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A B S T R A C T

Electricity theft is a major issue that affects the sustainability and security of smart grids. This paper proposes
a deep semi-supervised method for electricity theft detection in the Advanced Metering Infrastructure (AMI)
of smart grids. By only using normal samples to train the detection model, the proposed method has the
capability of detecting unknown attacks in a short time frame. The method utilizes the ratio profile generated
from the readings of the observer meter and the user’s smart meter as the input, to reduce false positives,
which is then transformed into a 2D image with the continuous wavelet transform (CWT) to capture the time–
frequency information. Discriminative features are extracted from the CWT image with a deep convolutional
autoencoder (CAE) and principal component analysis (PCA), which are fed into a semi-supervised autoencoder
for classification. The performance of the proposed method was evaluated and compared with a set of baselines
and four supervised machine learning and deep learning methods under 11 different false data injection
(FDI) attacks using smart meter data from both business and residential users. The results show that the
proposed method significantly outperforms the baselines and is more capable of detecting unknown attacks
than supervised methods.
1. Introduction

Smart grids feature bi-directional power and information flow to
provide more efficient and resilient power transmission, distribution,
and management than traditional power networks [1]. The Advanced
Metering Infrastructure (AMI) is the essential part of smart grids,
consisting of smart meters, communication modules, and Meter Data
Management Systems (MDMS) [2,3]. They are responsible for collecting
arge amounts of high-frequency electricity consumption data from
ustomers, sending the collected information to the analysis computer
nd receiving operation commands from the operation center, and
ong-term data storage and event management, respectively [3].
While smart grids bring significant benefits, they are also exposed

o potential risks and threats. As the essential component of smart
rids, the AMI faces a variety of cyber-attacks, including the electricity
heft attacks [4,5], in which fraudsters reduce their electricity bills by
injecting false data into smart meters to trick the utility companies.
According to the statistics [6], global economic losses due to electricity
theft amount to $89.3 billion annually. A majority of the losses come
from emerging countries, about $58.7 billion. In the United States, the
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revenue loss due to non-technical loss (NTL) including electricity theft
also estimated to be $6.5 billion by the Electric Power Research Insti-
tute (EPRI) [7]. In addition to financial losses, electricity theft could
lead to power quality degradation due to underestimated demands and
even raise safety concerns [8]. Therefore, methods for efficient and
timely detection of electricity theft attacks are greatly needed for the
sustainability and security of smart grids.

Traditional electricity theft detection methods include sending em-
ployees to customers’ homes to check facilities [8], installing additional
smart meters for verification [9,10], or going door-to-door to verify
the meter data [11]. All these methods have significant drawbacks,
such as being labor-consuming, inefficient, or having high costs. With
the growing amount of smart meter data acquired by AMI, data-driven
electricity theft detection using machine learning has become popular
in recent years. Many of the proposed methods are based on super-
vised machine learning and deep learning algorithms. Shallow machine
learning algorithms like decision trees [12], support vector machines
(SVM) [12–14], and extreme gradient boosting (XGBoost) [15,16], have
been applied for detecting electricity theft using smart meter data. Due
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to its promising performance in many areas, deep learning has been
used for building electricity theft detection models in recent years.
In [17], a wide & deep convolutional neural network (CNN) model
was developed for electricity theft detection, which consists of a wide
component and a deep component to learn the global knowledge and
capture the periodicity of smart meter data, respectively. Inspired by
the work of [17], Xia et al. [18] proposed an improved detection model
that enhances the wide & deep CNN with dilated convolution and
a channel-dimensional adaptive attention module. In [19], a hybrid
deep model was built for electricity theft detection, which integrates
a CNN and long short-term memory (LSTM). Electricity theft detection
methods based on supervised learning require data and labels from
both normal users and fraudulent users to train the models. However,
the scarcity of real electricity theft data leads to the data imbalance
problem, which causes the overfitting of trained models. In addition,
the performance of supervised learning-based detection methods gen-
erally degrades significantly when dealing with unknown attacks [13,
20]. Unlike supervised learning, unsupervised learning-based meth-
ods [1,21–24] only use unlabeled data to identify potential fraudulent
users, which build detection models by using clustering and/or corre-
lation analysis. Unsupervised learning-based detection methods have
some limitations, such as a relatively long detection time and limited
detection performance on certain attack types.

