
Braided Convolutional Self-orthogonal Codes with
Double Sliding Window Decoding

Min Zhu∗, Andrew D. Cummins†, David G. M. Mitchell†, Michael Lentmaier‡, and Daniel J. Costello, Jr.§
∗State Key Laboratory of ISN, Xidian University, Xi’an, P. R. China, zhunanzhumin@gmail.com

†Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM, USA, {andrewdc, dgmm}@nmsu.edu
‡Department of Electrical and Information Technology, Lund University, Lund, Sweden, michael.lentmaier@eit.lth.se

§Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA, dcostel1@nd.edu

Abstract—In this paper, we investigate a class of braided
convolutional codes (BCCs), where the component codes are
convolutional self-orthogonal codes (CSOCs), called braided
convolutional self-orthogonal codes. Compared to conventional
BCCs, the advantages of braided CSOCs include the availability
of several low-complexity decoding methods and the relative ease
of extending these methods to high rates. More specifically, to
construct high-rate braided codes, it is necessary to use higher-
rate component codes, which results in exponentially higher
decoding complexity with conventional BCJR decoding, whereas
the complexity of the CSOC decoding methods proposed here
grows only linearly with rate. In particular, we introduce a double
sliding window decoding method based on belief propagation
(BP) for braided CSOCs, which exhibits good performance
while maintaining low-complexity decoding for the higher rates
required in many applications.

Index Terms—Braided convolutional codes, convolutional self-
orthogonal codes, sliding window decoding, threshold decoding

I. INTRODUCTION

Braided convolutional codes (BCCs), first introduced in
[1], are a type of parallel-concatenated (turbo) code in which
the parity outputs of one component encoder are fed back
and used as inputs to the other component encoder at the
succeeding time unit.1 It was shown numerically in [1], [2]
that the (minimum) free distance of BCCs grows linearly
with the overall constraint length, leading to the conjecture
that BCCs, unlike parallel or serially concatenated codes, are
asymptotically good, and it has been shown that they can
achieve excellent waterfall and error floor performance [3].
Due to their turbo-like structure, BCCs can be decoded based
on the BCJR algorithm, and a low-latency sliding window
decoding (SWD) algorithm was introduced in [4]. The code
rate R = (kc−1)/nc of BCCs depends on the component code
rate Rc = kc/nc, where kc and nc are the number of inputs
and the number of outputs of the component code, respectively.
In order to obtain high-rate BCCs, it is therefore necessary to
use even higher rate component codes, for which the decoding
complexity of the BCJR algorithm grows exponentially. Here,
we investigate the use of convolutional self-orthogonal codes
(CSOCs) as a means of reducing the decoding complexity of
high-rate BCCs.

1BCCs are the convolutional counterparts of braided block codes, several
varieties of which have been proposed for optical communication applications,
which require high code rates and low error floors.

CSOCs and corresponding low-complexity hard-decision
and soft-decsion (APP) threshold decoding algorithms were
originally introduced by Massey [5], who proposed a con-
struction procedure for finding codes with J orthogonal parity
checks on each information symbol for arbitrary values of J
and code rate Rc. The advantages of CSOCs include simple
encoder and decoder implementation, a guaranteed error-
correcting capability of ⌊J/2⌋, and high speed decoding. More
efficient code constructions based on the notion of difference
sets were introduced in [6], [7] (see also [8]). With threshold
decoding, high rate CSOCs can achieve good performance
with very high throughputs and moderate decoding complex-
ity. In order to improve the performance, iterative threshold
decoding was proposed in [9], [10]. Furthermore, due to the
self-orthogonal structure of CSOCs, there are no 4-cycles in
the Tanner graph of the parity check matrix, and hence belief-
propagation (BP) decoding can also be employed [11], [12].
In this paper, we investigate a class of BCCs with rate

Rc = kc/(kc + 1), kc ≥ 1, using CSOCs as component
codes, referred to as braided CSOCs. Then, with a goal of
achieving both low-latency and low-complexity decoding, we
propose a double sliding window decoding (DSWD) algorithm
based on BP. Simulation results demonstrate that high-rate
braided CSOCs with DSWD can maintain good performance
in both the waterfall and error floor with modest encoding and
decoding complexity.

