
Persistent Memory Security
Threats to Inter-Process
Isolation
Naveed Ul Mustafa
Department of Computer Science, University of Central Florida (UCF), FL, USA

Yan Solihin
Department of Computer Science, University of Central Florida (UCF), FL, USA

Abstract—
Persistent Memory Object (PMO) is a general system abstraction for holding persistent data in
persistent main memory, managed by an operating system. PMO programming model breaks
inter-process isolation as it results in sharing of persistent data between two processes as they
alternatively access the same PMO. In this paper, we discuss security implications of PMO
model. We demonstrate that the model enables one process to affect execution of another
process even without sharing a PMO over time. This allows an adversary to launch inter-PMO
security attacks if two processes are linked via other unshared PMOs. We present formalization
of inter-PMO attacks, their examples, and potential strategies to defend against them.

THE RELEASE of DIMM-compatible Intel
Optane PMem in 2018 enabled the incorporation
of Persistent Memory (PM) into main mem-
ory. Though Intel recently discontinued Optane
PMem, alternative products (such as Kioxia FL6
[1] or CXL-attached SSD) are appearing. Com-
pared to DRAM, PM provides higher density,
better scaling prospect, non-volatility, and lower
static power consumption, while providing byte
addressability and access latencies that are not
much slower. Consequently, PM blurs the bound-
ary of memory and storage.

When integrating it to computer system, one
way to view PM is as persistent main memory
used to host persistent data structures encapsu-
lated in objects that are managed by the OS.
These Persistent Memory Objects (PMO) were
proposed initially in [3] and used in recent works
e.g., [4]. There are only a few studies addressing
security threats arising from PMO model, i.e.

using PM as system objects hosting persistent
data. For example, [3], [4] look into reducing
exposure window of PMOs and PMO space lay-
out randomization. However, they did not analyze
what threats were possible and the situations
under which the protection could be effective. A
recent work [5] elaborates on the security threats
stemming from the PMO model by showcasing
inter-process attacks where one process (payload)
successfully affects the execution of another pro-
cess (victim) by overwriting pointers of a PMO
shared between them. Because of the long-living
nature of a PMO, the attack does not require
simultaneous PMO sharing; successive sharing
over time (even across system boots) is sufficient.

The inter-process attack described in [5] still
requires the payload and the victim to share a
common PMO (simultaneously or successively
over time). In this paper, we demonstrate that
an adversary can launch successful attacks on

IEEE Micro Published by the IEEE Computer Society © 2023 IEEE 1

a victim even when they do not share a PMO,
whether simultaneously or over time. We refer
to this new attack as an inter-PMO attack. The
attack only requires a connectivity path of PMOs
between processes including the payload and the
victim, and exploits the path to propagate corrup-
tion. By relaxing the requirement of PMO sharing
needed in the inter-process attack [5], the new
attack significantly expands the capability of an
adversary, and warrants the need to protect all
PMOs irrespective of whether they are shared or
not between the payload and the victim.

This paper makes the following contributions.
(1) We present inter-PMO attacks by defining
them and analyzing necessary requirements for
them to occur, (2) present two examples of inter-
PMO data-disclosure attacks, (3) present a step-
by-step process to implement an example in a
controlled environment, (4) evaluate the success
rate of the implemented attack, and (5) discuss
potential defense strategies.

BACKGROUND
Persistent Memory Object (PMO)

PMO is a general system abstraction for hold-
ing persistent data managed by operating system
(OS) [3]. PMO data is not backed by files, and
may permanently reside in physical memory. Data
in a PMO is held in regular data structures, hence
may contain complex data types and pointers,
and is accessible directly with load and store in-
structions, unlike files1. The OS may provide file
system-like namespace and permission settings to
PMOs so that data in a PMO can be reusable
across process lifetimes and basic access control
can be provided.

Key primitives for a PMO are attach(), de-
tach() and psync() system calls [6]. As PMO
already resides in physical memory, and its data
is already in data structure form, for a process to
work on PMO data, it calls attach() system call
to map the PMO into its address space. Once
attached, the process can access it with regular
loads/stores, without involving the OS. psync()
persists PMO updates in a crash-consistent way.
detach() unmaps the PMO from the address

1While some files may contain serialized objects and hence
pointers, accesses require system calls and serialization/deserial-
ization.

space, making it inaccessible. After detached, any
laod/store to the address region where the PMO
used to map result in protection faults.

