isoform 2
(Fig. 13D). These examples illustrate that the presence of and regulation by a uORF may be
widely controlled by alternative splicing and suggest the prevalence of isoform-specific

translational control.

Pathways regulated by uORFs

A prior bioinformatic analysis indicated that predicted uORFs are enriched in genes
encoding transcription factors and protein kinases (Kim et al., 2007). To investigate what
molecular functions and pathways are controlled by translated uORFs, we performed a GO term
enrichment analysis on genes containing uORFs identified by RiboTaper or CiPS
(Supplemental Fig. $17). Consistent with the previous prediction, we identified protein
phosphorylation/modification, signal transduction, regulation of gene expression, in the
‘Biological Process’ terms, and protein kinase activity, transcription regulator activity, DNA
binding in the ‘Molecular Function’ terms. Interestingly, we identified many membrane-
associated terms, including peroxisomal membrane, endosomes, Golgi, vesicles, plasma
membrane in the ‘Cellular Component’ terms (Supplemental Fig. S17).

We also surveyed whether genes in various critical pathways harbor translated uORFs.
Our analysis revealed that many key components in the light signaling, circadian clock, eight
phytohormone signaling pathways (auxin, abscisic acid [ABA], JA, ethylene, gibberellin [GA],
salicylic acid [SA], cytokinin, and brassinosteroids), development, as well as processes related
to translational control, RNA biology, or signaling, contain translated uORFs (Table 1). These

findings suggest that these important plant pathways are under translational control through
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uORFs. Therefore, our comprehensive uORF list serves as a valuable resource for further

understanding gene expression regulation and plant growth.

DISCUSSION

In this study, we tackled the identification of short ORFs by improving the coverage of
Ribo-seq and developing a new computational pipeline for uORF identification. Our results
provide a clearer view of the translational landscape and useful resources for diverse gene
regulation studies, especially for uORFs on protein-coding transcripts and sORFs within
presumed non-coding RNAs.

While a large portion of sORFs may be simply misannotated due to constraints of
computational annotations, the translation of sORFs within well-characterized non-coding RNAs,
such as primary transcripts of tasiRNAs and miRNAs, highlights the existence of ‘dual function’
RNAs (reviewed in (Ulveling et al., 2011; Raina et al., 2018)). That is, some RNAs may function
as regulatory RNAs while also possessing protein-coding capacity. In the case of tasiRNAs, the
translation of sORFs within primary transcripts regulates the biosynthesis of tasiRNAs (Zhang et
al., 2012; Yoshikawa et al., 2016; Li et al., 2016; Hou et al., 2016; Bazin et al., 2017; lwakawa et
al., 2021). In the case of miRNAs, application of synthetic micropeptides encoded by the sORFs
in several pri-MIRNAs increases the abundance of the pri-MIRNAs or mature miRNAs
(Lauressergues et al., 2015; Sharma et al., 2020). For both tasiRNAs and pri-miRNAs, the
translation and the regulatory RNA act in the same pathways, but it remains possible that the
two functions act in different pathways, as shown in bacteria (reviewed in (Raina et al., 2018)).
Only a limited number of sORFs have been characterized in plants so far, but these sORFs
clearly have wide ranges of functions (Hanada et al., 2013; Tavormina et al., 2015; Hsu and
Benfey, 2018; Fesenko et al., 2019; Ong et al., 2022). Studies in bacteria and mammals
revealed that dozens of sORFs encode membrane proteins (reviewed in (Orr et al., 2020)).
These small proteins can be a component of a large protein complex, or involved in the
recruitment of other proteins to membranes, the assembly of protein complexes within or near
membranes, and controlling protein stability or activity of other proteins. The prediction that a
substantial portion of Arabidopsis sORFs we detected are secreted proteins offers a promising
direction for functional characterization of these sORFs.

We found that out-of-frame (frame 2) RPFs at the codon preceding the stop interfere
with the identification of short uORFs. In eukaryotes, translational termination occurs when the

ribosomal A-site encounters one of the three stop codons, followed by eRF1/eRF3 complex
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binding to the A-site and releasing the nascent peptide (reviewed in (Schuller and Green, 2018)).
Cryogenic electron microscopy (Cryo-EM) analysis of mammalian ribosomes at termination
revealed that eRF1 binding ‘pulls’ the nucleotide downstream of the stop codon into the A-site,
thus packing 4 nt of mRNA at the A-site (Brown et al., 2015; Matheisl et al., 2015). We reasoned
that the frame-2 RPFs at the codon preceding the stop resulted from the structural
rearrangement of ribosomes upon eRFs binding to the A-site during termination. Comparing the
same length of RPFs from an elongating ribosome and a terminating ribosome, the packing
caused by eRF1 binding would cause the RPF of a terminating ribosome to be 1 nt shorter at
the 5’ end and 1 nt longer at the 3" end. This 1-nt shifting toward the 3' end causes the RPFs of
terminating ribosomes to be mapped to the next reading frame (frame 2). Therefore, the frame-2
mapping of terminating RPFs we observed in Arabidopsis and tomato (Hsu et al., 2016; Wu et
al., 2019) suggests that plant ribosomes behave like mammalian ribosomes at translation
termination. Although plastid RPFs behave similarly to nucleus RPFs in multiple ways (Figs. 1A,
and 3A-B), plastid RPFs lacked frame-2 mapping at termination (Fig. 3B). Currently, little is
known about the mechanism of translation termination in plastid and mitochondrial ribosomes,
which have prokaryotic origins (Zoschke and Bock, 2018). In eukaryotes, eRF1 recognizes all
three stop codons, whereas in prokaryotes, two different release factors recognize specific stop
codons. Moreover, the release factors in eukaryotes and prokaryotes are evolutionarily
unrelated (reviewed in (Buskirk and Green, 2017)). Our observations that plastid RPFs lack
frame-2 mapping at termination suggest that the mRNA packing caused by release factor
binding may not occur in plastids. This phenomenon is likely the case for plant mitochondria as
well, although specialized Ribo-seq optimizing for mitochondrial ribosomes will be necessary to
draw a clear conclusion.

