Persistent Memory Security
Threats to Inter-Process

|Isolation

Naveed Ul Mustafa

Department of Computer Science, University of Central Florida (UCF), FL, USA

Yan Solihin

Department of Computer Science, University of Central Florida (UCF), FL, USA

Abstract—

Persistent Memory Object (PMO) is a general system abstraction for holding persistent data in
persistent main memory, managed by an operating system. PMO programming model breaks
inter-process isolation as it results in sharing of persistent data between two processes as they
alternatively access the same PMO. In this paper, we discuss security implications of PMO
model. We demonstrate that the model enables one process to affect execution of another
process even without sharing a PMO over time. This allows an adversary to launch inter-PMO
security attacks if two processes are linked via other unshared PMOs. We present formalization
of inter-PMO attacks, their examples, and potential strategies to defend against them.

B THE RELEASE of DIMM-compatible Intel
Optane PMem in 2018 enabled the incorporation
of Persistent Memory (PM) into main mem-
ory. Though Intel recently discontinued Optane
PMem, alternative products (such as Kioxia FL6
[1] or CXL-attached SSD) are appearing. Com-
pared to DRAM, PM provides higher density,
better scaling prospect, non-volatility, and lower
static power consumption, while providing byte
addressability and access latencies that are not
much slower. Consequently, PM blurs the bound-
ary of memory and storage.

When integrating it to computer system, one
way to view PM is as persistent main memory
used to host persistent data structures encapsu-
lated in objects that are managed by the OS.
These Persistent Memory Objects (PMO) were
proposed initially in [3] and used in recent works
e.g., [4]. There are only a few studies addressing
security threats arising from PMO model, i.e.

IEEE Micro

Published by the IEEE Computer Society

using PM as system objects hosting persistent
data. For example, [3], [4] look into reducing
exposure window of PMOs and PMO space lay-
out randomization. However, they did not analyze
what threats were possible and the situations
under which the protection could be effective. A
recent work [5]] elaborates on the security threats
stemming from the PMO model by showcasing
inter-process attacks where one process (payload)
successfully affects the execution of another pro-
cess (victim) by overwriting pointers of a PMO
shared between them. Because of the long-living
nature of a PMO, the attack does not require
simultaneous PMO sharing; successive sharing
over time (even across system boots) is sufficient.

The inter-process attack described in [5] still
requires the payload and the victim to share a
common PMO (simultaneously or successively
over time). In this paper, we demonstrate that
an adversary can launch successful attacks on

© 2023 IEEE

a victim even when they do not share a PMO,
whether simultaneously or over time. We refer
to this new attack as an inter-PMO attack. The
attack only requires a connectivity path of PMOs
between processes including the payload and the
victim, and exploits the path to propagate corrup-
tion. By relaxing the requirement of PMO sharing
needed in the inter-process attack [Sl], the new
attack significantly expands the capability of an
adversary, and warrants the need to protect all
PMOs irrespective of whether they are shared or
not between the payload and the victim.

This paper makes the following contributions.
(1) We present inter-PMO attacks by defining
them and analyzing necessary requirements for
them to occur, (2) present two examples of inter-
PMO data-disclosure attacks, (3) present a step-
by-step process to implement an example in a
controlled environment, (4) evaluate the success
rate of the implemented attack, and (5) discuss
potential defense strategies.

BACKGROUND

Persistent Memory Object (PMO)

PMO is a general system abstraction for hold-
ing persistent data managed by operating system
(OS) [3]. PMO data is not backed by files, and
may permanently reside in physical memory. Data
in a PMO is held in regular data structures, hence
may contain complex data types and pointers,
and is accessible directly with load and store in-
structions, unlike ﬁleﬂ The OS may provide file
system-like namespace and permission settings to
PMOs so that data in a PMO can be reusable
across process lifetimes and basic access control
can be provided.