Just like a file, a PMO may outlast process
lifetime, it is conceivable that it will be attached
and accessed by multiple processes at differ-
ent times (or simultaneously read). Similarly, a
single process may attach and access multiple
PMOs simultaneously. When multiple processes
alternatingly access a file, a process may make
changes to the file that affect other processes. The
same can occur to a PMO accessed by multiple
processes. However, a PMO is mapped directly to
the address space, hence a change to PMO data
by one process directly affects the address space
of another process.

Security Implications of PM vs Files
PMOs are expected to hold data structures,

making them pointer rich. On the contrary, files
are normally used to hold data (but can also be
used to hold data structures, though less com-
mon). Since a file contains no pointers, cross-
process attacks are much harder to carry out.
Pointers are attractive targets for attacks, which
makes PM protection more important.

Also, data placed in a PMO-resident data
structure is more tightly coupled with execution
flow of a process as it can be accessed with
regular load/store instructions. Even non-pointer
data in PMOs is more likely to be directly used to
determine program control flow, making them at-
tractive attack targets. In contrast, data from files
is first de-serialized and placed in data structures
before used in a process’ execution flow.

Finally, unlike PMOs, file data is managed
directly by the OS, any access (read/write) re-
quires system calls, and the OS can perform
security checks when serving the system calls. In
contrast, PMO data can be manipulated directly
by loads/stores transparent to the OS.

The combination of longevity, direct byte-
addressability and uncoordinated shared access
distinguishes PMOs from both DRAM and tradi-
tional storage for memory protection, in terms of
vulnerability, consequences of security breaches,
as well as opportunities for novel solutions.

2 IEEE Micro

PREVIOUS WORK
Most prior studies focused on the security

vulnerabilities of PM fabric itself, rather than
the PMO model. To address data remanence due
to non-volatility, PM encryption was proposed,
e.g. [7], [8]. The limited write endurance of PM
may lead to early wear out if the attacker is
allowed to write to them excessively. Hence, pre-
venting redundant writes [10] and wear leveling
are critical.

However, PM vulnerabilities go beyond just
the fabric itself; hosting persistent data as in the
PMO model, introduces new vulnerabilities while
PM data is in active use. Memory Exposure Re-
duction and Randomization (MERR) [3] protects
PMOs by reducing their exposure window (by at-
taching only when needed for access and detach-
ing afterward) and hence the attack surface. They
proposed splitting the page table to accelerate
attach, and PMO Space Layout Randomization
(PSLR), where the PMO is mapped to a differ-
ent randomized location at each attach. Another
work [4] focuses on mapping PMOs into separate
domains, in order to leverage domain protection
such as Intel Memory Protection Key (MPK). The
intent was to restrict accesses to PMOs only to
threads that access them. Both works [3], [4] seek
to make unauthorized accesses to PMOs difficult
for the process accessing the PMO.

A recent work by Mustafa et al. [5] showed
that a vulnerable (i.e. payload) process with a
PMO access can be used by an attacker to launch
an attack on a different (i.e. victim) process that
shares the same PMO successively over time.
This paper exposes that such a requirement is
indeed unnecessary, a security attack can be
launched even when there is no shared PMO
between the payload and victim.

THREAT MODEL
We consider a threat model where a process,

referred as victim, has no known memory safety
vulnerabilities that can be exploited by adver-
sary. Another process, referred as payload, has
memory safety vulnerabilities that the adversary
can exploit. A third kind of process, referred as
transmitter, shares a PMO with payload and a
different one with the victim. Transmitters are not
assumed to have memory safety vulnerabilities.
An attack may start with the attacker exploiting

some vulnerabilities in the payload, and transmit
memory corruption over transmitters, to eventu-
ally affect the execution of the victim. This threat
model is different from [5] where a shared PMO
is required between the payload and victim.

