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Abstract—Significant inter-symbol interference (ISI) chal-
lenges the achievement of reliable high data-rate molecular
communication (MC) links. Inspired by recent results showing
the ISI mitigation capability of pre-processing received signals
by differentiation, the impact of using higher order derivatives
is studied herein. The trade-off between ISI mitigation and
noise amplification with higher order derivatives is characterized.
Optimal maximume-likelihood sequence detection (MLSD) is
investigated as well as low complexity banded MLSD to exploit
the pulse narrowing induced by differentiation. Furthermore,
analysis suggests the existence of an optimal derivative order.
The bit error ratio (BER) for a fixed threshold detector is tightly
approximated and employed to find the optimal derivative order.
Numerical results confirm the aforementioned trade-off and show
that reliable communication can be established using symbol
durations considerably smaller than the peak time.

Index Terms—Diffusive molecular communications, receiver
design, MLSD, higher order derivatives, pre-processing, detector
design.

I. INTRODUCTION

Molecular communication via diffusion (MCvD) employs
the diffusive nature of chemical signals to communicate [1].
After their release by the transmitter, the emitted molecules
randomly propagate and arrive at the receiver in a probabilistic
fashion, which results in signal attenuation and inter-symbol
interference (ISI). Higher data rates further exacerbate ISI in
MCvD channels [2].

Numerous transmitter and receiver strategies have been
proposed to mitigate the effects of ISI. Different modulation
strategies employing single or multiple molecule types have
been considered [3]-[6], as well as pre-equalization methods
[7], [8]. Motivated by the finite-impulse response type behav-
ior of the MCvD channel, maximum a posteriori (MAP) and
maximum likelihood (ML) sequence detectors are proposed
in [9]. Due to the high computational complexity of these
detectors, lower complexity equalizers (e.g. decision feedback
and minimum mean squared error) are also proposed in [9].

A recent work provides a promising alternative strategy:
applying a discrete-time derivative on the over-sampled re-
ceived signal to provide strong ISI reduction at the cost of
noise enhancement. As the peak time of the derivative signal
precedes the peak of the arrival density function, [10] shows
that given the MCvD system can operate using high trans-
mission power, high data rates can be achieved. Exploiting
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this phenomenon, [11] proposes a rising-edge-based detection
algorithm and shows the beneficial properties of the derivative
signal on a macro-scale molecular MIMO testbed. We see
from these prior works that the derivative signal induces a
less diffusive signal: the signal peak occurs earlier and the
decay rate of the differentiated signal is faster after the peak.

This paper extends these earlier works. In particular,

1) We generalize the initial findings of [10] and suggest a
pre-processing framework based on m > 0 derivatives.

2) We derive the maximum-likelihood sequence detection
(MLSD) [9] for an arbitrary derivative order and propose
a reduced complexity banded MLSD.

3) The trade-off between the memory in the banded MLSD
and derivative order is investigated.

4) The BER of a fixed threshold detector is tightly approxi-
mated and employed to determine the optimal derivative
order to be paired with a threshold detector.

5) Numerical analysis coupled with simulation suggests an
inherent trade-off between noise, ISI and the applied
derivative-order validating the notion of an optimal
derivative order.

6) Finally, strong performance of derivative pre-processed
communication necessitates transmitters with a large
molecule pool, which is verified via numerical simu-
lation.

The rest of the paper is organized as follows: Section II
presents the channel model. Section III elaborates upon the
benefits of higher order derivative pre-processing. Section IV
presents the optimal detector as well as proposing a lower-
complexity alternative. Section V derives an approximate error
probability expression to be used as a cost function in deriva-
tive order optimization. Section VI presents the numerical
results and Section VII concludes the paper.

II. CHANNEL MODEL

We assume a point transmitter and a synchronized spherical
absorbing receiver residing in a three-dimensional unbounded
environment. The spherical receiver’s radius is denoted by r,.,
and the distance between the transmitter and the center of
the spherical receiver is denoted by ro. The overall topology
of interest is presented in Fig 1. Denoting the diffusion
coefficient of the utilized molecule as D and d = ro—1r,, [12]
computes the arrival density function with respect to time as
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Fig. 1. The considered transmission/reception environment.

