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Abstract—The application of traveling wave (TW) principles
for fault detection in distribution systems is challenging because of
multiple reflections from the laterals and other lumped elements,
particularly when we consider communication-free applications.
In [1], we proposed the use of Shapelets to characterize fault
signatures as we move towards a more realistic data-driven
solution. The Shapelet can be correlated with the physical
characteristics of TW generation process, in contrast to choosing
a predefined basis such as Wavelets. This paper is an extension of
this work to comprehensively evaluate Shapelets for identifying
the fault types, in addition to their locations in single-phase,
three-phase, and IEEE 13-bus distribution systems. We also
propose using the voltage waveforms instead of the forward
waves, which eliminates the need for a CT. The proposed method
can identify fault locations within a local region with ~ 99%
accuracy and classify the fault types with an accuracy of over
90%.

Index Terms—Traveling Waves, Distribution
Shapelets, Fault Classification, Machine learning

Systems,

I. INTRODUCTION

The protection of distribution systems with high penetra-
tions of inverter-based distributed energy resources (DERs)
is a major challenge for utilities. The traditional over-current
relays may not detect faults due to the current limiting circuitry
in the DERs that could limit the fault current to ~ 1.2 pu [2].
In addition, the faster control mechanisms of the DERs and
low inertia systems may require ultra-fast tripping protec-
tion schemes (FTPS). Promising approaches include Traveling
Wave (TW) based protection.

In this extended version of [1], we present a comprehensive
evaluation of the use of Shapelets as a tool for extracting
traveling wave features for protective relaying in distribution
systems. The scope selected for the investigation assumes a
communication-free, single-ended, scheme for a main feeder
section with laterals. The present paper extends the work
in [1] and presents comprehensive studies and evaluations
using a simple 5-bus three-phase system and the IEEE 13 bus
distribution test system. The development of an actual relay
paradigm will be reported in the future.

The use of fault-generated TW as a means for ultra-high-
speed fault detection and location has been a subject of
extensive research, with implementations reported in the early
seventies [3]. Observation of wave arrival times of TW at a
specific location can be used to infer the occurrence, location,

S. Pati, M. Biswal, S. Ranade, and O. Lavrova are with ! New Mexico State
University, Las Cruces NM 88003 USA (e-mail: shubha, milanb, sranade,
olavrova}@nmsu.edu). M. J. Reno is with the 2Sandia National Laboratories,
Albuquerque, NM, 87185, USA (e-mail: mjreno@sandia.gov).

and type of fault. This phenomenon is transitory and requires
the analysis to be performed on a small time window of a
few microseconds or milliseconds duration. Further research
[4, 5], and advancements in microprocessors, led to practical
applications for EHV Transmission [5]. The application of TW
relays to a long, untapped, section of EHV, or HVDC lines is
a mature area [6]. In [7], a dynamic state estimation technique
based on the TW principles is proposed for double-ended
transmission lines. It requires GPS-synchronized measure-
ments at both ends of the line and a high-fidelity model of the
protected line which is not suitable for the distribution systems
and a communication-free approach is desired. Therefore, TW
protection is a subject of active research for the distribution
systems [8, 9, 10, 11, 12, 13].

There are two primary issues that need attention in TW-
based protection for distribution systems. First, both the de-
tection and location of the fault are important. We suspect
that a lower resolution in location may be acceptable in
relaying applications; the high resolution is desired, post-fault,
for needed repair and maintenance operations. Second, the
distribution feeders represent a more challenging application
because of short travel times, tapped laterals, and complex
terminations. This means that TW reflected from a number of
laterals results in an overlap or ‘clutter’. Fig. 1 shows the TWs
extracted from the measured phase-A voltages in the case of a
3-phase to ground fault. The system used to generate it is a 3-
phase 5-bus test system with the laterals shown in Fig. 2. For
the case without laterals, the upstream and downstream laterals
were simply removed. In the absence of lateral TWs can be
observed to have a nearly periodic pattern making it easier to
detect wave arrival times. For the case of laterals, it can be
observed that the TW waveform becomes more complex and
cluttered. Thus, it becomes difficult to isolate waves reflected
from different nodes, which in turn makes detection as well
as location determination more difficult.
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Fig. 1: Clutter due to the presence of laterals shown for a TW
waveform in case of a 3-phase to ground fault.

Section II reviews the recent advances in TW-based relaying
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principles applied for distribution systems protection. The gaps
in the literature are identified and the use of Shapelets as a tool
for TW feature extraction is summarized. Section III describes
the proposed approach to building an algorithm for fault
type and location classification. The simulation and results
are discussed in Section IV. The comprehensive performance
evaluation of the proposed approach is discussed in Section V,
followed by the conclusion in Section VI.