Key primitives for a PMO are attach(), de-
tach() and psync() system calls [6]. As PMO
already resides in physical memory, and its data
is already in data structure form, for a process to
work on PMO data, it calls attach() system call
to map the PMO into its address space. Once
attached, the process can access it with regular
loads/stores, without involving the OS. psync()
persists PMO updates in a crash-consistent way.
detach() unmaps the PMO from the address

'While some files may contain serialized objects and hence
pointers, accesses require system calls and serialization/deserial-
ization.

space, making it inaccessible. After detached, any
laod/store to the address region where the PMO
used to map result in protection faults.

Just like a file, a PMO may outlast process
lifetime, it is conceivable that it will be attached
and accessed by multiple processes at differ-
ent times (or simultaneously read). Similarly, a
single process may attach and access multiple
PMOs simultaneously. When multiple processes
alternatingly access a file, a process may make
changes to the file that affect other processes. The
same can occur to a PMO accessed by multiple
processes. However, a PMO is mapped directly to
the address space, hence a change to PMO data
by one process directly affects the address space
of another process.

Security Implications of PM vs Files

PMOs are expected to hold data structures,
making them pointer rich. On the contrary, files
are normally used to hold data (but can also be
used to hold data structures, though less com-
mon). Since a file contains no pointers, cross-
process attacks are much harder to carry out.
Pointers are attractive targets for attacks, which
makes PM protection more important.

Also, data placed in a PMO-resident data
structure is more tightly coupled with execution
flow of a process as it can be accessed with
regular load/store instructions. Even non-pointer
data in PMOs is more likely to be directly used to
determine program control flow, making them at-
tractive attack targets. In contrast, data from files
is first de-serialized and placed in data structures
before used in a process’ execution flow.

Finally, unlike PMOs, file data is managed
directly by the OS, any access (read/write) re-
quires system calls, and the OS can perform
security checks when serving the system calls. In
contrast, PMO data can be manipulated directly
by loads/stores transparent to the OS.

The combination of longevity, direct byte-
addressability and uncoordinated shared access
distinguishes PMOs from both DRAM and tradi-
tional storage for memory protection, in terms of
vulnerability, consequences of security breaches,
as well as opportunities for novel solutions.

IEEE Micro

PREVIOUS WORK

Most prior studies focused on the security
vulnerabilities of PM fabric itself, rather than
the PMO model. To address data remanence due
to non-volatility, PM encryption was proposed,
e.g. [7], [8]. The limited write endurance of PM
may lead to early wear out if the attacker is
allowed to write to them excessively. Hence, pre-
venting redundant writes [[10] and wear leveling
are critical.

However, PM vulnerabilities go beyond just
the fabric itself; hosting persistent data as in the
PMO model, introduces new vulnerabilities while
PM data is in active use. Memory Exposure Re-
duction and Randomization (MERR) [3]] protects
PMOs by reducing their exposure window (by at-
taching only when needed for access and detach-
ing afterward) and hence the attack surface. They
proposed splitting the page table to accelerate
attach, and PMO Space Layout Randomization
(PSLR), where the PMO is mapped to a differ-
ent randomized location at each attach. Another
work [4]] focuses on mapping PMOs into separate
domains, in order to leverage domain protection
such as Intel Memory Protection Key (MPK). The
intent was to restrict accesses to PMOs only to
threads that access them. Both works [3]], [4] seek
to make unauthorized accesses to PMOs difficult
for the process accessing the PMO.

A recent work by Mustafa et al. [S] showed
that a vulnerable (i.e. payload) process with a
PMO access can be used by an attacker to launch
an attack on a different (i.e. victim) process that
shares the same PMO successively over time.
This paper exposes that such a requirement is
indeed unnecessary, a security attack can be
launched even when there is no shared PMO
between the payload and victim.

THREAT MODEL

We consider a threat model where a process,
referred as victim, has no known memory safety
vulnerabilities that can be exploited by adver-
sary. Another process, referred as payload, has
memory safety vulnerabilities that the adversary
can exploit. A third kind of process, referred as
transmitter, shares a PMO with payload and a
different one with the victim. Transmitters are not
assumed to have memory safety vulnerabilities.
An attack may start with the attacker exploiting

May/June 2023

some vulnerabilities in the payload, and transmit
memory corruption over transmitters, to eventu-
ally affect the execution of the victim. This threat
model is different from [5] where a shared PMO
is required between the payload and victim.

