
On the Optimization of Derivative-Based Receivers for
Molecular Communications

Mustafa Can Gursoy
University of Southern California

Department of Electrical and Computer Engineering

Los Angeles, USA

mgursoy@usc.edu

Urbashi Mitra
University of Southern California

Department of Electrical and Computer Engineering

Los Angeles, USA

ubli@usc.edu

ABSTRACT

Inter-symbol interference (ISI) due to random molecule propaga-

tion challenges achieving high data-rate diffusion-based molecular

communication (DBMC) systems. Recently, pre-processing the re-

ceived signal by higher order derivatives has shown to provide an

aggressive right tail suppression of the channel impulse response

resulting in efficient ISI mitigation, and enabling the achievement

of an order of magnitude increase in data rate while preserving

reliability. However, the gains of derivative-based DBMC receivers

are heavily dependent on the proper selection of the derivative

order. In order to further improve the efficacy of derivative-based

DBMC receivers, detector design and derivative order optimization

is addressed in this study. Herein, the well-known fixed sample,

fixed threshold detector (FSTD) detector is generalized to work

with the derivative operator. For the derivative operator-FSTD pair,

a signal-to-interference-and-noise ratio-like (SINR) cost function

is introduced to optimize the derivative order. Numerical results

confirm the accuracy of the SINR in derivative order optimization,

and the efficacy of the derivative-aided FSTD strategy in terms of

error performance.
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1 INTRODUCTION

Diffusion-based molecular communication (DMBC) systems suf-

fer from significant inter-symbol interference (ISI) that hinders

achieving high data rate and low error rate communication [4]. Mo-

tivated by this, many transmitter and receiver side solutions have

been considered to alleviate the effects of ISI. The transmitter side

schemes mainly focus on modulation design [2, 7, 12], coding [17],

and pre-equalization [14, 18], whereas the receiver side strategies

include detector design [3, 15], equalization algorithms [9, 11], and

synchronization approaches [19].

Recently, as a receiver side solution to the ISI mitigation problem,

operating on the first order time derivative of the received signal

(as opposed to the received signal itself) was proposed in [8, 20].

This approach is generalized to an arbitrary derivative order𝑚 in

our prior work [5], where we had introduced a general framework

for derivative-based DBMC received signal processing, character-

ized its main trade-off, and discussed several detector schemes to

be paired with the derivative operator. This paper extends and

improves on our previous study from a detector design perspec-

tive, and proposes a solution to the derivative order optimization

problem. Overall, the main contributions of this study over the

state-of-the-art and our previous work are as follows:

• In contrast to using the max-and-threshold detector (MaTD)

employed in prior work ([5, 20]), we generalize the well-

known fixed sample, fixed threshold detector (FSTD), and

propose its use in conjunction with the𝑚𝑡ℎ order derivative

operator.

• Recognizing that the derivative order𝑚 is a parameter to

be optimized, we provide a signal-to-interference and noise

ratio-like (SINR) cost function to optimize the derivative

order𝑚.

• Our numerical results show that the FSTD provides reliable

communication at high data rates, while still keeping the

simplicity of a fixed threshold detector. Combining with

the easy-to-implement derivative operation, the𝑚𝑡ℎ order

derivative & FSTD pair provides high data rates with low

error rates, with a complexity that is amenable to micro- to

nano-scale implementation.

The rest of the paper is organized as follows: Section 2 describes

the considered channel model and received signal statistics. Section

3 presents the characteristics and the main trade-off of a derivative-

based DBMC receiver. Section 4 introduces the proposed derivative

& detector pair. Section 5 derives and provides a cost function to be

used when optimizing the derivative order,𝑚. Section 6 presents

the numerical results, and Section 7 concludes the paper.
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Figure 1: The considered communication environment.

2 SYSTEM MODEL

In this paper, we consider a molecular communication link between

a point transmitter and a synchronized, spherical receiver in a 3-D,

unbounded environment as presented in Figure 1, similar to the

considerations of [22]. Throughout the paper, the distance between

the point transmitter and the spherical receiver’s center is denoted

by 𝑟0, the receiver’s radius is denoted by 𝑟𝑟 , and the diffusion coef-

ficient of the carrier molecules is denoted by 𝐷 .

