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Abstract— It is well known that actuator saturation can
cause destabilization and degradation in performance; similar
problems are faced when actuation is quantized. This paper
proposes the design of an anti-windup compensator for sys-
tems with actuators that are limited to a finite number of
quantization levels. This combination of discrete level actuation
and saturation poses a unique anti-windup problem that has
not yet been solved. To surmount this combined issue, an
anti-windup compensator is proposed which provides ultimate-
boundedness of the system state within a prescribed region, and
also guarantees that the state does not stray outside a larger
compact set. A numerical simulation example illustrates the
effectiveness on a rigid-body system which inspired this work.

I. INTRODUCTION

A quantizer maps a continuous-valued signal to a discrete-
valued signal [1] and can result from digital-to-analog (D/A)
converters, digital sensors and binary actuators, to name a
few [2], [3], [4], [5], [6], [7]. The issue of quantization
was first discussed in the 1950s by Kalman [8]. However,
it was not until the 1990s when Delchamps advocated a
direct analysis of the effects of quantization on a system [3].
Quantization can be detrimental to the system response [3],
[8], [9]: generally, a system rendered globally asymptotically
stable by a control law will not remain so when quantization
is introduced [9]. Prior research has addressed logarithmic
quantizers where quadratic stability analysis applies [9], [10],
[11]. However, this analysis is not applicable for many
practical systems with uniform or non-uniform quantization.

Moreover, some mechanical and aerospace systems expe-
rience control signals that are subject to both quantization
and saturation. For example, the NASA Lunar Pallet Lander
utilizes a bank of uni-directional binary actuators that, when
used in unison, result in quantized input forces to the vehicle
[2]. Likewise, since a finite number of actuators are available,
saturation results when thrust demand exceeds the total
available thrust. Such a system is typical of a number of
practical systems and is the motivation for this work.

The combination of saturation and quantization has not
been studied extensively in the literature, with perhaps the
most comprehensive treatment given in [12] where condi-
tions were given for state-feedback stabilization of a system
subject to input quantization and saturation. Crucially, the
conditions ensured the system state was ultimately bounded,
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Fig. 1. Issues with sector narrowing with quantization. ψ(u) = Dz(u);
ψ(u) = π(u) = u− sat(q(u)). When ψ(u) = Dz(u), then for all u < ǔ,

ψ(u) ∈ Sector[0,ε] with ε < 1. When ψ(u) = π(u) = u− sat(q(u)), sector
narrowing is not possible with the narrowest sector being Sector[0,1],
regardless of the size of u.

with this set contained within another set which approxi-
mated the region of attraction. These conditions made the
results of [12] applicable to both stable and unstable systems.

For systems with saturation, it is typical to re-write the sat-
uration nonlinearity as sat(u) = u−Dz(u) and then use sector
bounds on the deadzone, Dz(u), to arrive at conditions which
ensure stability. These conditions can be stated globally for
stable plants, and, by using sector narrowing techniques
([13], [14]), local stability conditions can be obtained for
unstable plants. This is not as straightforward for systems
suffering from actuator saturation and quantization because
the sector narrowing approach cannot be applied. Notice
that applying the same split as before yields sat(q(u)) =
u−π(u), where the narrowest sector that π(u) can inhabit
being Sector[0, I] - see Figure 1. For stable plants this is not
problematic, but for unstable plants this effectively prevents
any conclusions about stability from being made. Therefore
other approaches must be adopted.

An attractive alternative to standard sector constraints for
the saturation/quantization nonlinearity can be obtained from
the properties of ramp functions which were exploited in the
paper [15] (also more recently [16], [17]) for the analysis of
piecewise affine systems. Similar to [15], it can be shown
that the quantization/saturation nonlinearity can be more
accurately approximated by the use of ramp functions, and
that such approximations naturally lead to a set of quadratic
constraints that can be used in a Lyapunov analysis.