II. BRAIDED CONVOLUTIONAL CODES AND
CONVOLUTIONAL SELF-ORTHOGONAL CODES

A. Braided Convolutional Codes

BCCs are constructed using a turbo-like parallel concatena-
tion of two component encoders. However, unlike turbo codes,
the two encoders share parity feedback. In this manner, the
information and parity symbols are “braided” together. The
information sequence u enters the encoder in a block-by-block
manner, typically with a relatively large block size. Fig. 1
depicts the encoding process as a chain of encoders operating
at different time instants for a rate R = (kc − 1)/(kc + 1)
BCC utilizing two recursive systematic convolutional (RSC)
component encoders each of rate Rc = kc/(kc + 1), where
P(0), P(1), and P(2) are each block permutors of size T .
The information sequence is divided into blocks of length
(kc−1)T symbols, i.e., u = (u0,u1, . . . ,ut, . . .), where ut =(
u
(0)
t ,u

(1)
t , . . . ,u

(kc−2)
t

)
represents the block of (kc−1)T in-

20
23

 1
2t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

To
pi

cs
 in

 C
od

in
g

(I
ST

C
) |

 9
79

-8
-3

50
3-

26
11

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

TC
57

23
7.

20
23

.1
02

73
52

4

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on December 18,2023 at 18:52:35 UTC from IEEE Xplore. Restrictions apply.

()0
P

()1
P

()2
P

()0
P

()1
P

()2
P

()0
P

()1
P

()2
P

t
u
t
u

()1
ˆ
t
v

()2
ˆ
t
v

()2
t
v
()2
t
v

()1
t
v
()1
t
v

()2
1t-v

())22
1t-v

()1
1t-v

()1
1t-v

()1
1

ˆ
t-v

()2
1

ˆ
t-v

()1
1

ˆ
t+v

()2
1

ˆ
t+v

()1
2t-v

()1
2t-v

()2
2t-v

()2
2t-v

D D DD D D

() () ()()20 1

1 1 1 1
, , , c

k

t t t t

-

- - - -=u u u u
()2

1 1

c
k
c

t t1 11 11 11 11 11 11 11 11 11 1

-

1 11 11 11 11 11 1
u

1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 1

() () ()()20 1
, , , c

k

t t t t

-
=u u u u

()2c
k
c

t t
,

-
u,

t tt t
,

() () ()()20 1

1 1 1 1
, , , c

k

t t t t

-

+ + + +=u u u u
()2

1 1

c
k
c

t t1 11 1

-

+ +1 11 1t t1 11 11 11 11 11 1
u

1 1

()1c c
k k + ()1c c

k k + ()1c c
k k +

()1c c
k k + ()1c c

k k + ()1c c
k k +

1t-u t
u 1t+u

Fig. 1. Chain of encoders for a rate R = (kc − 1)/(kc + 1) BCC using a rate Rc = kc/(kc + 1) component code.

formation symbols at time i, with u(i)
t =

(
u
(i)
t,1, u

(i)
t,2, . . . , u

(i)
t,T

)
denoting the T information symbols that enter the ith encoder
input, i = 0, 1, . . . , kc − 2. ut is then interleaved using P(0)

to form ũt, where P(0) operates independently on each set
of T symbols u

(i)
t , i = 0, 1, . . . , kc − 2, and ut and ũt

enter the component encoders. The parity outputs v̂
(i)
t from

encoder i, i ∈ {1, 2}, at time t are delayed by one time
unit, interleaved using P(1) and P(2), respectively, and then
enter the component encoders as the input sequences ṽ

(i)
t+1,

i ∈ {1, 2}, at time t + 1, where the parity input sequences
ṽ
(i)
t+1 are associated with encoder input position kc − 1. The

information block ut, the parity output block v̂
(1)
t of encoder

1, and the parity output block v̂
(2)
t of encoder 2 are sent over

the channel as the encoded block vt =
(
ut, v̂

(1)
t , v̂

(2)
t

)
at

time t. Both pipeline [1] and SWD [4] based on the BCJR
algorithm have been proposed for BCCs, with SWD allowing
lower-latency operation with negligible performance loss.
B. Convolutional Self-orthogonal Codes