To overcome the limitations of methods based on supervised learn-
ing and unsupervised learning, we propose a new electricity theft
detection method based on semi-supervised outlier detection in this
paper. Fig. 1 illustrates the distinction between semi-supervised out-
ier detection and supervised learning. It can be seen that supervised
earning utilizes both normal and fraudulent samples to train the de-
ection model, whereas semi-supervised outlier detection relies solely
n normal samples for training the detection model. Consequently,
he semi-supervised model possesses the capability to detect unknown
ttack samples with different characteristics than the existing fraudu-
ent samples, whereas the supervised model often falters in such cases.
o the best of our knowledge, there are only a few works in the
iterature that use semi-supervised outlier detection for electricity theft
etection. For example, one-class SVM (OCSVM) was tried in [13] but
he detection performance was poor. The main contributions of our
ork are summarized as follows: (1) We propose a new deep semi-
upervised electricity theft detection method which utilizes the ratio
rofile generated from the readings of the observer meter and the user’s
mart meter as input, which can significantly reduce false positives of
etection due to low electricity usage; (2) the proposed method extracts
iscriminative features from the ratio profile through a combination
f continuous wavelet transform (CWT)-based time–frequency repre-
entation, deep feature extraction with a Convolutional Autoencoder
CAE), and dimension reduction using principal component analysis
PCA); (3) the proposed method utilizes a semi-supervised autoencoder
lassifier for the classification of the extracted features; (4) we adopted
wo publicly available smart meter datasets, one for business users and
ne for residential users, to evaluate the performance of the proposed
ethod and compare it with a set of semi-supervised baseline methods;
5) we also compared the proposed method with popular supervised
achine learning and deep learning methods for detecting unknown
ttacks.
The rest of this paper is organized as follows. The background

nformation about the AMI architecture and false data injection (FDI)
ttacks are introduced in Section 2. Section 3 presents the details of the
roposed deep semi-supervised method for electricity theft detection.
he performance evaluation experiments and results are described in
ection 4. We finally conclude the paper in Section 5.

. Background

.1. AMI architecture

Fig. 2 is an illustration of the system architecture of AMI. In the
2

ome area networks (HAN), smart meters installed in residential houses t
Table 1
Eleven types of FDIAs.
Attack type Modification

1 𝑥𝑡 = 𝛼𝑥𝑡, 0.2 < 𝛼 < 0.8

2 𝑥𝑡 = 𝑓 (𝑡)𝑥𝑡, 𝑓 (𝑡) =
{

0 if 𝑡1 < 𝑡 < 𝑡2
1 otherwise

3 𝑥𝑡 = 𝛼𝑡𝑥𝑡, 0.2 < 𝛼𝑡 < 0.8

4 𝑥𝑡 = 𝑓 (𝑡)𝑥𝑡, 𝑓 (𝑡) =
{

𝛼, 0.2 < 𝛼 < 0.8 if 𝑡1 < 𝑡 < 𝑡2
1 otherwise

5 𝑥𝑡 = 𝛼𝑡𝑚𝑒𝑎𝑛(𝐱), 0.2 < 𝛼𝑡 < 0.8

6 𝑥𝑡 =

{

𝑥𝑡 if 𝑥𝑡 ≤ 𝛿
𝛿 if 𝑥𝑡 > 𝛿

𝛿 < 𝑚𝑎𝑥(𝐱)

7 𝑥𝑡 = 𝑚𝑎𝑥(𝑥𝑡 − 𝛾, 0), 𝛾 < 𝑚𝑎𝑥(𝐱)

8 𝑥𝑡 = (1 − 𝑓 (𝑡))𝑥𝑡, 𝑓 (𝑡) =
⎧

⎪

⎨

⎪

⎩

𝛼𝑚𝑎𝑥 𝑡 ≥ 𝑡𝑚𝑎𝑥
𝛽(𝑡 − 𝑡𝑠) 𝑡𝑠 < 𝑡 < 𝑡𝑚𝑎𝑥
0 𝑡 < 𝑡𝑠

9 𝑥𝑡 = 𝑚𝑒𝑎𝑛(𝐱)
10 𝑥𝑡 = 𝑥𝑁−𝑡−1

11 𝑥𝑡 =

{

𝑥𝑡 − 𝛼𝑥𝑡 0.2 < 𝛼 < 0.8, 𝑡1 < 𝑡 < 𝑡2
𝑥𝑡 +

𝛥
𝑁−𝑛

otherwise

or business buildings collect a large amount of high-resolution electric-
ity consumption data, which is then sent to the concentrators through
the neighborhood area networks (NAN). Each concentrator is responsi-
ble for gathering the smart meter data collected by a group of smart
meters in a neighborhood area. The concentrators are connected to
the control center through the wide area network (WAN). The control
center manages the collected smart meter data and performs electricity
distribution automation and other intelligent applications. In the AMI
architecture, one or more observer meters can be installed in a NAN,
and each of them is responsible for recording the total power con-
sumption of a group of consumers. Observer meters can be integrated
with concentrators, which are much harder to hack and tamper with
by attackers than smart meters [1,22,24]. Therefore, it is reasonable
to assume that the data recorded by the observer meter is valid and
reliable.