The contribution in this paper is the advocacy of anti-
windup compensation (AWC1) to address the uniform quan-
tization and saturation problem. AWC is well-studied for
systems with input saturation (e.g. [18], [19], [20], [21]) and
assists a nominal a priori designed controller during periods
of saturation. Although there is some work on applying
AWC to input-quantized plants [22], the results developed
here go beyond those of [22] where only quantization was
considered, and instead use the ultimate-boundedness/local

1AWC is used for anti-windup compensation and anti-windup compen-
sator; the meaning is clear from the context.
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Fig. 2. Configuration of saturated and quantized anti-windup problem:
φ(u) represents the quantized and saturated input; Θ(s) is the AWC.

stability ideas of [12] along with sharper characterizations
of the saturation/quantization nonlinearity, inspired by [15].
This provides less conservative quadratic constraints, and
as shown from the results, lower L2 gain bounds. The
approach blends the practicality of the anti-windup approach,
the technical rigor of [12] while also reducing conservatism
in the design. Crucially, the ramp-function characterizations
[15] are exploited for AWC synthesis while only requiring
the solution of a linear matrix inequality.

Notation. Let Rn×m denote the set of matrices with real
coefficients of dimension n by m. Let M(i, j) denote the
element in the (i, j) entry of matrix M, and Mi the ith row
of M, denote Dn = {M ∈ Rn×n | M(i, j) = 0, i ̸= j}, Pn×m =
{M ∈ Rn×m | M(i, j) ≥ 0,∀i, j} and In ∈ {Dn | In(i,i) = 1}.

II. PROBLEM FORMULATION
A. Quantized and constrained thrust

This paper was inspired by a quantized thrust prob-
lem. Consider m thruster banks made up of nT,i, i =
1, . . . ,m, bidirectional binary thrusters with equal thrust mag-
nitudes δTi. Then the control signal u is subject to quan-
tization with saturation described by φ(u) = satū(q(u)) =
[ satū1(q1(u1)) . . . satūm(qm(um)) ]

′ where

satūi(qi(ui)) :=

 −ūi if qi(ui)≤−ūi
qi(ui) if −ūi < qi(ui)< ūi

ūi, if qi(ui)≥ ūi

qi(ui) := sign(ui) ·floor(|ui|/δTi)δTi

and ūi = nT,iδTi. Symmetric actuation is assumed throughout;
amendments may be made to deal with asymmetric actuators.

B. Anti-windup compensation
The anti-windup architecture shown in Fig. 2 is considered

where G(s), K(s), and Θ(s) are the plant, controller, and
AWC, respectively, with state-space realizations:

G(s)∼

{
ẋp = Apxp +Bpφ(u)
y =Cpxp

(1)

K(s)∼

{
ẋc = Acxc +Bcylin +Bcrr
ulin =Ccxc +Dcylin +Dcrr

(2)

Θ(s)∼


ẋa = (Ap +BpF)xa +Bpũ
ud = Fxa

yd =Cpxa

(3)

where the control signal is u ∈Rm, the measured output y ∈
Rp, and the reference input r ∈ Rnr . The plant is driven by
the quantized and constrained signal û = φ(u) and the AWC
is driven by the difference between the control signal and its
quantized and constrained counterpart ũ = u− φ(u), which
will be referred to as the control signal error. The AWC

Fig. 3. Bound on control signal error by ramp functions. Control
signal error ũi; bound ui − rδTi + r4δTi + r−δTi − r−4δTi +3δTi.

emits two signals, ud ∈ Rm and yd ∈ Rp. It is assumed that,
in the absence of quantization/saturation, the controller K(s)
stabilizes G(s) and provides satisfactory performance.

Remark 1: The quantized and saturated closed-loop sys-
tem is represented by a set of differential equations with
discontinuous right hand side so may not admit classical
solutions. In this paper, as in [12], unique Caratheodory
solutions are assumed to exist to these differential equations
and in this sense the closed-loop is said to be well-posed.
Obviously, this excludes sliding mode and other types of
behaviour; the interested reader may consult [23] for a
general coverage of the subject of discontinuous control
systems, or [24] for a differential inclusion formulation.

C. Bound on control signal error

To obtain tighter quadratic constraints than are possible
using sector bounds, this paper makes extensive use of ramp
functions [15]. The shifted ramp function is given by

rsi =: ri(ui − si) =

{
0 i f ui < si

ui − si i f ui ≥ si
, i = 1, . . . ,m

The vector-valued decentralized shifted ramp function is

rs =: r(u− s) = [ r1(u1 − s1) . . . rm(um − sm) ]
′

For a single thrust control signal, the control signal error
ũi is bounded by

|ũi|≤ |ui − rδTi +r(nT,i+1)δTi +r−δTi −r−(nTi+1)δTi +ūi| (4)