The goal of an adversary is to use the pay-
load process in order to compromise the victim
process. We assume that adversary knows the
addresses, data structures and layout of the PMOs
that are part of the chain of transmitters but
have no legit access to any of them. We assume
data structures in PMOs may contain buffers
and pointers and the payload process code may
have regular known vulnerabilities (e.g., buffer-
overflow, integer overflow, format string, etc.). We
assume a trusted system software, such as the OS,
which manages address space isolation between
processes. PMOs are also managed by OS which
applies permission checking while granting ac-
cess to a PMO. This implies that access to a
detached PMO is not permitted and results in
segmentation fault. However, a process can read
and write a legally attached PMO.

POINTER CLASSIFICATION
Based on the addressing mechanism, either

absolute or relative pointers can be used to access
PMOs and data-structures they hold. An absolute
pointer contains virtual address, e.g. in Mnem-
soyne [11] An absolute pointer is fast to derefer-
ence because it relies on the traditional address
translation mechanism. However, it makes PMO
Space Layout Randomization [3] costly; any time
the PMO is mapped to a different virtual address
region, pointers in the PMO must be rewritten
accordingly. Finally, if multiple processes are
allowed to simultaneously share a PMO, absolute
pointers require the PMO to be mapped to the
same virtual address range in all processes.

Alternatively, relative pointers can be used
that combine PMO ID and offset in format of
object:offset. A relative pointer can use a
regular 64-bit format or use a fat pointer format
where a pointer is represented by multiple fields.
To dereference a pointer, a translation table is
looked up to translate the system-wide unique
PMO ID to its base virtual address [3], and
then the offset is added to it. Unlike absolute
pointers, relocating such PMOs is straightforward
to perform. Note that example attacks we present

May/June 2023 3

are valid irrespective of pointer type.

ATTACK EXPOSITION
To sketch an inter-PMO attack, the necessary

condition is that the attacker can use the vul-
nerabilities of a payload process to affect the
execution of the victim process through a series
of PMOs and transmitters. In this section, we will
define several terms and specify the necessary
requirements for such attacks to succeed.

First, we define S PMO(p) as the set of
PMOs accessed by process p during its life time
and S Proc(x) as set of processes sharing a
PMO x, with sharing defined as successively
accessing a PMO during the PMO’s lifetime.
Note that the lifetime of p and x are different,
with x’s lifetime expected to be long. If there
exists a PMO x that is shared by two different
processes Pi and Pj , we state that there is a link
between them via x.

L(Pi, Pj, x) ⇒
∃x ∈ S PMO(Pi) : Pj ∈ S Proc(x)

(1)

Figure 1 shows an example of five processes
shown in circles, sharing five PMOs shown in
rectangles (right), with their respective S PMO
and S Proc shown (left).

PMO S_Proc(PMO) Proc S_PMO(Proc)

 a {P0,P1,P2} P0 {a}

 b {P1, P3, P4} P1 {a, b}

 c {P2} P2 {a, c}

 d {P3, P4} P3 {b, d}

 e {P4} P4 {b, d, e}

P0 P1

a

P2

b

P3

c

P4

d

e

Figure 1: Example of S PMO and S Proc
(left) and links between processes (right).

We define Path between two different pro-
cesses Pi and Pl as a set of links connecting
them. Multiple paths might exist between two
processes. For example, Figure 1 (right) shows
a path between P0 and P2:

Path(P0, P2) = {L(P0, P2, a)}

and two paths between process P0 and P4:

{L(P0, P1, a), (P1, P4, b)}

and

{L(P0, P1, a), L(P1, P3, b), L(P3, P4, d)}

With S PMO(p) ̸= ∅, there is always a path
from a process p to itself.

To find a path between two processes Pi and
Pl, we define a Set of Processes (SoP) initially
with two members Pi and Pl. We state that a Path
Exists (PE) between two processes Pi and Pl if
they are the same process, linked by a PMO x,
or there are distinct processes Pj /∈ SoP and Pk

/∈ SoP such that Pi is linked to Pj via PMO y,
Pk is linked to Pl via PMO z, and there exists a
path between Pj and Pk.

