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Abstract

Stochastic mesoscale inhomogeneity of material properties and material symmetries are investigated in a 3D-printed material.
The analysis involves a spatially-dependent characterization of the microstructure in 316 L stainless steel, obtained through
electron backscatter diffraction imaging. These data are subsequently fed into a Voigt—Reuss—Hill homogenization approxima-
tion to produce maps of elasticity tensor coefficients along the path of experimental probing. Information-theoretic stochastic
models corresponding to this stiffness random field are then introduced. The case of orthotropic fields is first defined as a
high-fidelity model, the realizations of which are consistent with the elasticity maps. To investigate the role of material
symmetries, an isotropic approximation is next introduced through ad-hoc projections (using various metrics). Both stochastic
representations are identified using the dataset. In particular, the correlation length along the characterization path is identified
using a maximum likelihood estimator. Uncertainty propagation is finally performed on a complex geometry, using a Monte
Carlo analysis. It is shown that mechanical predictions in the linear elastic regime are mostly sensitive to material symmetry but
weakly depend on the spatial correlation length in the considered propagation scenario.
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1 Introduction

Additive manufacturing, commonly known as 3D printing,
has revolutionized materials engineering by enabling the fab-

rication of intricate geometries in multiple length scales with
unparalleled design and customization options. Among the
wide range of materials used in additive manufacturing, 316 L

stainless steel has garnered significant attention due to its
excellent mechanical properties, high corrosion resistance,
and suitability for diverse applications, including aerospace,
automotive, and medical implants (see [1-3] for example).
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In practice, extensive experimental evidence gathered
using, scanning electron microscopy (SEM), X-ray diffrac-
tion (XRD), and electron backscatter diffraction (EBSD)
imaging, shows that the microstructure of 3D-printed 316 L
stainless steel can exhibit stronger stochastic inhomogeneity
(in the form of spatial variations in microstructural features,
such as grain size, grain orientation, and other microscale
characteristics) and nonstationary effects than forged, rolled,
or extruded steel [4—7]. These features are the net result of
complex, multiphysics processing conditions where local
cooling rate, solidification behavior, and thermal history vary
as the material is being deposited [8—10]. Such microstruc-
tural inhomogeneity can result, in turn, in uncertainties in
constitutive modeling, whether it be on the elastic regime,
tensile strength, hardness, or fatigue performance. These
fluctuations affect the overall performance of the printed
parts [11—15] and often lead to over-conservative design pro-
cedures. Understanding and characterizing these stochastic
variations is therefore an essential step toward the prediction
of printed parts performance and optimization of additive
manufacturing processes [16].
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In recent years, there has been growing interest in devel-
oping modeling approaches to characterize and predict the
mechanical properties of additive manufactured parts based
on fine-scale descriptors. Machine learning techniques and in
particular, deep learning (e.g., neural-network-based) meth-
ods have emerged as powerful tools for approximating the
usually high-dimensional, nonlinear relationship between the
selected microstructural features and mechanical properties
of interest [17-19]. These approaches, however, typically
require large datasets to be trained with reasonable accuracy
(note that a discussion about such techniques, and methods
to accelerate convergence in training, is outside the scope of
this work). In addition, potential non-stationary effects can
pose challenges in developing predictive models, as the vari-
ability in probabilistic properties across different regions of
the printed parts adds another layer of complexity in terms
of experimental characterization and statistical processing.

Many other studies have attempted to investigate microstruc-
ture randomness and defects in 3D-printed metals, and their
impact in the mechanical response at the macroscale; see
[20-26] to list a few. Such approaches usually rely on very
local experimental information given the cost and complexity
of reliably acquiring microscopy- or diffusion-based mea-
surements over an entire structure. Some papers reported on
the characterization and propagation of nonstationary effects
over restricted domains; see, e.g., [27, 28]. As an alternative
to such methodologies where data, obtained at a fine scale,
are plugged into models that are built at a coarser scale, other
frameworks were proposed where data and models are con-
sidered at coarse (e.g., structural) and fine (e.g., mesoscopic)
scales, respectively; see [29].

The aim of this work is to specifically investigate stochas-
tic inhomogeneity and the role of material symmetries in
3D-printed 316L stainless steel, by combining /ocation-
dependent EBSD characterization on a geometry processed
by power bed fusion, multiscale analysis, and stochastic mod-
eling for uncertainty quantification. Once fully calibrated and
validated using an ad hoc statistical technique (depending on
the amount and nature of available data), under a given val-
idation scenario and for a specific quantity of interest (see,
e.g., [30]), the proposed stochastic model can used to sample
the elasticity field and predict, through uncertainty propa-
gation (using an appropriate stochastic solver; see [30, 31]
for reviews), the stochastic mechanical properties of the part.
Our contributions are as follows:

¢ By combining EBSD results with an upscaling approach,
we first obtain a map of elasticity parameters as a function
of location, hence enabling a random field analysis along
the characterization path.

e We then derive a probabilistic model for elasticity ran-
dom fields with values in the set of orthotropic tensors
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(defined in the reference frame), and identify its first-
order marginal probability distribution.

e We further define an isotropic approximation to the above
orthotropic field, and similarly identify its first-order
marginal probability distribution.

¢ We propose a methodology, based on the maximum like-
lihood method, to identify one correlation length of the
random fields, using one experimental sample.

e Using the above results, we perform uncertainty propa-
gation to study the impact of the material symmetry and
correlation structure on the structural response.

The rest of this paper is organized as follows. Material
processing and experimental characterization are first pre-
sented in Sect.2. In particular, we discuss the identification
of elasticity maps on the printed geometry and investigate the
construction of an isotropic surrogate model. The stochastic
modeling approach is then introduced in Sect. 3. An overview
of the framework is provided, and explicit results are given
for classes of isotropic and orthotropic elasticity random
fields. Model calibration is subsequently addressed in Sect. 4,
using both real samples and their isotropic approximations.
Section5 is devoted to uncertainty propagation where the
influence of material symmetry is specifically studied. Con-
cluding remarks are finally provided in Sect. 6.