2.2. FDI attacks

Since it is hard if not impossible to collect real-world smart meter
data of electricity thieves, research studies usually generate synthetic
data for performance evaluation by modeling their malicious behav-
iors as various FDI attacks (FDIAs). In this study, we consider eleven
types of FDIAs defined in Table 1, which have been widely used in
other research work [13,15,19,24,25]. The eleven FDI attacks can
be divided into two categories based on their attack characteristics:
reduced consumption attacks and load profile shifting attacks [8].
Table 2 summarizes the symbols used throughout this paper and their
definitions.

Reduced Consumption Attacks: In Table 1, types 1 to 8 attacks
belong to the category of reduced consumption attacks which reduce
smart meter readings to lower the attackers’ electricity bills. The type
1 attack reduces all smart meter readings by multiplying them with an
attack intensity factor 𝛼 randomly generated in the range of (0.2, 0.8).
he type 2 attack randomly chooses a time interval of the day longer
han 4 h and sets the readings in the interval to 0. All other readings
emain the same. The type 3 attack is similar to the type 1 attack
ut randomly generates an attack intensity factor 𝛼𝑡 for each smart
eter reading instead of generating a factor for all readings. The type
attack reduces the smart meter readings in a selected time interval
y a randomly generated attack intensity factor 𝛼 in the range of
0.2, 0.8). The type 5 attack replaces a smart meter reading 𝑥𝑡 with
he average daily consumption 𝑚𝑒𝑎𝑛(𝑥) multiplied with a randomly
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Fig. 1. Semi-supervised outlier detection vs. supervised learning.
Fig. 2. The system architecture of AMI.

enerated attack intensity factor 𝛼𝑡 in the range of (0.2, 0.8). The type 6
ttack selects a cutoff threshold 𝛿 between 0 and the maximum reading
f the day 𝑚𝑎𝑥(𝑥) and replaces any reading higher than 𝛿 with the
alue of 𝛿. Other readings lower than or equal to 𝛿 remain the same.
he type 7 attack selects a cutoff value 𝛾 between 0 and 𝑚𝑎𝑥(𝑥) which
is subtracted from all readings. If the operation generates a negative
value, the result will be set to 0. The type 8 attack randomly generates
a maximum attack intensity 𝛼𝑚𝑎𝑥 and gradually increases the attack
ntensity after the start time 𝑡𝑠 with a change rate 𝛽. The attack intensity
eaches 𝛼𝑚𝑎𝑥 at 𝑡𝑚𝑎𝑥 and remains at 𝛼𝑚𝑎𝑥 after that.
Load Profile Shifting Attacks: Types 9 to 11 attacks defined in

able 1 belong to load profile shifting attacks which keep the total
mount of daily power consumption the same but change the locations
f the peaks and valleys in daily load profiles in different ways to
ubvert high electricity prices at specific time intervals set by the utility
ompanies. The type 9 attack replaces each smart meter reading with
he average consumption of the load profile 𝑚𝑒𝑎𝑛(𝐱) while the type 10
ttack flips the load profile. The type 11 attack selects the time interval
f peak hours (𝑡1, 𝑡2) which usually have high electricity prices, and
educes the 𝑛 readings of the interval with a randomly generated attack
intensity factor 𝛼 in the range of (0.2, 0.8). The total amount of reduced
consumption in the selected time interval 𝛥 is then evenly added back
to the readings of other times to keep the total consumption unchanged.

A sample electricity consumption profile and its corresponding tam-
pered profiles under reduced consumption attacks and load profile
shifting attacks are shown in Figs. 3 and 4, respectively. Note that
3

Table 2
Symbols used in this paper and their definitions.
Notations Description

𝐱 Smart meter readings of a load profile
𝐱′ Readings of a load profile not including missing values
𝑚𝑒𝑎𝑛(𝐱) Average power consumption of a load profile
𝑚𝑎𝑥(𝐱) Maximum power consumption of a load profile
𝜎(𝐱) Standard deviation of a load profile
𝑁 Number of smart meter readings of a load profile
𝑡 ∈ [0, 𝑁 − 1] Time to perform a smart meter reading
𝑥𝑡 Real smart meter reading at 𝑡
𝑥𝑡 Tampered smart meter reading at 𝑡
(𝑡1 , 𝑡2) Selected time interval to launch an attack
𝛼 Randomly generated attack intensity factor
𝛼𝑡 Randomly generated attack intensity factor at 𝑡
𝛿 Cutoff threshold for FDIA 6
𝛾 Cutoff value for FDIA 7
𝛼𝑚𝑎𝑥 Maximum attack intensity for FDIA 8
𝛽 Attack intensity change rate for FDIA 8
𝛥 Total reduced consumption in the attack interval for FDIA 11
𝑡𝑠 Time to start an FDIA 8
𝑡𝑚𝑎𝑥 Time to reach 𝛼𝑚𝑎𝑥 for FDIA 8
𝑛 Number of readings in a selected attack interval
𝑂𝑡 Observer meter reading at 𝑡
𝑥𝑖,𝑡 𝑖th user’s smart meter reading at 𝑡
𝑅𝑖,𝑡 Ratio profile value for the 𝑖th user at 𝑡
𝐑 A 1-D daily ratio profile
𝐗 2-D CWT image generated from 𝐑
𝑘 Number of features obtained from the flatten layer of the CAE
𝐟 Feature vector extracted by the CAE
𝑙 Vector length of 𝐟
𝑚 Number of instances in the training dataset
𝐟𝑟 Feature vector generated by PCA
𝑟 Number of PCA features