PE(Pi, Pl, SoP) ⇒
(Pi = Pl) ∨ L(Pi, Pl, x)∨
(∃Pj /∈ SoP ∧ Pk /∈ SoP :

(L(Pi, Pj, y) ∧ L(Pk, Pl, z)

∧ PE(Pj, Pk, SoP ∪ {Pj, Pk})))

(2)

Note that 2 is a recursive statement that resolves
to true or false.

Conditions for Successful Attack
If pointers within a PMO attached by a pro-

cess are not corrupted, reads/writes on that PMO
are performed at addresses as intended by the at-
taching process. However, if the pointers are cor-
rupted, reads/writes can be diverted to unintended
addresses within the same PMO or a different
but attached PMO, depending on corruption. We
denote Pi

r/w−−→
x

y to state that Pi’s read/write
to PMO x are diverted to PMO y. Furthermore,
we denote x ↦→ x′ to indicate that PMO x
becomes x′ if it has data or pointers that have
been corrupted.

An adversary can potentially launch a success-
ful attack on a victim process V by controlling
payload process PL if 1 a path exists between
PL and V (i.e., PE(PL, V, {PL, V }) is true),
2 sequence of attach-detach sessions on PMOs

by processes along the path successively follows
the direction of links in the path, and 3 PL
is able to mislead processes along the path to
perform unintended reads and writes, with PL-
determined data, on PMOs of their respective
links.

The first condition requires that at least one
path exists between the process PL and process
V . If multiple path exists, the attacker has multi-
ple options to attack V , with the shortest path po-
tentially shortening the time to succeed. The sec-

4 IEEE Micro

ond condition imposes the order on attach-detach
sessions performed by processes. For example,
consider P0 and P4 of Figure 1 as payload and
victim processes, respectively. For the following
path from P0 to P4

{L(P0, P1, a), L(P1, P3, b), L(P3, P4, d)}

sequence of attach-detach sessions must be same
as shown below for an attack to succeed.

1) P0
r/w−−→
a

a ↦→ a′ 2) P1
r/w−−→
a′

b ↦→ b′

3) P3
r/w−−→
b′

d ↦→ d′ 4) P4
r/w−−→
d′

e ↦→ e′

where e is an unshared PMO of P4. Note that we
assume a process exclusively attaches PMOs in
advance needed for both intended or unintended
accesses. For example, for the second attach-
detach session, P1 attaches both a and b before
reading/writing a.

The third condition requires that PL is able
to mislead processes along the path to perform
unintended writes e.g., by diverting their control
flow when they access a corrupted PMO.

EXAMPLE ATTACKS
This section sketches two example proof-of-

concept attacks, with the first requiring trans-
mitter control flow hijacking while the second
does not. The first example assumes that transmit-
ter processes have memory vulnerabilities (e.g.,
buffer overflow) that can be exploited by an
adversary. For both examples, consider SQLite
[12], a database engine that allows multiple pro-
cesses to read the database simultaneously but
only one process can modify the database at any
time. Suppose that SQLite is ported to PMOs for
better performance, with each table represented
by a persistent AVL tree. Figure 2 (left) shows
a simple PMO that contains two B+ trees and
a circular linked-list of free nodes. Two Data
Structure Root (DSR) fields point to root node of
the trees , while Head and Tail fields are pointers
for the free list. Nodes are allocated/deallocated
from/to the free list to perform insertion/deletion
operation on trees. Figure 2 (right) shows library
code to allocate a node from the free list. Suppose
that DSRs, Head and Tail fields are contiguously
laid out at fixed offsets from the PMO base
address. These fixed offsets allow a program to
locate the free list and the data structure.

We illustrate both data disclosure attacks by
using PMO-ported SQLite in Figure 3.

DSR 1 DSR 2 Head Tail
1 void* allocNode(){
2 lastNode=*Tail;
3 firstNode=*Head;
4 lastNode->fd=

firstNode->fd;
5 *Head=firstNode->

fd;
6 return firstNode;}

Figure 2: PMO Layout (left) and library code to
allocate a node from free-list (right).