2 Additive manufacturing processing and
multiscale analysis

2.1 Material processing

In order to quantify spatial inhomogeneity and anisotropy,
an L-shaped Conformal Pressure Vessel (CPV) was designed
and manufactured (as shown in Fig. 1a) out of SS-316 L alloy
powder, using a General Electric Concept Laser M2 Laser
Powder Bed Fusion (LPBF) system. The utilized processing
parameters were the nominal ones, defined by the manufac-
turer as follows: laser power 370 [W], Gaussian beam spot
size 160 [um] and velocity of 900 [mm/s]. The time between
the end of a layer (in x — y plane) and the beginning of the
next was 12 seconds approximately. Layer deposition direc-
tion was along the z axis. Let x = (x, y, z)T be a point in the
Cartesian coordinate system (representing the laboratory
frame of reference) shown in Fig. 1. It should be noted that the
effects of the printing parameters, such as scan spacing and
timelapse, on the crystallization process and on the stochastic
parameters of the microstructure were not explored as they
fall outside the scope and goals of the present effort. How-
ever, a significant corpus of prior work is specifically devoted
to this topic as in [12, 32]. The CPV was sectioned along ver-
tical and horizontal lines (as depicted by the black lines in
Fig. 1a) to verify that the microstructure of the one closest
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Fig.1 The designed and
manufactured CPV: as-built part,
with global frame (O, x, y, z),
and CAD model (left). The red
line in the CAD model indicates
the curve along which samples
are collected for microstructural
characterization (from [33])

Fig.2 Inverse pole figure (IPF)
maps of one of the CPV
segment cross-sections. Left:
Original scan showing the entire

Sectioned Area

P Wall thickness ~ 1.9 [mm] -

(h) Inverse pole ligure maps along the curvilinear
path. Color indicates erystal direction along the
build direction.

thickness of the CPV wall, along *
with the as-collected crystal

reference frame. Right: outline

cropped IPF map along with the

rotated crystal reference frame

that now aligns with the global

frame (O, x, y, z)

» Frame

to the CPV center mirror-plane (offset by 0.5 [cm], shown
with a red line) in Fig. la is statistically equivalent with the
microstructure from the previous rest of the sections. The red
line section in Fig. la was selected because it provides the
largest range of the build direction and of the CPV and there-
fore provides the best choice for determining the variability
of the microstructure as a function of the build direction. The
thickness of the wall at this location is 1.9 [mm]. The result-
ing exposed surface was polished with a final polishing step
using 0.05 [um] colloidal silica, to prepare it for Electron
Back-scattering Diffraction (EBSD) data collection.

A total of 18 segments were prepared along the exposed
surface created by the previously produced sectioning and
were used for collecting the associated EBSD data. The num-
ber of segments extracted from this section was selected
based on finding an area that had a relatively constant over-
hang angle, but also enough grains to provide a reasonable
estimate of the local orientation texture (on the order of 100—
300 grains). The EBSD characterization was performed to
quantify the spatial evolution of microstructural features and
crystallographic texture; see Fig. 1b. The EBSD data was col-
lected on a Tescan Mira 3 field emission scanning electron
microscope, using an EDAX Velocity Super EBSD detector.
Each scan measured approximately 1.5 [mm] x 0.9 [mm] on
average with a 1 [um] step size, with each point measuring
the crystal phase (here only FCC was detected) and the crys-

Crystal Reference

tal orientation relative to a crystal reference frame aligned to
the EBSD scan. The EBSD scans were taken at increasing
angles along the curved part (Fig. 1b). Therefore, the crys-
tal reference frame of each EBSD map for each segment
was rotated so that they were all coincident with the CAD
coordinate system as illustrated in Fig. 2. In general, it was
observed that lower on the piece, where the wall is mostly
vertical along the z-direction, there appears to be significant
texture withthe 011  crystal direction aligned with the build
direction, as indicated by the large number of green areas in
the inverse pole figure (IPF) maps Fig. 1b, which indicate
crystal direction parallel with the build direction. However,
further up the part where the piece starts becoming more hor-
izontal along the Y direction, more 001 grains aligned with
the build direction are observed, with the IPF maps showing
an increase in the number of red grains in the IPF.

The assessment of such spatial variability is key to ran-
dom field modeling, as additive manufacturing is known to
produce microstructures that substantially differ from the
ones obtained through standard manufacturing techniques as
depicted in Fig. 2. In particular, complex variations in grain
size and shape are observed and defects (e.g., porosity) can be
created over a wide range of scales. Grain morphology and
texture can be maintained or varied across resolidification
fronts as well. All of these features often result in significant
anisotropy and inhomogeneity, depending on the scale of
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analysis, which in turn impact the mechanical properties and
behavior of the structure. Notice that this characterization is
pretty unique in the literature, where multiscale settings (see,
e.g.,[20-23]) are generally deployed on digitally synthesized
microstructures or microstructures that are experimentally
characterized at one single location, thus potentially miss-
ing anisotropies caused by the varying processing conditions
within the part. Finally, it is noted that although the maps are
2D, EBSD enables the calculation of the 3D crystallographic
orientation via the characterization of all three Euler angles,
i.e. the orientation of the respective crystal with respect to the
global sample frame. It should also be noted that the hori-
zontal thermal history controlling the microstructure evolves
within the thin shell wall of the CPV the same way in both of
the two horizontal orthogonal directions and varies signifi-
cantly only in the build directions that imposes the strongest
thermal history. However, this argument based on the sim-
ilarity of the thermal history should be verified in a future
effort by examining the microstructure along the azimuthal
line cuts of the CPV.

2.2 Analysis of elasticity maps

The single crystal exhibits a face-centered cubic (FCC)
symmetry and is defined by a fourth-order elasticity ten-
sor, denoted by C*2! (with associated compliance tensor
gxtal = cxtal-1y [ et [CX]] be the Voigt representation of
C*l given in its reference frame by

a11 app a2 0 0 0

air ai2 0 0 O
ai;r 0 0 O

[cxel) = 8 , (1)
asgs 0 0 f
Sym. ass 0
a4

where a11 = 236, ai2 = 134 and a44 = 111 [GPa] (see

[34]). The indices of the matrix are related to the coordinate
system of Fig. la according to:

?1 l R
Bl
12 21 Hll 2)
I23 32; ISI yz
13,31 6 Xz

In order to generate elasticity maps {z > C i}‘,?f%)},', ks
the Voigt-Reuss—Hill average '

chomzy = ! (€ () + Cz)) 3)
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was estimated at the N, = 18 sampled locations, where

CV and CR® are the so-called Voigt and Reuss bounds,
respectively (see [35, 36] for a review). These bounds were

computed, for each EBSD z, as

C"(z) with
P M
Coulz) = 3= gyle)" o le) givle) gl )T C
n=1
4)
and
CR(z) = SR(z)™', with
Ry ()" (=) &' (2)] " (2)T S,
i Ng pqr (5)

where [g”(z)] denotes the measured rotation tensor that
relates the crystal reference frame (in the EBSD scan cen-
tered at location z, indexed by p, ¢, 7, s) to the sample and
therefore global reference frame (indexed by i, j, k, [), Ng is
the number of data points in the EBSD scan, and  is the index
of'the data point. Each data point corresponds to a pixel in the
EBSD scan. In the present analysis, it was assumed that slic-
ing at different locations along the x —z or y -z planes would
yield statistically equivalent crystallographic structures.