For our topology of interest, the time arrival density function of

the molecules (i.e., the channel impulse response, CIR) is computed

by [22] as

𝑓ℎ𝑖𝑡 (𝑡) =
𝑟𝑟

𝑟0

1
√
4𝜋𝐷𝑡

𝑟0 − 𝑟𝑟

𝑡
𝑒−

(𝑟0−𝑟𝑟 )2
4𝐷𝑡 , 𝑡 ∈ (0,∞) . (1)

The time integral of (1) yields the fraction of arriving molecules up

to time 𝑡 , which is given by [22] as

𝐹ℎ𝑖𝑡 (𝑡) =
𝑟𝑟

𝑟0
erfc

(
𝑟0 − 𝑟𝑟√
4𝐷𝑡

)
. (2)

In this paper, we consider a time-slotted DBMC system. Such a

system is characterized by the channel coefficient vector 𝒉, where

ℎ[𝑛] defines the probability of a molecule arriving between the in-

terval ((𝑛 − 1)𝑡𝑠 , 𝑛𝑡𝑠 ] time after release, where 𝑡𝑠 is the slot (sample)

duration. The 𝑛𝑡ℎ channel coefficient is found by

ℎ[𝑛] = 𝐹ℎ𝑖𝑡 (𝑛𝑡𝑠 ) − 𝐹ℎ𝑖𝑡 ((𝑛 − 1)𝑡𝑠 ) , 𝑛 = 1, 2, . . . , 𝐿𝑁 (3)

where 𝐿 denotes the channel memory in symbols, and 𝑁 denotes

the number of samples per one symbol duration.We consider binary

concentration shift keying (BCSK) signaling throughout the paper,

where a bit-1 is transmitted by emitting 𝑀 molecules whilst a

bit-0 is transmitted by no emission [13]. Note that this definition

implies that for binary signaling, the bit (hence symbol) duration is

𝑡𝑏 = 𝑁𝑡𝑠 .

We note that 𝒉 describes the probabilities of a single molecule’s

arrivals. For a sequential symbol transmission scenario with multi-

ple molecule emissions, the received signal 𝒚 can be modeled by

the linear time-invariant (LTI)-Poisson channel model [1], where

𝑦 [𝑛] ∼ P
(
𝜆𝑠 +

𝐿𝑁∑
𝑘=1

ℎ[𝑘]𝑥 [𝑛 − 𝑘 + 1]
)
. (4)

Here, P(𝜇) denotes the Poisson distribution with rate parameter 𝜇,

𝜆𝑠 is the rate of the external Poisson noise, and 𝒙 denotes the vector

of emitted molecules. In this paper, we assume an idealized transmit-

ter. Hence, the binary vector 𝒔 of transmitted bits deterministically

defines 𝒙 . Specifically, since we employ BCSK (with equiprobable

bit transmissions) and consider emission at the beginning of the

symbol duration,

𝑥 [𝑖] =
{
𝑀, if 𝑠 [𝑘] = 1 and 𝑖 = (𝑘 − 1)𝑁 + 1

0, otherwise.
(5)

Throughout this paper, we employ the Gaussian approxima-

tion of the Poisson arrivals [21]. Hence, by using vector notation,

separating the deterministic and random components of 𝒚, and

considering a transmission block of length 𝑆 , the received signal

can be represented as

𝒚 = (𝑯𝒙 + 𝜆𝑠𝒋) + 𝜼, (6)

where 𝒋 is a vector of ones, and 𝑯 is the Toeplitz matrix describ-

ing the convolution operation in (4). Note that all vectors are of

dimension 𝑆𝑁 × 1 and 𝑯 is an 𝑆𝑁 ×𝑆𝑁 matrix. Using the Gaussian

approximation, the noise vector 𝜼 (i.e., the random component of

𝒚) is distributed as

𝜼 ∼ N (0, 𝚺) ,
𝚺 = diag{𝑯𝒙} + 𝜆𝑠 𝑰 .

(7)

We note that the noise covariance matrix is affected by the emission

sequence 𝒙 , implying the well-known signal-dependent noise of

DBMC systems [6, 10, 11].