A set of J nonnegative integers A = {α1, α2, . . . , αJ},
α1 < α2 < . . . < αJ , J ≥ 2, is said to be self-
orthogonal if the differences (αj − αk) are distinct for all
(j, k), j ̸= k [8]. Now assume a nonrecursive systematic
convolutional (NSC) encoder with rate Rc = kc/(kc + 1),
memory orderm, and constraint length v = (kc + 1)·(m+ 1).
If u = (u0,u1, . . . ,ut, . . .) represents the information se-
quence, where ut =

(
u
(0)
t , u

(1)
t , . . . , u

(kc−1)
t

)
, and v =

(v0,v1, . . . ,vt, . . .) represents the encoded sequence, where
vt =

(
u
(0)
t , u

(1)
t , . . . , u

(kc−1)
t , v

(kc)
t

)
, then, assuming a binary

symmetric channel (BSC), the received sequence is y = v⊕e,
where the error sequence e = (e0, e1, . . . et, . . .), et =(
e
(0)
t , e

(1)
t , . . . , e

(kc)
t

)
, and e

(0)
t , e

(1)
t , . . . , e

(kc−1)
t represent the

information error bits at time t.
Such a code is said to be self-orthogonal if, for each

information error bit in e0, the set of all syndrome bits that
check it forms an orthogonal set, i.e., no other error bits are
checked more than once (see [8] for details). If J orthogonal
checks can be formed on each information error bit in e0,
then the code is capable of correcting any pattern of ⌊J/2⌋
errors within one constraint length with simple majority-logic
(threshold) decoding.2 Rc = kc/(kc + 1) NSC encoders

2Since increasing the size J of the orthogonal set increases the error-
correcting capability of the code, larger values of J correspond to stronger
codes.

with memory m can be described by a set of kc generator
polynomials g(1) (D) ,g(2) (D) , . . . ,g(kc) (D), where m is
the largest degree of any of the generators. Since, for CSOCs,
the generators are typically sparse, they can also be described
by the sets g(1),g(2), . . . ,g(kc) of their non-zero coefficients.

C. Braided Convolutional Self-orthogonal Codes

We now consider nonrecursive systematic CSOCs of rate
Rc = kc/(kc + 1) as component codes for the braid-
ed codes shown in Fig. 1. At time unit t ∈ [1, L+ Λ],
the braided CSOC code symbols are denoted vt =(
u
(0)
t ,u

(1)
t , . . . ,u

(kc−2)
t , v̂

(1)
t , v̂

(2)
t

)
, where each component

of vt is a block of T symbols and Λ is the number of blocks
used to terminate encoding. The rate of the braided CSOCs is
R = (kc − 1)/(kc + 1).

III. DOUBLE SLIDING WINDOW DECODING BASED ON BP

In this section, we introduce DSWD based on BP for
braided CSOCs. Specifically, there are two windows in the
decoding process. One is an outer window, which covers w
blocks from time t to time t + w − 1. The other is an inner
window which operates only on one block at a time.

A. Outer Sliding Window Decoding

A diagram of the proposed outer SWD process for braided
CSOCs is shown in Fig. 2, where w represents the window
size. At time unit t, a decoding window covers w blocks
from time t to t + w − 1. There are three types of itera-
tions performed in the window: component iterations, verti-
cal iterations, and horizontal iterations. Component iterations
represent iterative BP decoding operating on a component
CSOC. Vertical iterations represent the exchange of extrinsic
LLRs on the information input symbols between the two
component CSOCs at the same time unit. Horizontal iterations
represent the exchange of the extrinsic LLRs on the parity
output symbols between blocks at neighboring time units in
a decoding window. One horizontal iteration includes both
a forward horizontal exchange of LLRs from the first block
to the last block in the decoding window and a backward
horizontal exchange of LLRs from the last block to the first
block in the decoding window. Let I1, I2, and I3 denote the
maximum number of allowed component iterations, vertical
iterations, and horizontal iterations, respectively.
After w blocks enter the window, the decoder is initialized.

In decoder 1, for each block at time s ∈ [0, w − 1], the channel

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on December 18,2023 at 18:52:35 UTC from IEEE Xplore. Restrictions apply.