In sequential bit transmission scenarios, the time-slotted
MCvD system is characterized by the channel coefficient
vector h, whose elements can be calculated by

nts

hln] = / frie@t)dt, n=1,2,... 2)

(n—1)ts
where ¢, is the sample duration. Note that denoting the du-
ration of a binary concentration shift keying (BCSK) symbol
as t, and the samples per bit parameter as IV, one can write
ts =%

The number of molecules counted by the receiver can be
modeled by the linear time-invariant (LTT)-Poisson channel
[13], where each sample is a Poisson distributed random
variable with rate parameter according to the convolution of
the channel with the transmitted sequence. Throughout the
paper, we also consider an external Poisson noise process with
a rate of A; molecules per sample. Overall, using the Gaussian
approximation of the LTI-Poisson arrival signal [14], the noisy
received signal is approximately distributed as

y[n] ~ N(uln], u[n]), (3)
where, .
uln] = (Zh[k]x[n—k—l—l]) + A @)

Here, L denotes the channel memory in bits, and N is the
number of samples per bit duration. Furthermore,  denotes
the overall transmission sequence. We assume an idealized
transmitter in this paper, which implies that « has a one-to-one
deterministic relationship with the transmitted bit sequence s.
Specifically, using BCSK [3], z[n] can only be non-zero at
the transmission instant n = (¢ —1)N 41 and if s[i] = 1. We
employ BCSK throughout the paper and denote the number
of emitted molecules to transmit a bit-1 by M.

In discrete time, convolution with the channel can be
represented by a Toeplitz matrix H, thus our discrete-time
received signal is given by

y=(Hz+ X\j)+mn, (5)

where all vectors are of dimension SN x 1 and H is square.
Furthermore, S is the length of the transmission block!, J
denotes the S IV-vector of ones, and 7 is the noise vector. Note
that due to the channel characterization presented in (4), the
variance of the n'" element of 1 is u[n]. In other words, 7 ~

'We assume guard bands of no-transmission between the transmission
blocks of length S.

x10* x10°

— fra(t)
R %thn(t)
- o huirt)] ]

0 02 04 06 08 1 12 14 16 18 2
t(s)
. 3 fii 92 fu; . .
Fig. 2. fic(t), fléllt(f) , and % curves with respect to time (correspond

to blue, orange, and orange (dasfled) curved respectively). d = 10 um, r, =
5um, D = 80um?s—!. Note that the magnitudes of the first and second
order derivatives are an order of magnitude smaller than the original signal.

N(0,X) where ¥ = diag{ Hx} + A\;I. The first summand
in the covariance matrix is widely referred to as the signal-
dependent noise of molecular communications [9], [14].

III. HIGHER ORDER DERIVATIVE-BASED
PRE-PROCESSING

A. Analysis of Derivative Pre-processing

We first investigate properties of the pulse shape after
applying an arbitrary number of differentiations on fj,;.(¢).
We define t,, (,,) as the leftmost local maximum of %
(i.e. the peak time of %).

Proposition 1. ¢, ,,,) is a monotonically decreasing function
of m.

Sketch of Proof. The proof follows from directly calculating

the leftmost vanishing points of the derivatives of (1). It should

. . mtlyp
be noted that at the leftmost vanishing point of %,

mt2p . .
% is always negative, ensuring the first local extremum

m . . . .
of aatfii” is indeed a local maximum. O]

For visualization purposes, Figure 2 presents f;:(t) and
its first and second derivatives. As proven, with increasing
derivative order, the peak shifts leftwards. Furthermore, one
interesting observation from Figure 2 is that the right tail
is decaying considerably faster as the derivative order in-
creases, suggesting a narrowing of the effective pulse shape
duration. These two phenomena suggest that using higher
order derivatives in pre-processing can allow communicating
at data rates that are considerably faster than conventional
MCvD. However, we note that this decay of the right tail
provides better ISI mitigation at the cost of a reduction in
signal amplitude. We next develop the discrete-time model
for m’th derivative pre-processing.