The homogenized elasticity tensor [CP°™(z1)] (in Voigt
form and in the global coordinate system) at the first point
with vertical coordinate z; = 4.88 [mm)] is given by

=

286.4 105.5 112.1 0

0 0
28261159 0 O O
E 276 0 0 0@
h
[C™"(z1)] = 833 0 0 (6)
Sym. 79.7 0
73.8

for instance (in [GPa]). Maps of elasticity components as a
function of the vertical coordinate z are shown in Figs. 3, 4
and 5. Non-negligible spatial variations are observed along
the z-axis, and it is seen that the predicted homogenized ten-
sors remain orthotropic regardless of the location—due to
the symmetry exhibited by the crystal and to the transforma-
tion from the local to the global frame. It is also observed
that these tensors, while orthotropic, may be approximated
by isotropic tensors, with the goal of reducing the param-
eterization. In the next section, we introduce the isotropic
approximation of the elasticity maps.
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Fig. 3 Graphs of the elasticity maps {z - C l;]‘.’m(z)},-, j,fori = j
{1,2,3}
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Fig. 4 Graphs of the elasticity maps {z = C}l.l/‘.’m(z)},',j, for {ij}
{12}, {13}, {231}

2.3 Definition of an isotropic approximation

For any elasticity tensor [C"°™] (at a specific location), an
isotropic approximation can be defined by the bulk and shear
moduli k£ and u given by

150

(k, u) = argmin(klu) R2, d([ChOmL [Chom(k, ll)])/
(7

where d is an appropriate metric and [CPo™ (K2, )] is the
isotropic elasticity tensor defined by bulk and shear moduli
k® and u?. Several metrics have been studied in the litera-

ture of theoretical elasticity (see, e.g., [37-39]), including the

COIILPX ment
T

76 v 1

BN C«E‘om
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P C‘,liéum( )

z

Fig. 5 Graphs of the elasticity maps {z - C},.‘;’m(z)},‘,j, fori = j
{4,5, 6} ‘

Euclidean, Log-Euclidean, and Riemannian metrics defined
as

d(14),[B])= [4]- [B] r, (8)
d([4),[B]) = log([A]) - log([B]) F, )
d([4), [B]) = log([A)V2[B114A1?) F. (10)

respectively. It should be noticed that the Log-Euclidean and
Riemannian metrics are invariant under inversion, mean-
ing that they produce the same (isotropic) approximation
regardless of whether the problem is formulated in terms of
the elasticity or compliance matrix. Solving the constrained
optimization problem in Eq. (7) at all locations along the
curvilinear coordinate s3 then allows us to compute the asso-
ciated realizations of the bulk and shear moduli, for the three
above metrics. Implementation was verified by reproducing
the results in [37, 39]. These realizations (one realization per
elastic modulus) are shown in the two subpanels in Fig. 6.
The graphs obtained for the Log-Euclidean and Riemannian
metrics are visually indistinguishable given that the numer-
ical results coincide up to seven digits. This proximity is
consistent with results observed elsewhere; see [38] for a dis-
cussion. In addition, it is seen that the bulk modulus is less
sensitive to the choice of the metric than the shear modulus—
a qualitative result that was already reported in [39] (see
Eq. (158) therein). These results will be used in Sect.3 to
discuss the relevance of the isotropic approximation in terms
of variability prediction.
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(b) Shear modulus random l[ield

Fig.6 Realization of the bulk and shear modulus random field, associated with the isotropic approximation, for the Euclidean, Log-Euclidean, and

Riemannian metrics

3 Stochastic modeling
3.1 Overview of the stochastic modeling approach

We consider the stochastic modeling of the elasticity tensor
random field written in Voigt form, denoted by {[C(x)], x @}.
Let M%™ be the associated state space, which is the subset
of the set of real (6 x 6) symmetric positive-definite matrices
satisfying the invariance properties defined by the
symmetry group. The information theoretic modeling of elas-
ticity random fields has attracted much attention over the last
two decades, starting from the seminal work presented in [40]
for purely anisotropic materials (with values in the triclinic
symmetry class) to the latest unified results for all symmetry
classes presented in [41]; see [42] for areview, as well as [43—
47] for other relevant contributions. Other modeling efforts
can be found in [48, 49], while more general spectral repre-
sentations were obtained in the series of papers [50-53] (see
[53] for a review). Note that this modeling task is intrinsi-
cally different from the construction of methods to properly
compute samples of mesoscopic elasticity fields and study
convergence towards homogenized properties; readers inter-
ested in that topic are referred to [35] for a state-of-the-art
introduction.

Regarding the representation of the elasticity tensor, it is
convenient to introduce a regularization to ensure a uniform
coercivity condition. This can be obtained by letting

[C(x)] = 171&1‘/2{[16“ [M(x)}C1Y?, Bxd, (11)
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for instance, with [C] = E{[C(x)]},
parameter and > 0, or by writing

[C(x)] = [Col+ (IC(x)] - [Col)"? [M(x)]
x([C(x)] - [Col)'/?, Bxm, (12)

a small arbitrary

where [Co] B MYB B MS™ is a deterministic lower bound
that can be defined through, e.g., multiscale considerations
(using energetic bounds). In both cases, {[M(x)], x @ } is an
auxiliary, normalized elasticity field with values in MSY™
such that

E{[M(x)]} = [l6] (13)

by construction. In addition, it is necessary to introduce a
constraint to ensure the well-posedness of the associated
stochastic boundary value problem. This can be achieved
by imposing

E{log (det(IM(x)1))} = x, x| < +eo=, (14)

where the right-hand side is assumed homogeneous, without
loss of generality [40]. The next methodological step then
consists in introducing an ad-hoc tensor decomposition in
Mmsym.

[M(x)] =

Mi(x)[Ei], (15)
i=1

where {M;(x),x @}, 1 £ i £ n, are scalar-valued ran-dom
fields and {[E; (x)]}" _ constitutes the Walpole basis of
MSY™ in Voigt form (note fAdt this basis can be made spatially-

varying when the application is such that the crystallographic
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orientation defining the symmetry class depends on location)
[54]. Let {M(x) = (Mi(x),..., Mu(x))T, x @ } be the
vector-valued random field gathering all components in the
Walpole expansion (15). The latter defines a symbolic repre-
sentation that reflects the underlying structure of MSY™ [54]
and can be leveraged to derive closed-form results for all
symmetry classes. Specific examples relevant to the applica-
tion under consideration are provided in Sect. 3.2.