3 THE DERIVATIVE PRE-PROCESSOR

Herein, we discuss the key trade-off of applying an𝑚𝑡ℎ order de-

rivative pre-processing on the received signal before the detection

stage, by characterizing the operator’s effects on received signal

statistics. As the CIR function in (1) represents the expected signal

of a one-shot transmission, we first investigate how the time deriva-

tives of 𝑓ℎ𝑖𝑡 (𝑡) evolve with𝑚, and introduce the main motivation

of applying an𝑚𝑡ℎ order derivative pre-processing.

As can also be observed from Figure 2, the𝑚𝑡ℎ order time de-

rivative of the CIR (i.e.,
𝜕𝑚 𝑓ℎ𝑖𝑡
𝜕𝑡𝑚 ) becomes less dispersive in time as

𝑚 increases. This corresponds to an effective pulse narrowing in

the time slotted discrete time model presented in Section 2, which

corresponds to a desirable ISI mitigation. Using the discrete time

model and with matrix notation, the discrete-time forward deriva-

tive operator 𝑫 is defined as

𝑫 =



−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
. . .

. . .
...

...
... −1 1

0 0 · · · 0 −1


. (8)

Therefore, defining 𝒚 (𝑚) ∼ N(𝝁 (𝑚) , 𝚺(𝑚) ) as the output of the

𝑚𝑡ℎ order derivative operator, we can write

𝒚 (𝑚) = 𝑫𝑚𝒚

= 𝑫𝑚 (𝑯𝒙 + 𝜆𝑠𝒋) + 𝑫𝑚𝜼.
(9)

Here, the application of the 𝑫𝑚 operator to the deterministic part

of 𝒚 introduces the aforementioned ISI mitigation. However, the

expression 𝑫𝑚𝜼 introduces noise coloring and amplification to the

received signal, since 𝚺(𝑚) = 𝑫𝑚
𝚺(𝑫⊤)𝑚 . Furthermore, the larger

the derivative order 𝑚, the more severe the noise amplification



On the Optimization of Derivative-Based Receivers for Molecular Communications NANOCOM ’21, September 7ś9, 2021, Virtual Event, Italy

0 0.5 1 1.5 2

t (s)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
10
-4 m = 0

0 0.5 1 1.5 2

t (s)

-2

-1

0

1

2

3

4

5

6

7

8
10
-6 m = 1

0 0.5 1 1.5 2

t (s)

-2

-1

0

1

2

3

4

5

6

7

8
10
-7 m = 2

Figure 2: Evolution of
𝜕𝑚 𝑓ℎ𝑖𝑡
𝜕𝑡𝑚 with the derivative order𝑚. 𝑟0 = 15 µm, 𝑟𝑟 = 5 µm, 𝐷 = 100

µm2

s .

becomes. As also pointed out in [5], this introduces a fundamen-

tal trade-off between ISI mitigation and noise amplification for a

derivative-based pre-processor, implying the existence of an opti-

mal𝑚 that minimizes the error probability. In Section 5, we will

address this optimization problem by devising an appropriate cost

function for the system at hand.

4 DETECTOR DESIGN

As also mentioned in [5, 11], the ISI nature of the DBMC channel

causes the maximum likelihood detector to be in the form a se-

quence detector. However, as a sequence detector has exponential

complexity in channel memory 𝐿, we consider symbol-by-symbol,

fixed threshold detectors that are amenable to nano-scale implemen-

tation. Conventionally, the fixed threshold detector for a derivative-

based DBMC receiver is implemented by

• performing the derivative operation,

• discarding last𝑚 samples to cancel non-causal ISI1,

• finding the maximum count among the remaining (𝑁 −𝑚)
samples,

• comparing with a threshold (𝛾 ),

respectively ([5, 20]). In other words, this max-and-threshold de-

tector (MaTD) performs

𝑠 [𝑖] = max
(
𝑦 (𝑚) [(𝑖 − 1)𝑁 + 1], · · · , 𝑦 (𝑚) [𝑖𝑁 −𝑚]

) 1
≷
0
𝛾, (10)

which can be thought of as a generalization of the simple asyn-

chronous detector proposed in [16]. We note that such a detector

is inherently memoryless, which is beneficial in terms of simplicity.