an electricity thief can tamper with the smart meter data by using
a mixture of different types of FDIAs, which is also modeled in our
experiments and noted as the MIX attack. Under the MIX attack, the
fraudulent user randomly selects one of the eleven FDI attacks with
equal chances on an attack day.

3. Methodology

The workflow of the proposed deep semi-supervised method for
electricity theft detection is illustrated in Fig. 5. In the following, we
describe the details of the proposed method.



Sustainable Energy, Grids and Networks 36 (2023) 101219R. Qi et al.

𝑥

3

o
u
D
a
p
o

c
r
t
s
O
n
c

i
𝑂
m

𝑅

𝜓

Fig. 3. A sample electricity consumption profile and its corresponding tampered
profiles by applying eight types of reduced consumption attacks.

Fig. 4. A sample electricity consumption profile and its corresponding tampered
profiles by applying three types of load profile shifting attacks.

3.1. Data pre-processing

Due to reasons like smart meter failures, transmission errors, poor
connections, and system maintenance [17], there are often missing or
erroneous values in smart meter readings. In our study, these data
problems are dealt with in the pre-processing stage.

For missing values, we use the mean value method [15] to recover
the data as shown in Eq. (1).

𝑥𝑡 = 𝑚𝑒𝑎𝑛(𝐱′) if 𝑥𝑡 = 𝑁𝑎𝑁 (1)

For erroneous values, we use the ‘‘three-sigma rule of thumb’’ [15] to
recover the data as shown in Eq. (2):

𝑡 =

{ 𝑥𝑡−1+𝑥𝑡+1
2 if 𝑥𝑡 > 3𝜎(𝐱) and 𝑥𝑡−1, 𝑥𝑡+1 ≠ 𝑁𝑎𝑁

𝑥𝑡 otherwise
(2)

.2. Ratio profile

In general, users may have significantly different usage amounts
n different days. For example, the electricity consumption of business
sers on weekends will be significantly lower than that of weekdays.
irectly using load profiles to build detection models could result in
significant number of false positives. Thus, the ratio profile was
roposed in [1] which is calculated as the ratio between the load profile
f the observer meter and a user’s load profile. Since the ratio of a user’s
4

onsumption to the total consumption in an area is considered to be
elatively stable and the readings of the observer meter are hard to be
ampered with, malicious changes caused by FDI attacks will result in
ignificant changes in ratio profiles which makes the detection easier.
n the other hand, the ratio profile lessens the impact of low usage of
ormal users on certain days such that the false positives of detection
an be significantly reduced.
The calculation of the ratio profile is shown in Eq. (3), where 𝑅𝑖,𝑡

s the value of the ratio profile for the 𝑖th user in the area at time 𝑡,
𝑡 and 𝑥𝑖,𝑡 are the readings of the observer meter and the user’s smart
eter at time 𝑡, respectively:

𝑖,𝑡 =
𝑂𝑡
𝑥𝑖,𝑡

(3)

Fig. 6 illustrates how ratio profile can help the detection of electricity
theft. The two plots on the top of the figure show the untampered
load profile of a business user over 10 days and the corresponding load
profile of the observer meter covering the area, respectively. A usage
pattern can be easily observed from the user’s load profile that the
user has high consumption on weekdays and very low consumption on
weekends. The plot in the middle of the figures shows the ratio profile
calculated based on Eq. (3) using the untampered user load profile.
It can be seen that the ratio profile significantly reduces the effect of
low consumption on weekends. The two plots at the bottom of the
figure show the tampered load profile of the user and the corresponding
ratio profile, respectively. For the tampered load profile, two reduced
consumption attacks were applied on days 3 and 9, and two load
profile shifting attacks were applied on days 2 and 4. The data of those
tampered days in the tampered load profile and the corresponding ratio
profile are colored in red. Apparently, the values of the ratio profile on
those tampered days are significantly higher than those on untampered
days which greatly facilitates the detection of malicious changes caused
by FDIAs.