Following the previously cited works, we consider classes
of translation random fields [55] where the random field
{M(x), x @ } is sought in the form
M(x)= T((x)), Bx@, (16)
where {(x), x B R} is a normalized Gaussian random field
with values in R” and T is a measurable mapping, usu-
ally referred to as a transport map in the literature of Bayesian
inference, such that
M(x)Rm, 17)
with 7t atarget probability measure. We assume that it can be
represented by a probability density function f with respect
to the Lebesgue measure dm = dm ...dm, in R”, that is,
n(dm)= f(m)dm.

The stochastic modeling of the random field of material
parameters then involves two steps:

1. The first step involves the construction of the latent Gaus-
sian random field {(x), x @ R?}.

2. The second step is focused on the definition of the trans-
portmap T .

Important results regarding these two steps are recalled in
the next two sections for the sake of self-containedness.

3.1.1 Definition of the latent Gaussian field

In order to perform random sampling on the geometry shown
in Fig. la, we define the independent components of the
latent vector-valued Gaussian field {(x), x @ } by using the
so-called stochastic partial differential equation (SPDE)
approach proposed by Lindgren etal.; see [56] for the seminal
contribution, as well as [57] for a recent review. The formu-
lation is based on the observation, made by Whittle [58, 59],
that a scalar Matérn Gaussian random field (taken here as the
Jjth component of {(x), x @ }) can be implicitly defined
as the solution to a particular SPDE, written in its anisotropic
form [60] as
k-8, [H7) (x)®
a/2
x@RY,

(18)

jlx)= W(x),

where k is a model parameter, -, - is the Euclidean inner
product in R, @ is the nabla (del) operator, [H] is termed
the diffusion field, « = v + d/2 (with v the smoothness
parameter in the associated Matérn covariance function), and
{W(x), x @ R?} is the normalized Gaussian white noise. In
[56], the authors proposed a Markov approximation that ben-
efits from ease of numerical implementation and was used
in many papers (see, e.g., [29, 41, 61-72)), especially within
the context of Bayesian inference where the SPDE is used to
regularize in the infinite-dimensional setting [ 57]. Notice that
solving Eq. (18) on bounded domains requires the choice of
appropriate boundary conditions. Homogeneous Neumann
boundary conditions were used in [56], while the use of other
boundary conditions was investigated in [61, 73, 74] to cir-
cumvent folding boundary effects.

Of particular interest in the present work is the capability
of the formulation to account for geometrical complexity
through the definition of the diffusion field [29, 41, 68—70].
In practice, the diffusion coefficient can be defined as

[H) (x)] = A% eli)(x)Bel)(x), BxB, (19)

i=1 1

where {Al(j N 0}?’=1 are parameters that control the
anisotropy and correlation lengths in the covariance func-
tion of the latent Gaussian field{ ;(x), xB},1< j < n,

and {x > e!(x) }?:1 are called orientation, or directional,
fields. These fields define the directions of local filtering for
the Gaussian white noise, and can be either inferred from
processing conditions, when laser deposition paths can be
tracked, or by using application-dependent fictitious flow
problems [69]. In the latter case, each field can be defined as

e(x) = —lgf(x), BxB, 1<i<d, (20)
B (x)

where ; is the solution to the Laplace equation
(x)=0, Bx0, (21)

which is supplemented with problem- and component-
specific Dirichlet boundary conditions, defined to drive the
flow along desired paths, and Neumann boundary conditions
that enforce the normal component of the flow velocity to
vanish at interfaces with geometrical features. This approach
will be exemplified in Sect. 5.
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3.2 Transport maps for isotropic and orthotropic
elasticity tensors

3.2.1 Isotropic model

Following [54], the normalized elasticity tensor [M(x)] with

values in the set M'*® of isotropic tensors admits the repre-
sentation

[M(x)] = {Mi(x), M2(x)}, (22)

where M1 = 3k and M = 2u, with k and u the bulk and
shear moduli. As previously indicated, the above representa-
tion is introduced in order to perform algebraic calculations
in a particularly simple way. For instance, the symbolic rep-
resentation for the inverse reads as
[M(x)1™" = {Mi(x)"!, Ma(x)™"}, (23)
while the action of any polynomial transformation P can be
decomposed as

P([M(x)]) = {P(Mi(x)), P(M2(x))}. 24)
Notice that similar properties hold for all symmetry class
[54]. Considering the constraints given by Eqs. (13—14) in a
maximum entropy principle formulation [75, 76], it can be
deduced that

Tt = 7y B, (25)
where s, and rty, are Gamma probability distributions
[44]. Tt follows that

k(x)= Ti{ 1(x)}, wu(x)= T2A 2(x)} @, (26)
where the transport maps are defined by

T = F(_;(lallbl) > Finyo,1) 27)
and

To= Fgp” Fnpo)- (28)

In the above equations:

* FG(a,p) is the cumulative distribution function of the
Gamma law with with @ and b as scale and shape param-
eters, respectively;

* Fpnyo,1) is the cumulative distribution function of the
standard Gaussian law; and
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e { 1(x),xB}and { 2(x), x @ } are the two mutu-ally
independent components of the latent Gaussian field {(x),
x @ }, defined as solutions to the SPDE pre-sented in
Sect.3.1.1.

Notice that marginal inter-correlation between the moduli
can be introduced [77].

3.2.2 Orthotropic model

Assume now that the normalized elasticity field takes values
in the set M°™" of orthotropic tensors defined by the given
mutually orthogonal unit vectors a, b, and ¢. The random
field {{M(x)], x @ } can similarly be expanded as

[M(x)] = Mi(x)[Ei], (29)

i=1

where the Walpole basis corresponds to the Voigt represen-
tation of the following fourth-order tensors

Ei1= allal@ala, E= bRBbREDLED, E3 = cHl
clchle,
Es= alall bR b+ bBbRala,
Es= bBbRcRc+ cBcBbED, (31)
Ee= aRallclc+ cBlcRala,

(30)

and
E7= (aB@b+ bBa)B(alb+ bRa)/2,
Es= (bBc+ c¢c@b)B(bRAc+ c@b)/2, (32)

Eo= (cBa+ alc)B(cBa+ allc)/2.