Decoder 1

Decoder 2

block t block t+1 block t+w-1 block t+w

current window next window

target block

horizontal

iteration

vertical

iteration
permutor

Decoder 2

Decoder 1

Decoder 1

Decoder 2

Decoder 2

Decoder 1

Fig. 2. The outer sliding window decoding process.

log likelihood ratios (LLRs) of the information input symbols
are given by

λ
c,(i)
Inf (s) = l(i)s , i = 0, 1, . . . , kc − 2, (1)

the channel LLRs of the parity input symbols are given by

λc
Pin (s) =

{
Ψ, s = 0

l
(kc)
s−1P

(2), s ∈ (0, w − 1] ,
(2)

and the channel LLRs of parity output symbols are given by

λc
Pout (s) = l(kc−1)

s , (3)
where l

(i)
s represents the LLRs of the T received symbols

corresponding to the transmitted block c
(i)
s of T code symbols,

i = 0, 1, . . . , kc, and Ψ is a constant vector of size T in which
each component is a large negative value, reflecting the fact
that, at time unit t = 0, the blocks of parity inputs into encoder
1 and encoder 2 are all-zero.

After initialization, a horizontal iteration begins that in-
volves the blocks from time t to t + w − 1 in the window.
First, for the block at time t, component decoder 1 performs
iterative decoding (see the next subsection for details). After I1
component iterations, decoder 1 transmits the extrinsic LLRs
λ
e,(i)
Inf (t) of the information input symbols, i = 0, 1, . . . , kc−2,

to decoder 2. After receiving these extrinsic LLRs, component
decoder 2 performs I1 component iterations and passes the
extrinsic LLRs λ̃

e,(i)
Inf (t) of the information input symbols,

i = 0, 1, . . . , kc − 2, back to decoder 1, completing a vertical
iteration as shown in Fig. 3. Thus, for s ∈ [t, t+ w − 1], the
a priori LLRs λ̃

a,(i)
Inf (s) of the information input symbols in

decoder 2 are given by

λ̃
a,(i)
Inf (s) = λ

e,(i)
Inf (s)P

(0)
i , i = 0, 1, . . . , kc − 2, (4)

and the a priori LLRs λ
a,(i)
Inf (s) of the input information

symbols in decoder 1 are given by

λ
a,(i)
Inf (s) = λ̃

e,(i)
Inf (s)

(
P

(0)
i

)−1

, i = 0, 1, . . . , kc − 2, (5)

where P
(0)
i

(
resp.

(
P

(0)
i

)−1)
represents the permutation (in-

verse permutation) applied to λ
e,(i)
Inf (s)

(
λ̃
e,(i)
Inf (s)

)
, i =

0, 1, . . . , kc − 2.
Once the number of vertical iterations for decoder 2 reaches

I2, the extrinsic LLRs λe
Pout (s) of the parity output symbols

of decoder 1 at time s are permuted by P(1) and sent to
decoder 2 as the a priori LLRs λ̃a

Pin (s+ 1) of the parity

Decoder 1

Decoder 2

block s block s+1

()Pin
+1

a
sλ

()Pout

e
sλ ()Pin

+1
a

sλ ()Pin
+1

a
sλ

()Pout

e
sλ ()Pout

e
sλ

Forward horizontal iteration

Decoder 2

Decoder 1

()Pout

a
sλ ()Pin

+1
e

sλ ()Pin
+1

e
sλ

()Pin
+1

e
sλ()Pout

a
sλ ()Pout

a
sλ

Backward horizontal iteration

() (),

Inf

e i

sλ

() (),

Inf

a i

sλ
() (),

Inf

a i(,
sλ

() (),

Inf
1

a i

s +λ

()()n
() (),

Inf
1

a i(,
s +λ

() (),

Inf
1

e i

s +λ
() (),

Inf
1

e i(,
s +λ

() (),

Inf
1

e i

s +λ
() (),

Inf
1

a i

s +λ

() (),

Inf

a i

sλ

() (),

Inf

e i

sλ
() ()),

Inf

e i(,
sλ

Vertical iteration

Fig. 3. Extrinsic information exchange in a vertical/horizontal iteration.

input symbols at time s + 1. In the same way, the extrinsic
LLRs λ̃e

Pout (s) of the parity output symbols of decoder 2 are
permuted by P(2) and sent to decoder 1 as the a priori LLRs
λa
Pin (s+ 1) of the parity input symbols at time s+ 1. Block

s+ 1 now performs vertical decoding.
When the last block at time s = t + w − 1 in the current

window finishes I2 vertical iterations, the backward horizontal
iteration begins. Using the permutor inverses