3.3. CWT

CWT provides an overcomplete representation of a signal by decom-
posing a continuous time function into several wavelets. Mathemati-
cally a time series function 𝑥(𝑡) could be transformed by Eq. (4), where
̄ (𝑡) is the mother wavelet which is continuous on both the time and
frequency domains, 𝑎 and 𝑏 represent the scale and translational values,
respectively.

𝑋𝜓 (𝑎, 𝑏) =
1

|𝑎|1∕2 ∫

∞

−∞
𝑥(𝑡)𝜓̄( 𝑡 − 𝑏

𝑎
)𝑑𝑡 (4)

In this study, we applied CWT on a 1-D daily ratio profile 𝐑 to trans-
form it into a 2-D image 𝐗, which is a time–frequency representation
of the ratio profile. Fig. 7 shows an example of transforming a sample
ratio profile into a CWT image. We adopted the Mexican hat wavelet
as the mother wavelet for CWT. For a ratio profile with length 𝑁 , the
size of the CWT transformed image is 𝑁 ×𝑁 .

3.4. Feature extraction

3.4.1. Deep feature extraction
Autoencoder is a popular neural network architecture that consists

of an encoder and a decoder. The encoder transforms the input data
into a low-dimensional representation. The decoder then tries to re-
construct the input data from the low-dimensional representation. The
autoencoder is trained by minimizing the error between the input data
and the reconstructed data.

In our study, a CAE is developed to extract features from the
CWT image generated from the ratio profile as shown in Fig. 5. The
parameters of the CAE are listed in Table 3, where the size of the
input CWT image is 𝑁 ×𝑁 , and 𝑘 is the number of features obtained

from the flatten layer. In the training stage, the encoder compresses an
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Fig. 5. The workflow of the proposed deep semi-supervised method for electricity theft detection.
Fig. 6. An illustration of using ratio profile to help detect electricity theft. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
input image into a latent space and reconstructs it through the decoder.
The mean-squared error (MSE) loss function is used to compute the
error between the input image and the reconstructed one, and the
Adam optimizer updates the CAE’s weights to minimize this error. After
training, the decoder is removed from the CAE, and the encoder serves
as a deep feature extractor. Its output is the feature vector 𝐟 extracted
5

from the input CWT image, with a length of 𝑘∕4, representing most of
the critical information of the input data in a lower dimension.

3.4.2. PCA for dimension reduction
As the feature vector generated by the CAE still has a high di-

mension, we applied PCA to further reduce its dimensionality while
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Table 3
Parameters for the CAE.

Layer Parameters

Input (1, 𝑁 , 𝑁)

Encoder

Conv2d-1 8 filters, 3 × 3 kernel, 2 strides
Conv2d-2 16 filters, 3 × 3 kernel, 2 strides
Conv2d-3 32 filters, 3 × 3 kernel, 2 strides
Flatten –
Linear-1 𝑘 input features, 𝑘∕2 output features
Linear-2 𝑘∕2 input features, 𝑘∕4 output features

Decoder

Linear-3 𝑘∕4 input features, 𝑘∕2 output features
Linear-4 𝑘∕2 input features, 𝑘 output features
Unflatten –
Deconv-1 16 filters, 3 × 3 kernel, 2 strides
Deconv-2 8 filters, 3 × 3 kernel, 2 strides
Deconv-3 1 filter, 3 × 3 kernel, 2 strides

maintaining the most important discriminative information of input
data. PCA is a technique commonly used for dimension reduction
in deep learning. PCA projects high-dimensional data into a lower-
dimensional space by identifying the most important directions of
variation in the data, which are known as principal components. Typ-
ically, the first few principal components are retained since they are
enough to capture most of the variation in the data. Given the feature
matrix 𝐅 = [𝐟1, 𝐟2,… , 𝐟𝑛] ∈ R𝑚×𝑙 extracted from the training data, where
denotes the number of training instances and 𝑙 = 𝑘∕4 is the number of

features extracted by the CAE, its covariance matrix 𝐒 can be factorized
as:

𝐒 = 𝐔Λ𝐔𝐓 (5)

where 𝐔 ∈ R𝑙×𝑙 serves as the utility matrix, and Λ ∈ R𝑙×𝑙 is a
diagonal matrix filled with the eigenvalues. The columns of 𝐔 are the
igenvectors of the matrix corresponding to the principal components
f the data. For the purpose of dimension reduction in the proposed
ethod, a feature vector 𝐟 undergoes the following transformation:

𝑟 = 𝐟𝐔𝑟 (6)

here 𝐟𝑟 is the reduced feature vector with 𝑟 features, and 𝐔𝑟 consists
f the first 𝑟 eigenvectors from 𝐔. In our study, we set 𝑟 to 20 for the
ata of business users and 40 for the data of residential users.