The random field of elasticity tensor is then written in terms
of the symbolic form as

[M(x)] = {[N(x)], M7(x), Mg(x), Mo(x)}. (33)

where [N ()?c )] is the random matri defined as
" Mi(x) Ma(x) Ms(x)
[N(x)] = B Ma(x) Ma(x) Ms(x)2 . (34)
Me(x) Ms(x) M3(x)

Using the rules of algebraic operations in M°' [54], it can
be shown that the constraints defined by Egs. (13—14) are
equivalent to [41]

E{IN(x)1} = (53], E{Mi(x)}=1, i=7,8,9, OBxB,
(35)

together with

Eflog (det(IN(x)1))} = x, Ix|< 4o, BExB. (36)
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and

E{log (Mi(x))} = xi, Ixil< +oo,i= 7,89, Bxd.
(37)

Under the above constraints, it can be deduced that

7t = Ny B, B B ag, (38)

where

¢ 71N is defined by the probability density function [78]
pi(In)) = Ly (In)) e (det(n]))*( =00V

xexp - %tr([nu , (39)

[V]

where 133 is the indicator function of the set of 3 x 3
real positfve-deﬁnite symmetric matrices, c is the normal-

ization constant and §[; is the coefficient of variation of
[N(x)] defined as

1/2

v = %E{ [N(x)]- (3] 2} (40)

° mty;, i = 7,8,9, is a Gamma probability distribution,
with shape and scale parameters denoted by a; and b;,
respectively.

Notice that the above probability measures correspond to the
first-order marginal distributions for the random fields (and
hence define the transport map T ), and that the coefficients of
variation of the components in the symbolic form are related
to the coefficient of variation of [ M] through [41]

3

6im) = < 35[2N] + 65, + O3+ 6% (41)

Using the results derived in [78], it can further can be shown
that [/V(x)] admits the factorization
[N(x)] = [L(x)1"[L(x)], (42)

where for x fixed in, [ L(x)] is an upper-triangular random
matrix, the components of which are defined as

5 _
Lii(x) = %ZFG(%U(FN(O,I}( 1(x))),
SENT

(43)

_ oM -1
La(x) = " ZFG(%%’l)(FN(O,l)( 2(x))),

gny|

(44)

(N 5 S —

L33(x) = EZFG(i_;'U(PN(o,U( 3 (X7, (45)
£V 2

Liz(x) = % 4(x), (46)

1
Lis(x) = % 6(x), (47)
and

_ Sw

La3(x) = - s(x). (43)
In addition, we have that
Ma(x) = Fglo p(Fnion( 7(x))), (49)
Ms(x) = Fgp o (Fno( 8(x)), (50)
and
Mo(x) = Fg o v (Fno1)( o(x))). (51)

In the above equations, {{ ;(x), x B }} j=? are statisti-
cally independent standard Gaussian random fields, taking
values in R and indexed by , defined as the solution to the
SPDE presented in Sect. 3.1.1. The combination of Egs. (42—
51) explicitly defines the transport map T pushing forward
the tensorization of the normalized Gaussian probability
measures, for x fixed in , to the information-theoretic non-
Gaussian measure 7t.

4 Model calibration

4.1 Calibration of the first-order marginal
distribution

The goal of this section is to identify the hyperparameters
defining the measures 7tps, and mtyy, for the isotropic model
presented in Sect.3.2.1, and the measures [N}, 7Tas;, T,
and Ty, for the orthotropic model introduced in Sect.3.2.2.

4.1.1 Results for the isotropic model

Since the bulk and shear moduli are marginally Gamma dis-
tributed, hyperparameters in rtps, and 7ty can be obtained
as

am, = ak, bwm, = 3bi, (52)
and
aMz = al.l/ sz = 2b[1/ (53)
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respectively, where ax, bk, ay, and by can be estimated either
through spatial averaging (ergodic estimator) or by the max-
imum likelihood method. These values, computed through
averaging, are reported in Table 1 for all three metrics.

Small fluctuations (less than 1%) are typically observed
for both moduli, with the stochastic shear modulus exhibiting
more fluctuations than the bulk modulus. Kernel density esti-
mations for the first-order marginal distributions (based on
2,000 independent samples) of elasticity tensor components
are shown in Fig. 7.

4.1.2 Results for the orthotropic model

Using the experimental database described in Sect.2.2, it is
found that the mean tensor for the elasticity field is

282.5600 106.3067 115.2733

1= _ B106.3067 283.9333 113.88672, 74.8733, 81.4667, 83 (54)
115.2733 113.8867 274.9667 '

in [GPa]. In addition, dispersion parameters are obtained as
follows: 8in) = 3.18%, 6a, = 5.16%, 6mg = 2.88%, and
bmy = 2.86%. Using Eq. (41), we deduce that dpp(s)) =
3.5%. These results have to be compared with the ones
provided in Sect.4.1.1, and it is seen that the orthotropic
model exhibit much larger fluctuations than the isotropic
approximation. This indicates that preserving the material
symmetry is key to properly capturing the statistical fluc-
tuations. It should also be kept in mind that the level of
fluctuations strongly depends on the size of the domain where
EBSD measurements take place (and where homogenization
is performed): the larger the domain size, the smaller the
fluctuations—owing to the separation of scales.

In addition, kernel density estimations for the first-order
marginal probability density functions are provided in Fig. 8.
In this figure, the red markers represent the experimental
samples obtained by combining EBSD data with the homog-
enization procedure.

It is seen, in particular, that non-vanishing probability lev-
els are obtained for all samples, and that the spread of the data
is well captured.

4.2 Calibration of the spatial correlation length

In this section, we address the partial calibration of the covari-

ance structure based on the spatial sampling described in
Sect. 2. Since only one realization of the field is available, an
ad-hoc identification strategy is first proposed in Sect.4.2.1.
Results for the isotropic and orthotropic models are subse-
quently presented in Sects.4.2.2 and 4.2.3, respectively.
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4.2.1 Strategy

To facilitate the description of the correlation structure in
accordance with both the geometry and processing condi-
tions, we introduce a curvilinear coordinate system s =
(s1,s2,53)T, associated with the shell domain where char-
acterization occurs. Specifically, s3 denotes the curvilinear
coordinate along the path , highlighted with a red solid line
in the right panel in Fig. la, and (s1, s2) are the in-plane
curvilinear coordinates in the x — y Cartesian plane. In order
to perform the calibration of the correlation length along s,
the translation model is written in terms of the curvilinear
system

M(s)= T((s)), BxEBy, (55)

where s = (0,0, s3)7 . Note that the change in the index set
(from to ) does not imply a change of coordinate system for
the elasticity tensor itself. We then consider the random
field {M(s3), s3 B s }, with a slight abuse of notation, and
denote by s3 - m®P(s3) the experimental sample obtained
by combining the EBSD measurements with the homoge-
nization approach (components of this sample can be seen
in Fig. 6 for the isotropic approximation, for instance). For
a given transport map T (or equivalently, for a given sym-
metry class), the associated realization s3 > &*P(s3) of the
(restriction of the) latent Gaussian field can be computed as

§XP(s3) = T (m®P(s3)), Bs3 B, (56)

Upper bounds for the correlation lengths {L (31) > 0}”].=1 (with
n = 2 and n = 9 for the isotropic and orthotropic cases,
respectively) can then be identified as follows.

