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Abstract 

We present a 23Na nuclear spin dynamics model for interpreting nuclear magnetic 

resonance (NMR) spin-lattice relaxation and central linewidth data in the invert glass system 

Na4P2S7-xOx , 0 ≤ x ≤ 7. The glassy nature of this material results in variations in local Na+ 

cation environments that may be described by a Gaussian distribution of activation energies. 

A consistent difference between the mean activation energies determined by NMR and DC 

conductivity measurements was observed, and interpreted using a percolation theory model. 

From this, the Na-Na coordination number in the sodium cation sublattice was obtained. 

These values were consistent with jumps through tetrahedral faces of the sodium cages for 

the sulfur rich glasses, x < 5, consistent with proposed models of their short range order 

(SRO) structures.  From NMR spin-echo measurements, we determined the Na-Na second 

moment M2 resulting from the Na-Na magnetic dipole interaction of nearest neighbors. 

Values of M2 obtained as a function of sodium number density N were in agreement with 

models for uniform sodium distribution, indicating that these invert glass systems form so 

as to maximize the average Na-Na distance. A simple Coulombic attraction model between 

Na+ cation and X (=S-, O-) anion was applied to calculate the activation energy. In the range  

1.5 ≤ x ≤ 7, an increase in activation energy with increasing oxygen content x occurred, and 

was consistent with the decrease in average anionic radius, and thus increasing the 

Coulombic attraction.  For small oxygen additions, 0 ≤ x ≤ 1.5, however, the model was not 

consistent with a local minimum in te activation energy as suggested by DC conductivity data. 

This minimum has been attributed to a localized expansion in the volume available for the Na+ 

diffusion that leads to a decrease in the volumetric strain part of the conductivity activation energy. 
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I. Introduction 

Sodium solid state batteries (SSSB) are an attractive solution to the problem of 

electrical grid-scale energy storage for renewable energy sources, such as solar and wind 

farms [1]. However, because sodium batteries currently implement a highly flammable 

liquid electrolyte, it is desirable to develop a non-flammable solid-state electrolyte (SSE) for 

sodium battery applications. Glasses have been considered viable SSEs for decades [2], and 

possess several properties that make them suitable candidates: high DC ionic conductivity, 

intrinsic lack of grain boundaries, and scalable processing methods [3]. Glasses have a 

structural framework that has a higher configurational entropy than that of the 

corresponding crystal, resulting in larger free volume within the material for potential 

interstitial ionic sites [4]. To be useful in battery applications, a SSE must have a conductivity 

on the order of 10-4 S/cm . A decade ago, investitaion of the Na2S + P2S5 system resulted in 

glass-ceramics with room temperature conductivities of 5 x 10-4 S/cm [5], but these lacked 

stability with sodium electrodes, a recurring problem in sulfide-based systems. In contrast, 

oxide glasses are highly stable, but many years of work on these systems has yielded 

conductivities that are still too low for a useful SSE. Mixed oxy-sulfide (MOS) glass systems 

can maximize conductivity and stability by finding an optimal combination of oxygen and 

sulfur. Additionally, adding oxygen in low concentrations can increase the ionic conducitivity 

of a MOS glass by up to an order of magnitude, an effect attributed to increasing the free 

volume within the structure [6].    

 



4 
 

Our group recently reported on the melt-quenched yNa2S + (1-y)P2S7-xOx invert glass 

series with oxygen content 0 ≤ x ≤ 7, and the molar fraction of network modifier 0.5 < y < 0.75. 

For invert glasses, the glass network consists of relatively short chains of corner-sharing 

polyhedral[4]. In this case, the short-range order (SRO) structures are P-centered 

tetrahedral. Anions at the corners may be shared with other tetrahedral to form a bridging 

anion site (BX, where X = S, O). Alternatively, a site may be a non-bridging anion site (NBX), 

and instead form an ionic bond with the Na+ cations. For charge balancing, the number of 

NBX is equal to the number of cations in the structure. The high molar fraction y of network 

modifier Na2S thus prevents the SRO from creating an extended structure, and results in 

relatively short polymer chains.    

In particular, we have recently prepared and characterized the y = 0.67 (Na4P2S7-xOx) 

glass series [7]. The structure is indicated schematically in Fig. 1. As the oxygen content 

changes from 0 to 7, the sodium number density N changes slowly from1.27 x 1028 m-3  to 

2.29 x 1028 m-3 [8].  The room-temperature DC conductivity reaches a maximum of ∼3x

-6 110  ( cm)−Ω for dilute oxygen content x ∼ 0.5, falling two orders of magnitude as x increases 

across the composition range [8]. The activation energy to ionic motion ΔEact was obtained 

from DC conductivity measurements. Further, the glassy state of this system results in a 

distribution of Coulombic traps of varying strengths. As a result, some Na+ are expected to 

reside in particular deep traps and may therefore be considered as essentially static and 

rigidly connected to the glass network. These form part of the structure around which ionic 

diffusion occurs. Other Na+ cations are expected to be found at the other end of the 

distribution in shallow traps, and therefore serve as charge carriers for ionic motion. In 
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between these two extremes lies the vast majority of the Na+ cations whose contribution  to 

the Na+ ionic current depends upon the depth of the particular trap of the Na+. 

 

FIGURE 1.   Two-dimensional, schematic representation of  Na4P2S7-xOx  glass structures for 
different oxygen content x values. The figure indicates the approximate length of SRO chains and 
the approximate distribution of SRO units [7], and suggests the variation in size of the SRO 
structures.  Circles represent the Na+ cation; uniformly shaded tetrahedral represent SRO structures 
with all vertices occupied by the same atomic species, either sulfur or oxygen; and tetrahedral with 
mixed shading represent SRO structures with a mixture of oxygen and sulfur atoms at vertices. 
Dotted lines indicate ionic bonds. 