Our CiPS pipeline, which accepts the frame-2 mapping of terminating RPFs as in-frame,
facilitates the identification of uORFs with relatively short lengths. Minimum uORFs in particular
have only one codon and are therefore impossible to be identified based on 3-nt periodicity.
Given that the codon usage of uORFs are similar to random triplet sequences in 5' UTRs and
most uORF peptides are not evolutionarily conserved, it is believed that most uORFs are
selected for their regulatory role, rather than their encoded peptides (Von Arnim et al., 2014;
Fields et al., 2015; Johnstone et al., 2016; Van Der Horst et al., 2020). Modulating uORFs has
emerged as a promising approach to controlling gene expression and selection for agricultural
traits (Xu et al., 2017; Zhang et al., 2018; Xing et al., 2020; Gage et al., 2022). As our results
show that short uUORFs are equally powerful as longer uORFs and most short uUORFs are

largely unexplored in previous studies, our uORF list offers new opportunities for gene
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regulation in diverse plant pathways, especially for genes encoding transcription factors and

protein kinases, critical regulators in cellular signaling.

MATERIALS AND METHODS
Plant growth conditions and lysate preparation

Arabidopsis (Arabidopsis thaliana) Col-0 seeds were surface sterilized with 70% (v/v)
ethanol for 5 min, followed by 33% (v/v) bleach with 0.03% (v/v) Tween 20 for 10 min, then
rinsed with sterile water 5 times. The seeds were stratified at 4°C in the dark for 2 d, then grown
hydroponically in sterile liquid medium (2.15 g/L Murashige and Skoog salts [Caisson
Laboratories], 1% [w/v] sucrose, 0.5 g/L MES, pH 5.7) while shaking at 85 rom under a 16-h
light (75-80 pmol m™2-s™" from cool white fluorescent bulbs [Philips F17T8]) and 8-h dark cycle
at 22°C for 7 d. At Zeitgeber time 4 (4 h after lights on), DMSO corresponding to 0.1% of the
medium volume was added to the medium (these were control samples of our large-scale
chemical treatment experiment). After 20 or 60 min, three biological replicates (~300 seedlings
per sample) were harvested at each time point and immediately flash-frozen with liquid nitrogen.

Plant lysates were prepared as previously described (Hsu et al., 2016). Briefly, each 0.1
g of ground tissue powder was resuspended in 400 pL of lysis buffer (100 mM Tris-HCI [pH 8.0],
40 mM KCI, 20 mM MgCl,, 2% [v/v] polyoxyethylene (10) tridecyl ether [Sigma, P2393], 1% [w/v]
sodium deoxycholate [Sigma, D6750], 1 mM dithiothreitol, 100 pg/mL cycloheximide [Sigma,
C4859], 100 pg/mL chloramphenicol [Sigma R4408], and 10 units/mL DNase | [Epicenter,
D9905K]). The lysates were spun at 3,000 g at 4°C for 3 min, and the supernatant was
transferred to a new tube and subsequently centrifuged at 20,000 g at 4°C for 10 min. The
supernatant was transferred to a new tube and the RNA concentration was determined with 10x
dilutions using a Qubit RNA HS assay (Thermo Fisher Scientific, Q32852). Aliquots of 100 pL
and 200 pL of the lysates were made, and they were flash-frozen in liquid nitrogen and stored at

—-80°C until processing.

Ribo-seq library construction

Briefly, ribosome footprints were processed using 200 L of the lysates described above,
and sequencing libraries were constructed according to our previous method (Hsu et al., 2016)
with a few modifications described below. Please note that the TruSeq Mammalian Ribo Profile
Kit (ilumina, RPHMR12126) and RiboZero Plant Leaf kit (lllumina, MRZPL1224) described here
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have been discontinued; researchers who are interested in our method should reference our
custom library construction protocol (Wu and Hsu, 2022) instead.

The 200 uL of the lysates described above were treated with RNase | (50 units nuclease
per 40 ug of RNA; the nuclease was included in the TruSeq Mammalian Ribo Profile Kit,
lllumina, RPHMR12126) for 1 h at room temperature with gentle mixing. Then, 15 pL of
SUPERase-IN (Invitrogen, AM2696) was added, and the lysate was passed through a size
exclusion column (lllustra MicroSpin S-400 HR Columns; GE Healthcare, 27-5140-01). RNA >
17 nt was isolated with a RNA Clean & Concentrator-25 kit (Zymo Research, R1017) and
separated on 15% (w/v) urea-Tris borate EDTA (TBE) gels (Invitrogen, EC68852BOX). Gel
slices roughly between 27 nt and 31 nt were isolated, and the RNAs were purified as previously
described. Next, rRNA depletion was performed using a RiboZero Plant Leaf kit (lllumina,
MRZPL1224) in one quarter of the recommended reaction volume. Ribo-seq libraries were
constructed using a TruSeq Mammalian Ribo Profile Kit (ilumina, RPHMR12126) as previously
described with 9 cycles of PCR amplification. Libraries with equal molarity were pooled and
sequenced on a Hi-Seq 4000 sequencer using single-end 50-bp sequencing.