Consider the identification of an upper bound L_(f ), 1<
k £ n,associated with the kth component{ £(s3), 53 }sof
{(s3), s3 s Let & Pk pe the (deterministic) vector
gathering the realization of { f(s3),s3 @ 5} at the Np
sampled points. Let { mod g ) o3 s;} be ascalar-valued,
centered Matérn Gaussian random field indexed by the same

one-dimensional domain 4, with @ = 1/2 and correlation
length L. Notice that a Matérn covariance function is chosen
here—without loss of generality—since the latent Gaussian
fields will ultimately be simulated with the SPDE approach
recalled in Sect. 3.1.1. Similarly, let ™°4(L ) be the Gaussian
random vector gathering the values of { ™°4(s3), 53 @ 4, } at
the N, sampled points, where the dependence on L is
made explicit in order to derive the calibration optimization
problem. Introduce now a partition

11nod(L)

mod —
(L)_ mod(ZL) ’

(57)
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Table1 Estimated mean values

Paramet M P 0 1 t h t
and coefficients of variation of arameter ean (GPa) CV (%) Scale parameter a Shape parameter
the elastic moduli corresponding ¢ () 168.0439 0.1044 917131.7922 0.000183228
to the isotropic approximation
computed with the Euclidean u (E) 81.6010 0.4637 46515.1194 0.00175429
(E), Log-Euclidean (L-E), and k (L-E) 168.0438 0.1044 916760.2112 0.000183302
Riemannian (R) metrics u (L-E) 81.4251 0.4491 49586.0267 0.00164210

k (R) 168.0438 0.1044 916760.2112 0.000183302

i (R) 81.4251 0.4491 49586.0267 0.00164210

Probability
= 2
() ")

o
274

Probability
<
L

{(b) PDF of C4aq

Fig. 7 (First-order marginal) Probability density functions of Ci; and C44 (in [GPa]) for the isotropic case, estimated with 2,000 samples.
Experimental mean values for these components (after projections onto the set of isotropic tensors) are 276.8451 [GPa] and 81.6010 [GPa],

respectively (see Table 1)

where m‘l’d(L ) and rnOg(L ) are random vectors of lengths
(Np-Ny)and Ny, respectively. This partition is constructed
by selecting a set of Ny points amongst the N, points where
samples were collected. Let

exp,k
Eexp,k —

- é;xp,k

be the associated partition for the experimental data. Owing
to the Gaussianity of ™4(L ), it follows that the distribution of

mOd(4)|m°d(L)2= feXP,k i52

(58)

NI P, oYL

-[mofy L)1 )17 ™Y (L)1), (59)
where N denotes the Gaussian distribution and
[mod(L)] [mod(L)]
[ ™YL = L) medgd)] (60)

is the covariance matrix of M°4(L), the block structure of
which is induced by the partition in Eq. (57). An upper bound

for the correlation length Lgk) can then be identified by the
maximum likelihood method, that is,

N,-N,
— (k) , k
Ly’ = argmax; . f rlnqd(L)(‘fb);-p ), (61)
) b
j=1
where &} X/p’k is the jth component of & éXp " and the proba-

bility density function f 1oL defining the jth component
of ]m"d( L) is computed by a kernel density estimation (for
agiven L).

Intuitively, values of L that are larger than the sought-
after correlation length yield low likelihood values (with a
monotonic decrease trend), since spatial variations cannot
be captured accurately, while minor fluctuations and/or a
plateau can be expected for values that are smaller than the
most plausible value of the correlation length—hence the
consideration of upper bounds, rather than point estimates.
The choice of the N points upon which conditioning is per-
formed is therefore of paramount importance. In practice,
this choice is guided by the local monotonicity of the experi-
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Fig. 8 (First-order marginal) Probability density functions of the elasticity matrix components (in [GPa]) for the orthotropic case, estimated with
2,000 samples. Realizations obtained by combining the experiments (EBSD) and the multiscale approach are shown using red circular markers

mental sample, so that non-negligible variations are observed pulled back according to
around the N selected points, as well as by the sensitivity of

the maximum likelihood estimator. Epr(sg )= Tl_] {k**P(s3)},

& (s3) = T, {u(s3)}, Bz By, (62)
4.2.2 Results for the isotropic model

where T1 and T, are defined in Egs. (27-28), with the param-
We now deploy the method presented in Sect.4.2.1 to iden-  eters identified in Sect.4.1.1. The experimental samples thus
tify plausible correlation ranges for the isotropic model. The  obtained are shown in Fig. 9, for the case of an isotropic
experimental samples of the bulk and shear moduli, denoted  approximation defined by the Euclidean metric. Notice that
by s3 > k%P(s3) and 53 > uS*P(s3) respectively, are first ~ the choice of the latter metric is not expected to impact
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the prediction in terms of correlation lengths, given that
the wavelengths of the spatial fluctuations were found to be
insensitive to the projection metric (see Fig. 6a, b).

Figure 10a and b show the points that were chosen for
conditioning (red circles), as well as the points where the
likelihood function was evaluated.

The graphs of the log-likelihood functions associated with
the computation of L; Y and 13(2)
b, respectively.

The likelihood function behaves as expected in both cases,
exhibiting a plateau for small correlation lengths and a sharp
decrease as the correlation length increases. It is found that

are shown in Fig. 11a and

Zgl) = 24 and Zf) = 26 [mm], suggesting similar correla-
tion ranges for the two elastic moduli along the curvilinear
path.

4.2.3 Results for the orthotropic model

A similar approach can be followed to identify upper bounds
for the correlation lengths along s3 in the orthotropic case.
Specifically:

1. The realization s3 - [C®*P(s3)] of the elasticity field is
first normalized in mean to estimate the sample of 53 -
[M®*P(s3)], using spatial averaging for the components
in Walpole’s symbolic form.