Nuclear magnetic resonance (NMR) is a well-established tool for yielding information 

about local structure and dynamics of resonant nuclei [9-11]. It has been applied extensively 

to 23Na nuclei in Na+ conducting glasses [12-17]. In glassy systems, structural information 

such as cation coordination number and cation distribution is essential for understanding 

ionic motion [12].  For ionic motion in glasses characterized by both DC conductivity and 

NMR, significantly different motion correlation times and activation energies are often found.  

This effect can be attributed to the sensitivity of the DC conductivity to ionic hopping over 

lower energy barriers [18,19]. Percolation theory has been applied to model ion dynamics 
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in various systems [18,19], and has been used to model the DC ionic conductivity in sodium 

invert glasses when no NMR data was available [17]. Ion distributions have been probed in 

dilute sodium glasses using 23Na spin-echo methods that give access to magnetic dipole-

dipole interactions between nearest neighbors in the sodium sublattice [12-14]. Using 

M2(N)—the NMR  second moment  as a function of sodium number density N—as  a metric 

for this interaction, different model distributions may be tested. In sodium glasses where N 

< 1.5x1028 m-3, simple clustering, random clustering, and uniform distributions of Na have 

been reported [12]. 

This study will show for the first time that the sodium dynamics in these glasses may 

be described in terms of ionic percolation over a Gaussian distribution of energy barriers. 

Applying percolation theory, we obtained the average number of ion channels per sodium 

site for the percolation network. We will show that the spatial distribution of the sodium 

ions is uniform, and present a model for the activation energy based on ionic interactions 

within the structure. 

II. Experimental Methods 

Glassy solid electrolytes for Na4P2S7-xOx, 0 ≤ x ≤ 7 were prepared using the MQ 

techniques as described in [7] in a N2 glovebox using as-received sodium sulfide (Na2S 99.9% 

Alfa Aesar), phosphorous pentasulfide (P2S5, 99.95% Sigma Aldrich), and phosphorous 

pentoxide (P2O5, 99.95% Fisher Scientific). 2 to 3 mm thick glass samples were cast onto a 

preheated mold set to ~35 °C below the Tg, annealed for approximately 3 hours, and then 

cooled to room temperature at a rate of 1 °C/min. Samples for NMR were flame sealed in 

thin-walled quartz tubes under 0.16 atm pressure of helium gas. 
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NMR measurements were performed on 23Na (nuclear spin I=3/2, gyromagnetic ratio 

γ/2π=11.2653 MHz/T) by using a homemade phase-coherent spin-echo pulse spectrometer 

from 4.2 K to just below the Tg of the samples, ∼500 K. 

NMR was performed on two different stations. Both were operated at nearly the same 

resonance condition for the 23Na nuclei, namely B0 =7.41 T  and 𝜈𝜈𝐿𝐿 = 83.48 MHz. All 

measurements from room temperature to 500 K were performed on an Oxford Systems, 

fixed-field, superconducting magnet fitted with a high-temperature cryostat and NMR probe 

built in our lab. Measurements below room temperature were performed on an adjustable-

field, superconducting magnet built in-house. NMR data were obtained using computer-

controlled, phase coherent, NMR spectrometers. 

 

A. Field scans 

As discussed in the Appendix, the 23Na nucleus has an electric quadrupole moment 

that interacts with the local electric field gradient. We characterized this interaction for 

interpretation of the nuclear dynamics following our work in other sodium glasses [17]. 

Wide-line NMR spectra were obtained for Na4P2S7-xOx  x = 0, 1.5, 3, 5, 7 at a temperature of 

4.2 K. The magnetic field was swept at 0.0015 T/min at using a fixed radio frequency (RF)  of 

𝜈𝜈𝐿𝐿 =  83.4766 MHz while capturing the integrated spin-echo signal from a (  𝜋𝜋
2
�
𝑥𝑥
− 20𝜇𝜇𝜇𝜇 −

𝜋𝜋𝑦𝑦 − 20𝜇𝜇𝜇𝜇 − 𝑒𝑒𝑒𝑒ℎ𝑜𝑜 ) pulse sequence with a 4-phase cycling sequence. The RF pulse width was

/2 4 sπτ µ= . 
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 B. 23Na central line NMR linewidth versus temperature 

In preparation for the 23Na motional narrowing experiments, both spectrometers 

were tested with 0.03 mol fraction NaCl (aq) solution at room temperature. The sample 

position of most uniform magnetic field was found by maximizing the duration T2* of the 

23Na free induction decay (FID) NMR signal of the test solution, and corresponded to a full 

width at half maximum (FWHM) value of 600-700 Hz. This optimal sample position was used 

for all subsequent line-width measurements for the sodium glasses. The temperature 

dependence of  the FWHM of the central line (-½↔ ½) was found by Fourier transforming 

the FID following a 4 µs RF pulse.    

 

C. 23Na central line NMR spin-lattice relaxation rate versus temperature 

The return to equilibrium after selective irradiation of the central line leads to multi-

exponential recovery in crystalline solids [20]. In glasses, the distribution of local 

environments and interactions results in a stretched exponential recovery. We performed 

saturation recovery [21] of the 23Na central line using the pulse sequence  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑡𝑡 − 𝜋𝜋
2
�
𝑥𝑥

 , 

where the saturating comb had a total of 5 RF pulses at intervals of 1 𝑚𝑚𝑚𝑚 each with pulse 

length /2 20 sπτ µ= . The 23Na nuclear magnetization ( )ZM t  along the static field B0 was 

measured as the integrated FID signal. Long-time values M∞  were estimated by averaging 

the three longest t-values for which the ( )ZM t  appeared constant. 
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D. 23Na NMR second moment 

Because this technique probes the spatial distribution of 23Na sites, we performed all 

measurements at 100 K, a temperature at which the 23Na ionic motion was effectively frozen 

out. 