(
P(2)

)−1
and(

P(1)
)−1

, respectively, the decoders at time s = t+w−1 send
the extrinsic LLRs λe

Pin (t+ w − 1) and λ̃e
Pin (t+ w − 1) of

the parity input symbols back to the component decoders as
the a priori LLRs λ̃a

Pout (t+ w − 2) and λa
Pout (t+ w − 2) of

the parity output symbols at time s = t+w−2. The decoders
at time s = t+w− 2 then perform I2 vertical iterations. This
process continues until the first block at time s = t in the
window finishes I2 vertical iterations, thus completing a full
horizontal iteration. This horizontal iteration process is illus-
trated in Fig. 3. Finally, after the allowed number of vertical
and horizontal iterations have been performed, decisions are
made on the target block of (kc − 1)T information symbols
and the window shifts to the next position (see Fig. 2).

B. Inner Sliding Window Decoding
The self-orthogonal structure of CSOCs guarantees that

there are no 4-cycles in the Tanner graph of the code. Based
on this observation, we propose to use sliding window BP de-
coding on the component CSOCs. At any time t ∈ [0, L+ Λ],
a component decoder in a braided CSOC contains (kc+1) ·T
received symbols, i.e., there are T groups of received symbols,
where each group includes kc − 1 information input symbols,
1 parity input symbol, and 1 parity output symbol. A diagram
of the parity check matrix Ht and the SWD process for
a component decoder is shown in Fig. 4, where the extra
(kc + 1) · m columns in Ht that overlap the next time unit
are needed to decode the last group at time t. Therefore, the
size of the parity-check matrix Ht of a component decoder
at any time unit is (T + 2m) × [(kc + 1) · (T +m)]. BP
decoding can be performed on this entire matrix using a
conventional flooding schedule. However, in order to reduce
the computational complexity and memory requirements of the

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on December 18,2023 at 18:52:35 UTC from IEEE Xplore. Restrictions apply.

1m +

()(1) 1
c
k m+ × +

()1
c
k T+ ×

T+m

()1
c
k m+ ×

block t block t+1
1

c
k +

m

t
h

m

Fig. 4. The parity-check matrix and inner SWD process for a component decoder with W = 1.

decoder, we propose instead to process a small parity-check
matrix ht of size [W (m+ 1) +m]× [W (kc + 1) · (m+ 1)]
= [W (m+ 1) +m]×Wν in a sliding window fashion, where
W , which represents the number of constraint lengths of
received symbols in the window, is typically a small positive
integer. This small window covers W (m + 1) groups of
symbols, with the first group being the target group. When the
target group is decoded, the small window shifts by one group
as shown in Fig. 4 (drawn for W = 1). After the last group
in block t is decoded, component decoder 1 (or 2) at time
t transmits the extrinsic LLRs of the (kc − 1)T information
symbols to component decoder 2 (or 1) at time t, as well as the
extrinsic LLRs of the T parity output symbols to component
decoder 2 (or 1) at time t+ 1.

IV. NUMERICAL RESULTS

We now investigate the performance of braided CSOCs with
DSWD based on BP over the binary-input AWGN channel
with BPSK modulation.

Example 1: Consider a rate R = 1
3 braided CSOC using a

component systematic CSOC with rate Rc = 2/3, m = 13,
J = 4, and generator polynomials g(1) = {0, 8, 9, 12} and
g(2) = {0, 6, 11, 13} [8]. We first investigate the effect of the
permutor size T on the bit error rate (BER) performance, as
shown in Fig. 5. We observe that, with increasing T , the BER
performance improves in the waterfall region as well as in the
error floor region.

0 0.5 1 1.5 2 2.5 3 3.5
10-8

10-6

10-4

10-2

100

Fig. 5. The BER of R = 1/3 braided CSOCs with different permutor sizes
T and J = 4, w = 4, W = 1, I1 = 3, I2 = 1, and I3 = 5.