We reasoned that the lower coverage in our previous method may have been caused by
1) some lost footprints during the purification, 2) too little starting materials. In our previous
protocol, we purified the RNA twice (first >17 nt and then <200 nt) after the size exclusion
column step to concentrate ribosome footprints before rRNA depletion by RiboZero. We
believed that some footprints might be lost during the two rounds of RNA purification. In addition,
the rRNA depletion by RiboZero prior to size selection by gel limited the amount of input RNA
that could be used according to the manufacturers recommendations. Thus, we made the
following changes to our protocol: reduced the RNA purification to one round (>17 nt), isolated
RPFs between 27 nt and 31 nt, and then performed rRNA depletion by RiboZero. These
changes are intended to maximize the input and minimize the footprint loss during the

procedure.

RNA-seq library construction

Total RNA greater than 200 nt was purified from 100 uL of the lysates described above
using a RNA Clean & Concentrator-25 kit (Zymo Research, R1017) as previously described
(Hsu et al., 2016). RNA integrity was evaluated using a Bioanalyzer (Agilent) RNA pico chip,
and RNA integrity numbers (RINs) ranging from 7.2 to 7.7 were observed among the samples.
A total of 4 ug of RNA per sample was subjected to rRNA depletion using a RiboZero Plant Leaf

kit (Illumina, MRZPL1224) following the manufacturer's recommendations. Then, 100 ng of
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rRNA-depleted RNA was fragmented to around 200 nt in length based on the RIN reported by
the Bioanalyzer, and strand-specific sequencing libraries were made using a NEBNext Ultra |l
Directional RNA Library Prep Kit (New England Biolabs, E7760S) with 8 cycles of amplification.
Libraries of equal molarity were pooled and sequenced on a Hi-Seq 4000 using paired-end 100-

bp sequencing.

Sequencing data pre-processing and analysis

Data pre-processing and analysis were performed as previously described (Hsu et al.,
2016), except that the Araport11 annotation (Cheng et al., 2017) was used in this study. Briefly,
for Ribo-seq libraries, the adaptor (AGATCGGAAGAGCACACGTCT) was clipped with
fastx_clipper (FASTX toolkit v0.0.14) (http://hannonlab.cshl.edu/fastx_tool- kit/). For both RNA-
seq and Ribo-seq, we used Bowtie2 (v2.3.4.1) (Langmead and Salzberg, 2012) to remove rRNA,

tRNA, snRNA, and snoRNA contaminant sequences.

Transcriptome assembly, ORF identification using RiboTaper, statistical analysis and
data visualization

For transcriptome assembly, the RNA-seq data from all six samples were first combined
and mapped with STAR aligner (Dobin et al., 2013) with the following parameters --
alignintronMax 5000, --alignintronMin 15, --outFilterMismatchNmax 2, --outFilterMultimapNmax
20, --outFilterType BySJout, --alignSJoverhangMin 8 and --alignSJDBoverhangMin 2. The
resulting bam file was used for reference-guided transcriptome assembly with Stringtie (Pertea
et al., 2015) following our previous pipeline (Wu et al., 2019). We used gffcompare (Pertea and
Pertea, 2020) to compare Stringtie output gtf file with the Araport11 annotation and selected the
newly assembled transcripts (i.e., transcript types i, X, y, 0, u and s).

Both the RNA-seq and Ribo-seq reads were mapped to the newly assembled gtf file
(Supplemental File $1, which contains both Araport11 and newly assembled transcripts) with
STAR aligner (RNA-seq parameters: identical to above mentioned prior to the transcriptome
assembly; Ribo-seq parameters: --alignSJoverhangMin 4, --alignSJDBoverhangMin 1, --
outSAMmultNmax 1, and the remaining parameters were identical to RNA-seq). Combining all
six samples, the total reads mapped to the genome for Ribo-seq and RNA-seq were 298.01
million and 180.67 million pairs, respectively.

To identify translated ORFs, we used the bam files mapped above from both RNA-seq
and Ribo-seq as input for RiboTaper (v1.3.1a) (Calviello et al., 2016). The Ribo-seq metaplot

and the distribution of Ribo-seq reads in different genome features were generated using Ribo-
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seQC (Calviello et al., 2019) with 10% randomly selected reads. The Ribo-seq read lengths and
offsets used in RiboTaper analysis were 24, 25, 26, 27, 28, and 8, 9, 10, 11, 12, respectively, as
determined from the metaplots for nuclear and chloroplast genes. The resulting unannotated
ORFs and annotated mORFs were extracted from the RiboTaper output ORF_max_filt file.
Since the P-site offsets for mitochondrial genes are different from the nuclear and chloroplast
genes, the translational profiles of mitochondria-encoded genes were manually visualized using
RiboPlotR (Wu and Hsu, 2021).

All data visualization and statistical analysis were performed in R (v4.0.3) (Da Rosa et al.,
2004). For Ribo-seq and RNA-seq data visualization, the P_sites_all files from RiboTaper were
first processed using the following code: cut -f 1,3,6 P_sites_all | sort | uniq -c | sed -r 's/A( *[* ]+)
+\\t/' > output.txt to aggregate the read counts at each P-site. The Ribo-seq and RNA-seq
profiles were plotted using RiboPIotR (Wu and Hsu, 2021). RiboPIotR presents the Ribo-seq
data in the context of gene and transcript structure with exon-intron junctions, and the RPFs

within ORFs are color-coded to indicate the reading frames.