Following Refs. [12,13,17], the  23Na rigid-lattice second moment M2 for the 

homonuclear magnetic dipole-dipole interaction, was obtained using a spin-echo sequence 

(  𝜋𝜋
2
�
𝑥𝑥
− 𝜏𝜏 − 𝜋𝜋𝑦𝑦 − 𝜏𝜏 − 𝑒𝑒𝑒𝑒ℎ𝑜𝑜 ), taking care to irradiate only the central line.  The duration of the 

𝜋𝜋𝑦𝑦 pulse was 8 μs. In the zero-time M2 method (ZTMM) [13], data acquired over short spin 

evolution times 100 µs < 2τ < 250 μs are fit to a Gaussian function over a progressively 

smaller upper boundary time 2τmax.  The sequence of M2 values may be extended to zero time 

using a linear extrapolation, to yield a short-time estimate of M2 that should be sensitive to 

the closest—and therefore most strongly interacting—sodium nuclei [13].  To reduce the 

sensitivity of ZTMM to high-frequency noise components, we modified this approach by 

fitting a compressed exponential function [22] to the overall spin-echo. The model function 

was used to calculated a simulated data set over 2τmin < 2τ < 2τmax in order to implement 

ZTMM. See the next section for additional information. 
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III.  Results 

A. Field scans  

 The NMR Hamiltonian for the 23Na nucleus, and the distributions relevant for 

powdered sodium glass samples, are described in detail in the Appendix. Interactions 

between the 23Na nucleus and the local environment are described by the sum of Zeeman 

( Z ), electric quadrupole ( Q ), and magnetic dipole interactions ( D ).  The conditions of 

this study, namely Z Q>  , result in a spectrum with a sharp central transition line (Iz=-

1/2↔ 1/2) flanked by the satellite transitions (Iz=1/2↔ 3/2 and -1/2↔ -3/2 ) on either side. 

For a single crystal, this results in a central line symmetrically straddled by two quadrupole 

satellites. The separation of the peaks is proportional to Qν , the strength of quadrupole 

interaction, which is proportional to the largest electric field gradient (EFG) in the principal 

axis system of the EFG tensor [9,11]. Another important quantity is η , the asymmetry 

parameter for the EFG [9,11], which is the fractional difference of the minor gradients in the 

principal axis system. For a crystalline powder, the distribution in grain orientations results 

in features (singularities and shoulders), as shown by the simulated crystal powder pattern 

in Fig. 2. By comparing simulated powder patterns to field scan data, one may extract a 

unique Qν and η  for each non-equivalent resonant nuclear site in the crystal [23]. 

 Figure 2 shows the 23Na spin-echo amplitude plotted versus magnetic field for 

samples across the glass composition range.  For clarity, the central line was not scanned for 

these experiments. All sample spectra exhibited a broad, essentially featureless,  NMR first-

order electric quadrupole satellite powder pattern. As seen in Fig. 2, the data are not 

Martin, Steve W [M S E]
Ananda, check this.
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consistent with crystalline powder patterns, and are similar to patterns we have reported in 

other sodium glasses [17]. The width of the quadrupole satellite distribution increased as 

the oxygen content x increased.  

   

  

FIGURE 2.    Field-swept 23Na spin-echo amplitude versus magnetic field scans for the glass 
system Na4P2S7-xOx, where x=0, 1.5, 3, 5, and 7, taken at temperature 4.2 K and frequency 
νL=83.48 MHz.  Solid lines are powder pattern simulations using a Czjzek distribution of 
parameters νQ, η, and Qσ , as described in the Appendix. For comparison, a powder pattern 
for a crystal with a single value of νQ and η is shown. The field sweep and powder pattern do 
not include the central line. 

 

  We simulated the NMR field scan data as a powder pattern of the first-order electric 

quadrupole interaction. The glassy nature of the material [24] was simulated by assuming a 

Cjzjek distribution ( , )QP ν η  of crystalline powder patterns of width Qσ  (see Appendix). 

Figure 2 shows the simulated spectra as solid lines. Given the lack of distinct features in the 
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NMR spectrum, we performed multiple simulations for each glass composition to explore the 

extent of parameter variation yielding simulations in agreement with the data. Values of Qν , 

η , and Qσ  were averaged, and the results are plotted in Fig. 3, where the error bars indicated 

the standard deviation.  

    

Figure 3. Electric field gradient parameters νQ, η, and Qσ  at 23Na  sites, obtained for glasses 
Na4P2S7-xOx  where x=0, 1.5, 3, 5, 7. The model assumes a Czjzek distribution of NMR powder 
patterns. 
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 Figure 3 shows that  the average Qν value increases with increasing oxygen content, 

going from (0.6 ± 0.3) MHz at x = 0 to (1.3 ± 0.3) MHz at x  = 5. In addition,  η  is non-zero, 

indicating that the average sodium site is not at a site of axial symmetry [9,11], and ranges 

from 0.41 to 0.50. Finally, Qσ  changes from 0.60 to 0.83 MHz across the composition range, 

a change of 38%, indicating that the distribution of EFG parameters ( , )QP ν η  is wider for 

glass compositions with higher oxygen content. 

 

 B.  23Na central line NMR spectrum 

The variation of the FWHM of the 23Na resonance with temperature is due to the 

averaging effect of the fluctuating local fields resulting from ionic motion. The onset of 

motional narrowing occurs when the fluctuation frequency of the local field approaches the 

rigid lattice linewidth, and proceeds with increasing temperature until the linewidth is fully 

narrowed to the minimum determined by the inherent inhomogeneity of B0.  