Fig. 3 illustrates (4) for a thruster bank with 3 thrusters
(nT,i = 3) with equal thrust magnitudes δTi. For more
compact notation, define ra,i := rδTi , r−a,i := r−δTi , rb,i :=
r(nT,i+1)δTi , and r−b,i := r−(nT,i+1)δTi . Then, for W ∈Dm×m > 0

ũ′W (u− ra + rb + r−a − r−b + ū− ũ)≥ 0 (5)

1) Local bound: For unstable or marginally stable sys-
tems (the later being pertinent for the rigid body systems
considered), it is necessary to confine attention to a region
of the state-space surrounding the origin. Notice from Fig.
3 that |u− ra + rb + r−a − r−b + ū|− |ũ| ≤ |δT |, ∀u. Therefore
the following holds

ũ′W (u− ra + rb + r−a − r−b + ū− ũ+Hxa)≥ 0 (6)

∀xa satisfying satδT (Hxa) = Hxa. To ensure satδT (Hxa) =
Hxa, we impose a limit on the energy on the input ulin which
drives the AWC (see Fig. 2 and discussion in Section III).
If it is true that V̇ (xa)≤ 2u′linulin whenever x′aP1xa ≤ s2 and
∥ulin∥2 ≤ s/

√
2, s < 1, then by integrating V̇ (xa)

V (xa) = x′aP1xa ≤ 2∥ulin∥2
2 ≤ s2
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Therefore, the following condition is imposed

s2x′aH ′
i Hixa/δT 2

i < x′aP1xa (7)

for all xa ̸= 0 and all i ∈ {1, . . . ,m}. Thus, when the control
signal satisfies the energy condition above and the state
remains in the ellipsoid defined by P1 and s2, the sector-like
bound (6) can be used in the ensuing Lyapunov analysis.

2) Ramp function properties: The shifted ramp function
has the following properties:

i) ra,i(ra,i − (ui − ai)) = 0, i = 1, . . . ,m. Therefore, for
Ta,Tb ∈ Dm

r′aTa(ra − (u−a)) = 0, r′bTb(rb − (u−b)) = 0

ii) (ui − ai)− (ra,i − r−a,i) = 0, i = 1, . . . ,m. Therefore, for
any ζ ∈ Rnζ and Ra,Rb ∈ Rnζ×m

ζ
′Ra(u−a− ra + r−a ) = 0, ζ

′Rb(u−b− rb + r−b ) = 0

iii) ra,i ≥ 0, r−a,i ≥ 0, ra,irb,i ≥ 0, ra,ir−b,i ≥ 0, r−a,ir
−
b,i ≥ 0

i = 1, . . . ,m. Therefore, for χ = [ 1 r′a r−a
′ r′b r−b

′
]′ and

M ∈ Pnχ×nχ , nχ = 1+4m, χ ′Mχ ≥ 0.
3) Ultimate boundedness and local attractivity: In the

following sections, conditions for ultimate-boundedness of
the state and conditions for ensuring the set of ultimate
boundedness is itself locally attractive will be given. There-
fore, similar to [12], the following sets are introduced:-

E (P1) = {xa ∈ Rn;x′aP1xa ≤ 1}, P1 = Q−1
1 (8)

E (P2) = {xa ∈ Rn;x′aP2xa ≤ 1}, P2 = Q−1
1 Q2Q−1

1 (9)

where P1, Q1, P2 and Q2 are positive definite matrices
which will be introduced shortly. E (P2) represents the set
of ultimate boundedness and E (P1) represents a larger set
such that for all xa(0) ∈ E (P1), then xa(t) will converge to
a region containing E (P2) in finite time.

Remark 2: For unstable plants these sets are necessary
to obtain meaningful stability results. For stable plants, they
are not necessary, but may improve local performance. □

III. MAIN RESULT

A. Linear Performance Recovery

The anti-windup approach proposed in this paper mirrors
that of [18] in that conditions are sought to guarantee that the
system is “stable” (in the sense discussed in Remark 3 below)
and that the mismatch between the ideal linear system,
without saturation and quantization, and the real nonlinear
system is minimized in some sense. This mismatch system
([18]; see also [25], [14]) is governed by the dynamics:

N ∼


ẋa = (Ap +BpF)xa +Bpũ
u = ulin −Fxa

yd =Cpxa

(10)

where the difference between the ideal linear output ylin, and
the actual output y, is yd . Thus for satisfactory behavior the
goal is to synthesize the AWC gain F such that (10) is stable
and the L2 gain from ulin to yd is bounded by a constant γ .