B. Generalized Derivative-Based Pre-Processing

In this subsection, we generalize the initial idea of [10]
and present a generalized framework on using discrete-time
forward derivatives before detection in MCvD receivers. First,

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 16,2023 at 19:59:40 UTC from IEEE Xplore. Restrictions apply.



we introduce the SN x SN discrete-time forward derivative
operator D

-1 1 0 0
0 -1 1 0

D= (6)
: -1 1
0 0 0 -1

Note that using such a notation, D™ corresponds to the
discrete-time m!" order derivative operator. After the appli-
cation of the m!" order derivative, the pre-processed arrival
vector can be represented as:

Ymy =D"y=D" (Hx +X;j+mn). )

It should be noted that the curves in Figure 2 characterize
the expected continuous time arrival signal for a single-shot
transmission. In a time slotted communication system with
consequent bit transmissions, the convolutional nature of the
channel and the variance of the arrival signal are also in
effect, as described by (5). The effect of the mtt order
derivative operator on the signal-dependent variance sequence
is represented in the 7,,,) = D™n term in (7) resulting in the
noise covariance: X,,,) = D™X(D")™. The structure of the
transformed noise covariance suggests noise enhancement and
subsequent noise correlation due to the differentiation process.
In fact, as m increases, the banded diagonal of D™ increases
in width, further increasing coloration and noise enhancement.

IV. DETECTOR DESIGN
A. Optimal Detector

We develop the maximum-likelihood sequence detector [9]
after differentiation. Given knowledge of the channel impulse
response and A, at the receiver, the resultant detector is

& = argmax P(y,,,)|T)
x
= arg min { In(|3 ) |)+ ®)

T —1
(Y(m) = W) By (Y(m) — w(m))}7

where w .,y = D™ (Hz+\j) is the processed mean vector.
Given properties of maximum likelihood detection and one-
to-one functions, the detected transmission vector sequence &
directly yields s.

B. Banded MLSD

Given the pulse narrowing effect of differentiation, we
can reduce the complexity of MLSD (2% for S bits) by
approximating the duration of the pulse shape to be less than
L', [15], [16]. Our goal is to design a receiver amenable
to implementation in a micro- or nano-scale device. Thus,
we propose a reduced memory detector based on the MLSD
presented in (8). The proposed detector works in an online
fashion rather than acting on the block as a whole and
considers a much smaller memory window of L' < L,
including the intended bit.

At each time instant ¢, based on the window between
(i — L' + 1) and i*" bits (both inclusive), the detec-
tor performs 2L" likelihood computations. We first define
Hi’L/, 2, and (Dm)i’L/ as the corresponding channel, can-
didate transmission sequence, and derivative operator matri-
ces/vectors for the shorter memory (L’) consideration, re-
spectively. We then collect the received signal vector for
this observation window, denoted by y*L' (ie. y"L =
[yl(i — L')N +1] y[iNHT), and apply the (D™)HL
operator on it. We then extract the useful components and
their statistics from these vectors/matrices. Note that we are
only interested in the samples corresponding to the last bit
in the L'-bit candidate string. Furthermore, we remove the
last m samples, and only consider the (N — m) x 1 vectors
and (N —m) x (N — m) matrices corresponding to the first
(N —m) samples of the intended bit. This operation is due to
the very nature of D™ and is done to avoid adding ISI into
the system by mixing the intended bit’s samples with samples
from the next transmitted bit. Using the 7 subscript to denote
these truncated vectors and matrices, the proposed detector
detects the i*" transmitted bit by

§[i] = arg I/mn{(yzn%T — (Dm)i’L/Hi’le'T)TEE;ﬁ;,T '
xr

(v, — (D™ HYY al) +m(I50 D)}
©))

Per one block, the proposed detector is of complexity
O(2F'S), compared to the O(27) of (8) and O(2LS) of the
optimal Viterbi decoder.