Figure 4 shows the 23Na NMR central line spectra for different temperatures of the x 

= 0 glass. The FWHM ranges from an average value of 4.7 kHz below 200 K to 0.8 kHz at 

413 K. The FWHM was obtained by fitting the spectra to a Lorentzian function.  
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FIGURE 4.   Temperature dependence of  23Na NMR central line for Na4P2S7-xOx  glass for 
x=0.0.  The figure illustrates the motional narrowing of the NMR line with increasing 
temperature. The solid line shows a Lorentzian fit. 
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C. 23Na central line spin-lattice relaxation 

The nuclear spin-lattice relaxation time T1 provides another probe of the timescale of 

nuclear motion. In glassy materials, the return to equilibrium of the nuclear spin 

magnetization ( )ZM t  is often well-described as a stretched exponential function.  For 

saturation recovery experiments, the normalized magnetization is given by: 

Zβ

z
1

t1-M (t)/M = exp -
T∞

  
  
   

                                                         (1) 

where the quantity βZ characterizes the distribution of interaction strengths throughout the 

sample. Single exponential relaxation time behavior is a special case in which βZ = 1.  Figure 

5 shows typical data, illustrated by select temperatures for the x = 0 sample. In this study 

both βZ and T1 were free parameters. Values for βZ typically ranged from 0.6 at room 

temperature and approached 1 as temperature increased. 
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FIGURE 5.   Example spin-lattice relaxation data of the 23Na central line for the x = 0 glass 
Na4P2S7.     
 
 

FWHM and R1=1/T1 were measured for all samples, and the results are summarized 

in Fig. 6.  

The FWHM data indicate a gradual increase in rigid-lattice linewidth as oxygen 

content increases. The onset of motional narrowing occurs at approximately 200 K for x = 0 

and 313 K for x = 5. We do not include x = 7 in the figure because we were unable to achieve 

appreciable line narrowing up to the glass transition temperature of the sample. We found 

only a 4% reduction in linewidth at the highest temperature. The onset temperature was 

found to be 410 ± 20 K. This is consistent with the rather low Na+ ion conductivity of this 

pure oxide glass. 
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FIGURE 6.  Temperature dependence of FWHM (left) and R1 (right) for the 23Na NMR 
central line for Na4P2S7-xOx  glassy solid electrolytes  where x= 0, 1.5, 3, 5. The solid lines 
were determined by simultaneously fitting line width and R1 data as described in the text 
assuming a Gaussian distribution of activation barriers. 

 

For temperatures below 200 K, a small but systematic increase in the linewidth 

occurs as temperature decreased. We observed this in other sodium glass samples, and 
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attribute the effect to trace quantities of a paramagnetic impurity. These have negligible 

effect on the high-temperature data, as shown in a previous study [17]. To remove this 

contribution, we fit the FWHM to a Curie law function A + B/T where A and B are  

constants, and then subtracted the contribution for all FWHM data. The results are shown 

in Fig. 6. 

The theory of magnetic resonance predicts a maximum in R1 when 1C Lτ ω = , where 

Cτ  is the autocorrelation time for nuclear motion, and Lω is the Larmor frequency in rad/s. 

The relatively low glass transition temperatures Tg for this glass system, Tg << 300 oC, 

prevents reaching high enough temperatures to observe this effect before significant 

structural changes occur in the glass. The data therefore represent the slow motion regime 

for nuclear motion. In this regime, R1 versus 1000/T on a semilog plot linearizes the data, 

and has a slope proportional to the activation energy ΔEa. 

 

D. 23Na second moment 

The magnetic dipole interaction between 23Na nuclei depends on the internuclear 

separation r, and may therefore be used to investigate nuclear spatial distributions within 

the glass structure at temperatures where ionic motion is frozen out. However, because the 

23Na central line is determined by second order quadrupole interactions as well as magnetic 

dipole interactions, one must isolate the desired magnetic dipole interaction using a suitable 

method. 
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For sodium glasses, such a method has been proposed and implemented [12-14,25]. 

Homonuclear magnetic dipole and electric quadrupole interactions are bilinear in the 

nuclear spin z-component operator IZ. Fluctuations in these interactions cannot be refocused 

by a Hahn echo pulse sequence (  𝜋𝜋
2
�
𝑥𝑥
− 𝜏𝜏 − 𝜋𝜋𝑦𝑦 − 𝜏𝜏 − 𝑒𝑒𝑒𝑒ℎ𝑜𝑜  ) and lead to irreversible 

reductions in the signal amplitude as a function of spin evolution time 2τ. For many materials, 

the spin-echo is characterized by a unique second moment M2 and described by a Gaussian 

envelope: 

 ( ) ( )22

0

2
2    

2
I Mexp

I
τ

τ = − 
 

                                                    (2) 

where ( )2I τ  is the echo amplitude as a function of evolution time. For glasses, a distribution 

of M2 is more appropriate, and consequently Eqn. (2) does not describe ( )2I τ  well.  One 

solution to this problem is to restrict data to short times, empirically determined to be in the 

approximate range of 100 µs < 2τ < 250 μs, and to then use successive Gaussian fits over a 

progressively smaller upper boundary time 2τmax.  The sequence of M2 values may be 

extended to zero time using a linear extrapolation, to yield a short-time estimate of M2 that 

should be sensitive to the closest—and therefore most strongly interacting—sodium nuclei 

[12].  We refer to this method as the zero-time M2 method (ZTMM).  

To reduce the sensitivity of ZTMM to high-frequency noise components, we used a 

model function to characterize the spin echo amplitude over the full time range. As has been 

seen in many glassy and disordered systems [22], a compressed exponential function may 

be used, and is given by: 
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( )
0 2

2 2    
XYI

exp
I T

β
τ τ  

 = −    
                                                     (3) 

where 1< XYβ <2. Figure 7(a) shows a typical ( )
0

2I
I
τ

 and a fit to Eqn. (3). The fit describes the 

spin evolution very well over all time. Fig. 7(b) shows simulated data obtained by using the 

fit function to determine estimated values at short times. Following ZTMM, successive 

Gaussian fits are performed on the simulated data restricted to 2τmin < 2τ < 2τmax over a 

progressively smaller upper boundary time 2τmax. Fig. 7(c) shows the zero-time 

extrapolation. We refer to this method as the compressed exponential short-time 

extrapolation method (CESTEM). In order to account for the effect of different boundaries 

2τ, and for different sampling densities, we performed CESTEM 10 times for each sample 

using randomly generated parameters consistent within the ranges: 0.1 ms < 2τmin < 0.13 ms, 

0.2 ms < 2τmax < 0.25 ms, 8 < Ns < 12 , where Ns  is the number of samples in the interval. 