Proteomics sample preparation and analysis

Proteomic experiments were carried out using shoot and root tissues from 4- and 21-d-
old plantss as well as the root tissue from 12-d-old seedlings (Arabidopsis accession Col-0).
The protein extraction and digestion using ftrypsin and Lys-C were carried out based on
established methods (Song et al., 2018b, 2018a). Samples for datasets that include tandem
mass tag (TMT) labeling and/or phosphopeptide enrichment were prepared as previously
described (Clark et al., 2021; Montes et al., 2022; Song et al., 2020). Two-dimensional high-
performance liquid chromatography (HPLC) fractionation was performed using either strong
cation exchange or basic reversed phase fractionation. Fractionated peptides were delivered to
a Q Exactive Plus mass spectrometer using either an Agilent 1260 quaternary or a Thermo
U3000 HPLC. Data-dependent acquisition was performed using Xcalibur 4.0 software in positive
ion mode with a capillary temperature of 275°C and an RF of 60. MS1 spectra were measured
at a resolution of 70,000 while MS2 spectra were measured at a resolution of 17,500 (label free)
or 35,000 (tandem mass tag [TMT] labeled). All raw data were analyzed together using
MaxQuant version 1.6.7.0 (Tyanova et al., 2016). Spectra were searched against a custom
protein database generated from the RiboTaper output file ORFs_max_filt (Supplemental
Dataset S1), which was complemented with reverse decoy sequences and common
contaminants by MaxQuant. Carbamidomethyl cysteine was set as a fixed modification while

methionine oxidation and protein N-terminal acetylation were set as variable modifications.
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Phosphorylation (S, T, Y) was also set as a variable modification for samples that were
phosphopeptide-enriched. Digestion parameters were set to “specific” and “Trypsin/P;LysC”. For
the TMT experiments, the sample type was set to “Reporter lon MS2”. Up to two missed
cleavages were allowed. A false discovery rate of less than 0.01 at both the peptide spectral
match and protein identification level was required. The “second peptide” option was used to

identify co-fragmented peptides.

Calculating mOREF translation efficiency

We first used STAR to map the RNA-seq and Ribo-seq reads to the CDS of annotated
protein-coding genes. The resulting bam files were used to quantify the transcripts per million
(TPM) of each gene using RSEM (v1.3.1) (Li and Dewey, 2011). Then, the mORF translation
efficiency was calculated by dividing the Ribo-seq TPM to the RNA-seq TPM.

uOREF identification using CiPS (Count, in-frame Percentage and Site)

The processed RiboTaper P-site file (i.e., output.txt, see above) was analyzed for
identification of small uORFs. To accommodate the expected ribosome conformational change
at termination, we accepted the mapping of the second reading frame (blue) at the —1 codon as
in-frame. We then applied the following criteria to consider if a uORF is translated: 1) = 10 RPF
counts, 2) in-frame RPF percentage = 50 % (identical to the RiboTaper cut-off), 3) occupied
RPF site = 30 % in-frame (i.e., only the Ribo-seq occupied P-sites were evaluated and the in-
frame % need to be = 30 %); this last criterion allows some tolerance if a UORF overlaps with
other uORFs. These cut-offs were empirically determined based on our data. For simplicity, for
each gene, the two most abundant transcript isoforms (determined by Kallisto (Bray et al., 2016))
with identical mMORF starts were used for CiPS analysis. If the two isoforms had different mMORF
starts, the one with the more upstream mORF start was used for the analysis to avoid false
positives of uORF identificaiton. The duplicated uORFs shared by the two isoforms were
removed. For minimum uORFs, since there is only one codon, the ‘occupied RPF site = 30 %
in-frame’ criterium was eliminated.

To identify translated uORFs that overlap with each other, we used CiPS-identified
uORFs within the most abundant isoforms for the analysis.

For uORFs regulated by alternative splicing, we considered the two most abundant
isoforms and identified translated uORFs (detected by CiPS) that only exist in one of the two

isoforms.
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R codes for Ribo-seq analysis, RiboTaper pipeline, identifying CiPS uORFs, the
overlapping between uORFs, and uORF regulated by alternative splicing are available at:

https://github.com/hsinyenwu/ORFeome

Constructs for dual luciferase assays

For the dual luciferase plasmid, the cauliflower mosaic virus (CaMV) 35S promoter
sequence upstream of Renilla Luciferase (REN) within the pGreen Il 0800 Luc plasmid (Hellens
et al., 2005) was synthesized by BioBasic and cloned into the upstream of Firefly LUCIFERASE
(FLUC) reporter gene via Kpnl and Xhol restriction sites. The resulting construct was renamed
pHsu-133. All 5" UTR sequences tested were synthesized by BioBasic and cloned into pHsu-
133 between the 35S promoter and FLUC via BamHI and Notl restriction sites. The exact 5'
UTR sequences tested are listed in Supplemental File S2. For S6K7, RGA1 constructs,
annotated 5' UTR sequences containing the wild-type or mutated uORF (ATG was changed to
AGG) were used. For minimum uORF constructs, annotated 5’ UTR sequences containing the
wild-type or mutated uORF (ATG was changed to ATC) were used. For tiny uORF constructs, 5'
UTR sequences containing the wild-type or mutated uORF (ATG was changed to AGG),
including 40 nt upstream of the uORF to the end of 5' UTR, were used.