Furthermore, although we described𝑚𝑡ℎ order derivative opera-

tion is through a matrix multiplication for analysis purposes (i.e.,

𝒚 (𝑚) = 𝑫𝒎𝒚), in reality it can be implemented by simple shift reg-

isters and adders. Combining the simple structures of both of these

steps, the joint use of 𝑫𝑚 and MaTD offers a very low complexity

solution with good performance.

In this paper, we consider an alternative to MaTD to be coupled

with the 𝑫𝑚 operator, where the maximum-finding operation is

omitted, and themolecule count that is comparedwith a threshold is

1Note that the𝑚𝑡ℎ order forward derivative operation finds 𝑦 (𝑚) [𝑖 ] as a function
of 𝑦 [𝑖 ], . . . , 𝑦 [𝑖 +𝑚]. For the last𝑚 samples of a symbol, this operation introduces
correlations with the first samples of the next symbol, hence inducing a non-causal
ISI. Truncating the last𝑚 samples avoids this issue.

taken from a fixed sample. We denote this sample by𝑞 (𝑚) . Recalling
from Figure 2 that the peak time changes with𝑚, we emphasize

that 𝑞 (𝑚) is a function of𝑚. We find 𝑞 (𝑚) by finding the sample

that yields the largest expected arrival count resulting from the

intended symbol’s transmission, which can be expressed as

𝑞 (𝑚) = argmax
𝑞∈{1,...,𝑁−𝑚}

��𝜇𝑠,(𝑚) [𝑞]
�� , (11)

where

𝝁𝑠,(𝑚) = 𝑫𝑚𝝁𝑠 , (12)

and the expected arrival count vector 𝝁𝑠 can be found by

𝝁𝑠 =
[
𝑀
2 ℎ[1] . . . 𝑀

2 ℎ[𝑁 ] .
]⊤

(13)

Note that 𝑞 (𝑚) ∈ {1, . . . , 𝑁 −𝑚}, in order to avoid the non-causal

ISI introduced by the forward derivative operation. Furthermore,

Equation (11) picks the count that is largest in absolute sense, rather

than performing an argmax on 𝝁𝑠,(𝑚) itself. This is due to the

fact that after applying successive time differentiation, the resul-

tant 𝝁𝑠,(𝑚) can have negative elements that are actually larger

in magnitude than the largest positive element. This implies a

larger energy in said negative sample, therefore in a case where

𝜇𝑠,(𝑚) [𝑞 (𝑚) ] < 0, we simply negate the received signal and operate

accordingly. Therefore, the decision rule for FSTD becomes

𝑠 [𝑖] =
{
𝑦 (𝑚) [(𝑖 − 1)𝑁 + 𝑞 (𝑚) ] ≷10 𝛾, if 𝜇𝑠,(𝑚) [𝑞 (𝑚) ] ≥ 0

−𝑦 (𝑚) [(𝑖 − 1)𝑁 + 𝑞 (𝑚) ] ≷10 𝛾, if 𝜇𝑠,(𝑚) [𝑞 (𝑚) ] < 0,

(14)

which is a generalization of the fixed sample, fixed threshold detec-

tor (FSTD) that is widely used in the DBMC literature to the𝑚𝑡ℎ

order derivative.

5 ON THE DERIVATIVE ORDER
OPTIMIZATION

In this section, by extending the signal-to-interference and noise

ratio (SINR) employed by [10] to an arbitrary derivative order𝑚

and tailoring it to our considered detector, we introduce a cost

function that optimizes the derivative order for a 𝑫𝑚-FSTD pair.
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Overall, the proposed cost function has the following form:

SINR(𝑚) =
𝐸

{(
𝑠 [𝑘]𝜇𝑠,(𝑚) [𝑞 (𝑚) ]

)2}

Var
{
𝜂
(𝑘)
(𝑚) [𝑞 (𝑚) ]

}
+ Var

{
I (𝑘)
(𝑚) [𝑞 (𝑚) ]

} . (15)

Here,

𝐸

{(
𝑠 [𝑘]𝜇𝑠,(𝑚) [𝑞 (𝑚) ]

)2}
=

1

2
0 + 1

2
𝐸

{(
𝜇𝑠,(𝑚) [𝑞 (𝑚) ]

)2}

=

1

2

(
𝜇𝑠,(𝑚) [𝑞 (𝑚) ]

)2
,

(16)

with 𝝁𝑠,(𝑚) is as defined in Equation (12). Note that the expression

in (16) corresponds to the second moment of the signal induced by

the intended symbol. Since the 𝑫𝑚-FSTD pair considers the 𝑞𝑡ℎ(𝑚)
sample, the calculation is performed on said sample.