The goal of an adversary is to use the pay-
load process in order to compromise the victim
process. We assume that adversary knows the
addresses, data structures and layout of the PMOs
that are part of the chain of transmitters but
have no legit access to any of them. We assume
data structures in PMOs may contain buffers
and pointers and the payload process code may
have regular known vulnerabilities (e.g., buffer-
overflow, integer overflow, format string, etc.). We
assume a trusted system software, such as the OS,
which manages address space isolation between
processes. PMOs are also managed by OS which
applies permission checking while granting ac-
cess to a PMO. This implies that access to a
detached PMO is not permitted and results in
segmentation fault. However, a process can read
and write a legally attached PMO.

POINTER CLASSIFICATION

Based on the addressing mechanism, either
absolute or relative pointers can be used to access
PMOs and data-structures they hold. An absolute
pointer contains virtual address, e.g. in Mnem-
soyne [11]] An absolute pointer is fast to derefer-
ence because it relies on the traditional address
translation mechanism. However, it makes PMO
Space Layout Randomization [3]] costly; any time
the PMO is mapped to a different virtual address
region, pointers in the PMO must be rewritten
accordingly. Finally, if multiple processes are
allowed to simultaneously share a PMO, absolute
pointers require the PMO to be mapped to the
same virtual address range in all processes.

Alternatively, relative pointers can be used
that combine PMO ID and offset in format of
object:offset. A relative pointer can use a
regular 64-bit format or use a fat pointer format
where a pointer is represented by multiple fields.
To dereference a pointer, a translation table is
looked up to translate the system-wide unique
PMO ID to its base virtual address [3]], and
then the offset is added to it. Unlike absolute
pointers, relocating such PMOs is straightforward
to perform. Note that example attacks we present

are valid irrespective of pointer type.

ATTACK EXPOSITION

To sketch an inter-PMO attack, the necessary
condition is that the attacker can use the vul-
nerabilities of a payload process to affect the
execution of the victim process through a series
of PMOs and transmitters. In this section, we will
define several terms and specify the necessary
requirements for such attacks to succeed.

First, we define S_PMO(p) as the set of
PMOs accessed by process p during its life time
and S_Proc(zx) as set of processes sharing a
PMO z, with sharing defined as successively
accessing a PMO during the PMO’s lifetime.
Note that the lifetime of p and x are different,
with z’s lifetime expected to be long. If there
exists a PMO z that is shared by two different
processes F; and P;, we state that there is a link
between them via x.

L(P,Pj,z) =

dxr € S_PMO(P;) : P; € S_Proc(x)
Figure |I| shows an example of five processes
shown in circles, sharing five PMOs shown in

rectangles (right), with their respective S_PM O
and S_Proc shown (left).

(D

PMO [S_Proc(PMO) [Proc[S_PMO(Proc)

a {Po,P1,P2} Py | {a}

b {P1,Ps, P} |Py [{a b}

c {P2} P, | {ack

d {P3, Ps} Py | {b, d}

e {Ps} P, | {b,d, e}

Figure 1. Example of S_PMOQO and S_Proc
(left) and links between processes (right).

We define Path between two different pro-
cesses P, and P, as a set of links connecting
them. Multiple paths might exist between two
processes. For example, Figure |I| (right) shows
a path between I, and Ps:

Path(Py, Py) = {L(Fy, P2,a)}
and two paths between process Py and Pj:
{L(Py, P1,a), (P, P,,b)}
and

{L(P07P17a)7L(P17P37b)7L(P37P47d)}

With S_PMO(p) # 0, there is always a path
from a process p to itself.

To find a path between two processes P; and
P, we define a Set of Processes (SoP) initially
with two members P; and P,. We state that a Path
Exists (PE) between two processes P; and P, if
they are the same process, linked by a PMO =z,
or there are distinct processes P; ¢ SoP and P
¢ SoP such that P; is linked to P; via PMO y,
P, is linked to P, via PMO 2, and there exists a
path between P; and Pj.