These values were chosen based on experimental values used in previous studies .The M2 

values obtained were then averaged, and the standard deviation used as the error bar. 

 For systems in which interatomic distances rij are known, theory predicts an M2 value 

for nuclear spin I = 3/2  given by [26]: 

 
2

4 2 -60
2 ij

μ M =0.9562 γ h r
4π

 
 
 

∑                                                          (4) 

For crystalline systems where the structure is known, ZTMM and Eqn. (4) are in agreement 

to within 20% [13].  
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FIGURE 7.   Compressed exponential short-time extrapolation method (CESTEM) for 
determining 23Na central line second moment in the limit of short evolution times, illustrated 
for the Na4P2S7-xOx  glass  x=0.  (a) The normalized spin-echo amplitude versus evolution time 
2τ is shown (circles) for long times. The solid line shows a fit to the compressed exponential 
model discussed in the text. (b) Simulated data based on the model fit are then calculated 
over short times. These are fit to a Gaussian curve over a restricted values  2τmin<2τ<2τmax. 
(c) Successive short-time approximations to M2 as a function of 2τmax are shown. Values are 
fit to a line and the y-intercept  determines M2 in the limit of zero evolution time, shown as 
an open circle. Data were obtained for T=100 K, B0 =7.41 T  and 𝜈𝜈𝐿𝐿 =83.48 MHz. 
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V.  Discussion 

A.  23Na motional activation energies from FWHM and R1 data 

Following previous work [16,17], we modeled the 23Na spin dynamics in the following 

way. As with many models of stochastic processes, the random nuclear hops were described 

by an exponential autocorrelation function with time constant τ∞  [27]. This correlation time 

was assumed to depend on motional activation energy ΔEact according to the Arrhenius 

relation: 

( ) exp act
C

B

ET
k T

τ τ∞
 ∆

=  
 

                                                                (5)  

where τ∞ was fixed at 10-13 s for all calculations [16,17]. We found that single values of 

ΔEact did not give satisfactory descriptions of data in our glass samples, and assumed a 

Gaussian distribution of activation energies (DAE) given by: 

2

2

( )1( ) exp
22

act a
act

EE

E Eg E
σσ π

 ∆ −∆
∆ = − 

 
                                                 (6) 

The central line width due to motional narrowing resulting from ionic hopping through a 

glassy structure may be described by [9,16] 

( ) ( )2 2 2 2 1 2
0

0

2( ) tan ( )act C actd E g E Eδω δω δω δω τ δω
π

∞
−

∞ ∞
 = ∆ ∆ + − × ∆ ⋅  ∫                    (7) 

where 2
0δω  and 2

∞δω  represent the low- and high-temperature values of the second moment 

of the line width.  These second moments were determined from the FWHM of Fig. 6. For 
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nuclear spin relaxation due to fluctuating electric quadrupole interactions resulting from 

ionic motion though a glass [16], the relaxation rate may be modeled as: 

( ) ( )

2 2 2

1 2 2
1 0

41 1 ( )
5 3 1 1 2

Q C C
act act

C L C L

R d E g E
T

π ν τ τη
τ ω τ ω

∞   
≡ = + ∆ ∆ +  

+ +    
∫                    (8) 

where the quadrupole interaction parameters Qν and η were obtained from the average 

values in Fig. 3. Eqns. 5-8 form the NMR spin dynamics model for the glass.  

The data of Fig. 6 were fit to this model with two free parameters, namely the mean 

barrier height for nuclear motion ∆Ea and the standard deviation of the energy barrier 

distribution σE.  All others were found experimentally: the nuclear quadrupole parameters 

Qν  and η  were determined experimentally from NMR field scans ; 2
0δω  from the average of 

the low-temperature FWHM data of Fig. 6; and 2
∞δω  as measured for sodium ions in aqueous 

solution. 

 Lines of fit are shown as solid lines in Fig. 6.  The model describes both the FWHM 

and R1 for all samples reasonably well.   

 Figure 8 shows the Gaussian DAE given by Eqn. (6) for the ∆Ea  and σE obtained from 

the fits for each sample. The distributions have widths characterized by  Eσ 0.1 eV= and 

average barrier heights ∆Ea that increase with oxygen content x. 
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Figure 8. DAE for Na4P2S7-xOx  glasses for x= 0, 1.5, 3, 5, obtained by fitting data of Fig. 6 to 
Eqns. 4-7. The vertical line indicates the activation energy determined by DC conductivity 
measurements [8]. The shaded area is interpreted as the critical percolation fraction P for 
the glass, and found from Eqn. (11b). 

 

Figure 9 summarizes ΔEa determined from NMR in this study, and DC conductivity 

data reported by [8]. In order to estimate ΔEa by NMR for the x = 7 sample, the onset 
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temperature for motional narrowing was used to calculate an activation energy by the 

Waugh-Fedin method [28]: 

31.62 10 / ( )a WF onsetE eV K T K−
−∆ = × ×                                                       (9) 

This resulted in a value of 0.66 ± 0.03 eV for the x = 7 sample. Additionally, in order to 

estimate ΔEa by DC conductivity for the x = 7 sample, a parabolic fit was performed using the 

x = 0 to 5 data and extrapolated, yielding   ΔEa-cond = 0.63 eV. (We show in Section E that a 

non-linear extrapolation can be justified based on a physical model of the ionic interaction.) 

These estimated ΔEa values for x = 7 are indicated as triangles in Fig. 9.   