Remark 3: The reader should understand “stability” in a
slightly generalized sense similar to that considered in [12].

In particular, and with some abuse of terminology, N will
be described as stable if, for ulin ≡ 0, xa(t) converges to
the smallest level set containing E (P2) for all xa(0) ∈ E (P1)
in finite time. Similarly, because ũ(t) will in general not
converge to zero (since the quantization is “active” all the
time), a true L2 gain will, generally, not be possible. Instead,
as noted in [22], the L2-gain-like property enforced is∫ T

0
∥yd(t)∥2dt < 2γ

2
∫ T

0
∥ulin(t)∥2dt +β (11)

for all T ∈ [0,∞) and some β > 0. Despite not being a “true”
L2 gain, it appears minimizing the bound γ is useful. □

B. Stability and performance analysis
Stability, interpreted in the foregoing generalized sense,

and performance are guaranteed using quadratic Lyapunov
functions and the L2 gain-like property. The following
lemma, assembled from the results of [12], [22] is the starting
point for the analysis.

Lemma 1: Consider a dynamic system

S ∼
{

ẋ = f (x,w)
z = h(x,w) (12)

where f (·, ·) : Rn ×Rm 7→Rn and h(·, ·) : Rn ×Rm 7→Rp are
globally Lipschitz functions. Consider a quadratic Lyapunov
function V (x) = x′P1x, sets E (P1), E (P2) and scalars τ1, τ2
and γ . Assume P2 > P1 > 0 and τ2 > τ1 > 0, and that the
following inequality holds for all x ̸= 0, w ̸= 0,

V̇ (x)+∥z∥2/γ
2 −∥w∥2 + τ1(1− x′P1x)+ τ2(x′P2x−1)< 0 (13)

Then the following are true: 1) when w = 0, ∀x(0) ∈ E (P1),
the state x(t) converges to the smallest level set containing
E (P2) in finite time, 2) when w is such that ∥w∥2,[0,T ] ≤
s/
√

2, s < 1 and ∥w(t)∥2 ≥ τ2 −τ1 for all t ∈ [0,T ], then the
following L2 gain condition holds∫ T

0
∥z(t)∥2dt < 2γ

2
∫ T

0
∥w(t)∥2dt +β (14)

Proof: The proof is similar to Lemma 1 in [22], with
modifications accounting for the local behavior of the system.
1) When w = 0, x ∈ E (P1) and x ̸∈ E (P2), inequality (13)
implies V̇ (x) < 0, meaning that the state converges to the
smallest level set containing the set E (P2). 2) From (13),
the assumptions P2 > P1 and τ2 > τ1 imply V̇ (x) < ∥w∥2 +
(τ2−τ1). Therefore, if (τ2−τ1)≤∥w∥2 on the interval [0,T ],
V̇ (x) < 2∥w∥2 on this interval. Integrating gives V (x(T )) <
s2, thus x(t) belongs to the ellipsoid E (P1/s2) over this
interval. Since s < 1, this implies that, for w satisfying the
conditions in the lemma, x(T ) ∈ E (P1). Therefore, returning
to (13) we have, over the interval [0,T ], that τ1(1−x′P1x)≥ 0
and x′P2x ≥ 0. This implies that

V̇ (x)+∥z∥2/γ
2 < ∥w∥2 + τ2 < 2∥w∥2 (15)

Integrating (15) from [0,T ] results in (14). □
The main result is obtained by applying Lemma 1 to

system N and adding the constraints in Section II.C.
Theorem 1: For given scalar τ1 > 0, if there exist positive

definite matrices Q1, Q2, a positive definite diagonal matrix
U , diagonal matrices Ta, Tb, matrices Ra,4, L, and positive
scalars τ2, γ such that the linear matrix inequality (18) is
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satisfied, then with F = LQ−1
1 , system (10) is such that: 1)

when ulin = 0, ∀xa(0) ∈ E (P1), the state xa(t) converges to
the smallest level set containing E (P2) in finite time, 2) when
ulin ̸= 0, the L2 -like gain condition (11) holds.
Proof: Using the system N in (10) and the quadratic
Lyapunov function V (xa) = x′aP1xa, inequality (13) becomes

x′a
(
P1(Ap +BpF)+(Ap +BpF)′P1

)
xa +2x′aP1Bpũ

+∥yd∥2/γ − γ∥ulin∥2 + τ1(1− x′aP1xa)+ τ2(x′aP2xa −1)
≤ x′a

(
P1(Ap +BpF)+(Ap +BpF)′P1

)
xa +2x′aP1Bpũ

+∥yd∥2/γ − γ∥ulin∥2 + τ1(1− x′aP1xa)+ τ2(x′aP2xa −1)
+2ũ′W (u− ra + rb + r−a − r−b + ū− ũ+Hxa)+χ