Data Disclosure Attack By Hijacking Transmitter
Processes

Head Tail

PMO0

P0Payload P1
P2P3

Victim

CS_faculty and CS_prof Phys_faculty and Phys_prof

Maths_faculty and Maths_prof Bio_faculty and Bio_prof

Src Dst

fp1-ΔPMO0

M1

Head Tail

PMO1

Src Dst

fp2-Δ

M2

PM
O
3.
sr
c

Head Tail

PMO2

Src Dst

PMO2.src

Head Tail

PMO3

Src Dst

PM
O
1 .D
st

Figure 3: Setup for data disclosure attack. No
PMO is shared between the payload and victim.

Let us assume that Source (Src) fields
of PMO0, PMO1, PMO2, and PMO3

point to B+ trees representing CS_faculty,
Phys_faculty, Maths_faculty and
Bio_faculty tables, respectively. Destination
(Dst) fields of PMO0, PMO1, PMO2

and PMO3 points to B+ trees representing
CS_profs, Phys_profs, Maths_profs
and Bio_profs tables respectively. PMO3 is
private to victim P3 and we expect that payload
process P0 cannot read data from PMO3. Note
that following path exists between the payload
and victim.

{(P0, P1, PMO0), (P1, P2, PMO1),

(P2, P3, PMO2)}

May/June 2023 5

We demonstrate that payload can read from
PMO3 even though it is private to the victim
and there is no shared PMO between the two
processes.

The attack relies on following sequence of
attach-detach sessions.

1) P0
r/w−−−−→

PMO0

PMO0 ↦→ PMO′
0

2) P1
r/w−−−−→

PMO′
0

PMO1 ↦→ PMO′
1

3) P2
r/w−−−−→

PMO′
1

PMO2 ↦→ PMO′
2

4) P3
r/w−−−−→

PMO′
2

PMO3 ↦→ PMO′
3

Note that first attach-detach session performs
intended reads/writes on PMO0 while
others perform unintended reads/writes on
PMO1, PMO2 and PMO3.

Consider that each process independently ex-
ecutes a query on an attached PMO to extract
records from its faculty table (i.e., source B+ tree)
with the designation of professor and insert them
into professor table (i.e., destination B+ tree).
To launch the attack, adversary first discovers
function pointers fpi in the volatile memory
portion of Pi’s address space and injects code
blocks Mi, shown in Algorithm 1, in the heap
region of Pi where i = 1, 2. Note that ∆ is
address displacement between a free-list node and
its fd field.

Algorithm 1 Pseudocode of Mi for i = 1, 2

Require: addr(Mi+1), addr(fpi+1), ∆
1: attach (PMOi−1); attach(PMOi);
2: *(PMOi−1.DSR_Src)

=*(PMOi.DSR_Dst);
3: firstNode=*(PMOi.Head);
4: firstNode->fd=&(Mi+1);
5: *(PMOi.Tail)=&(fpi+1)-∆;
6: psync(PMOi−1); psync(PMOi);
7: detach(PMOi−1); detach(PMOi);

In the first attach-detach session, adversary
uses payload process P0 to attach PMO0, over-
writes the forward pointer fd of first node of its
free list such that it points to M1 and also over-
writes the Tail field to point to location of fp1

minus ∆ 2 (shown by orange arrows in Figure
3). Finally, adversary psyncs PMO0, detaches
it, and waits.

In the second attach-detach session, P1 at-
taches PMO0 and PMO1 and allocates a node
from free-list of PMO0. The allocNode()
library function of Figure 2 removes first node
from the list. Line 2 of the code gets lastNode
by dereferencing Tail. Since Tail was over-
written by adversary, lastNode points to fp1−
∆. The left side of the assignment statement in
line 4, lastNode ->fd, points to a location
pointed by lastNode plus address displace-
ment between lastNode and its fd field i.e.
(fp −∆) + ∆ = fp. Since firstNode->fd
was set by adversary to point to M1, line 4 makes
fp point to M1. Finally, when the function pointer
is used by the P1, M1 is executed. Execution
of M1 (see Algorithm 1) redirects PMO0.Src
to root node of destination AVL tree of PMO1

as shown by red arrow in Figure 3. M1 also
overwrites PMO1’s Tail field and fd pointer of
first node in the free list, shown by orange arrows.
Finally, M1 psyncs PMO0 and PMO1, and
detaches them.