PE(P,, P, SoP) =

(P = R) Vv L(P;, B, 2)V

(3P; ¢ SoP N\ P, ¢ SoP : 2)
(L(P:, Pj,y) A L(Py, B, 2)

N PE(P;, Py, SoP U{P;, P;})))

Note that [2] is a recursive statement that resolves
to true or false.

Conditions for Successful Attack

If pointers within a PMO attached by a pro-
cess are not corrupted, reads/writes on that PMO
are performed at addresses as intended by the at-
taching process. However, if the pointers are cor-
rupted, reads/writes can be diverted to unintended
addresses within the same PMO or a different
but attached PMO, depending on corruption. We

denote P, T/—w> y to state that P;’s read/write

to PMO z are diverted to PMO 1. Furthermore,
we denote z ~— 2’ to indicate that PMO x
becomes x’ if it has data or pointers that have
been corrupted.

An adversary can potentially launch a success-
ful attack on a victim process V' by controlling
payload process PL if @ a path exists between
PL and V (ie., PE(PL,V,{PL,V}) is true),
@ scquence of attach-detach sessions on PMOs
by processes along the path successively follows
the direction of links in the path, and € PL
is able to mislead processes along the path to
perform unintended reads and writes, with PL-
determined data, on PMOs of their respective
links.

The first condition requires that at least one
path exists between the process PL and process
V. If multiple path exists, the attacker has multi-
ple options to attack V', with the shortest path po-
tentially shortening the time to succeed. The sec-

IEEE Micro

ond condition imposes the order on attach-detach
sessions performed by processes. For example,
consider P, and P, of Figure |1 as payload and
victim processes, respectively. For the following
path from P, to P

{L(P():Pl:a)7L(P17P37b)7L(P37P47d>}

sequence of attach-detach sessions must be same
as shown below for an attack to succeed.

P amsd 2) P st

3)P3T£—Iw>d»—>d’ 4)P4T2—/w>e'—>e’
where e is an unshared PMO of P,. Note that we
assume a process exclusively attaches PMOs in
advance needed for both intended or unintended
accesses. For example, for the second attach-
detach session, P; attaches both a and b before
reading/writing a.

The third condition requires that PL is able
to mislead processes along the path to perform
unintended writes e.g., by diverting their control
flow when they access a corrupted PMO.

EXAMPLE ATTACKS

This section sketches two example proof-of-
concept attacks, with the first requiring trans-
mitter control flow hijacking while the second
does not. The first example assumes that transmit-
ter processes have memory vulnerabilities (e.g.,
buffer overflow) that can be exploited by an
adversary. For both examples, consider SQLite
[12]], a database engine that allows multiple pro-
cesses to read the database simultaneously but
only one process can modify the database at any
time. Suppose that SQLite is ported to PMOs for
better performance, with each table represented
by a persistent AVL tree. Figure [2] (left) shows
a simple PMO that contains two B+ trees and
a circular linked-list of free nodes. Two Data
Structure Root (DSR) fields point to root node of
the trees , while Head and Tail fields are pointers
for the free list. Nodes are allocated/deallocated
from/to the free list to perform insertion/deletion
operation on trees. Figure 2] (right) shows library
code to allocate a node from the free list. Suppose
that DSRs, Head and Tail fields are contiguously
laid out at fixed offsets from the PMO base
address. These fixed offsets allow a program to
locate the free list and the data structure.

May/June 2023

We illustrate both data disclosure attacks by
using PMO-ported SQLite in Figure

I void* allocNode () {

» lastNode=+Tail;

3 firstNode=xHead;

4+ lastNode->fd=
firstNode->fd;

5 xHead=firstNode->
fd;

¢ return firstNode; }

DSR 1] DSR 2[Head] Tail

O 0

Figure 2: PMO Layout (left) and library code to
allocate a node from free-list (right).

Data Disclosure Attack By Hijacking Transmitter
Processes

CS_faculty and CS_prof PMOAD

Src | Dst | Head | Tail ']

Phys_faculty and Phys_prof

Src [Dst IHeadl Tail !

o

va0 '¥0Nd

PMOg PMO,

oo |
Payload f\I/Dic\tim > @
| %

Src [Dst /I Headl Tail !