Figure 9 suggests ΔEa-NMR  values are generally higher than ΔEa-cond values.  This 

phenomenon has been reported in many systems [17-19,29].The interpretation of this result 

is discussed in the next section. 
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Figure 9. Activation energies for Na4P2S7-xOx  glasses x= 0, 1.5, 3, 5 as determined by NMR 
(squares) and DC conductivity measurements (circles, Ref. [8]). The x=7 sample NMR ΔEa 
was estimated by the onset temperature of motional narrowing using Eqn. (9)  (triangle),  
and the DC conductivity ΔEa (inverted triangle) by a parabolic extrapolation of the data, as 
indicated by the dashed line.  

 B.  Percolation model  

 We viewed the ion dynamics detected by DC ionic conductivity in terms of a bond 

percolation model [30]. Ions in the glass are interconnected by a network of conduction 

pathways, each of which may be open to ion propagation, or closed to it.  The average number 

of pathways per site is the Na-Na coordination number z. The minimum fraction of connected 

bonds needed for non-zero conduction is the critical percolation fraction P, and depends on 

z according to [30]: 
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 1.45P= .    
z

                                                                     (10) 

This relationship is a near-invariant for percolation [30], and indicates that at the percolation 

threshold the average cation site sees approximately 1.5zP =  unblocked pathways. 

Pathways above the activation energy threshold ∆Ep are considered blocked, and those 

below  unblocked.  This critical energy is taken to be the activation energy measured by DC 

conductivity ΔEa-cond [19,29,31,32]: 

P a-condΔE =ΔE                                                                  (11a) 

and satisfies [29] 

 ( )
ΔE

0

P= g ΔE dΔE
P

act act∫                                                               (11b) 

Eqn. (11b) is represented graphically in Fig. 8 as the shaded part of the curve, and the limit of 

integration ΔEP is represented as a vertical line. Rearranging Eqns. (10) and (11) , and using the 

Gaussian DAE of Fig. 8, one may find an expression for z:  

a-NMR a-cond

2.90z=       
ΔE ΔE1 erf

2 Eσ

  −
−     

                                  (12) 

where the error function is given by ( )2

0

2erf(x)= exp -t dt .      
π

x

∫  
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 Figure 10 shows the result of applying Eqn. (12) to the data of Fig. 9. Error bars were 

determined by calculating the maximum and minimum values of z from Eqn. (12). The DAE Eσ

values were taken from Fig. 8, and the uncertainties from Fig. 9.  

 Figure 10 gives the average number of paths for a mobile cation per site, as obtained from 

methods that probe ion dynamics. The result indicates consistency with face jumps through 

tetrahedral cages formed by anions, indicated as NaX4, for much of the composition range. For the 

x = 7 sample, the uncertainty is too large to make any decision about the preference for local 

geometry.  

 

Figure 10. Sodium-sodium coordination number versus sample composition for Na4P2S7-xOx  
glasses, x= 0, 1.5, 3, 5,  (squares) as determined from Eqn. (12) based on experimental values 
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taken from Fig. 9. Dotted lines indicate the z expected for face-jumps through NaX4 
tetrahedral (4 faces) and NaX5 trigonal bi-pyramidal (6 faces) sodium cages, where X=S, O. 

 

 

D.  Distribution of Na from M2 measurements 

 Experimental M2 values for the 23Na magnetic dipole interaction were found, and are 

shown in Fig. 11 versus experimental values for sodium number density N, calculated from 

the density and molar mass of the glass [8]. These measurements are taken at a temperature 

(100 K) at which all ions are static, and thus part of the structural network.  

 In sodium glasses for which N ≤ 1.5x1028 m-3 [12], three functional forms of M2(N) 

have been reported: ∝ N0 (simple clustering, e. g. sodium silicate glass);  ∝ N1 (random 

clustering distribution, e.g. sodium phosphate glass); and ∝ N2 (uniform distribution, e. g. 

sodium borate glass above N ∼ 1.3x1028 m-3). In sodium invert glasses reported [17],  M2(N) 

∝ N2 ( yNa2S+(1-y)[xSiS2+(1-x)PS5/2], where y = 0.50 and 0.67 and 1.3x1028 m-3 ≤ N ≤ 1.8x1028 

m-3).  

 Reports have modeled the cation spatial distributions using computer simulations 

[12-14,33]. We give an overview of this approach and determine closed-form expressions 

that may be used to calculate M2, providing an alternative to simulations.  

1) Of the behaviors discussed, simple clustering seems to be the least common in the 

studies reported, and has been suggested to be an indicator of ion conducting 

channels in the glass network [12]. In order to maintain constant ionic separation 

over the composition range, while N increases, could be explained by the ion 
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conducting channels that penetrate the glass network, as in a modified random 

network model [34]. Thus, modeling the details are complex, and will not be 

considered further here.  

2) In the random clustering model, the lattice constant is fixed at a distance dmin, 

which represents the minimum separation distance between cations. Lattice sites are 

randomly populated by cations with probability q = N/NT , where NT is the cation 

number density for the total number of available lattice sites, and N is the  number 

density N for the glass composition. If the model M2 from Eqn. (4) is averaged over 

many trials, then M2 ∝ -6
i

i
q r⋅∑ . The summation over internuclear distances is 

complicated for glasses since the long-range structure is an unsolved problem. Since 

bond lengths do not vary significantly between crystalline and glassy states, we 

performed the summation for two crystalline lattices in order to provide an 

understanding of the relation between M2 and N. Because simple cubic (sc) structures 

have the lowest packing fraction of all crystalline systems, and hexagonal close 

packed (hcp) the highest, we performed numerical lattice sums for these structures. 

For these lattices, NT = -3
mind  (sc) and 1.41 -3

mind  (hcp), and substituting into Eqn. (4) one 

finds that M2(N) ∝ N1, where the proportionality constant k is given in Table 1. 

