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ABSTRACT:

In this work we demonstrate that cell pressure controls the morphology and stability of
electroplated sodium metal deposits onto carbon black nucleation layers in ether-based
electrolytes. At pressures below 500 kPa we observe the presence of three-dimensional sodium
nuclei accompanied by low Coulombic efficiencies (less than 98%). Conversely, at pressures
between 500 — 1270 kPa we observe smooth, planar sodium deposits, high Coulombic
efficiencies up to 99.9%, and stable electrochemical cycling. Through a series of tests conducted
at elevated current densities and with/without rest stages, our findings elucidate the important
competing timescales of (1) creep-induced morphology evolution of the sodium under pressure,
and (2) the rate at which sodium is electrodeposited. This highlights how chemo-mechanical
effects at pressure ranges relevant for battery packaging in coin and pouch cells are a key factors

in the design and operation of sodium metal batteries.

TOC GRAPHIC

R1>R2 (P > 500 kPa)

Low CE%, Unstable (dendrites)] High CE%, planar Na deposits



Sodium (Na) metal is one of the most promising anode options for high-energy-density and
low-cost Na-based batteries. With a high theoretical specific capacity (1166 mAh g), low
standard electrode potential (-2.71 V versus standard hydrogen electrode),! and native
electrochemical stability in common electrolytes, there have been a number of reports in recent
years highlighting the broad promise of this system. Most notably is the anode-free battery
architecture, where researchers have shown up to 400 Wh/kg active mass energy density,* and
recent reports under lean electrolyte conditions in pouch cell architectures have demonstrated
200 Wh/kg.> However, other frameworks include room-temperature Na-S batteries®® with
theoretical energy density of 1274 Wh kg' and Na-O2 batteries’!'! with theoretical energy
density of 1605 Wh kg™!. Each of these systems exist in different developmental stages, but all
of which exhibit improved energy density over current Li-ion batteries' at lower cost due to a
combined 1000 times higher earth abundance of Na versus Li and lower cost and lighter options

for cathode materials and current collectors, respectively.!?1*

Early studies, focused on Na metal anodes, followed inspiration from Li metal anodes, with
the expectation being that these two alkali metals are similar in behavior. Early observations of
Na electroplating in carbonate electrolytes demonstrated similar behavior to Li, with unstable
nucleation and growth of Na deposits accompanied by low Coulombic efficiencies and dendrite
formation.!> However, researchers demonstrated that the use of ether-based electrolytes, such as
diglyme, resulted in smooth crystalline electroplated Na deposits combined with Coulombic
efficiencies (CEs) exceeding 99.9%.! ® This highlights a critical difference of sodium metal
batteries over lithium-metal batteries due to the less negative reduction potential of sodium that
has given promise to competitive Na battery approaches.* > 17 In this regard, other differences

between Na and Li exist, such as in mechanical and thermal properties, that have not been deeply



investigated. Specifically, in regard to mechanical properties, Na is softer at room temperature
than Li in metal form with elastic modulus of 4.6 GPa for Na, and 7.82 for Li.!!® Notably, the
stress exponent for Na has been measured to be 5 versus 6.56 for Li, indicating that Na is far
more susceptible to creep than Li.'®?° As creep effects do not occur in Li metal until pressures
much higher than that of commercial batteries, there exists limited understanding of how the
chemo-mechanical effects in sodium metal impact a sodium metal battery differently than

lithium in a lithium metal battery.

With this said, researchers have demonstrated that applying high external pressure is a
significant and effective approach to modify the chemistry and stability of Li metal deposits.
Yin et al. reported a 5% improved CE% during Li deposition in Li cells at 1.1 MPa pressure®!
and Shen et al. ascribed such effects to modifications in Li morphology.?? In this regard, there
has been limited research to understand the role of pressure in Na metal batteries and that has
been limited to understanding how pressure modifies Na metal interfaces.?2* Therefore, given
the lower modulus of sodium compared to lithium, which makes Na metal more sensitive to the
pressure range of conventionally packaged pouch and coin cells, there is need to better

understand the pressure-induced chemo-mechanical effects in sodium metal batteries.