2. The realizations of the latent Gaussian fields are next
computed by pulling back the samples of the components,
namely s3 = [N®P(s3)]ands3 > m; P(s3)for7< i<
9, using Eqgs. (43-51). For instance, one has

2 lXP 2
=1 (s3)

flexp(S:S) = FI;EO/U FG(L,I)
6
[N]

1
5EV] 2
(63)

and
&' %(s3) = Fpyo1)(F6(ar,br)(m5 T (s3))), Bs3 B, (64)

where s3 > lhfp(s3) is the realization of {L11(s3), s3

s;1 computed from the realization s3 - [N®*P(s3)] of
{[N(s3)], s3 B 5} using a Cholesky factorization.

3. Conditional sampling is applied and the maximum like-
lihood function is used to identify upper bounds for the
correlation lengths along the curvilinear coordinate s3.

The samples of the latent Gaussian fields computed by
pulling back the experimental realizations are shown in
Fig. 12a (for the components associated with the matrix-
valued coefficient [/V(s)]) and Fig. 12b (for the components
associated with the remaining coefficients M7, Mg, and My).

The evolution of the log-likelihood functions are shown
for all latent Gaussian random fields in Fig. 13a and b, and
upper bounds are provided in Table 2.

It is seen that upper bounds vary greatly between com-
ponents. It should be kept in mind, however, that the
contributions of fields { ;(s3), 53 P 16 are mixed
through the Cholesky factorization (see Eq. (42)), hence mak-
ing results for these components less interpretable.

5 Material uncertainty propagation

In this section, we exemplify the framework using the cali-
brated results for the two symmetry classes. The construction

of appropriate directional fields is first addressed in Sect. 5.1.

Samples of the latent Gaussian and non-Gaussian fields
corresponding to calibrated values are shown in Sect.5.2.
Uncertainty propagation is finally performed in Sect.5.3.

5.1 Problem definition and construction of the
directional fields

For illustration purposes, we restrict the analysis to the apex
of the tank shown in Fig. 1; see Fig. 14a. An a posteri-ori
evaluation of the reduction that can be achieved with a
Karhunen-Loéve expansion indicates that the stochas-tic
reduced dimension remains very high (typically greater than
a few hundreds, depending on the energy threshold),
especially for the orthotropic case. In this case, stochastic
collocation methods can require as many samples as the
Monte Carlo method, which is preferred here for its sim-
plicity. To reduce the computational cost associated with the
Monte Carlo solver, only a quarter of the apex is modeled due
to the symmetry of both the geometry and loading conditions
detailed in Sect.5.3; see Fig. 14b. It is assumed that a prop-
erly symmetrized version of the random field is considered
over the entire apex, so that symmetry can be invoked.

Following the approach developed in Sect. 3.1.1, the direc-
tional field enabling filtering along the curvilinear coordinate
s3 is constructed by solving the Laplace problem with the
boundary conditions shown in Fig. 14b. The solution to this
problem is obtained by the finite element method, using a
mesh comprised 0f 41,232 P elements and 9,890 nodes, and
the associated (normalized) gradient are shown in Fig. 15a
and b, respectively.

Note that the directional field is plot at the center point
of each element, and that only a few randomly-selected vec-
tors are shown for the sake of illustration. Finally, the other
directional fields are taken as

eVix)=(1,0,0)7, e*(x)=(0,1,0)7, (65)
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{s3)

exp

1

Fig.9 Experimental realization s3 = f?Xp (s3) and 53 > E;Xp

field (Euclidean metric)

T T
e

sy £ (sy)

& Poinbs where values are specilied |

Points where values are sampled

(s3)

eXp

1

(s3)

exXp
N

3

(b) Experimental realization sz — £5°% (sa)

(s3) obtained by pulling back the experimental sample of the bulk modulus random

0%
sy &y p(h':«)
& Poinbs where values are specilied |
Polnts where values are sampled

exp

(b) Realization sz +— £577 (s3) and selected points

Fig. 10 Realizations s3 - & ICXP (s3)and s3 > & ;xP (s3), points where conditioning is performed (red circles, with N = 4), and points used in the

evaluation of the log-likelihood function (orange circles)

to introduce in-plane filtering, in accordance with processing

conditions. The directional fields thus defined are used in the

next section to conduct sampling for the elasticity field, using

the calibration results obtained in the previous sections.
dummy

5.2 Sampling results
In this section, we invoke the identification results presented

in Sects.4.2.2 and 4.2.3 to perform random sampling on the
apex.
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5.2.1 Isotropic case

For the isotropic case, two latent Gaussian fields are used to
generate samples of the random fields {k(x), x @ } and
{u(x), x }. The upper bound identified from experiments
corresponds to the directional field ef?), and assumptions
must be made regarding the other two directions. To quali-
tatively illustrate the influence of correlation parameters, we
assume that L(1) = L(2) (that is, that the two latent Gaus-
sian fields exhibit similar correlation ranges; see [ 79] therein,
in particular Fig. 9, for a multiscale-informed construction)
and denote by L = (L1, L2, L3)T the vector gathering the
correlation lengths along the three orientation fields. We fur-
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Fig.11 Graphs of the log-likelihood functions for the two components of the latent Gaussian random field
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Fig.12 Experimental samples {s3 - 6,-°Xp (s3 )}f’zl, computed by using Eqs. (42-51)

ther assume that the in-plane correlation lengths are equal,
and consider two scenarios. In the first case, the in-place
correlation lengths are assumed to be much shorter than the
out-of-place correlation lengths: L L> L3, where we
take L3 30 [mm] following the results presented in
Sect.4.2. Inthe second scenario, all correlation lengths are set
equal [29]. Parameters in the diffusion matrix (see Eq. (19))
arethentakenasA; = kL?,wherex = 1.Associated realiza-
tions of the latent Gaussian field 1 and bulk shear modulus
are shown in Figs. 16 and 17, respectively. A sample of the
shear modulus random field can be seen in Fig. 18.

In the first configuration, the anisotropic structure leads
to pronounced spatial variations, while the isotropic param-
eterization in the second scenario yields smoother variations

with narrower ranges of fluctuations. Finally, samples of the
Cii(x) = k(x)+ w can be seen in Fig. 19.