′Mχ

+2χ
′
aRa(u−a− ra + r−a )+2χ

′
bRb(u−b− rb + r−b )

+2r′aTa(ra − (u−a))+2r′bTb(rb − (u−b))< 0 (16)

where χa = [ 1 x′a r′a r−a
′
]′ and χb = [ 1 x′a r′b r−b

′
]′.

Partitioning Ra as Ra =
[

R′
a,1 R′

a,2 R′
a,3 R′

a,4
]′ where

Ra,1 ∈ R1×m, Ra,2 ∈ Rn×m, Ra,3,Ra,4 ∈ Rm×m. Applying
similar partitioning to Rb and partitioning M as M =
block(Mi j), i, j = 1, . . . ,5. Majorizing inequality (16) then
leads to the matrix inequality (17). This inequality con-
tains the product of matrix variables which cannot be re-
solved through standard techniques (e.g., Schur comple-
ments or congruence transformations). Therefore, choosing
Ra,2 = F ′R′

a,4, Rb,2 = F ′R′
b,4, Ra,4 = Ta −Ra,3, Rb,4 = Tb −

Rb,3, Ra,1 = −a′Ra,4, Rb,1 = −b′Rb,4 and Ra,4 = R′
a,4 =

Rb,4 = R′
b,4. Then, applying a congruence transformation

blockdiag( 1, P−1
1 , W−1, R−1

a,4, I, . . . , I) and Schur com-
plements results in the linear matrix inequality (18) where
U =W−1, Z = HQ1, L = FQ1, and additional variables are
defined in the following remark.

Remark 4: i) In the (2,2) block element of (18) the
nonlinear term τ2Q2 is replaced with Q2. However, by im-
posing inequality (19a), then (18) implies (17). ii) Ensuring
E (P2) ⊂ E (P1) requires that x′P1x ≤ x′P2x ≤ 1 or equiva-
lently, P2 −P1 = Q−1

1 Q2Q−1
1 −Q−1

1 ≥ 0, which is enforced
by (19b). iii) The (3,4), (4,3), and (10,10) block elements of
(18) would contain R−1

a,4 and the (4,4) block element would
contain −γR−2

a,4. However, these nonlinear block elements are
replaced by linear block elements as follows. Define

R :=

[
R−1

a,4 R−1
a,4

∗ −γR−2
a,4

]
≡ R−1

D R̄R−1
D <−Y, Y > 0 (20)

where RD = blockdiag(Ra,4, Ra,4),

R̄ =

[
Ra,4 Ra,4
R′

a,4 −γIm

]
, Y =

[
Y11 Y12
∗ Y22

]
and the block elements of Y conform with R. The inequality
in (20) is equivalent to (19c), where Young’s inequality
−Y−1 ≤ −2I +Y is used in this step [26]. Therefore, by
imposing (19c) and replacing the (3,4), (4,3), (4,4), and
(10,10) block elements by Y12, Y21, Y22, and Y11, respectively,
then (18) implies (17). iv) Using the Schur complement,
inequality (7) is satisfied by (19d). □

To minimize the L2 gain and increase the region of
stability (achieved by maximizing E (P1) and the difference

in volume between E (P1) and E (P2)) the following opti-
mization is executed with performance weights η1, η2, η3

min η1γ −η2(|Q2|− |Q1|)−η3|Q1| subject to (18) - (19)

IV. SIMULATION RESULTS

A planetary lander with general architecture shown in Fig.
4 is considered with nonlinear rigid body dynamics given by

ẋp =

(
I4 ⊗

[
0 1
0 0

])
xp +

(
J−1

a ⊗
[

0
1

])
T φ(u)+g(xp)⊗

[
0
1

]
(21)

where xp = [z ż θx θ̇x θy θ̇y θz θ̇z]
′, Ja = diag(ml , Jx, Jy, Jz),

g(xp) is a nonlinear function consisting of cross product
terms and an Euler term for the gravitational force, and T is
a mapping from thrust to generalized body forces given by

T =

 −cosθt −cosθt −cosθt −cosθt
−dy cosθt dy cosθt dy cosθt −dy cosθt
dx cosθt dx cosθt −dx cosθt −dx cosθt
−sinθt sinθt −sinθt sinθt


The development of these dynamics is described in [20].