In this report, we systematically study the role of pressure on the nucleation, growth, and
electrochemical properties of sodium by combining imaging and electrochemical studies to
understand the role of pressure on sodium metal batteries. Our findings demonstrate that not
only is sodium nuclei formation and growth morphology highly correlated to pressure due to Na
creep in the pressure range relevant to commercially packaged batteries (less than 1.3 MPa), but
also that pressure induced morphology changes modify and improve the electrochemical stability

of the sodium metal deposits. Our results explain this as a chemo-mechanical trade-off between



the rate of Na charge transfer and the creep rate of Na under pressure, leading to a direct

mechanical-electrochemical picture of stability in sodium metal anodes.

Results and Discussion

A key motivation for this work originated from the observation that in an in-situ
characterization cell without the external application of pressure, 3-D and/or dendritic
morphologies of Na were observed during Na electroplating. Comparatively, coin cells
packaged under standard pressures between 500-1000 kPa under similar current densities led to
smooth, planar morphologies of electrodeposited Na. To investigate this unexpected result, we
designed a closed pressure-electrochemical cell (supporting information, Figures S1 and S2) to
controllably apply pressure to a sodium electrode assembly consisting of 1 M NaPFs in diglyme,
Celgard separator, Al/Na electrode, and Al/carbon black nucleation layer (details included in
supporting information). A schematic of the cell and confocal laser scanning microscopy
(CLSM) images showing the widely different nucleation behavior of Na over 30 mins at current
density 0.5 mA cm™ with (1) no external pressure and (2) a pressure of 911 kPa are shown in
Figure 1. With no external pressure, the formation of nuclei that protrude from the surface in a
3D growth mode (Figure 1A and B) are observed. Under uniaxial pressure (Figure 1C) of 911
kPa on the electrode assembly, smoother and lateral growth was observed for Na nuclei (Figure
1D and E). This observation elucidates that pressure plays an important role in Na nuclei

morphology in a battery.
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Figure 1. The impact of applied external pressure on Na electrodeposition. (A) Schematic
illustration and (B) CLSM image of the Na deposits without pressure. (C) Schematic of the
pressure experiment set-up and the assembling configuration of Na-thin C45 carbon black
nucleation layer/Al current collector cell. (D) Schematic illustration and (E) CLSM image of the

Na deposits without pressure.

To systematically study the effect of pressure on Na metal nucleation and growth during
electrodeposition, we analyzed electrochemical and morphological behavior of Na electroplating
under six different pressure conditions, 0, 22, 136, 500, 911, and 1272 kPa. Generally, as the
pressure inside of a coin cell assembly is near ~ 1 MPa, this range of pressures gives detailed
resolution of effects on electroplating between low pressures and those practical to battery
packaging. To study the role of pressure on the cells, we carried out Galvanostatic tests (Figure
S3) at 0.5 mA cm? and subsequent imaging of the sodium morphology via confocal laser
scanning microscopy and scanning electron microscopy. To benchmark pressure effects on the

Na battery system, we assembled coin cells of the same electrode materials as used in our



pressure cell, and observed a high average CE% of 99.93% over a period of 1000 cycles (Figure
S4), indicating competitive performance with leading state-of-the-art reports in recent literature.
However, to understand and distinguish the role of pressure, especially in the early stages of
formation, we carried out galvanostatic cycling at different pressures for 50 cycles, which leads
to a slightly lower overall average CE% due to the influence of the first several cycles. Figure 2A
shows the plating-stripping curves of the 2™ cycle for each pressure condition studied using slip
plots to visualize the losses. Notably, the 2" cycle loss decreased from 46.08% at 0 kPa to only
2.04% at 1272 kPa indicating improved stability. Figure 2B shows the CE% for each cycle and
average CE% for each pressure over the period of 50 cycles studied indicating an evident
correlation. The average CE% values at 0 kPa, 22 kPa, 136 kPa, and 500 kPa were 81.89%,
95.94%, 99.05% and 99.59%, respectively, over 50 cycles emphasizing that the largest sodium
metal losses occurred in the first 50 cycles at the lowest pressures. At pressures greater than 500

kPa, there was only slight increases to the CE% over a 50 cycle duration.