In the same way, third attach-detach session
by P2 redirects PMO1.Src to root node of
destination B+ tree of PMO2 and overwrites
free-list pointers of PMO2 while fourth attach-
detach session by P3 redirects PMO2.Src to
root node of source B+ tree of PMO3.

Now consider following sequence of query
execution. P3 attaches PMO2 and PMO3,
executes query on Bio_faculty table.
Since, PMO2.Src was redirected, the query
extracts records from Maths_faculty table
(i.e. PMO3) of victim and inserts them to
Bio_prof table. Afterwards, P3 psyncs
and detaches both PMOs. Next, P2 attaches
PMO1 and PMO2, executes query on
Phys_faculty table that actually extracts
records from Bio_prof table and inserts them
to Phys_prof table (as PMO1.Src was
redirected) including those records that were
copied over from Maths_faculty table. P2

then psyncs and detaches both PMOs. Next, P1

attaches PMO0 and PMO1, executes query
on CS_faculty table that actually extracts

2∆ is 0 in our implementation of example attacks.

6 IEEE Micro

records from Phys_prof table and insert them
to CS_prof table, (as PMO0.DSR Src
was redirected). Finally, when P1 psyncs and
detaches PMO0, process P0 can attach PMO0

to read records of Maths_prof inserted in
CS_prof. The attack demonstrates that private
data of the victim is disclosed to attacker by
payload process even when they do not share a
PMO.

Data Disclosure Attack Without Hijacking
Transmitter Processes

The attack presented in previous section not
only assumes memory vulnerabilities for trans-
mitter processes, it also requires an adversary
to find address of function pointers in volatile
memory portion of processes’ address space. The
attack may not succeed either if a function pointer
is not found for any one of P1 or P2, or if
the address of function pointers or injected code
blocks Mi change (e.g., due to relaunching of
a process) anytime between address discovery
and invocation of function pointers by processes.
Furthermore, execution of code blocks injected in
heap region of a process is possible only if Data
Execution Prevention (DEP) is not supported on
the platform. Otherwise, control flow of processes
cannot be hijacked.

We observe that above attack can be launched
even without hijacking P1 and P2. In such case,
neither address discovery for function pointers
nor code injection is needed. Though attack steps
become more convoluted but not impossible. As
an example, payload P0 can attach PMO0 and
overwrite its Tail field with the address of PMO0

and Head field with the address of PMO1.DST ,
shown by blue arrows in Figure 3. Assum-
ing that adversary knows address of PMO1

and its layout, address of PMO1.DST is cal-
culated as address(PMO1) + Size(SRC).
Finally P0 psyncs PMO0, and detaches it.
When P1 attaches both PMO0 and PMO1,
and allocates a node from free-list of PMO0,
the allocNode() library function of Fig-
ure 2 dereferences Tail (line 2) to get
lastNode. Since Tail was overwritten,
lastNode actually points to PMO0.Src. Line
3 of allocNode() dereferences Head to
get firstNode. Since Head was overwritten,
firstNode points to root node of destination

B+ tree of PMO1. With address displacement
of zero between a node and its fd field, line 4 of
allocNode() redirects PMO0.SRC to root
node of destination B+ tree of PMO1, as shown
by red arrow in Figure 3, achieving same affect
as in first example attack.

In the same way, payload can perform the
remaining two pointers redirections shown in
Figure 3 by carefully overwriting PMO0 pro-
vided that attach-detach sessions are performed
in desired sequence by other processes along the
path between P0 and P3. Details of these pointer
redirections are not shown in the figure due to
limited space. Once all the pointer redirections
are materialized, payload can read private data
of the victim in the same way as shown in the
previous section.