5.2.2 Orthotropic case

In the case of the orthotropic description, nine latent Gaussian
random fields {{ i(x), x }}i=19 are required to generate
the elasticity matrix random field. For a given Gaussian field {
k(x) x L, 1 £ k £ 9, we similarly consider two
scenarios where the diffusion kernel is parameterized using
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Fig. 13 Graphs of the log-likelihood functions for the nine components of the latent Gaussian random field. Left and right panels are associated
with the matrix-valued and scalar-valued Walpole’s components, respectively

Fig.14 CAD view of the apex V —— U(z) =1
geometry corresponding to the b
tip of the tank shown in the left
panel in Fig. 1 (dashed lines
show the region used for
subsequent analysis), and
boundary conditions used in the
Laplace problem (see
Sect.3.1.1)

Fig. 15 CAD view of the apex
geometry and boundary
conditions used in the Laplace
problem (see Sect.3.1.1)
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Fig.16 Realizations of the
latent Gaussian random field
associated with the bulk
modulus random field

Fig.17 Realizations of the
non-Gaussian bulk modulus
random field, in [GPa]

Fig. 18 Realizations of the
non-Gaussian shear modulus
random field, in [GPa]
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Fig.19 Realizations of
non-Gaussian random fields
{C11(x), x @ } for the two
scenarios

and L®) = (Ll(k), Lz(k), L3(k))T is taken either as L% =
(1, 1,13{1{)) (scenario 1) or as L*) = gk), I(k), ng)) (sce-

nario 2), where {Lgk) }Z=1 are given in Table 2. Realizations
corresponding to these two cases are shown in Figs. 20 and
21.

Differences between all fields are very noticeable for
and between each scenario, due to substantial variations in
the correlation lengths (smaller correlation lengths implying
higher-frequency oscillations along the associated direction;
see Table 2). It is seen, for instance, that the latent field {
9(x), x @ } exhibits more variations than the other two fields
associated with the scalar components in the Walpole basis
(namely, { 7(x),x B }and { g(x), x @ }). The associated
realizations for the components of the elasticity matrix are
shown in Figs. 22 and 23.

5.3 Uncertainty propagation using the monte carlo
approach

In this final section, we consider the propagation of material
uncertainties on the quarter of the apex. We consider the
stochastic linear elasticity problem with boundary conditions
set to mimic inflation under inner pressure:

¢ Free-sliding Dirichlet boundary conditions are applied
on the faces correspondingtox = 0,y = 0,andz = 0
(i.e., ux = 0 on the face defined by x = 0, and similarly,
uy = 0and u; = 0 on faces where y = O andz = 0,

respectively);
¢ Aninflating pressure p = 3 [MPa]is applied on the inner
surface of the apex: (x)n(x) = -pn(x), where is the

stress tensor and n is the outward pointing normal unit
vector at point x on the inner surface.

A Monte-Carlo approach is used as the stochastic solver,
and the finite element method is deployed to solve for the
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2.779e+02
[ 2775

—277

— 2768

l 2.765e+02

— 2765

l 2.759e+02

displacement field for each realization of the stochastic fields.
The mesh is comprised of 9,890 nodes and 41,232 Py finite
elements (based on a convergence study), as shown in Fig. 24.

Figures 25 and 26 show the color contour of the displace-
ment magnitude and Von Mises stress for the isotropic model,
for L = (1,1,30)7 and L = (30, 30,30)7 respectively.
Similar results are displayed for the orthotropic model in
Figs. 27 and 28.

Figure 29 shows the probability density functions of the
maximum of displacement magnitude and Von Mises stress
for the isotropic and orthotropic models, for both scenar-
ios (estimated with 500 samples). These figures show that
the selected quantities of interest are not very sensitive to
correlation lengths (for a given symmetry class), but exhibit
stronger dependence on the symmetry class—in terms of both
mean and coefficient of variation. It is also confirmed that the
isotropic model introduces less variability in the structural
response. The corresponding mean value and the coefficients
of variation for the maximum of displacement magnitude and
Von Mises stress for each case are provided in Tables 3 and 4,
respectively. In both cases, the structural response exhibits
small variability, owing to the size of the domain over which
homogenization is considered.

6 Conclusion

In this work, we considered the integration of spatially-
dependent microstructure samples to model material symme-
tries in terms of both stochastic representation and impact on
the structural response. These samples, obtained from exper-
iments, correspond to EBSD measurements collected along a
curvilinear path on a complex domain printed by power bed
fusion. Using simple multiscale predictions, defined as the
average of Voigt and Reuss bounds, we derived stochas-tic
models for orthotropic elasticity random fields and for
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Fig.20 Scenario 1: Realizations of the nine underlying Gaussian random fields

Table 2 ' Upper bou.nds for the x 1 5 3 4 s 6 - 3
correlation lengths in the
orthotropic case *)

L3’ (mm) 8 12 64 14 36 28 18 14
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(a)} =1

Fig.21 Scenario 2: Realizations of the nine underlying Gaussian random fields

Table 3 Mean and coefficient of
variation of the maximum of
displacement magnitude for the
isotropic and orthotropic cases,
for both scenarios
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1.4e+00
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[0
-5.1e-01

4.1e+00

-1.8e+00

Symmetry Scenario Mean (in [mm]) CV

Isotropic 1 0.0272 0.0020
2 0.0272 0.0030

Orthotropic 1 0.0269 0.0057
2 0.0269 0.0077
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Fig.22 Scenario 1: Realizations of the components of the elasticity matrix random field for the orthotropic case, in [GPa]

Table4 Mean and coefficient of

variation of the maximum of Symmetry Mean (in [Pa]) v

Von Mises stress for the Tsotropic (1,1,30) 2.1774 x108 0.0032

isotropic and orthotropic cases 8

with different correlation (30,30, 30) 2.1775 x10 0.0026

lengths Orthotropic (1,1, L;) 2.1009 x108 0.0191
(Li,Li, L) 2.1014 x108 0.0199
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Fig. 23 Scenario 2: Realizations of the components of the elasticity matrix random field for the orthotropic case, in [GPa]

an isotropic approximation defined by projecting samples
onto the set of isotropic tensors—using the Euclidean, Log-
Riemannian, and Riemannian metrics. We showed that both
models exhibit small statistical fluctuations, owing to the
size of the microstructure, and that the isotropic approxi-
mation leads to an underestimation of the variations. We
then proposed a methodology to infer spatial correlation
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lengths, using one single sample. Similar to calibration tech-
niques in Gaussian process regression, the method involves
pulling back samples from the non-Gaussian to the Gaus-
sian space and applying a maximum likelihood estimator on
conditional distributions. We finally performed uncertainty
propagation on the apex domain, using the SPDE approach
and the translation random field models. We showed that
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Fig.25 Realizations of the displacement magnitude in [mm] and Von Mises stress in [Pa], for the isotropic case with L = (1, 1, 30 )T (scenario 1)

the selected quantities of interest, namely the maximum of
displacement magnitude and maximum von Mises stress,
exhibit small variability (as expected given the levels of fluc-
tuation identified from multiscale results) and dependence on
the symmetry class. They were, however, much less sensi-
tive to the correlation lengths given the geometry and applied
boundary conditions.
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