Dual luciferase assays and RT-qPCR

Arabidopsis protoplast preparation and transformation were modified from (Reis et al.,
2020). Protoplasts were isolated from fully expanded rosette leaves of 20- to 21-d-old Col-0
plants grown on soil under a 16-h light (~100 pmol m™:s™" from cool white fluorescent bulbs)
and 8-h dark cycle at 22°C. Finely cut leaf slices were immersed in enzyme solution (1% [w/v]
cellulase, 0.25% [w/v] macerozyme, 0.4 M mannitol, 20 mM KCI, 20 mM MES, and 10 mM
CacCl,) followed by vacuum infiltration for 30 min and gentle shaking at 40 rpm in the dark for 2—
2.5 h at room temperature to release the protoplasts. The protoplasts were passed through a
70-pm cell strainer, centrifuged at 100 g at 4°C for 3 min, and washed with cold W5 solution
(154 mM NaCl, 125 mM CaCl,, 5mM KCI, and 2 mM MES) twice. The protoplasts were counted
and resuspended in MMG solution (4.5 mM MES [pH 5.7], 0.4 M mannitol, and 15 mM MgCl,) at
1 x 10° protoplasts/150 pL. For protoplast transformation, 1 x 10° protoplasts were combined
with 5 pg plasmid DNA and 170 uL polyethylene glycol (PEG) solution (40% [w/v] PEG4000, 0.2
M mannitol, and 100 mM CaCl,), and incubated for 5 min. After four consecutive washes with
W5 solution, the transformed protoplasts were incubated in the dark for 16 to 18 h. Typically, 8

replicates of transformation were performed for each plasmid DNA in one experiment, and the
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experiments were performed two or three times with similar results. The plasmid DNA was
prepared using ZymoPURE Il Plasmid Midiprep Kit (Zymo #D4201). After overnight incubation,
protoplasts were harvested by centrifugation at 2250 g for 3 min at 4°C. The lysates were
generated by adding 100 yL 1X Passive Lysis Buffer included in the Dual-luciferase assay kit
(Promega E1960) to the protoplasts and vigorously shaking at room temperature for 15 min.
The lysates were cleared by centrifugation at 2250 g for 3 min, and 20 uL of the supernatant
was used for the dual-luciferase assay measured in a GloMax Navigator Plate Reader
(Promega, GM2010) as specified by the manufacturer. FLUC luminescence was normalized to
their corresponding REN luminescence.

For quantifying FLUC and REN transcript levels, 8 uL 10% (w/v) SDS was added to the
remaining 80 uL lysates above, and total RNA was isolated using a Zymo RNA Clean and
Concentrator Kit-5 (Zymo, R1014). RNA was converted to first-strand cDNA using LunaScript
RT SuperMix (New England Biolabs, 3010) in a final 10-pL reaction. Ten-fold diluted cDNA was
used in RT-gPCR using Luna Universal gPCR Master Mix (New England Biolabs #M3003E) in a
final 10-pL reaction on a QuantStudio 3 Real-Time PCR machine (Thermo Fisher Scientific).
Primers for FLUC and REN were previously described in (Zhang et al., 2018). The quantification
was determined using the standard curve method, and relative FLUC transcript levels were

normalized to their corresponding REN transcripts levels.

Accession numbers

All raw and processed sequencing data generated in this study have been submitted to
the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo) under accession
number GSE183264. R codes for Ribo-seq analysis, RiboTaper pipeline, identifying CiPS
uORFs, the overlapping between uORFs, and uORF regulated by alternative splicing are
available at GitHub (https://github.com/hsinyenwu/ORFeome). Analysis files, proteomic
database fasta files, and the RiboPIlotR output of the 2113 translated uORFs are available on
Mendeley Data (https://data.mendeley.com/datasets/89j7snbm2r/2). The original MS
proteomics raw data may be downloaded from MassIVE (http://massive.ucsd.edu) using the
identifier “MSV000085044”; the three key files (i.e., evidence.txt, peptides.txt and

proteinGroups.txt) are located in the /search/combined/txt subfolder. Genes mentioned in this

article with their AGI codes are listed in Dataset S8.
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Table 1. Important genes possessing translated uORFs.

Pathway Gene Name

Light Signaling phyA, phyB, phyC, phyD, phyE, PHOT1, PHOT2, CRY2, PHH1, PIF3,
PIF4, NPH3

Circadian clock CCA1, LHY, GI, TIC, BOA, XCT, RVE1, RVE4, ZTL, PRR1, PRR2,
PRR3, PRR7, PRRS8, LIP1, AFR2, LNK1, LNK4

Auxin TOPLESS, TPR1, TPR2, ARF3, ARF4, ARF5, ARF6, ARF7, ARFS8,
ARF9, ARF10, ARF11, ARF18, IAAS8, IAA9, IAA10, IAA18, IAA27,
TIR1, ABCB1, ABCB4, ABCB19, ARF1-BP, AFB2, PIN4, COI1
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Abscisic acid (ABA)

ABI1, ABI2, SNRK2.1, SNRK2.2, SNRK2.5, SNRK2.6, SNRK2.8,
SNRK2.10, GPA1, ABA1, ABA2, ABA4, ABF1, ABF3, ABF4, PYLS5,
PYR1

Jasmonic acid (JA)

TOPLESS, NINJA, JASSY, COI1, JAZ4, JAZ6, JAZ9, JAM1, JAM2,
bHLH13, ASK2

Ethylene

ACO1,ACO2, ACO4, EIN2, EIN3, EIN4, EIN5, EIN6, ERF8, RAP2.4,
CTR1, CRF2, CRF3, CRF8, CRF10, CRF11, CRF12, ETR2, ETO1,
ETP1, ERF040, ERF104, ERS