In the denominator of (15), the first expression corresponds to

the signal-dependent noise variance due to the intended symbol

𝑠 [𝑘]. This quantity corresponds to the 𝑞𝑡ℎ(𝑚) diagonal entry of the

covariance matrix that is induced by the intended symbol, which

can be expressed as

Var
{
𝜂
(𝑘)
(𝑚) [𝑞 (𝑚) ]

}
= Σ̄𝑠,(𝑚) [𝑞 (𝑚) , 𝑞 (𝑚) ]

𝚺̄𝑠,(𝑚) =
1

2

{
𝑫𝑚 diag(𝝁𝑠,(𝑚) ) (𝑫⊤)𝑚

}
.

(17)

Lastly, the second term in the denominator is the variance of the

received signal at the 𝑞𝑡ℎ(𝑚) sample that is due to ISI. This value is

the 𝑞𝑡ℎ(𝑚) diagonal entry of the covariance matrix induced by ISI,

that is

Var
{
I (𝑘)
(𝑚) [𝑞 (𝑚) ]

}
= Σ̄𝐼 ,(𝑚) [𝑞 (𝑚) , 𝑞 (𝑚) ] . (18)

Considering the channel has a memory of 𝐿, the entries of this

covariance matrix 𝚺̄ can be calculated as follows;

Σ̄𝐼 ,(𝑚) [𝑖, 𝑗] = Cov(𝑦 (𝑘)(𝑚) [𝑖], 𝑦
(𝑘)
(𝑚) [ 𝑗])

= 𝐸 [(𝑦 (𝑘)(𝑚) [𝑖] 𝑦
(𝑘)
(𝑚) [ 𝑗]] − 𝐸 [𝑦 (𝑘)(𝑚) [𝑖]] 𝐸 [𝑦 (𝑘)(𝑚) [ 𝑗]]

= 𝐸𝒔𝐼𝑆𝐼

[
𝐸 [(𝑦 (𝑘)(𝑚) [𝑖] 𝑦

(𝑘)
(𝑚) [ 𝑗] |𝒔𝐼𝑆𝐼 ]

]
− 𝐸𝒔𝐼𝑆𝐼

[
𝐸 [𝑦 (𝑘)(𝑚) [𝑖] |𝒔ISI]

]
𝐸𝒔𝐼𝑆𝐼

[
𝐸 [𝑦 (𝑘)(𝑚) [ 𝑗] |𝒔ISI]

]
=

1

2𝐿−1

∑
∀𝒔ISI

Σ𝐼 ,(𝑚) [𝑖, 𝑗] + 𝜇𝐼 ,(𝑚) [𝑖]𝜇𝐼 ,(𝑚) [ 𝑗]

− ©­«
1

2𝐿−1

∑
∀𝒔ISI

𝜇𝐼 ,(𝑚) [𝑖]
ª®¬
©­«

1

2𝐿−1

∑
∀𝒔ISI

𝜇𝐼 ,(𝑚) [ 𝑗]
ª®¬
.

(19)

where 𝝁𝑰 is the induced mean vector conditioned on an ISI symbol

sequence 𝒔𝐼𝑆𝐼 , and

𝝁𝐼 ,(𝑚) = 𝑫𝑚𝝁𝑰

𝚺𝐼 ,(𝑚) = 𝑫𝑚 diag(𝝁𝑰 ) (𝑫⊤)𝑚 .
(20)

Note that due to the exponential complexity in 𝐿 when comput-

ing (19), SINR can be evaluated using a smaller memory window

𝐿′ < 𝐿. As will the numerical results present in the sequel, this con-

sideration still yields an accurate cost function in terms of reflecting

the comparative trends in BER with respect to𝑚. Therefore, denot-

ing the memory-limited version of SINR as SINR𝐿′ , the derivative

order𝑚 can be picked according to the following rule:

𝑚∗
= argmax

𝑚
SINR𝐿′ (𝑚) . (21)