Src | Dst | Head | Tail |

T

PMO,
Maths_faculty and Maths_prof

Figure 3: Setup for data disclosure attack. No
PMO is shared between the payload and victim.

PMO,

Bio_faculty and Bio_prof

Let us assume that Source (Src) fields
of PMOO, PMOl, PMOQ, and PM03
point to B+ trees representing CS_faculty,
Phys_faculty, Maths_faculty and
Bio_faculty tables, respectively. Destination
(Dst) fields of PMOy, PMO., PMO,
and PMOs points to B+ trees representing
CS_profs, Phys_profs, Maths_profs
and Bio_profs tables respectively. PMOs is
private to victim Ps and we expect that payload
process Py cannot read data from PM Os. Note
that following path exists between the payload
and victim.

{(Py, P1, PMOy), (P, P,, PMO),
(P2, P3,PMO,)}

We demonstrate that payload can read from
PMOs even though it is private to the victim
and there is no shared PMO between the two
processes.

The attack relies on following sequence of
attach-detach sessions.

1) Py L PMO, s PMO),
PMO,

r/w

9) P, —“ PMO, s PMO,
PMO}

3) P, L%y PMO, s PMO,
PMO),

4) P, L PMO, s PMO,
PMO),

Note that first attach-detach session performs
intended reads/writes on PMQO, while
others perform wunintended reads/writes on
PMO.,PMO5 and PMOs.

Consider that each process independently ex-
ecutes a query on an attached PMO to extract
records from its faculty table (i.e., source B+ tree)
with the designation of professor and insert them
into professor table (i.e., destination B+ tree).
To launch the attack, adversary first discovers
function pointers fp; in the volatile memory
portion of P;’s address space and injects code
blocks M;, shown in Algorithm |1} in the heap
region of P, where i = 1,2. Note that A is
address displacement between a free-list node and
its fd field.

Algorithm 1 Pseudocode of M; for i = 1,2

Require: addr (M;;;), addr (fp;y1), A

1: attach (PMO; ;); attach (PMO;) ;

2: % (PMO,;_1.DSR_Src)

=% (PMO,;.DSR_Dst) ;

firstNode=«* (PMO,.Head) ;
firstNode->fd=& (M;+1) ;
* (PMO; . Tail) =& (fp;r1) —4;
psync (PMO; 1) ; psync (PMO;) ;
detach (PMO,_1); detach (PMO;) ;

A

In the first attach-detach session, adversary
uses payload process Py to attach PM Oy, over-
writes the forward pointer fd of first node of its
free list such that it points to M; and also over-
writes the Tail field to point to location of fp;

minus A E] (shown by orange arrows in Figure
[B). Finally, adversary psyncs PM Oy, detaches
it, and waits.

In the second attach-detach session, P, at-
taches PM O, and PM O, and allocates a node
from free-list of PM(QO,. The allocNode ()
library function of Figure [2] removes first node
from the list. Line 2 of the code gets lastNode
by dereferencing Tail. Since Tail was over-
written by adversary, 1astNode points to fp; —
A. The left side of the assignment statement in
line 4, lastNode —->fd, points to a location
pointed by lastNode plus address displace-
ment between lastNode and its £d field i.e.
(fp—A)+ A = fp. Since firstNode->£fd
was set by adversary to point to M, line 4 makes
fp point to M. Finally, when the function pointer
is used by the P;, M; is executed. Execution
of M, (see Algorithm [1)) redirects PMOy.Src
to root node of destination AVL tree of PM O,
as shown by red arrow in Figure M, also
overwrites PM O;’s Tail field and fd pointer of
first node in the free list, shown by orange arrows.
Finally, M; psyncs PMO, and PMO;, and
detaches them.

In the same way, third attach-detach session
by P, redirects PMO,.Src to root node of
destination B+ tree of PM(QOy and overwrites
free-list pointers of PM O, while fourth attach-
detach session by Pj redirects PMO,.Src to
root node of source B+ tree of PMOs.