Gibberellic acid (GA)

AGL20, RGA1, ATKAO1, ATKAOZ2, SPY

Salicylic acid (SA)

NPR1, NPR3, NPR4, EDS1, SNC1, FLS2, MPK4, LSD1, MKKS5, TGA1,
TGA2, TGA3, TGAS, TGA7, WRKY1, NSL2, DIR1, NIMIN-3

Cytokinin

CRE1, WOODEN LEG, AHK3, AHK4, SPY, ARR2, ARR7, AHP5,
CRF2, CRF3, CRF8, CRF10, CRF11, CRF12

Brassinosteroids

ASKTHETA, BIN2, BRX, BRL3, BRS1, BUL1, BRI1, BIN1, BON

Development

SCARECROW, BP, ERECTA, ELK2, ELK4 (ERECTA-LIKE), YODA

Others

TOR, LST8-1, YAK1, GCN2, S6K1, S6K2, ATSNAK1, ATSNAK2,
RDR6, APX1, CENH3, ATPT1, PSY, IRE1-1, UPF3, SMG7

FIGURE LEGENDS

Fig. 1. Enhanced Ribo-seq data with improved coverage

(A) Metagene analysis of 28-nt RPFs mapped to regions at the beginning, middle, or end of
annotated ORFs in Araport 11. The RPFs are presented with their first nt at the P-site,
which is the 13th nt for 28-nt RPFs. The RPFs are colored in red, blue, and teal to

indicate they are in the first (expected), second, and third reading frames, respectively.

Most footprints mapped to the coding sequence (CDS) in the expected reading frame

(92% in frame).

(B) Genomic features mapped by RPFs. Reads that mapped to nuclear (Nuc), mitochondrial

(Mt), and plastid (Pt) genes are shown.

(C) Length distribution of RPFs. Reads that mapped to nuclear genes are shown.

(D) Distinct P-sites detected in 1 to 20 million randomly selected RPFs from our current and

previous datasets (Hsu et al., 2016).
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(E) RNA-seq and Ribo-seq profiles of AT1G04020 from the current study and our previous
shoot data in (Hsu et al., 2016) are presented. RNA-seq coverage is shown with a light-
yellow background. Ribo-seq reads are presented with their first nt at the P-site, and
they are colored in red, blue, and teal to indicate they are in the first (expected), second,
and third reading frames, respectively. Reads outside of the open reading frame (ORF)
range are colored in gray. In-frame site coverage indicates percentage of in-frame sites
contain mapped Ribo-seq reads. Within the gene models, black boxes represent the
annotated main ORFs (mORFs), and gray and white regions indicate 5’ untranslated
regions (5’ UTRs) and 3' UTRs, respectively. The specific isoform being plotted is
indicated to the left of the gene model and bolded. Black and gray vertical dashed lines

represent the translation start and stop, respectively, for the annotated mORF.

Fig. 2. Translated ORFs identified in this study.

(A) Number and position of ORFs detected within annotated protein-coding mRNAs and
RNAs presumed to be non-coding. Most ORFs were identified by RiboTaper. *,
additional upstream ORFs (UORFs) were identified by a separate method, CiPS (see
below).

(B) Categories of translated ORFs identified by RiboTaper. RiboTaper defines non-coding
ORFs (ncORFs) as ORFs detected within presumed non-coding RNAs.

(C) Number of translated ORFs and proteins identified from either newly assembled RNAs
or various annotated transcript types. The 4" column indicates the number of proteins,
peptides, and spectra detected by mass spectrometry for each class of ORFs. Txs,
transcripts; MS, mass spectrometry.

(D) Subcellular localization of proteins encoded by ncORFs of length between 20 and 100
amino acids predicted by TargetP. C, chloroplast; M, mitochondria; S, secreted.

(E) Size distribution of annotated ORFs (CCDSs) and other ORFs identified by RiboTaper.

(F-J) Examples of translated ORFs in various transcript types. Ribo-seq and RNA-seq
profiles are presented as described in Fig. 1E. The additional ORF in (G) or uORF in ()
are shown by a yellow box in the gene model, and their translation start and stop are
indicated by light blue and orange vertical dashed lines, respectively, within the profiles.

(F) A translated ORF in a novel transcribed region defined by Araport 11.

(G—-H) Translated ORFs in primary transcripts of miR163 and miR169. The first ORF within

pre-MIR163 was visually identified.

() Atranslated uUORF in ATKAOT, involved in GA biosynthesis.
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(J) A translated ORF in QQS, a sORF identified from an orphan gene in a previous study (Li
et al., 2009).

Fig. 3. Translation in plastids and mitochondria.
(A) P-site inferred in RPFs mapped to nuclear, plastid, and mitochondrial genes.

(B—C) Metagene analysis of 28-nt RPFs at the beginning, middle, or end of annotated
plastid and mitochondrial ORFs. The RPFs are colored in red, blue, and teal to indicate they
are in the first, second, or third reading frames, respectively.

(D-E) Examples of translational profiles of plastid genes, which use frame 1 (red). Note that
ATCGO00130 (E) contains an intron.

(F) An example of translational profiles of a mitochondrial gene, which uses frame 3 (teal).
Note that it also contains an intron.

(G-H) Two annotated mitochondrial genes predicted to function in chloroplasts and have
RPFs mapped to frame 1 (red), suggesting that these RPFs are from their plastid and
nuclear homologs, respectively.