As depicted in Fig. 4, each corner of the lander has a
thruster bank consisting of three thrusters. The thrusters
are unidirectional on/off thrusters, each producing a mass
normalized thrust of 0.455 N/kg. The thrusters are tilted
slightly toward each corner by a thrust tilt angle θt to provide
yaw forces. The lander is assumed to operate in the Martian
gravitational field (g = 3.7 m/s2). Vehicle parameters are
listed in Table I. The required thrust force for hover does not
correspond with the available quantized thrust; instead each
thruster bank must cycle between two and three thrusters.

TABLE I
MASS NORMALIZED LANDING VEHICLE PARAMETERS

Description Variable Value Unit
mass ml 1.0 –

Mass moment of inertia [Jx, Jy, Jz] [0.3, 0.3, 0.6] m2

Half-spans dx, dy 2.5 m
Thrust tilt angle θt 2.75 deg

The controller and AWC are designed from the lin-
earized lander dynamics about the hover operating point
(g(xp) = 0 in (21)) and it is assumed that all states are
measurable, y = xp. Linearization of (21) results in a
plant structure: G(s) = blockdiag(G1(s), . . . ,G4(s))T . There-
fore, following [20], the control signal is taken as u =
T−1(ulin − ud), and the controller and AWC are structured,
respectively, as K(s) = blockdiag(K1(s), . . . ,K4(s)), Θ(s) =
blockdiag(Θ1(s), . . . ,Θ4(s))T . Then if Θi(s) is designed, via
Theorem 1, to stabilize the ith plant-controller combination,
the diagonally structured system is asymptotically stable.

Each Ki(s) implements full-state feedback control with
reference tracking: Ki(s) ∼ {ẋc = −Crylin + r, ulin = KIxc +
Kxylin, where Cr = [1 0] such that zp = [z θx θy θz]

′ are
the tracked states, and KI and Kx are integral and full-
state feedback gains, respectively, designed such that the
nominal closed-loop system poles lie at [−1, −1.5, −2]
for each channel. The design parameters of each Θi(s) are
τ1 = 0.99, s = 1/25, η = η̃/∑ η̃ where η̃ = [5 300 200],
which result in γ =(48, 520, 520, 141) for each channel. For
comparison, a Sector[0,1] calculation – performed by solving
an LMI representing the terms left of the non-strict inequality
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

M11 M12 ū′
Ra,1
+Rb,1

M12 −Ra,1
+a′Ta −a′R′

a,3

M13 +Ra,1
−a′R′

a,4

M14 +b′Tb
−Rb,1 −b′R′

b,3

M15 +Rb,1
−b′R′

b,4

∗ M22
P1Bp −F ′W

+H ′W
Ra,2
+Rb,2

F ′Ta
−Ra,2 −F ′R′

a,3

Ra,2
−F ′R′

a,4

F ′Tb
−Rb,2 −F ′R′

b,3

Rb,2
−F ′R′

b,4
∗ ∗ −2W W −W W W −W
∗ ∗ ∗ −γI R′

a,3 −Ta R′
a,4 R′

b,3 −Tb R′
b,4

∗ ∗ ∗ ∗ M22 +2Ta
−2Ra,3

M23 +Ra,3
−R′

a,4
M24 M25

∗ ∗ ∗ ∗ ∗ M33 +2Ra,4 M34 M35

∗ ∗ ∗ ∗ ∗ ∗ M44 +2Tb
−2Rb,3

M45 +Rb,3
−R′

b,4
∗ ∗ ∗ ∗ ∗ ∗ ∗ M55 +2Rb,4



<0 (17)

M11 = M11 −2Ra,1a−2Rb,1b+ τ1 − τ2, M12 =−Ra,1F −Rb,1F −a′R′
a,2 −b′R′

b,2

M22 = P1(Ap +BpF)+(Ap +BpF)′P1 +
1
γ

C′
pCp − (Ra,2 +Rb,2)F −F ′(Ra,2 +Rb,2)