C. Fixed Threshold Detector

Since many micro- or nano-scale applications of MCvD
may require simplistic transceiver structures, using even sim-
pler detectors may be desirable. Motivated by this goal, as
proposed in [10], a fixed threshold detector described as

1
8[i] = max (y(m) [(i—1)N41],- -+, ym)[iN—m)]) %7- (10)

can be employed, where ~ is the designed threshold. Using
arguments similar to that in Section IV-B, the last m samples
of the pre-processed arrival vector are discarded.

V. ERROR ANALYSIS AND THE OPTIMIZATION OF m

As noted in Section III, the order of the discrete-time
forward derivative operator m reveals a fundamental trade-
off between the ISI mitigation capability of the receiver and
the incurred noise amplification. This leads to m being an
optimization parameter in terms of error performance. It is
this optimization which we will address herein. Motivated by
the widespread use of fixed threshold detectors in the literature
[2], [10], [17], we provide an approximation on the bit error
ratio of a receiver employing the D™ pre-processing and
utilizing the detector described in (10). We will then use this
approximation as a cost function over which we optimize m
for a fixed threshold detector-based receiver.
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In order to fully observe the effects of a memory of L sym-
bols, we consider a bit stream of length L. In this hypothetical
bit stream, the approximate expected arrival counts to the last
bit’s samples can be written as

T
L) (11)

y[(L — 1)N + 1]
where j 5 is an N-vector of ones, x, is the LN samples long
transmission sequence, corresponding to a certain L bit-long
stream sy, and

up=FE(y,lzr) = E(

y[LN]
=Hpxp+\Jy,

(L — )N + 1] W] 0 0
Hy - : S
hLN -1 - h2] R[] 0
h[LN] h3] h[2] B[]
(12)

Note that fully capturing a window of length L requires evalu-
ating 2° combinations of s7,. Motivated by the immense com-
putational complexity of this operation, we consider a shorter
memory, denoted by L’. Upon this point, the subscript L’
denotes the vectors/matrices generated with L’ bits into con-
sideration. That being said, the associated covariance matrix is
3.; = diag{p,, }, due to the LTI-Poisson channel behavior
and its Gaussian approximation described in Equations (3)-
(4). Furthermore, we note that using an mt" order derivative
operator D™ of size N x N, the processed vector is distributed
aSYrr (m) ~ N(Br (m)» DL (m))s Where pps 1y = D™y,
and X1/ ;) = D" (DT)™.

After obtaining the arrival statistics, we express the bit
error ratio expression as an average of conditional error
probabilities. Conditioning on the first L’ — 1 elements of
sy, denoted by s/ 151, we write

1
Per =g ( D, Pelsyrin): (13)
VS pr st
where
1
PG|SL/,151 = i(P(R(m) < 'Y|5L’ [L/] = 1) (14)

+ P(R(m) > ’V|SL/[LI] = 0))
Here, R,y = maxyrs (m)[j]. Note that R,,) denotes the
j

maximum of N — m correlated and differently distributed
Gaussian random variables®. At this point, we invoke Clark’s
approximation to approximate R(;,) as a normal random
variable in a recursive manner [18]. The recursion is moti-
vated by the fact that max(A, B,C) = max[max(A, B),C|
and operates by approximating the PDF of the maximum
as a Gaussian in each iteration. Herein, we exemplify the
first iteration of the recursion that finds the moments of
max(yrs (m)[1], Y1/ (m)[2]). Note that the following approach

2Due to the strategy employed in (10), we remove the last m samples in
the calculations.

can be further continued until 7 (,,,)[IN —m] to approximate
R(m). We first define two parameters, a and « as

a = \/6’% +5% — 25’1’2
o — M1 — H2
a
where [i,, and &, , values are their corresponding entries
in pr () and X/ (), respectively. Denoting ¢(-) as the
standard normal PDF, [18] finds the first and second moments
of max(yL/7(m)[1}, yL’,(m) [2]), l~/1 and 172, as

7= Q=) + Q) + ayy()

vy = (i +61)Q(—a) + (13 + 53)Q(—a)

+ (fir + fiz)ay (@),
where Q(-) is the Gaussian Q-function. After obtaining
and i, we approximate max(yr: (m)[1], Yo/, (m)[2]) = 21,2 ~
N (91,5 — 73), and continue with the iteration. Note that in
reality, maximum of two Gaussians is not a Gaussian itself
[18], [19], but we approximate as such to come up with a
tractable and recursive approach.