3) For the uniform distribution model, all cation locations are occupied, and the 

cation-cation separation rnn changes to yield the number density for a given 

composition.  For these lattices, the cation number densities are given by N = -3
nnr  (sc) 
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and 1.41 -3
nnr  (hcp) . When the summation of Eqn. (4) is performed, one finds M2(N) ∝ 

N2, where the proportionality constant k is given in Table 1.  

In summary: 

2
theory
2

k N , for uniform distribution                
M (N)=

k N , for random clustering distribution
 ⋅


⋅
                                            (13) 

 Uniform distribution Random clustering 
distribution 

Simple cubic (sc) k = C 8.40⋅  k = 3
min

8.40C
d
⋅  

Hexagonal close packed 
(hcp) 

k = C 7.37⋅  k = 3
min

10.2C
d
⋅  

Table 1. Multiplicative constant k in Eqn. (13) for different ion distribution models and 

crystal lattice types. Here 
2

4 20μ  0.9562 γ h
4π

C=  
 
 

. 

  

 We plotted the uniform distribution models in Fig. 11 for both sc and hcp lattices. In 

order to determine an approximation for the random distribution, we noted that the glass 

modifiers Na2X (X = S, O) have sc sodium lattices with lattice parameters 327 pm and 277 

pm, respectively. We chose dmin=327 pm as a reasonable starting point. The models based on 

uniform sodium distribution are in better agreement with experiment than those for the 

random distributions (reduced χ2 = 27 for uniform distribution,  556 for random distribution, 

using the average of sc and hcp as the model [35]). This behavior is similar to that observed 

in other invert glasses [17]. The implication is that these invert glasses form with the sodium 

ions seeking to maximize internuclear 23Na distances at each composition.  
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FIGURE 11. Second moment of Na-Na magnetic dipole interaction versus sodium number 
density for Na4P2S7-xOx glasses for x=0, 1.5, 2.5, 3, 4, 4.5, 5, 7.  Number density increases with 
increasing x. Solid lines (uniform distribution) and dotted lines (random distribution)  were 
calculated by Eqn. (13) and Table 1. Random distribution values  were calculated using 
dmin=327 pm, the sodium-sodium separation for glass modifier Na2S. See text for details. 
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E.  Model for activation energy 

 From the previous section, given the uniform distribution of sodium in this system, 

the average sodium-sodium distance λ(x) may be estimated as: 

 
1/3

1λ(x)=    
N(x)

κ
 
 
 

                                                          (14) 

where κ = constant that depends on the sublattice geometry �1 for sc,√2 for hcp�,

and 𝑁𝑁(x) is the sodium number density. 

 We modeled the activation energy using the CMAS model [36]. In order for the Na to 

jump, it must overcome the Coulombic binding energy of the X anion, and strain the lattice 

as it dilates the structural opening through which it moves. The total activation energy is 

then: 

act C SE E E∆ = ∆ + ∆                              (15) 

Parameters necessary for calculating the Coulombic contribution to the activation energy 

are indicated in Fig. 12.   
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FIGURE 12.  Diagram of relevant quantities needed for estimating the Coulombic 
contribution in the CMAS model.  The sodium and anion X radii are indicated, as well as the 
average jump distance λ from one sodium site to another.  The shaded circle indicates an 
unoccupied sodium site to which the sodium cation can jump. 

 

The Coulombic contribution is defined as the energy difference between the 

sodium-anion (X) interaction at ion separations of X Nar (x)+r   and NX ar +r(x) +λ/2  yielding: 

 
2

Na
C C

Na Na

k Z Z e 1 1ΔE =M -     
ε r +r r +r +λ/2

e X

X X∞

 
 
 

                                            (16) 

where  k𝑒𝑒 = Coulomb′s constant,  ZNa,X =

magnitude of Na, X charge in units of electron charge (both 1),   rNa =

sodium ionic radius �1.02 Å [37]�, r X = average anionic radius, λ = sodium −

sodium separation,  ε∞ = dielectric constant. The Madelung constant MC may be interpreted  
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as the correction factor that adjusts the Coulomb interaction for a single model site to include 

the all the Coulomb interactions throughout the glass. Though in principle each glass 

composition would have a unique MC, we assumed a single average value across the entire 

glass composition and used this as an adjustable parameter. Finally, in this oxy-sulfide 

system the average anion radius is taken to be the number-weighted average of sulfur and 

oxygen anions: 

X SO

x 7-xr (x)= r + r    
7 7

   
   
   

                                                            (17) 

where  rS = 1.84 Å, rO = 1.23 Å  [37].   The dielectric constants were obtained from [8]. In 

general, the strain contribution to the activation energy is given by [38] 

               ( ) ( )2
S Na D

λΔE =πG x r -r
2

                                                        (18) 

where G(x)   is  shear modulus, , rD =  doorway radius, the opening size available to the 

sodium ion for motion through the glass. However, calculations for these materials show that 

the strain energy is at most 3% of the overall activation energy [8]. For this reason, we will 

ignore the strain energy contribution and consider only the Coulombic part.  

 Figure 13 shows model activation energies calculated using Eqn. (16). The dotted 

lines indicate estimates for two MC value chosen to bracket the data. The model follows the 

main trends in the data. In the range 0 ≤ x ≤ 5, the CMAS model shows ΔEact increases 

monotonically. Differences between the model and data may be due in part to the simplifying 

assumption that all glasses possess the same nominal MC value. For sc lattice in Eqn. (14),  
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MC =2.65±0.15 , and for hcp MC =2.5±0.1. These values are similar to those found in other 

sodium glasses [17,36]. 

  In the region 5 ≤ x ≤7, ΔEact  shows non-linear behavior. This provides support for the 

parabolic extrapolation procedure that was applied in Section A.  