In (E, F, H), the number above the blue curved line indicates the RNA-seq read count

across exon-exon junctions.

Fig. 4. Translation and ribosome stalling of primary transcripts for TAS7 and TAS2.
(A—D) Expression profiles of TAS1A-C and TASZ2. In the gene models, ORFs identified by

RiboTaper are marked with ‘R.” Above the gene models, miRNA target sites are indicated by
magenta rectangles. Note that strong RPF peaks were observed upstream of the miRNA target
sites (A-D). The coordinates of the strong RPF peaks and the miRNA target sites are shown.
The bold numbers in parentheses indicate the distance (nt) between the strong RPF peak and
the downstream miRNA target site. The ORF3 in (C), and the ORF1 in (D) were manually
curated based on their strong in-frame RPF peaks. These two ORFs were likely excluded by
RiboTaper due to another ORF overlapping with them using a different reading frame (blue).
Note that ORF1 in (D) was experimentally validated by a previous study (Yoshikawa et al.,
2016). TASTA contains an unannotated intron, which is indicated by a blue curved line, and the
number above the blue curved line indicates the RNA-seq read count across the exon-exon

junction.

Fig. 5. Translation of primary transcripts of TAS3 and TAS4 and proposed models.
(A-B) Expression profiles of TAS3A and TAS4. ORFs identified by RiboTaper are labeled with

‘(R) next to the gene models. Above the gene models, miRNA target sites are indicated by

magenta rectangles. In (A), a strong RPF peak was observed upstream of the first miRNA390
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target site in TAS3A. The coordinates of the strong RPF peaks and the miRNA target sites are
indicated. In (B), although RiboTaper identified an ORF within the only annotated transcript, our
data revealed that TAS4 has an additional isoform (isoform 2), and the ORF within this
unannotated isoform is more likely translated.

(C) Niustration of translated ORFs and RPF stalling relative to the miRNA target sites in TAS1/2,
TAS3, and TAS4. Light blue boxes indicate translated ORFs. In TAS1/2, multiple ORFs are
translated. One particular ORF overlaps with the miR173 target site; translation continues until
the ribosome encounters the miR173 target site, where the first nt within the ribosomal P-site
(red vertical line) corresponds to 16 nt upstream of the miR173 target site. In TAS3, only one
OREF is translated, and the ORF is entirely upstream of the first miR390 target site. Similarly,
translation continues until the ribosome encounters the first miR390 target site, where the
ribosomal P-site corresponds to 16 nt upstream of the miR390 target site. In TAS4, only one
OREF is translated, and the ORF overlaps with the miR828 target site.

Fig. 6. Examples of downstream ORFs (dORFs) and their translation efficiency.
(A) Comparison of mORF translation efficiency between genes with and without dORFs. The

statistical significance of the difference between the two distributions was determined by a
Kolmogorov-Smirnov (KS) test.

(B—F) Examples of dORFs. In the gene models, the dORFs are indicated by orange box(es),
and their translation start and stop are indicated by light blue and orange vertical dashed lines,
respectively, within the profiles.

(B-D) Type 1 dORFs: the mORF have high translation levels, while the dORFs have low
translation levels. The RPFs in the mORFs are shown in gray. The RPFs in the dORFs are
magnified and presented in three colors to indicate their reading frame.

(E-F) Type 2 dORFs: an additional gene/transcript is present in the annotated 3' UTR or
downstream of the mORF gene. These additional genes/transcripts have distinct mMRNA levels
compared to the mORF genes. The zoom-in in (F) shows that the dORF start overlaps with the
MOREF stop, supporting the idea that these two ORFs are unlikely to be translated sequentially
on the same mRNA.

(G) lllustrations of Type 1 and Type 2 dORFs. Type 1 dORFs may be potential readthrough
from the mORF, or continuous translation from an alternative ORF (blue dashed box)
overlapping with the mORF. Type 2 dORFs result from mis-annotation, in which a hidden

gene/transcript is located in the 3' UTR or downstream of the mORF gene. These hidden genes
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have independent transcription start sites supported by published CAGE data (see Fig. S11),

and they have distinct RNA-seq (and Ribo-seq) levels, compared to the upstream mORF.

Fig. 7. Periodic ribosome stalling in CPuORFs. (A-D) Examples of uUORFs encoding
conserved peptides (CPUORFs) with periodic ribosome stalling. In the gene model, the
CPuOREF is shown by a yellow box, and its translation start and stop indicated by light blue and
orange vertical dashed lines, respectively, within the profiles. The 30-nt internals between RPF
peaks are indicated, and the inferred ribosome positions are illustrated.

Fig. 8. Newly discovered uORFs by RiboTaper.
(A—B) Two examples of translated uORFs identified by RiboTaper in the current data compared

to our previous data (Hsu et al., 2016). Note that the in-frame site coverage by Ribo-seq reads
is much improved in the current data.

(C) Cumulative plot comparing the mOREF translation efficiency (TE) of genes containing 0, 1, 2,
or = 3 translated uORFs identified by RiboTaper. The different superscript lowercase letters
indicate significant differences between groups (KS test, P < 0.05).

(D) Diagrams of dual-luciferase constructs for testing uORF functions. The start codon of uUORF
(ATG) was mutated to AGG in the mutated version. 35Sp, 35S promoter; CaMV term, CaMV
terminator.

(E) Relative FLUC luminescence comparing 5' UTRs carrying the wild-type uORF or mutated
uORF. FLUC luminescence levels were normalized to REN luminescence levels.