Now consider following sequence of query
execution. P; attaches PMQO,; and PMOs,
executes query on Bio_faculty table.
Since, PMO,.Src was redirected, the query
extracts records from Maths_faculty table
(i.e. PMO3) of victim and inserts them to
Bio_prof table. Afterwards, P3; psyncs
and detaches both PMOs. Next, P, attaches
PMO; and PMO,, executes query on
Phys_faculty table that actually extracts
records from Bio_prof table and inserts them
to Phys_prof table (as PMO1.Src was
redirected) including those records that were
copied over from Maths_faculty table. P,
then psyncs and detaches both PMOs. Next, P;
attaches PMOy and PMO;, executes query
on CS_faculty table that actually extracts

2A is 0 in our implementation of example attacks.

IEEE Micro

records from Phys_prof table and insert them
to CS_prof table, (as PMQOO0.DSR_Src
was redirected). Finally, when P; psyncs and
detaches PM Oy, process Py can attach PMOq
to read records of Maths_prof inserted in
CS_prof. The attack demonstrates that private
data of the victim is disclosed to attacker by
payload process even when they do not share a
PMO.

Data Disclosure Attack Without Hijacking
Transmitter Processes

The attack presented in previous section not
only assumes memory vulnerabilities for trans-
mitter processes, it also requires an adversary
to find address of function pointers in volatile
memory portion of processes’ address space. The
attack may not succeed either if a function pointer
is not found for any one of P, or Ps, or if
the address of function pointers or injected code
blocks M; change (e.g., due to relaunching of
a process) anytime between address discovery
and invocation of function pointers by processes.
Furthermore, execution of code blocks injected in
heap region of a process is possible only if Data
Execution Prevention (DEP) is not supported on
the platform. Otherwise, control flow of processes
cannot be hijacked.

We observe that above attack can be launched
even without hijacking P, and P. In such case,
neither address discovery for function pointers
nor code injection is needed. Though attack steps
become more convoluted but not impossible. As
an example, payload P, can attach PM (O, and
overwrite its Tail field with the address of PAM O,
and Head field with the address of PMO,.DST,
shown by blue arrows in Figure [3] Assum-
ing that adversary knows address of PMO,
and its layout, address of PMO,.DST is cal-
culated as address(PMO,) + Size(SRC).
Finally P, psyncs PMOQO,, and detaches it.
When P, attaches both PMQO, and PMO,,
and allocates a node from free-list of PM O,
the allocNode () library function of Fig-
ure dereferences Tail (line 2) to get
lastNode. Since Tail was overwritten,
lastNode actually points to PMOgy.Src. Line
3 of allocNode () dereferences Head to
get firstNode. Since Head was overwritten,
firstNode points to root node of destination

May/June 2023

B+ tree of PMQO;. With address displacement
of zero between a node and its £d field, line 4 of
allocNode () redirects PMQOy.SRC to root
node of destination B+ tree of PM O;, as shown
by red arrow in Figure [3] achieving same affect
as in first example attack.

In the same way, payload can perform the
remaining two pointers redirections shown in
Figure [3| by carefully overwriting PMOq pro-
vided that attach-detach sessions are performed
in desired sequence by other processes along the
path between P, and P;. Details of these pointer
redirections are not shown in the figure due to
limited space. Once all the pointer redirections
are materialized, payload can read private data
of the victim in the same way as shown in the
previous section.

Attack Prototyping

We implemented a proof of concept inter-
PMO attack illustrated in Figure [3] We imple-
mented it on Greenspan PMO system [6] that
was built on Linux 5.14.18 to support PMO
creation and management. We built a simple
persistent database modeled after SQLite con-
sisting of the eight tables from Figure ie.,
two tables per PMO representing one of four
departments (i.e., CS, Physics, Bio, and Maths).
Our implementation of processes P;, P, and Ps
execute queries to find records of professors from
the faculty_table and insert them in the prof_table
of respective departments. P, repeatedly reads all
records from the prof_table of the CS department.
All processes other than Ps (i.e., victim) have
buffer overflow vulnerability. We implemented
step 1 of the attack, i.e., stitching the path (shown
by red arrows in Figure [3), by exploiting buffer
overflow vulnerability to inject shell-code for M;
and M, on the stack of P, and P, respectively.
Note that this step can be completed in other ways
(without code injection), e.g., by return-to-libc or
return-oriented programming. In step 2, P, (i.e.,
payload) repeatedly runs the query to read records
from the prof _table of the CS department until
it finds a record of a professor from the Maths
department (i.e., private PM O3 of the victim)
indicating a successful attack.