Further, to better understand this influence of pressure, electrochemical impedance
spectroscopy (EIS) was carried out. At the open-circuit voltage (OCV) prior to sodium
electroplating (Figure S5), the charge-transfer resistance (R¢¢) is similar for all pressures except
for the highest pressure (1272 kPa), where R is slightly lower. However, EIS analysis after the
second Na plating cycle (Figure 2C) indicates much different characteristics, where the value of
Re¢ significantly decreases based on the pressure applied to the cell. The cell at 0 kPa displays
higher Rt (~110 Q cm?) than cells under pressure and there is little effect on the value of R
after the pressure is increased beyond ~ 500 kPa (a range of 3.4 — 3.7 Q cm?). These observations
indicate the effect of pressure on performance does not occur in open circuit conditions before

sodium is electroplated, but occur and evolve in tandem with sodium metal electrodeposition. To
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better elucidate this, the voltage polarization under different applied pressures was studied
(Figure 2D), which quantifies the difference between the equilibrium plating and stripping
potentials for Na (Figure S6). Similar to pressure effects on the CE%, the average voltage
hysteresis decreased when the pressure increased until near 500 kPa, with minimal changes at

higher pressures.

Collectively, the electrochemical results in Figure 2 indicate that both charge loss and
charge-transfer resistances are reduced when pressure is increased. Whereas pressure effects
have been observed in Li metal cells,?"> 2> ?® these effects observed for Na metal cells here are
notably at lower and more practical pressures (near 0.5 kPa) where damage to the separator does
not influence transport. An alternative explanation for EIS results could be explained by
improved pressure-induced wetting at the current collector — electrolyte interface. Such wetting
effects, however, cannot explain the significant change in stability of the electrodeposited Na as
evident in CE% results. Therefore, to better understand this observation and the mechanism
driving these pressure-induced differences, we carried out studies of electrodeposited Na
morphology using both confocal laser scanning microscopy (CLSM) (Figure 3) and scanning

electron microscopy (SEM) (Figure 4).
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Figure 2. The electrochemical performances of the Na -C45 cell under various external pressures.
(A) Slippage profiles for Na plating and stripping in the second cycle performed at 0.5 mA cm™
under different pressures. (B) Coulombic efficiency (CE) from 50 plating/stripping cycles and
the average CE under different pressures performed at 0.5 mA cm™ with capacity of 0.25 mAh
cm. (C) Nyquist curves performed under different pressures after second cycle deposition. (D)

Voltage polarization under various pressures.

To perform morphological characterization of Na deposits, we first utilized CLSM in an air-
tight optical cell (Figure S7) to study microscale morphology of Na deposits on C45 nucleation
layers at different pressures (Figure 3A-F). CLSM is a non-contact analysis technique that
provides micron-scale resolution in the x-y plane parallel to the current collector, and nanometer

scale resolution in the z (height) plane. Notably, from pressures of 0 — 500 kPa, the morphology

of Na deposits undergoes a drastic transition from 3D nuclei structures at low pressures to



smooth and heterogeneous planar deposits near and above 500 kPa. At pressures higher than 500
kPa, the overall morphology of the deposits did not significantly change, but the deposits were
more interconnected at higher pressures. To quantify the role of pressure on the properties of
sodium deposits, several representative CLSM images at different pressures were subjected to
laser measurement in the CLSM and image processing methods (ImageJ?’) were used to identify
geometrical characteristics including (1) average thickness of Na deposits (Figure 3G, by laser
on CLSM), (2) average area of Na deposits (Figure 3H, by Imagel), and (3) fractional area of Na
on the current collector (Figure 31, by ImageJ). In each case, results are presented in a statistical
dot-plot representation to establish how each geometrical feature changes as a function of
pressure. As shown in Figure 3G, the average Na deposit thickness at 0 kPa is ~42.2 pm (with
significant height variation) which decreases to ~ 7.6 um at 1272 kPa in a compact range of
values. A similar observation is made in the average individual Na deposit area as the average
deposit scales from ~5829 um? to ~22242 pm? from 0 to 911 kPa (Figure 3H). Due to the
interconnected nature of sodium deposits at 1272 kPa, the total coverage was also analyzed
(Figure 3I), and shows the coverage fraction of Na improves from 14.9% at 0 kPa to 86.1% at