Example 2: We next investigate the effect of the size J of
the orthogonal set on the BER performance. Rate R = 1/3
braided CSOCs are again considered with three Rc = 2/3
component codes: (1) m = 2, J = 2, g(1) = {0, 1},
g(2) = {0, 2}; (2) m = 13, J = 4, g(1) = {0, 8, 9, 12},
g(2) = {0, 6, 11, 13}; and (3) m = 40, J = 6, g(1) =
{0, 2, 6, 24, 29, 40}, g(2) = {0, 3, 15, 28, 35, 36} [8]. The re-
sults are shown in Fig. 6 for T = 400. We see that, using the
proposed decoding algorithm, the braided CSOC with J = 2
performs best in the waterfall, and we note that increasing J
increases the strength of the code3, and thus has the effect
of weakening the waterfall performance. Larger values of J ,
however, have better error floor performance.

1 1.5 2 2.5 3 3.5
10-8

10-6

10-4

10-2

100

Fig. 6. The BER of R = 1/3 braided CSOCs with different orthogonal set
sizes J with w = 4, W = 1, I1 = 3, I2 = 1, and I3 = 5.

Example 3: Using the Rc = 2/3 component CSOC with
m = 2, J = 2 and generator polynomials g(1) = {0, 1},
and g(2) = {0, 2} [8], the performance of the R = 1/3
braided CSOC based on BP decoding is compared to an
R = 1/3 BCC based on BCJR decoding with Rc = 2/3
RSC component codes [4] and to an R = 1/3 spatially
coupled LDPC (SC-LDPC) code with sliding window (SW)
decoding and the same decoding latency. The results are shown
in Fig. 7, where we see that the performance of the braided

3Increasing J corresponds to increasing both the error-correcting capability
of the component code and the degree of each information variable node (VN)
in the Tanner graph of the parity-check matrix (the parity VN has degree 1).

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on December 18,2023 at 18:52:35 UTC from IEEE Xplore. Restrictions apply.

CSOCs with suboptimal, low-complexity BP decoding of the
component codes is competitive (within 0.2 dB) with the BCCs
with optimal, high-complexity BCJR decoding and compares
favorably with the SC-LDPC code with SW decoding. Also
shown in Fig. 7 is the BER of braided CSOCs with inner
decoding based on Massey’s original APP threshold decoding
algorithm [5], which further lowers decoding complexity (the
component decoders are non-iterative) at a cost of performance
(see [13] for details of applying APP decoding in a turbo-like
configuration).

0.5 1 1.5 2 2.5 3 3.5
10-8

10-6

10-4

10-2

100

Fig. 7. The BER performance of R = 1/3 BCCs with T = 100 and
w = 16 for (1) BP decoded braided CSOCs with W = 1, I1 = 2, I2 = 5,
and I3 = 30, (2) BCJR decoded BCCs with I1 = 2, I2 = 5, and I3 = 30,
and (3) APP decoded braided CSOCs with I2 = 5, and I3 = 30. Also shown
is the BER performance of an SW decoded (4,6)-regular SC-LDPC code with
R = 1/3, ms = 1, w = 16, M = 100, and Imax = 200.

Example 4: To illustrate the ease with which high-rate
BCCs can be constructed using CSOC component codes, Fig.
8 shows the BER performance of braided CSOCs with (i) a
rate R = 7/9 braided CSOC using an Rc = 8/9 component
CSOC with m = 77 and J = 3, (ii) a rate R = 9/11
braided CSOC using an Rc = 10/11 component CSOC with
m = 77 and J = 3, and (iii) a rate R = 9/10 braided CSOC
using an Rc = 19/20 component CSOC with m = 168 and
J = 3. (The generator polynomials of the component CSOCs
were taken from [6].) Since CSOCs with rates as high as
Rc = 49/50 have been published in the literature [7], this
example illustrates the advantage of using braided CSOCs
to achieve good performance in both the waterfall and the
error floor with modest decoding complexity, a task that would
be much more complex at very high rates with conventional
BCCs decoded using the BCJR algorithm.4

V. CONCLUSION

In this paper, we presented a new approach to the de-
sign of BCCs with an emphasis on high rate constructions
and low complexity decoding. In particular, we proposed
the use of CSOCs as component codes along with a novel
low-complexity DSWD method. Results indicate that braid-
ed CSOCs with DSWD offer competitive performance with
less complexity compared to conventional BCCs with BCJR
decoding, with the complexity advantage being particularly
significant at high rates. Ongoing work includes examining

4Using the dual representation of convolutional codes and decoding on the
dual trellis would be required in this case.