  

FIGURE 13. Activation energy data for Na4P2S7-xOx  glasses from Fig. 9 compared with values 
calculated from the CMAS model. Dotted lines show Coulomb interaction term (Eqn. (16))  
for simple cubic sublattice model, where Madelung constant MC = 2.5 (lower) and 2.7 (upper). 

 

F.  Summary  

From estimate of the critical percolation fraction P and Na – Na coordination number 

z, one can estimate the fraction of static cations. The probability of a blocked bond is (1 – P), 

and the probability of n out of z blocked bonds is described by a binomial distribution 
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(1 )n z nz
P P

n
− 

− 
 

. Taking z = 4 for the samples for x ≤ 5 (Fig. 10), which occurs for face jumps 

through NaX4 cages, the probability of 4 blocked sites (static cation for purposes of ionic 

conduction) ranges from 5 – 10%. Thus, most cations are available to participate in ionic 

conduction. The activation energy to motion is described reasonably well by Coulombic 

interaction between the cation and the cage formed by the anions, as described by the CMAS 

model. As sulfur is replaced by oxygen, and the cages become smaller, the model accounts 

for an increase in activation energy, taking into account the broader ionic interactions in the 

glass by a multiplicative Madelung constant. Thus, while the uniform distribution of the 

cations suggests the effect of cation – cation repulsion, the CMAS model indicates that the 

dominant effect is due to the anionic cage. However, the model does not show a local 

minimum in activation energy at low x concentrations as suggested by the DC conductivity 

data.  

 

 

VI. Conclusions 

We presented a 23Na nuclear spin dynamics model for interpreting NMR spin-lattice 

relaxation and central linewidth data in the invert glass system Na4P2S7-xOx , 0 ≤ x ≤ 7. 

Assuming a Gaussian DAE, the average and standard deviation of the activation energy for 

ionic motion was determined across the glass composition. A consistent difference between 

the activation energies determined by NMR and DC conductivity measurements was 

observed, and interpreted using a percolation theory model. From this, the Na-Na 



38 
 

coordination number of the sodium sublattice was obtained. These values were consistent 

with the hypothesized values resulting from the geometries of sodium cages that form in 

these glasses, with the predominant mode for sodium jumps through faces of the structures. 

We determined the NMR second moment M2 resulting from the Na-Na magnetic dipole 

interaction of nearest neighbors. Values obtained as a function of sodium number density 

M2(N) were in agreement with crystalline models for uniform distributions. A simple 

Coulombic attraction model between sodium cation and X anion was applied to calculate the 

activation, and demonstrated an increase in activation energy with increasing oxygen 

content x, consistent with the data for 1.5 ≤ x ≤ 7. For small oxygen concentrations  0 ≤ x ≤ 1.5, 

however, the model was not consistent with a local minimum in activation energy as suggested by 

DC conductivity data. 
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VII. Appendix 

 A 23Na nucleus (I=3/2) can be described by a nuclear spin Hamiltonian [9,11] 

 Z Q D= ++                                                                       (19) 

where the Zeeman term 0Z zB Iγ= − h   is the interaction of the nuclear spin with the external 

magnetic field 0B ; the quadrupole term 
2 2 2 2 2

4 (2 1) 2[(3 ) ( )( )]e qQ
Q zI I I I I Iη

+ −−= − + +   describes the 

electric quadrupole interaction with the local electric field gradient 2 /ij i jV V x x= ∂ ∂ ∂ ; and the 

magnetic dipole term D  is the magnetic dipole-dipole interaction between nuclear spins.  

Here Q is written in the principal axis system (PAS) of the electric field gradient tensor,  and 

the PAS axes are defined such that  ZZ YY XXV V V≥ ≥ . The quantity eQ is the quadrupole 

moment of the 23Na nucleus, ZZeq V=  , the quadrupole frequency ( )
23

2 2 1
e qQ

Q I I hν −= , and 

asymmetry parameter XX YY

ZZ

V V
Vη −=  . The conditions of this study, namely Z Q>  , result in a 

spectrum with a sharp central transition line (Iz=-1/2↔ 1/2) flanked by one satellite peak 

on either side (Iz=1/2↔ 3/2 and -1/2↔ -3/2 ). For a single crystal, this results in a central 

line symmetrically straddled by two quadrupole satellites, with separation proportional to 

Qν . For a crystalline powder, the distribution in grain orientations results in features 

(singularities and shoulders) that may be exploited to extract  a unique Qν and η  for each 

non-equivalent resonant nuclear site in the crystal [23].  

 For glasses, a distribution of local environments exists due to variations in bond angle 

and bond length in the system.  We modeled the powder patterns in a manner similar to 
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work in other sodium glasses [17]. If ( , )crystal Qf ν η  is the normalized crystalline powder 

pattern for a single local environment characterized by  𝜈𝜈𝑄𝑄 and 𝜂𝜂, and ( , )QP ν η   represents 

the distribution function for 𝜈𝜈𝑄𝑄 and 𝜂𝜂  arising from the variation in local environments, then 

the powder pattern for the glass is given by the weighted sum: 

 
,

( , ) ( , ) ( , )
Q

glass Q crystal Q Qf f P
ν η

ν η ν η ν η= ∑                                           (20) 

In previous work, we obtained satisfactory results with ( , )QP ν η  given by the product of two 

independent Gaussian distributions, one each for 𝜈𝜈𝑄𝑄  and  . However, the electric field 

gradients in the x, y, and z directions—and therefore 𝜈𝜈𝑄𝑄 and 𝜂𝜂—are   correlated, and thus not 

independent. We have here chosen to use the Czjzek distribution, which describes the 

distribution of Qν  and η  in a single function, and which arises in amorphous solids [24]. The 

distribution is given by: 

2
2

2
4

25

1
31( , ) 1 exp

9 22

Q

Q Q
QQ

P

ην
ην η ν η

σπσ

  
+      = ⋅ ⋅ − ⋅ −      

 

                             (21) 

The quantity Qσ  parameterizes the width of the distribution.  
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