1272 kPa.
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Figure 3. Growth pattern and physical feature of Na after second deposition under various
pressures. (A-F) Top and 3D view of Na deposited under (A) 0 kPa, (B) 22 kPa, (C) 136 kPa, (D)
500 kPa, (E) 911 kPa and (F) 1272 kPa at 0.5 mA cm? for 0.5 h. (G-I) The corresponding
thickness (G), individual area (H) and area coverage fraction on C45 layer (I) of Na deposition

under various pressures obtained from CSLM test.

While CLSM is a valuable tool to visualize the morphology changes of Na at different
pressures, it does not enable the resolution to assess the microstructure of the sodium, such as the
porosity. However, comparing the analysis of CLSM images to calculations of fully dense
sodium at capacity of 0.25 mA cm™, the theoretical thickness of the sodium at 86% coverage
should be 2.5 um, which is lower than that observed in imaging. This suggests that
microstructure and porosity in the sodium deposits could also be changing at different pressures.

To evaluate this point, SEM analysis was carried out (Figure 4) using a sealed Ar transfer cell

11



that inhibits air exposure during transfer between the glove box and the SEM. At 0 kPa (Figure
4A), porosity in the Na deposits exist at both the microscale and nanoscale as is expected in 3D
deposits. However, as the pressure is increased to and above 500 kPa, the pores in the Na
deposits become smaller and are too small to resolve at pressures of 911 kPa and above. This
supports that the effect of pressure on morphology is manifested both in microscale morphology

(e.g. 2D versus 3D deposits) as well as the nanoscale porosity of the Na layers.

D S00KPa. o | 911 kPa 1272 kPa

Figure 4. SEM images of Na deposition under various pressures after second plating at 0.5 mA
cm™ to a capacity of 0.25 mAh cm™. (A-F) Surface morphology of Na deposited under (A) 0 kPa,
(B) 22 kPa, (C) 136 kPa, (D) 500 kPa, (E) 911 kPa and (F) 1272 kPa. The insets in (A-F) show

their respective minified SEM images.

In considering the results presented this far, it is clear that increasing pressure leads to

thinner, more uniform, and less porous (more dense) Na deposits, especially at pressures near

12



and above 500 kPa (Figure 3, Figure 4). At pressures where 3D Na deposits are observed (< 500
kPa), the electrochemical features indicate poorer charge reversibility and greater interfacial
resistances for charge transfer (Figure 2). This opens a key question as to whether the changes in
Na morphology observed are static, or occur at nucleation, or are dynamic and continuously
evolving through the electrochemical process. Prior modeling studies have shown that pressure
can influence the static shape profile of 3D dendritic Li metal structures,?? and dynamic effects
such as creep are not feasible at pressures near and below 1 MPa for Li>* However, the
mechanical properties of Na are significantly different from that of Li — the stress exponent for
Na is 5 versus 6.56 for Li, indicating a much greater influence of creep with Na metal.'$2°
Furthermore, the effective hardness of Na is 15 MPa versus 48 MPa for Li.>*?® Recent results
have shown that at solid-solid interfaces at 1 MPa pressures, creep effects can modify the Na
metal interface properties.”> To evaluate the static versus dynamic response of Na deposits to
pressure (Figure 5), we carried out a study in a coin cell configuration (~ 1 MPa, Figure S8)
where 10x higher plating/stripping current of 5 mA cm is used since this represents the current

range at coin cell pressures at which shorting effects occur under normal cycling (Figure S9 and

Figure 5F).