.5. Semi-supervised autoencoder classifier

As shown in Fig. 5, the output of PCA will be finally fed into a
emi-supervised autoencoder for classification which has a structure
hown in Table 4. In Table 4, 𝑟 is the number of features extracted
y PCA. The semi-supervised autoencoder classifier is trained with the
CA features extracted from normal ratio profiles in the training dataset
6

ith a training process similar to the CAE. The MSE loss function
Table 4
Parameters for the semi-supervised autoencoder classifier.

Layer Input features Output features

Encoder L1 𝑟 𝑟∕2
L2 𝑟∕2 𝑟∕4

Decoder L3 𝑟∕4 𝑟∕2
L4 𝑟∕2 𝑟

and Adam optimizer are used for training. In the testing stage, the
anomaly score of an input PCA feature vector 𝐟𝑟, 𝐴𝑆𝐟𝑟 , is evaluated as
the MSE between 𝐟𝑟 and the reconstructed output of the autoencoder,
𝐟 ′𝑟 , as shown in Eq. (7). A threshold determined in the training stage is
sed to classify the input as normal or abnormal based on the anomaly
core. Because the classifier is trained only with normal profiles, the
econstructed vector 𝐟 ′𝑟 of a tampered profile is expected to differ
ignificantly from the input vector 𝐟𝑟, resulting in a high anomaly score.

𝑆𝐟𝑟 =𝑀𝑆𝐸(𝐟𝑟, 𝐟 ′𝑟 ) (7)

. Performance evaluation and results

.1. Smart meter datasets

To evaluate the performance of the proposed method, we use smart
eter data of both business users and residential users since they have
ifferent electricity consumption characteristics.
The smart meter dataset of business users is from the Irish CER

mart meter project [26], which has been widely used for evaluating
lectricity theft detection methods. The dataset contains more than 500
ays of smart meter data collected from more than 5000 residential
sers and small and medium-sized business users during 2009 and
010. For this dataset, the data were collected by smart meters every
alf an hour. In our study, we used the data of business users in 180
ays from July 14, 2009, to Jan. 10, 2010. Of these, the data from 125
ays were randomly selected as the training set, and the remaining data
ere used for testing. We randomly selected half of the testing days and
ampered with the data of those days with a selected attack type. In
n experiment, we randomly picked 30 business users to form an area
hat is covered by an observer meter. Each experiment was repeated
en times.
The smart meter data of residential users for evaluation were col-

ected by Los Alamos Department of Public Utilities (LADPU) from 1757
ouseholds in Los Alamos, New Mexico, USA, from 2013 to 2019 [27].
he data was collected by smart meters every 15 min. In our study, we
sed the data in 180 days from Jan. 1, 2017, to June 30, 2017. The
reparation of training and testing sets and experimental settings were
he same as the Irish CER dataset.
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4.2. Performance metrics

In our study, the area under the curve (AUC) was used as the
rimary metric for performance evaluation, which has been widely
dopted for evaluating the performance of electricity theft detection
ethods [17,22,24,28]. AUC is calculated as the area under the Re-
eiver Operating Characteristics (ROC) curve which plots the true
ositive rate (TPR) versus the false positive rate (FPR) of the detection
odel by using different detection thresholds. A higher AUC value
ndicates a better detection capability of the model.
When comparing the proposed method with supervised detection
ethods, we added 𝐹1 score as an additional performance metric which
s popular for evaluating supervised detection methods [19,29,30].
ince the 𝐹1 score is obtained by determining a detection threshold
irst, we adopted the method of [31] by setting the detection threshold
ased on the outlier ratio.

.3. Evaluation results of the proposed method

In this section, the performance evaluation results of the proposed
ethod are presented. Due to the limited work in semi-supervised
lectricity theft detection, we compared the proposed method (PRM)
ith a set of baselines including one existing method and the variations
f the existing method and proposed method, as shown in the following:

• OCSVM𝑈 : This is an existing semi-supervised electricity theft de-
tection method proposed in [13] which uses the OCSVM classifier
with the user load profile as the input.

• OCSVM𝑅: This is a variation of OCSVM𝑈 which uses the ratio
profile instead of the user load profile as the input of the OCSVM
classifier.

• PRM𝑈 : Instead of using the ratio profile as the input, this vari-
ation of the proposed method uses the user load profile as the
input.

• PRM𝑤.𝑜.𝑃𝐶𝐴: This variation of the proposed method does not
use PCA for further discriminative information extraction and
dimension reduction. The deep features extracted by the CAE are
directly used as the input of the semi-supervised auto-encoder
classifier.