′− τ1P1 + τ2P2

M11 0 ū′U
−a′

−b′
M12

+2a′Ra,4

M13
−2a′Ra,4

M14
+2b′Ra,4

M15
−2b′Ra,4

0 0

∗ M22 BpU −L′+Z′ 2L′ 0 0 0 0 Q1C′
p 2L′

∗ ∗ −2U Y12 −I I I −I 0 0
∗ ∗ ∗ Y22 −I I −I I 0 0

∗ ∗ ∗ ∗ M22
+2Ra,4

M23 +Ta
−2Ra,4

M24 M25 0 0

∗ ∗ ∗ ∗ ∗ M33 +2Ra,4 M34 M35 0 0

∗ ∗ ∗ ∗ ∗ ∗ M44
+2Ra,4

M45 +Tb
−2Ra,4

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ M55 +2Ra,4 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Y11



< 0 (18)

M11 = M11 +2a′Ra,4a+2b′Ra,4b+ τ1 − τ2, M22 = ApQ1 +BpL+Q1A′
p +L′B′

p − τ1Q1 +Q2

τ2 < 1 (a), Q1 < Q2 (b),
[

R̄ RD
RD −2I2m +Y

]
< 0 (c),

[
Q1 Z′

i
Zi δT 2

i /s2

]
> 0 ∀i ∈ {1,2, . . . ,m} (d) (19)

Fig. 4. General architecture of a planetary lander.

in (16) along with (19a,b,d) – gives: γ =(1, 13, 13, 3)×106.
From this, we see that the less conservative ramp functions
constrains yield much lower L2 gain bounds.

The design parameters described above are used for the
simulations and K(s) remains the same with and with-
out AWC. Also, the simulations include the full nonlinear
dynamics (21). Fig. 5 shows the response to a reference
commanding the vehicle to decrease in altitude and roll about
the x-axis. Without AWC the vehicle is unable to follow the
reference and the thrust remains saturated after 9 seconds
(similar results are seen with the other thruster banks). With
AWC the vehicle is able to follow the reference (noting
the slowest closed-loop time constant is 1 second) and the
thruster bank cycles between 2-to-3 thrusters upon reaching
steady state. This is the appropriate cycling for hover.

To emphasize the AWC capability for managing quantiza-

Fig. 5. Lander with three thrusters per thruster bank: response to reference
input. Reference; without anti-windup; with anti-windup.

tion, the number of thrusters per thruster bank is increased
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Fig. 6. Lander with six thrusters per thruster bank: response to reference
input. Reference; without anti-windup; with anti-windup.

to 6. Fig. 6 illustrates the response to reference commands
similar to the prior case. While the thrust without AWC is
able to remain with in the saturation limits during the first 12
seconds, it is unable to adjust accordingly to maintain hover
after the (dynamic or non-hovering) reference commands
have ended. As a result the thrust saturates and the vehicle
diverges from hover. With AWC, the thrust only reaches the
saturation limit for a brief period once the dynamic reference
commands have ended and returns within the limits cycling
between the appropriate levels to maintain hover.

Remark 5: Simulations with the lander dynamics lin-
earized about the hover operating point (g(xp) = 0 in (21))
were executed but are not shown due to space restrictions.
Results similar to those presented occur when the reference
commands are increased in magnitude by 50% and 93% for
the lander with 3 and 6 thrusters per thruster bank, respec-
tively. For reference commands below these magnitudes, the
linearized lander with and without AWC are able to recover.

V. CONCLUSIONS

An anti-windup design method for systems subject to input
quantization/saturation has been developed. Salient features
of the work are: the AWC synthesis conditions are framed as
LMIs; ramp functions have been exploited to obtain sharper
results than available through standard sector analysis; and
the results are applicable to rigid body systems, which
motivated the work. This approach has transferability to
many non-traditional control problems (e.g., drug delivery,
often inherently quantized; environmental management, of-
ten quota-based) as well as traditional control fields where
quantization is intrinsic (network control, communications,
event-triggered control systems). Future work will explore
extensions that address issues resulting from finite rate of
switching. Simultaneous controller and AWC design will also
be investigated as a potential to enlarge the region of stability.
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