To evaluate the dynamic behavior of the electroplated sodium under pressure, we compared
electrochemical and morphological characteristics of sodium deposits after plating both with and
without a 2 hour rest stage (Figure 5A and 5B). In this experiment, the rest step of 2h is chosen
as it allows the electrodeposited Na to reach an equilibrium state under pressure with a rationale
analogous to that of rest steps in Galvanostatic Intermittent Titration Technique (GITT)
experiments. As shown in Figure 5, and illustrated in Figure 5C, the morphology and

electrochemical characteristics of the Na deposits are highly susceptible to dynamic changes and
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morphology evolution during this rest step. CLSM images of Na deposits without rest and with
rest under pressure (Figure 5D, 5E) show a more interconnected, thinner (by over 25%), and
planar film after undergoing a 2h rest under pressure after electrodeposition. SEM images in

Figure S10 highlight a smoother and denser morphology of Na deposits involving a 2h rest.

Finally, 100 plating/stripping cycles using 30 min plating time at 5 mA cm were conducted
without rest or with a 2 hour rest between cycles (Figures 5F, 5G). Without rest, the voltage
profiles exhibit soft-short behavior likely due to dendrite or 3-D Na formation at these high
currents, but the devices exposed to 2h rest at the same rate after electroplating showed a stable
response with CE% after 100 cycles of 99.7% (Figure S11). These findings indicate the
electrochemical stability of Na metal deposits at pressure conditions of standard coin and pouch
cell packaging is dependent upon the interplay between morphological evolution and creep of the
electrodeposited sodium metal and the rate at which the sodium metal is electrodeposited (i.e. the
current density) used in experiments. Building from our findings, this interplay is visualized in
Figure 5H, where under conditions of low morphological evolution or creep, such as at low
pressures, the Na deposits exhibit 3-D architectures and dendrite formation. However, at higher
pressures > 500 kPa, the influence of creep and/or morphological evolution of the sodium leads
to smooth layers with stable and efficient electrochemical behavior. Notably, such higher
pressure conditions can still lead to 3-D morphologies and shorting effects if the current density
is too high (e.g. faster than the rate of sodium evolution on the current collector surface), but as
our results showed in Figure 5, this effect can be reversed by rest periods which facilitate the

evolution toward a smooth sodium deposit.

14
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Figure 5. The effect of pressure-driven creep on Na deposits. Schematic of plating/stripping test

regime for (A) without rest, and (B) with a 2 hour rest between each plating and stripping step,

note that the plating current density and time is 5 mA cm™ and 0.5 h, respectively. (C) Schematic

illustration of pressure-driven creep effect on Na deposits. CSLM images of Na deposits (D)

without rest, and (E) with rest under pressure, as well as the corresponding thickness of Na

deposits obtained from CSLM test (inset). Cycling performance at 5 mA c¢cm™ (F) without rest,

and (G) with 2 hour rest under pressure in coin cells with enlarged voltage profiles. (H)

Schematic of the interplay between the sodium deposition rate and the rate of mechanical

deformation and morphology evolution of sodium metal deposits as we observe in this study.
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In summary, our findings give insight into the coupled chemo-mechanical behavior that is
responsible for the stable, high-performance of sodium metal batteries widely reported in the
literature. Our results indicate that dynamic creep and morphology evolution of electrodeposited
sodium at pressures relevant to coin and pouch cell packaging (500 kPa to 1.2 MPa) are
responsible for the smooth sodium deposits that are correlated to high CE%, which over many
cycles can exceed 99.9% consistent with our observations in this work. Unlike Li metal deposits,
which are mostly static at pressures of 500 kPa — 1.2 MPa, our results suggest that a key factor in
stable Na metal deposits is the dynamic mechanical behavior of Na in this pressure range. We
hypothesize from this work that mechanics and corresponding transport behavior of
electrodeposited Na on different current collector materials could be equally important, if not

more important, than controlled nucleation behavior for sodium metal batteries.
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