Upon approximating the first and second order statistics of
R, conditioned on sp/[L'] = i as pig (m); and o2 (m)]i*
respectively, we recall to treat R(,,) as a normal random
variable, and obtain

PRy < Alsp[E] = 1) = Q(

15)

(16)

MR, (m)]1 — 7)
OR,(m)|1

(17a)

P(By > s (L] = 0) » Q(LLEEY - 17y
IR, (m)|0
Note that the means and variances are different for (17a)-
(17b), as they are obtained through different conditionings on
the intended bit.

Overall, the presented approach becomes most accurate
when one considers all 2 possible combinations of sy, rather
than 2. However, using Equations (11)-(17) with L’ still
provides a useful sub-optimal cost function as a proxy of
the true error probability, hence can be used to optimize
m. Furthermore, the expressions need to be computed only
once for each candidate m value (before data transmission),
which makes utilizing them with L’ a feasible approach. The
accuracy of the approach is presented in Section VI.

VI. NUMERICAL RESULTS

This section presents numerical bit error ratio (BER) re-
sults regarding different detector strategies, the proposed cost
function, and the derivative orders. The BER simulations are
performed using the channel model described by Equations
(1)-(5). In order to scale the signal transmission power of the
transmitter and the external noise power, we define the signal-
to-noise ratio (SNR) as

M
N~
Note that the denominator N\, is equivalent to the Poisson

noise rate parameter for the duration of a whole bit, hence
our definition of SNR is normalized on a per-bit basis.

SNR =

(18)
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Fig. 3. BER vs. M using Equation (10). S, = 0.5, SNR = 10dB, d =
10pum, 7 = 5pm, D = 80um?s~1, N = 5, S = 1000 bits, L = 100,
L’ = 10. ~ values numerically optimized through exhaustive search.

As another key parameter, we define the unitless parameter
2 .
S, = tbO), where t, o) = éj—D denotes the peak time of

tpv
frit(t). Note that S, is a measure of how fast the system

is communicating with respect to the channel peak time (i.e.
smaller S, means higher data rate).

A. BER vs. M, and the Effectiveness of the Cost Function

First, we compare the simulated BERs for m = 0, 1, 2, and
3, with the associated approximations obtained by Equations
(11)-(17) in Figure 3. The BER of the conventional detector,
which is a fixed threshold detector (FTD) on the total number
of arrivals within a bit duration [3], is also presented in the
figure. Note that the case where m = 1 corresponds to the
approach considered in [10].

There are several conclusions to be drawn from Figure
3. Firstly, the approximations for the BER are tight, despite
considering a greatly reduced memory of L' = 10 versus
the actual L = 100. Note that this is due to the strong
pulse narrowing introduced by the derivative operator. The
key is that the approximated BER provides the accurate trend
for the impact of the differentiation order relative to the
simulated performance. Furthermore, we see that there is a
correlation between the number of molecules, M and the
differentiation order m. For smaller M, a smaller m yields
improved BER. This phenomenon is mainly due to the noise
amplification incurred at each derivative operation. However,
as M increases, this adverse effect is less of an issue, and
the system benefits more from the ISI mitigation provided by
higher orders (in this case m = 2).

B. Equation (9): BER vs. L'

We further investigate the choice of L’ in Figure 4 on the
performance of banded equalization (9). Here too, there is a
trade-off between L’ and m which is unsurprising. That is,
as m increases, the effective pulse shape narrows and decays
more quickly, resulting in less ISI. Thus, a smaller L’ suffices.
However, as L’ increases, m = 1 provides smaller noise
amplification. Overall, for the system parameters employed in

.
~.
~.
~.
~.
~.
~.

a RN

10-3 - —— N T~ .|
—-%-—m=0, using Eq.(9) (No Derivative) s

—-%-—m=1, using Eq.(9)
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m=3, using Eq.(9)
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Fig. 4. BER vs. L’ using banded MLSD in Equation (9). S, = 0.5, M =
107 molecules, SNR = 20dB, d = 10um, 7 = 5um, D = 80um?s~1,
N =5, S = 1000 bits, L = 100.