2.5 3 3.5 4 4.5
10-8

10-6

10-4

10-2

100

Fig. 8. The BER of three high-rate braided CSOCs with T = 200, w = 4,
W = 1, I1 = 2, I2 = 1, and I3 = 5.

the performance/complexity tradeoffs involved in increasing
the iteration limit I1 and the window size W of component
SWD. Also, the use of CSOCs with nonsystematic H matrices
and RSC encoders is being investigated as a way of improving
the convergence of the component BP decoder by increasing
the degree of the parity VN, resulting in a fully regular
Tanner graph, thus improving the reliabilities (LLRs) of the
parity symbols that are passed between blocks in a horizontal
iteration.

ACKNOWLEDGMENT

This material is supported in part by the NSFC under Grant
62271380 and the National Science Foundation under Grant
Nos. CNS-2148358 and OIA-1757207.

REFERENCES

[1] W. Zhang, M. Lentmaier, K. Sh. Zigangirov, and D. J. Costello, Jr.,
“Braided convolutional codes: a new class of turbo-like codes,” IEEE
Trans. Inf. Theory, vol. 56, no. 1, pp. 316-331, Jan. 2010.

[2] S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Finite length weight
enumerator analysis of braided convolutional codes,” in Proc. Int. Symp.
Inf. Theory and Its Applications, Monterey, CA, USA, Oct. 30-Nov. 2,
2016, pp. 488-492.

[3] S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Spatially coupled
turbo-like codes: A new trade-off between waterfall and error floor,”
IEEE Trans. on Commun., vol. 67, no. 5, pp. 3114-3123, May 2019.

[4] M. Zhu, D. G. M. Mitchell, M. Lentmaier, D. J. Costello, Jr., and B.
Bai, “Braided convolutional codes with sliding window decoding,” IEEE
Trans. on Communications, vol. 65, no. 9, pp. 3645-3658, Sept. 2017.

[5] J. L. Massey, “Threshold decoding,” Cambridge, M.I.T. Press, 1963.
[6] W. W. Wu, “New convolutional codes-part I”, IEEE Trans. on Commu-

nications, vol. com-23, No. 9, pp. 942-955, Sep. 1975.
[7] W. W. Wu, “New convolutional codes-part II”, IEEE Trans. on Commu-

nications, vol. com-23, No. 9, pp. 19-33, Jan. 1976.
[8] S. Lin and D. J. Costello, Jr., “Error Control Coding: Fundamentals and

Applications,” 2nd Ed., Upper Saddle River, NJ: Prentice-Hall, 2004.
[9] M. Belkasmi, M. Lahmer, and M. Benchrifa, “Iterative threshold decod-

ing of parallel concatenated block codes,” in Proc. Int. Symp. on Turbo
Codes & Related Topics, Munich, Germany, April 3-7, 2006, pp. 4-7.

[10] C. Cardinal, D. Haccoun, and F. Gagnon, “Iterative threshold decoding
without interleaving for convolutional self-doubly orthogonal codes,”
IEEE Trans. Commun, vol. 51, no. 8, pp.1274-1282, Aug. 2003.

[11] R. Lucas, M.P.C. Fossorier, Yu Kou, and Shu Lin, “Iterative decoding of
one-step majority logic deductible codes based on belief propagation,”
IEEE Trans. on Communications, vol. 48, no. 6, pp.931-937, June 2000.

[12] Y. He and D. Haccoun, “Analysis of the orthogonality structures of
convolutional codes for iterative decoding,” IEEE Trans. Inf. Theory,
vol. 51, no. 9, pp. 3247-3261, Sep. 2005.

[13] A. D. Cummins, D. G. M. Mitchell, and D. J. Costello, Jr., “Iterative
threshold decoding of spatially coupled parallel-concatenated codes,” in
Proc. Int. Symp. on Topics in Coding, Montreal, QC, Canada, Aug. 30
- Sept. 3, 2021, pp. 1-5.

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on December 18,2023 at 18:52:35 UTC from IEEE Xplore. Restrictions apply.