Victim or Transmitter Payload

Victim or Tranmsitter

Adversary discovers overwrites PMO allocates calls function
address of fp and M pointers a node pointer -

»

: : + Window to 1 Time
i E)Nindow to rollback PMO\E‘ block the J
' :‘ 0 process ':
; , Window to verify PMO | R
' T integrity ' T
To % - >
' Address of fp and M must remain same ' T

Figure 4: Steps to alter control flow of a process.

Evaluation

We consider an attack successful when P, can
obtain a record of Math’s professor. We define
time budget as the duration within which an attack
is attempted and success rate as the number of
successful attacks divided by total number of at-
tack attempts for a given time budget. We observe
that the success rate is 1 for time budgets greater
than or equal to 0.75 seconds and O otherwise.
This shows that 0.75 second is the minimum time
for the example attack to succeed. The attack fails
for lower time budgets as the execution of queries
by P, P, and P3, and the propagation of results
to PM O, takes at least 0.75 seconds. In a more
realistic setting, with larger tables and processes
also performing non-database accesses, the attack
may take longer time to succeed.

POSSIBLE DEFENSE APPROACHES
Inter-PMO attacks based on hijacking of
transmitter processes can be successful only if
addresses of function pointers (fp;) and injected
code blocks (M;) are not changed between two
successive runs of the relevant process i.e. Py, P,
or P;. If PMO Space Layout Randomization
(PSLR) is enabled, the addresses of fp; and
M; will be randomized on subsequent runs and
hence the attack will fail to change the execution
flow of transmitter processes and the victim.
Furthermore, with M, as code blocks injected
by adversary in heap regions of processes, the
attack can only be successful if Data Execution
Prevention (DEP) is not supported or enabled.
However, DEP does not protect against all
kind of attacks. For example, our example of

inter-PMO attack without hijacking transmitter
processes can succeed in presence of DEP as it
does not rely on code injection. On the other
hand, it can also fail if PSLR is enabled as
address range at which PMOs are mapped in
address space of a process is randomized on next
attach call. However, some attack frameworks can
breach PSLR or DEP defense schemes [9]. There-
fore, additional protection is needed to detect and
foil inter-PMO attacks.

Figure 4| shows the timeline of the steps
performed by payload to alter control flow of a
process as in data disclosure attack of Figure [3]
The figure shows opportunities for detecting and
foiling the attack.

First, address of fp and M must remain the
same between 1y and 75, for altering control flow
of the target process. If the addresses change, the
attack will corrupt PMO but not result in control
flow hijacking. Second, the window of time be-
tween 77 and T3 is the window of opportunity
to detect the attack by verifying the integrity
of the data structures in the PMO. In other
words, the integrity check must be performed
before T3 as the control flow gets altered by that
time. The integrity of data structure(s) can be
checked by performing topology verification and
data structure-specific invariant checks. Third,
in the window of time between 713} and 75, if
PMO integrity problem is detected, and a non-
corrupted previous version exists, the PMO can
be restored and attack foiled. But, between T,
and T3, to foil the attack, the target process must
be blocked/terminated.

IEEE Micro

ACKNOWLEDGMENT

This work was supported in part by ONR
through grants N00014-23-1-2136 and N00O14-
20-1-2750, and by NSF through grants 1900724
and 2106629.

CONCLUSION

In this paper, we have shown that multiple
processes may access persistent data in an unco-
ordinated way under PMO programming model.
This allows a process to affect the execution of
other processes even when they do not share a
PMO. This makes PMOs a new tool for launching
security attacks. We presented formalization of
such attacks, demonstrated and evaluated exam-
ple attacks, and provided discussion on possible
defense approach. The paper makes the case for
increased memory safety protection when persis-
tent memory is used.