<
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Fig. 5. BER vs. S,.. M = 107 molecules, SNR = 10dB, d = 10um,
rr =5um, D = 80um?s~1, N = 5, § = 1000 bits, L = 100. y values
numerically optimized through exhaustive search. For m = 1 and S, = 0.7,
BER < 1076.

Figure 4, a BER of 2.7 x 102 can be obtained with m = 2
by using a memory as small as L' = 2.

C. Error Performance and Data Rate

In this subsection, we provide BER curves with respect to
S, through presenting Figure 5. Recalling S, = t:ﬁ as a
measure of data rate, going leftward in Figure 5 is equivalent
to communicating faster. Note that since S5, < 1, all data
points in Figure 5 correspond to a bit duration that is smaller
than the channel peak time.

The results of Figure 5 suggest that for the system with
considered parameters, m = 2 provides the best overall error
performance. At high data rates, ISI is extremely high and the
consideration of m = 1 does not sufficiently mitigate it. This
phenomenon can also be validated from the large performance
gap between banded MLSD results with L = 2 and 5 for
m = 1. Note that on the contrary, since m = 2 and 3 narrow
the effective pulse duration more effectively, banded MLSDs’
performances do not vary drastically with L’. Secondly, it can
be observed from Figure 5 that m = 2 also outperforms the
selection of m = 3. We note that although a larger m results in
better ISI mitigation, the performance of m = 3 is limited due
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L

to its higher noise amplification. Our empirical observations
suggest that when M increases even further, there is a point
where m = 3 outperforms m = 2, confirming the inferences
made in Subsection VI-A.

Overall, with the proper selection of m = 2, a BER
of 1.3 x 1073 can be obtained with a banded MLSD that
performs only 22 = 4 likelihood computations per bit, when
S, = 0.5. Note that whilst the derivative-based pre-processing
can achieve such a performance, extreme ISI causes the
conventional methods to yield unreliably high error rates.

D. BER vs. SNR

This subsection presents the error performance with respect
to the external noise power, \s. Recalling the definition of
SNR from (18), Figure 6 presents the relationship with BER
and SNR.

As expected, the results of Figure 6 show that error per-
formance improves with increasing SNR. However, it can be
observed that derivative orders do not benefit from increasing
SNR equally. Similar to the arguments made in Subsection
VI-C, the selection of m = 1 provides inadequate ISI
mitigation and faces undesirable error floors. On the other
hand, the selection of m = 3 also does not benefit from
increasing SNR considerably. Given that m = 3 provides
strong ISI mitigation unlike m = 1, it can be inferred that
the amplified data-dependent noise is more detrimental to the
system than external noise. Overall, for the system in Figure
6, selecting m = 2 yields the best error performance gain with
respect to SNR.

VII. CONCLUSIONS

In this paper, a framework for utilizing higher order deriva-
tives to pre-process the arrival signal has been provided. A
trade-off between ISI combating and noise amplification is
shown, hinting to an optimal derivative order that minimizes
BER. Through deriving an approximate error probability ex-
pression, a cost function has been presented to find the optimal
derivative order for a threshold detector. In terms of further

detector design, MLSD for a derivative pre-processed receiver
is investigated. Noting the MLSD’s high computational com-

plexity, the effective pulse width narrowing of the derivative
operator is exploited to propose a sub-optimal banded MLSD
strategy employing less memory. Overall, our results suggest
that although the cost of high transmission power must be
incurred, derivative based pre-processing allows considerably
faster communication, while still preserving reliability.

REFERENCES

[1] T. Nakano, A. W. Eckford, and T. Haraguchi, Molecular communication.
Cambridge University Press, 2013.

[2] N. Farsad, H. B. Yilmaz, A. Eckford, C. B. Chae, and W. Guo, “A
comprehensive survey of recent advancements in molecular communi-
cation,” IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 1887-1919,
Feb. 2016.