Attack Prototyping
We implemented a proof of concept inter-

PMO attack illustrated in Figure 3. We imple-
mented it on Greenspan PMO system [6] that
was built on Linux 5.14.18 to support PMO
creation and management. We built a simple
persistent database modeled after SQLite con-
sisting of the eight tables from Figure 3, i.e.,
two tables per PMO representing one of four
departments (i.e., CS, Physics, Bio, and Maths).
Our implementation of processes P1, P2, and P3

execute queries to find records of professors from
the faculty table and insert them in the prof table
of respective departments. P0 repeatedly reads all
records from the prof table of the CS department.
All processes other than P3 (i.e., victim) have
buffer overflow vulnerability. We implemented
step 1 of the attack, i.e., stitching the path (shown
by red arrows in Figure 3), by exploiting buffer
overflow vulnerability to inject shell-code for M1

and M2 on the stack of P1 and P2, respectively.
Note that this step can be completed in other ways
(without code injection), e.g., by return-to-libc or
return-oriented programming. In step 2, P0 (i.e.,
payload) repeatedly runs the query to read records
from the prof table of the CS department until
it finds a record of a professor from the Maths
department (i.e., private PMO3 of the victim)
indicating a successful attack.

May/June 2023 7

Victim or Transmitter Payload Victim or Tranmsitter

Time

Address of fp and M must remain same

overwrites PMO
pointers

Adversary discovers
address of fp and M

allocates
a node

calls function
pointer

Window to

block the

Window to verify PMO

Window to rollback PMO

process

integrity

T0

T1

T2

T3

Figure 4: Steps to alter control flow of a process.

Evaluation
We consider an attack successful when P0 can

obtain a record of Math’s professor. We define
time budget as the duration within which an attack
is attempted and success rate as the number of
successful attacks divided by total number of at-
tack attempts for a given time budget. We observe
that the success rate is 1 for time budgets greater
than or equal to 0.75 seconds and 0 otherwise.
This shows that 0.75 second is the minimum time
for the example attack to succeed. The attack fails
for lower time budgets as the execution of queries
by P1, P2 and P3, and the propagation of results
to PMO0 takes at least 0.75 seconds. In a more
realistic setting, with larger tables and processes
also performing non-database accesses, the attack
may take longer time to succeed.

POSSIBLE DEFENSE APPROACHES
Inter-PMO attacks based on hijacking of

transmitter processes can be successful only if
addresses of function pointers (fpi) and injected
code blocks (Mi) are not changed between two
successive runs of the relevant process i.e. P1, P2

or P3. If PMO Space Layout Randomization
(PSLR) is enabled, the addresses of fpi and
Mi will be randomized on subsequent runs and
hence the attack will fail to change the execution
flow of transmitter processes and the victim.
Furthermore, with Mi as code blocks injected
by adversary in heap regions of processes, the
attack can only be successful if Data Execution
Prevention (DEP) is not supported or enabled.

However, DEP does not protect against all
kind of attacks. For example, our example of

inter-PMO attack without hijacking transmitter
processes can succeed in presence of DEP as it
does not rely on code injection. On the other
hand, it can also fail if PSLR is enabled as
address range at which PMOs are mapped in
address space of a process is randomized on next
attach call. However, some attack frameworks can
breach PSLR or DEP defense schemes [9]. There-
fore, additional protection is needed to detect and
foil inter-PMO attacks.

Figure 4 shows the timeline of the steps
performed by payload to alter control flow of a
process as in data disclosure attack of Figure 3.
The figure shows opportunities for detecting and
foiling the attack.

First, address of fp and M must remain the
same between T0 and T2, for altering control flow
of the target process. If the addresses change, the
attack will corrupt PMO but not result in control
flow hijacking. Second, the window of time be-
tween T1 and T3 is the window of opportunity
to detect the attack by verifying the integrity
of the data structures in the PMO. In other
words, the integrity check must be performed
before T3 as the control flow gets altered by that
time. The integrity of data structure(s) can be
checked by performing topology verification and
data structure-specific invariant checks. Third,
in the window of time between T1 and T2, if
PMO integrity problem is detected, and a non-
corrupted previous version exists, the PMO can
be restored and attack foiled. But, between T2

and T3, to foil the attack, the target process must
be blocked/terminated.

8 IEEE Micro

ACKNOWLEDGMENT
This work was supported in part by ONR

through grants N00014-23-1-2136 and N00014-
20-1-2750, and by NSF through grants 1900724
and 2106629.