Tables 5 and 6 show the evaluation results in terms of AUC for busi-
ess users and residential users, respectively. In each cell, the average
UC value of the results obtained from 300 users is reported, with the
tandard deviation shown in parenthesis. It can be observed from the
esults that methods using ratio profiles significantly outperform the
orresponding methods directly using user profiles, which demonstrates
he superiority of ratio profiles in capturing the malicious behaviors
f electricity thieves. For both business users and residential users,
𝑅𝑀 and 𝑂𝐶𝑆𝑉𝑀𝑅 achieve comparable performance for attack types
, 3, 5, and 7, while 𝑃𝑅𝑀 has significantly better performance than
𝐶𝑆𝑉𝑀𝑅 for the other seven attack types. Thus, under the MIX-
ype attack, the average AUC values of 𝑃𝑅𝑀 are 5.0% and 3.7%
igher than those of 𝑂𝐶𝑆𝑉𝑀𝑅 for business users and residential users,
espectively. Compared with the variation 𝑃𝑅𝑀𝑤.𝑜.𝑃𝐶𝐴, 𝑃𝑅𝑀 achieves
ignificantly better performance for the majority of the attack types
or business users, which results in a 2.7% higher average AUC value
nder the MIX attack. For residential users, 𝑃𝑅𝑀 and 𝑃𝑅𝑀𝑤.𝑜.𝑃𝐶𝐴
have comparable performance for the majority of the attack types,
while 𝑃𝑅𝑀 significantly outperforms 𝑃𝑅𝑀𝑤.𝑜.𝑃𝐶𝐴 for attack types 4,
10, and 11. Thus, under the MIX attack, 𝑃𝑅𝑀 still achieves better
performance than 𝑃𝑅𝑀𝑤.𝑜.𝑃𝐶𝐴 for residential users. The results indicate
hat PCA not only reduces the computational cost but also improves
he generalization performance of the proposed method. Overall, it has
een proven by the results that the proposed method is a viable solution
7

or electricity theft detection under a variety of FDI attacks.
Table 5
Performance comparison results for business users in terms of 𝐴𝑈𝐶 (%).
𝑇 𝑦𝑝𝑒 𝑃𝑅𝑀 𝑃𝑅𝑀𝑈 𝑂𝐶𝑆𝑉𝑀𝑈 𝑂𝐶𝑆𝑉𝑀𝑅 𝑃𝑅𝑀𝑤.𝑜.𝑃𝐶𝐴

1 88.9 (1.5) 78.3 (3.0) 75.1 (2.7) 82.8 (3.2) 87.0 (1.8)
2 99.8 (0.3) 93.6 (2.0) 95.5 (1.0) 99.4 (0.7) 99.8 (0.5)
3 99.2 (0.3) 82.3 (2.5) 85.0 (2.5) 98.9 (1.3) 98.5 (0.8)
4 83.8 (1.4) 76.8 (2.9) 70.2 (2.2) 77.9 (2.0) 80.2 (1.5)
5 97.5 (0.9) 83.0 (3.1) 84.8 (4.1) 98.2 (1.4) 93.8 (1.4)
6 69.9 (1.1) 68.6 (3.1) 57.4 (1.8) 57.8 (2.4) 65.3 (1.7)
7 95.7 (0.9) 87.1 (2.2) 91.2 (1.9) 94.3 (1.6) 95.9 (0.9)
8 83.8 (0.9) 74.4 (1.6) 68.9 (1.4) 79.0 (1.7) 81.6 (1.3)
9 78.6 (3.4) 76.6 (3.6) 63.6 (4.6) 70.3 (2.3) 69.1 (3.1)
10 82.9 (2.0) 81.5 (2.9) 80.4 (2.6) 71.8 (2.3) 75.2 (1.9)
11 87.9 (1.5) 81.2 (2.2) 66.2 (4.2) 82.2 (1.7) 85.2 (1.7)
MIX 87.6 (1.1) 80.9 (1.7) 76.4 (2.6) 82.6 (1.4) 84.9 (1.6)

Table 6
Performance comparison results for residential users in terms of 𝐴𝑈𝐶 (%).
𝑇 𝑦𝑝𝑒 𝑃𝑅𝑀 𝑃𝑅𝑀𝑈 𝑂𝐶𝑆𝑉𝑀𝑈 𝑂𝐶𝑆𝑉𝑀𝑅 𝑃𝑅𝑀𝑤.𝑜.𝑃𝐶𝐴