[3] M. S. Kuran, H. B. Yilmaz, T. Tugcu, and I. FE. Akyildiz, “Modulation
techniques for communication via diffusion in nanonetworks,” in Proc.
IEEE Int. Conf. Commun. (ICC), Apr. 2011, pp. 1-5.

[4] H. Arjmandi, A. Gohari, M. N. Kenari, and F. Bateni, “Diffusion-
based nanonetworking: A new modulation technique and performance
analysis,” IEEE Commun. Lett., vol. 17, no. 4, pp. 645-648, Mar. 2013.

[5] S. Pudasaini, S. Shin, and K. S. Kwak, “Run-length aware hybrid
modulation scheme for diffusion-based molecular communication,” in
Int. Symp. Commun. Inf. Tech. (ISCIT), 2014, pp. 439-442.

[6] M. C. Gursoy, D. Seo, and U. Mitra, “Concentration and position-based
hybrid modulation scheme for molecular communications,” in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1-6.

[7]1 A. Noel, K. C. Cheung, and R. Schober, “Improving receiver per-
formance of diffusive molecular communication with enzymes,” IEEE
Trans. Nanobiosci., vol. 13, no. 1, pp. 31-43, Jan. 2014.

[8] M. Movahednasab, M. Soleimanifar, A. Gohari, M. Nasiri-Kenari, and
U. Mitra, “Adaptive transmission rate with a fixed threshold decoder
for diffusion-based molecular communication,” IEEE Trans. Commun.,
vol. 64, no. 1, pp. 236-248, Jan. 2016.

[9] D. Kilinc and O. B. Akan, “Receiver design for molecular communica-
tion,” IEEE J. Sel. Areas Commun., vol. 31, no. 12, pp. 705-714, Dec.
2013.

[10] H. Yan, G. Chang, Z. Ma, and L. Lin, “Derivative-based signal detection
for high data rate molecular communication system,” IEEE Commun.
Lett., vol. 22, no. 9, pp. 1782-1785, Sep. 2018.

[11] Y. Huang, X. Chen, M. Wen, L. Yang, C. Chae, and F. Ji, “A rising
edge-based detection algorithm for MIMO molecular communication,”
IEEE Wireless Commun. Lett., vol. 9, no. 4, pp. 523-527, Apr. 2020.

[12] H. B. Yilmaz, A. C. Heren, T. Tugcu, and C.-B. Chae, “Three-
dimensional channel characteristics for molecular communications with
an absorbing receiver,” IEEE Commun. Lett., vol. 18, no. 6, pp. 929—
932, Jun. 2014.

[13] G. Aminian, H. Arjmandi, A. Gohari, M. Nasiri-Kenari, and U. Mitra,
“Capacity of diffusion-based molecular communication networks over
LTI-Poisson channels,” IEEE Trans. Mol. Biol. Multi-Scale Commun.,
vol. 1, no. 2, pp. 188-201, Nov. 2015.

[14] V.Jamali, A. Ahmadzadeh, and R. Schober, “On the design of matched
filters for molecule counting receivers,” IEEE Commun. Lett., vol. 21,
no. 8, pp. 1711-1714, May 2017.

[15] G. D. Forney, “The Viterbi algorithm,” Proc. IEEE, vol. 61, no. 3, pp.
268-278, 1973.

[16] A. Kavcic and J. M. F. Moura, “The Viterbi algorithm and Markov
noise memory,” IEEE Trans. Info. Theory, vol. 46, no. 1, pp. 291-301,
2000.

[17] B. Koo, C. Lee, H. B. Yilmaz, N. Farsad, A. Eckford, and C. Chae,
“Molecular MIMO: From theory to prototype,” IEEE J. Sel. Areas
Commun., vol. 34, no. 3, pp. 600-614, 2016.

[18] C. E. Clark, “The greatest of a finite set of random variables,” Oper.
Res., vol. 9, no. 2, pp. 145-162, 1961.

[19] W. R. Greer Jr. and G. J. La Cava, “Normal approximations for the
greater of two normal random variables,” Omega, vol. 7, no. 4, pp.
361-363, 1979.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 16,2023 at 19:59:40 UTC from IEEE Xplore. Restrictions apply.