(F) Relative FLUC mRNA levels comparing 5" UTRs carrying the wild-type uORF or mutated
UORF. FLUC mRNA levels were normalized to REN mRNA levels.

The statistical significance for boxplots in (E—F) was determined by Wilcoxon rank sum test (*:
0.01 < P<0.05, **: 0.001 < P<0.01, **:0.0001 < P < 0.001). In the boxplots, center line,

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers.

Fig. 9. Identification of uORFs using CiPS.
(A) Cumulative plot comparing the in-frame percentage of CCDSs, ncORFs, dORFs, and

uOREFs identified by RiboTaper. Different superscript lowercase letters indicate significant
differences between groups (KS test, P < 0.05).

(B—E) lllustrations of expected RPF distribution of a long uORF (B), a minimum uORF (C), a 2-
aa uORF (D), and a 3-aa uORF (E). Note that the codon preceding the stop (-1) is expected to
have a significant amount of RPFs mapped to frame 2 (blue). For minimum uORFs (C), the start

codon is also the —1 codon.
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(F) Distribution of uORF peptide length of predicted uORFs (AUG-start), RiboTaper-identified
uORFs, and CiPS-identified uORFs.

(G) Venn diagram showing the extent of overlap between uORFs identified by CiPS and/or
RiboTaper.

(H) Distribution of UORF peptide length, in terms of number, comparing uORFs identified by
RiboTaper-only, CiPS-only, or both methods. The gray dashed line marks 20 aa.

(1) Distribution of UORF peptide length, in terms of percentage, comparing uORFs identified by
RiboTaper-only, CiPS-only, or both methods. The gray dashed line marks 20 aa.

(J) Cumulative plot comparing mORF translation efficiency of genes without any translated
uORFs and with uORFs identified by RiboTaper-only, CiPS-only, or both methods. Different
superscript lowercase letters indicate significant differences between groups (KS test, P < 0.05).
(K) Comparison of the number of translated uORFs identified per gene between RiboTaper and
CiPS.

(L) Expression profile of ARF6, which contains multiple uORFs. Zoom-ins of each AUG-start
UOREF (yellow box) and an AUA-start uUORF (orange box) are shown below the main diagram to
evaluate the performance of RiboTaper and CiPS.

(M) Cumulative plot comparing the mOREF translation efficiency of genes containing 0, 1,2,> 3
translated uORFs identified by CiPS. Different superscript lowercase letters indicate significant
differences between groups (KS test, P < 0.05).

(N) Boxplot comparing the mORF translation efficiency of genes containing no, 1 aa (minimum),
2-10 aa, 11-20 aa, 21-30 aa and > 30 aa translated uORFs identified by CiPS. The gray
horizontal line in the background marks the median of genes without translated uORFs.
Different superscript lowercase letters indicate significant differences between groups (Wilcoxon
rank sum test, P < 0.05). In the boxplots, center line, median; box limits, upper and lower

quartiles; whiskers, 1.5x interquartile range.

Fig. 10. Translation of minimum uORFs.

(A—F) Examples of minimum uORFs. The minimum uORF positions are indicated by orange
triangles. RPFs mapped to minimum uORFs show the characteristic of =1 codon, where a high
fraction of RPFs mapped to frame 2 (blue).

(G) Diagrams of dual-luciferase constructs for testing minimum uORF functions. The start codon

of minimum uORF (ATG) was mutated to ATC in the mutated version.
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(H) Relative FLUC luminescence comparing 5' UTRs carrying the wild-type uORF or mutated
uORF. FLUC luminescence levels are normalized to REN luminescence levels.

(I) Relative FLUC mRNA levels comparing 5’ UTRs carrying the wild-type uORF or mutated
UORF. FLUC mRNA levels are normalized to REN mRNA levels.

The statistical significance for boxplots in (H—I) was determined by Wilcoxon rank sum test (*:
0.01 < P<0.05, **: 0.001 < P<0.01, ***: 0.0001 < P < 0.001). In the boxplots, center line,

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers.

Fig. 11. Translation of tiny uORFs.

(A-D) Examples of tiny uORFs of varying uORF length. Ribo-seq read and frame information for
the tiny uORFs are shown in the zoom-in boxes.

(E) Relative FLUC luminescence comparing 5' UTRs carrying the wild-type uORF (ATG) or
mutated uORF (AGG). FLUC luminescence levels were normalized to REN luminescence levels.
Statistical significance was determined by Wilcoxon rank sum test (*: 0.01 < P < 0.05, **: 0.001
<P <0.01, ***: 0.0001 < P < 0.001). In the boxplots, center line, median; box limits, upper and

lower quartiles; whiskers, 1.5x interquartile range; points, outliers.

Fig. 12. Overlapping of translated uORFs.

(A—C) Translational profiles of three CPuORF genes showing the overlapping of translated
uORFs. The positions of CPuORFs (red boxes) and other uORFs (blue or teal boxes,
depending on their reading frame) are indicated. In (B—C), zoom-ins of the overlapping region
between the CPUORF and the stacking uORF (suORF). Note that bZIP11 (A) is also shown in

Fig. 7B as an example of periodic ribosome stalling upstream of the CPuORF stop codon.

Fig. 13. Translated uORFs regulated by alternative splicing.
(A-D) Examples of translated uORFs affected by various types of alternative splicing. The

number above the blue curved line indicates the RNA-seq read count across exon-exon
junctions. The specific isoform number being plotted is indicated to the left of the gene model

and bolded. The yellow boxes within the gene models represent the uORFs.
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