1 91.6 (0.4) 84.0 (1.6) 84.7 (1.2) 89.5 (0.5) 91.8 (0.6)
2 99.6 (0.2) 97.6 (0.3) 96.2 (0.3) 99.3 (0.3) 99.7 (0.2)
3 100.0 (0.0) 87.9 (0.9) 94.8 (0.5) 100.0 (0.0) 100.0 (0.0)
4 84.0 (0.7) 78.7 (1.1) 74.8 (0.8) 81.4 (0.7) 82.8 (0.7)
5 99.9 (0.1) 85.1 (0.9) 88.9 (0.7) 100.0 (0.0) 99.9 (0.1)
6 62.1 (1.3) 58.4 (1.3) 53.6 (1.6) 53.6 (2.0) 63.5 (1.7)
7 97.1 (0.4) 93.3 (1.0) 95.1 (0.7) 97.3 (0.4) 97.2 (0.5)
8 87.6 (0.8) 82.9 (0.7) 81.1 (0.8) 85.7 (0.8) 87.4 (0.7)
9 70.2 (0.7) 54.8 (1.1) 32.6 (0.1) 46.8 (0.2) 70.8 (0.8)
10 86.8 (0.6) 82.3 (0.6) 79.5 (0.8) 82.2 (0.8) 82.0 (1.1)
11 81.1 (1.3) 76.9 (1.1) 65.3 (1.4) 77.9 (1.2) 79.3 (1.0)
MIX 87.7 (0.6) 81.1 (0.8) 78.1 (0.7) 84.0 (0.6) 87.1 (0.7)

4.4. Performance comparison with supervised methods

To demonstrate PRM’s capability of detecting unknown attacks,
we performed a performance comparison with two supervised shallow
machine learning methods, SVM [13] and XGBoost [16], and two
recently proposed supervised deep learning methods, CNN [32] and
bidirectional long short-term memory (Bi-LSTM) [33]. Unlike super-
vised methods which need the data of both normal users and fraudulent
users to train the detection models, semi-supervised methods only need
the data of normal users for training. Thus, we adopt the approach
of [13] to prepare the training and testing sets for the proposed method
and the two supervised methods. The 180-day smart meter data of a
user was first split into two sets, the data of randomly selected 125
days for training and the data of the remaining 55 days for testing.
For the proposed method, the data from the 125 training days were
directly used as the training set. For the four supervised methods, the
125-day data were used as the normal samples of the training set. We
then tampered with the 125-day data using a selected FDI attack type
where the tampered data were used as the malicious samples of the
training set. The testing sets are the same for the proposed method and
the four supervised methods. The data from the 55 testing days were
used as normal samples of the testing set. The malicious samples of
the testing set were obtained by tampering with the data of the testing
days using a mixture of attack types except the one used for generating
malicious samples of the training set.

Figs. 8(a) and 8(b) show the results for business users in terms of
AUC and F1 Score, respectively. It can be seen from the results that
PRM achieves significantly better performance than the four supervised
methods in terms of both the AUC and F1 score in all cases. The results
show that PRM has a stable performance as it only uses normal data
for training. On the other hand, the detection performance of the four
supervised methods is heavily influenced by the malicious samples used
in the training set. For instance, when training with only malicious
samples generated by attack types 9 or 11, SVM and CNN exhibit signif-
icantly poorer performance compared to when trained with malicious

samples from other attack types. Similarly, XGBoost’s performance is
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Fig. 8. Performance comparison results for business users.
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affected significantly when trained exclusively with malicious samples
generated by attack type 2, and Bi-LSTM’s performance suffers when
trained solely with malicious samples from attack type 9. Notably,
the deep learning methods generally yield inferior results compared
to the shallow machine learning methods due to the limited training
data available. The results for residential users are shown in Fig. 9,
which have similar trends to the results for business users. In summary,
the results prove that PRM is more capable of dealing with unknown
attacks than the four supervised methods.

5. Conclusion

Electricity theft is a serious issue affecting the sustainability and
security of smart grids that can overload power lines, damage home
appliances, cause raised rates for legitimate users, and undermine over-
all grid stability. Traditional machine learning-based electricity theft
detection methods generally use supervised or unsupervised learning
algorithms, both with their limitations. In this paper, we propose a
deep semi-supervised method for electricity theft detection with the
aim of detecting unknown attacks in a short time frame. The method
utilizes the ratio profile obtained from the observer meter and smart
data as input and performs deep feature extraction using CWT, CAE,
and PCA. A semi-supervised autoencoder classifier then classifies the
extracted features as normal or fraudulent. Our evaluation results using
smart meter data from both business and residential users under 11
different FDI attacks show that the proposed method achieves signif-
icantly better performance in terms of AUC than a set of baselines
including existing methods and variations of the proposed method.
The results also demonstrate that the proposed method greatly outper-
forms supervised learning-based methods in terms of both AUC and
F1 score when detecting unknown attacks. It should be noted that
supervised detection methods have superior performance compared to
semi-supervised methods when there are enough malicious samples for
8

training. Therefore, the purpose of the proposed method is to com-
plement existing supervised methods for detecting unknown attacks. It
can be observed from the results in Tables 5 and 6 that the proposed
method has significantly lower detection performance for attack types
6 and 9 than other attack types. Thus, our future work will focus
on improving the detection performance of these two attack types.
We consider combining manually crafted features targeting these two
attack types with deep features to achieve the goal.
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