CONCLUSION
In this paper, we have shown that multiple

processes may access persistent data in an unco-
ordinated way under PMO programming model.
This allows a process to affect the execution of
other processes even when they do not share a
PMO. This makes PMOs a new tool for launching
security attacks. We presented formalization of
such attacks, demonstrated and evaluated exam-
ple attacks, and provided discussion on possible
defense approach. The paper makes the case for
increased memory safety protection when persis-
tent memory is used.

Naveed Ul Mustafa is a postdoctoral researcher
at ARPERS lab, UCF, FL. Contact him at un-
known.naveedulmustafa@ucf.edu.

Yan Solihin is Director for Cyber Security and
Privacy Cluster and Professor of Computer Sci-
ence at University of Central Florida. Contact him at
yan.solihin@ucf.edu.

REFERENCES
1. Kioxia, SLC NAND Flash Memory Kioxia - United States.

[Online]. Available: https://americas.kioxia.com/en-

us/business/ssd/enterprise-ssd/fl6.html

2. SNIA, Persistent memory hardware threat

model. Technical Whitepaper. [Online]. Available:

https://www.snia.org/educational-library/persistent-

memory-hardware-threat-model-technical-white-paper-

2018

3. X. Yuanchao, Y. Solihin, X. Shen, “Merr: Improving se-

curity of persistent memory objects via efficient memory

exposure reduction and randomization,” Proc. Twenty-

Fifth ASPLOS, pp 987–1000, 2020.

4. X. Yuanchao, C. Ye, Y. Solihin, X. Shen, “Hardware-

based domain virtualization for intra-process isolation of

persistent memory objects,” Proc. Forty-Seventh Ann.

IEEE ISCA, pp 680–692, 2020.

5. N.U. Mustafa, X. Yuanchao, X. Shen, Y. Solihin, “Seeds of

SEED: New Security Challenges for Persistent Memory,”

Proc. First IEEE SEED, pp 83–88, 2021.

6. G. Derrick, N.U. Mustafa, Z. Kolega, M. Heinrich, Y.

Solihin, “Improving the Security and Programmability of

Persistent Memory Objects,” Proc. Second IEEE SEED,

pp 157–168, 2022.

7. Z. Pengfei, Y. Hua, Y. Xie, “SecPM: a Secure and Per-

sistent Memory System for Non-volatile Memory.,” Proc.

Tenth USENIX Workshop on Hot Topics in Storage and

File Systems, 2018.

8. Z. Pengfei, Y. Hua, Y. Xie, “Supermem: Enabling

application-transparent secure persistent memory with

low overheads,” Proc. Fifty-Second Ann. IEEE MICRO,

pp 479–492, 2019.

9. S. Kevin Z., F. Monrose, L. Davi, A. Dmitrienko, C.

Liebchen, A.R. Sadeghi, “Just-in-time code reuse: On

the effectiveness of fine-grained address space layout

randomization,” Proc. IEEE Symposium on Security and

Privacy, pp 574–588, 2013.

10. M. Sparsh, A.I. Alsalibi, “A survey of techniques for

improving security of non-volatile memories,” Journal of

Hardware and Systems Security., vol. 2, pp. 179–200,

2018.

11. V. Haris, A.J. Tack, M.M. Swift, “Mnemosyne:

Lightweight persistent memory,” ACM SIGARCH

Computer Architecture News., vol 39, no. 1, pp. 91–104,

2011.

12. B.S. T., T. Patil, P. Patil, “Sqlite: Light database system,”

Int. J. Comput. Sci. Mob. Comput., vol 44, no. 4, pp. 882–

885, 2015.

May/June 2023 9

	BACKGROUND
	Persistent Memory Object (PMO)
	Security Implications of PM vs Files

	PREVIOUS WORK
	THREAT MODEL
	POINTER CLASSIFICATION
	ATTACK EXPOSITION
	Conditions for Successful Attack

	EXAMPLE ATTACKS
	Data Disclosure Attack By Hijacking Transmitter Processes
	Data Disclosure Attack Without Hijacking Transmitter Processes

	Attack Prototyping
	Evaluation
	POSSIBLE DEFENSE APPROACHES
	ACKNOWLEDGMENT
	CONCLUSION
	Biographies
	Naveed Ul Mustafa
	Yan Solihin

	REFERENCES