Naveed Ul Mustafa is a postdoctoral researcher
at ARPERS lab, UCF, FL. Contact him at un-
known.naveedulmustafa@ucf.edu.

Yan Solihin is Director for Cyber Security and
Privacy Cluster and Professor of Computer Sci-
ence at University of Central Florida. Contact him at
yan.solihin@ucf.edu.

B REFERENCES

1. Kioxia, SLC NAND Flash Memory Kioxia - United States.
[Online]. https://americas.kioxia.com/en-
us/business/ssd/enterprise-ssd/fl6.html

2. SNIA,
model.

Available:

Persistent memory hardware threat
Whitepaper. [Online].

https://www.snia.org/educational-library/persistent-

Technical Available:
memory-hardware-threat-model-technical-white-paper-
2018

3. X. Yuanchao, Y. Solihin, X. Shen, “Merr: Improving se-
curity of persistent memory objects via efficient memory
exposure reduction and randomization,” Proc. Twenty-
Fifth ASPLOS, pp 987—-1000, 2020.

4. X. Yuanchao, C. Ye, Y. Solihin, X. Shen, “Hardware-
based domain virtualization for intra-process isolation of
persistent memory objects,” Proc. Forty-Seventh Ann.
IEEE ISCA, pp 680-692, 2020.

5. N.U. Mustafa, X. Yuanchao, X. Shen, Y. Solihin, “Seeds of
SEED: New Security Challenges for Persistent Memory,”
Proc. First IEEE SEED, pp 83-88, 2021.

6. G. Derrick, N.U. Mustafa, Z. Kolega, M. Heinrich, Y.
Solihin, “Improving the Security and Programmability of

May/June 2023

Persistent Memory Objects,” Proc. Second IEEE SEED,
pp 157-168, 2022.

7. Z. Pengfei, Y. Hua, Y. Xie, “SecPM: a Secure and Per-
sistent Memory System for Non-volatile Memory.,” Proc.
Tenth USENIX Workshop on Hot Topics in Storage and
File Systems, 2018.

8. Z. Pengfei, Y. Hua, Y. Xie, “Supermem: Enabling
application-transparent secure persistent memory with
low overheads,” Proc. Fifty-Second Ann. IEEE MICRO,
pp 479-492, 2019.

9. S. Kevin Z., F. Monrose, L. Davi, A. Dmitrienko, C.
Liebchen, A.R. Sadeghi, “Just-in-time code reuse: On
the effectiveness of fine-grained address space layout
randomization,” Proc. IEEE Symposium on Security and
Privacy, pp 574-588, 2013.

10. M. Sparsh, A.l. Alsalibi, “A survey of techniques for
improving security of non-volatile memories,” Journal of
Hardware and Systems Security., vol. 2, pp. 179-200,
2018.

11. V. Haris,
Lightweight

AJ. Tack, M.M. Swift, “Mnemosyne:

ACM SIGARCH
Computer Architecture News., vol 39, no. 1, pp. 91-104,
2011.

12. B.S. T, T. Patil, P. Patil, “Sqlite: Light database system,”
Int. J. Comput. Sci. Mob. Comput., vol 44, no. 4, pp. 882—
885, 2015.

persistent memory,’

	BACKGROUND
	Persistent Memory Object (PMO)
	Security Implications of PM vs Files

	PREVIOUS WORK
	THREAT MODEL
	POINTER CLASSIFICATION
	ATTACK EXPOSITION
	Conditions for Successful Attack

	EXAMPLE ATTACKS
	Data Disclosure Attack By Hijacking Transmitter Processes
	Data Disclosure Attack Without Hijacking Transmitter Processes

	Attack Prototyping
	Evaluation
	POSSIBLE DEFENSE APPROACHES
	ACKNOWLEDGMENT
	CONCLUSION
	Biographies
	Naveed Ul Mustafa
	Yan Solihin

	REFERENCES