6 NUMERICAL RESULTS

Herein, we present numerical results to demonstrate the accuracy

of the cost function presented in Section 5, and comparative bit

error ratio (BER) results. Throughout the section, we normalize the

power of the external noise rate 𝜆𝑠 with respect to the transmission

power of the transmitter by defining SNR as follows:

SNR =

𝑀

2𝑁𝜆𝑠
. (22)

Since we assume equiprobable bit transmissions, the average num-

ber of molecules emitted per bit is equal to 𝑀
2 , whereas 𝑁𝜆𝑠 cor-

responds to the external noise rate per one bit duration (recall

𝑡𝑏 = 𝑁𝑡𝑠 ). In addition, we normalize the bit duration (hence the

data rate) in terms of the channel peak time 𝑡peak =
𝑑2

6𝐷 , (see [22,

Equation 26]), by considering a unitless parameter defined as

𝑆𝑟 =

𝑡𝑏
𝑡peak

. (23)

We note that due to its definition, a smaller 𝑆𝑟 corresponds to a

higher data rate.

6.1 Accuracy of the Proposed SINR Metric

Firstly, Figures 3a and 3b are presented to demonstrate the accu-

racy of the SINR expression derived in Section 5. Note that as the

computational complexity of evaluating (19) is exponential in chan-

nel memory, SINR is evaluated considering a significantly shorter

memory of 𝐿′ = 10 (i.e., SINR𝐿′ ), in contrast to the true channel

memories of 𝐿 = 100 for Figure 3c and 𝐿 = 200 for Figure 3d.

Comparing Figures 3a and 3b to the simulated 𝑫𝑚-FSTD curves

presented in Figures 3c and 3d, it can be observed that SINR ac-

curately follows the comparative trend among different𝑚 values.

That said, although SINR provides a good match in general, slight

discrepancies can be present when the BER values of different or-

ders are very close (e.g., log10𝑀 = 10 for 𝑆𝑟 = 0.25, between𝑚 = 2

and𝑚 = 3). This phenomenon is due to evaluating SINR with a sig-

nificant underestimation of the true channel memory by selecting

𝐿′ = 10. Overall, our results confirm that the comparative BER rela-

tionship between different derivative orders can be well-explained

through SINR even with 𝐿′ = 10, which is promising in terms of

computational complexity in micro- to nano-scale machinery.

6.2 Comparative Error Performance

To show comparative error performance between FSTD and MaTD,

Figures 3c and 3d are presented respectively. Note that both de-

tectors are memoryless and are of significantly low complexity.

Considering their comparably low-complexity implementations

to the schemes discussed in this paper, the conventional, energy-

based fixed threshold detector (FTD) [13] and the adaptive threshold

detector (ATD) [3] are also presented in the figures.

The results of Figures 3c and 3d show that FSTD outperforms

MaTD in a large majority of scenarios. Furthermore, the results
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(d) Simulated BER vs.𝑀 , 𝑆𝑟 = 0.25, 𝐿 = 200.

Figure 3: BER and SINR vs.𝑀 . SNR = 10dB, 𝑟0 = 15 µm, 𝑟𝑟 = 5 µm, 𝐷 = 100 µm2 s−1, 𝑁 = 5. 𝛾 values numerically optimized through

exhaustive search.

show that derivative-based methods significantly outperform the

non-derivative schemes (FTD, ATD, and𝑚 = 0 schemes), which is

due to the powerful ISI mitigation introduced by applying first or

higher order derivative operations on the received signal. However,

as also noted by [5], achieving this improvement requires that the

transmitter is able to handle large transmission powers, in order to

alleviate the effects of the noise amplification incurred by the 𝑫𝑚

operator.

7 CONCLUSIONS

In this paper, the fixed sample, fixed threshold detector (FSTD) has

been generalized and proposed for use in conjunction with the

higher order derivative-based pre-processor. For the 𝑫𝑚-FSTD pair,

the derivative order (𝑚) optimization has been addressed through

proposing an SINR-like cost function. Our numerical results show

that the considered cost function accurately mirrors the compar-

ative trend between different orders of𝑚. Overall, with a proper

selection of𝑚, the 𝑫𝑚-FSTD pair offers reliable communication un-

der DBMC channels with extremely high ISI, providing a promising

solution for achieving high data rate and low error rate DBMC.
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