II. PROBLEM FORMULATION

Faults generate TW which travel through the distribution
line from the location of the fault to the opposite ends, at a
speed near the velocity of light. The TW relay is placed at
one end of the distribution line. The occurrence, location, and
type of fault are estimated by observing these wave arrival
times. However, due to the presence of multiple lateral lines
in the distribution lines, these waves are also reflected at the
junctions of each lateral before reaching the TW relay. The
superposition of these TW reflections results in clutter, which
in turn makes it extremely difficult to estimate the wave arrival
times. TW-based protection in tapped (multiterminal) lines has
been addressed in some recent literature e.g.,[5, 6, 14]. The
basic ideas rely on a knowledge of the sequence of wave
arrivals followed by some form of pattern matching with the
actual waves during a fault. Our exploration draws upon these
ideas. One of the ways to address this challenge is to use
sophisticated signal processing and machine learning (ML)
algorithms to extract relevant information from the TW [9, 11].
Reference [15] provides a rather comprehensive survey of
recent research in this area with an emphasis on the increasing
penetration of distributed resources.

A. Traveling waves in distribution systems
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Fig. 2: Lattice diagram illustrating the TW phenomena in a
distribution feeder with laterals.

1 km

We consider the feeder shown in Fig. 2, taken to be a single-
phase feeder for our initial study. The relay R at bus 1 is
to detect faults on the primary feeder sections M1 and M2,
between buses 2 and 5, using TW principles. The desired
scheme is single-ended (communication-free) The primary
feeder has two laterals separated by 2 km. The upstream
and downstream laterals have lengths of 1 km and 2 km,
respectively. All lines have identical characteristics with a
travel time of 5.5 ps/km. Suppose a fault occurs at X on M2

a distance of 1 km from the downstream lateral. The Lattice
diagram [16] in Fig. 2 shows the pattern of TW due to the
fault. The solid and dotted lines in the lattice diagram represent
the forward and the backward waves, respectively.

The waves on upstream laterals are shown in green and
those from the downstream laterals are shown in blue. The
reflections from the fault arriving at the relay through the
primary (main) feeder are shown in red. The first arrival and
reflection (A) from the fault through the main feeder acts
as the reference. In the absence of laterals and load taps, a
single-ended scheme can detect and locate the fault by 1)
detecting the forward and backward waves labeled ‘A’ and
‘B’, respectively, and 2) estimating the time between the two.
It can be observed that before wave B from the main feeder
arrives, there are several wave arrivals from the fault as well
as the laterals. In fact, the lateral return precedes the one from
the fault. The shapes of the waves will depend on distortion
(attenuation, dispersion), the coefficient of reflection at various
junctions, and the shape of the incident wave, and will fade
with time. For a distribution feeder, the Relay R must account
for these intermediate waves [6, 14, 15, 17] to detect and locate
the fault by observing the arrival times with respect to the
reference.

The system in Fig. 2 was simulated using Mat-
lab/Simulink/Simscape. Details are provided in Section IV.
The forward (top) and backward (bottom) waves seen by the
relay are shown on the bottom right of Fig. 2, and are keyed
to the lattice diagram. The TW relay must detect the periodic
arrival of reflected waveforms. It should be noted that the
periodicity will be different for the main feeder and each of the
laterals (with the exception of two or more laterals of the same
impedance at a fixed location). If some of these reflections
have very close time-of-arrival at the relay then constructive
or destructive interference may occur. This will result in clutter
and introduce ambiguity. Other sources of ambiguity include
transformers (loads), capacitor banks, DERS, impedance and
arcing in the fault, and measurement noise. TWs similar
to those due to a fault can also be produced by switching
operations. This clutter makes it extremely challenging to
estimate the location of the fault by analyzing, particularly
if high location resolution is desired in real-time. The relay
must isolate waves or wave arrivals of interest to detect faults.

Wavelet analysis is one of the prominent approaches for
extracting information from TW clutters [18, 19, 20]. Despite
their success in some scenarios, there is no consensus on what
the best mother wavelet is [21, 22]. By using Shapelets, we
can select the best basis that is not constrained to the existing
wavelet basis functions and is governed by the physical
phenomenon for TW generation.

B. Hypothesis

Shapelets are discriminative sub-sequences of time series
that best characterize inter-class differences and have been suc-
cessful in several classification tasks [23, 24, 25]. Motivated
by this we formulate the following hypotheses:

1) Shapelets as discriminants: If we discover a set of
discriminative sub-sequence/Shapelets and treat them as
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Fig. 3: (a) Magnitude and Phase response, (b) impulse, step,
and ramp response of the bandpass filter.

basis functions for extracting information/features from
the TW signals, can these features be used to classify
different types of faults and find their locations?

2) The mother-Shapelet : Can we design an analytical
Shapelet that can be interpreted as a global template
(similar to the mother wavelet or basis function)? Do the
dilated and translated versions of this template capture
the fault signatures?

3) Applicability: Is it reliable and computationally feasible
to develop a fault detection and classification technique
based on features extracted from Shapelet analysis?

We propose and explore the use of Shapelets to implicitly
‘isolate’ wave arrivals and then extract the most important
features from the TW reflection clutter. These features are fed
to an ML classifier to estimate the approximate location of
the fault (categorized as different classes) and the type of the
fault (categorized as different classes).

III. METHODS

TW relays are intended to detect high-frequency electro-
magnetic transient signatures corresponding to a fault. A
TW relay uses a current transformer (CT) and/or a potential
transformer (PT) to measure voltage (v(¢)) and current (i(t))
waveforms on a line and digitizes them with a high sampling
rate.

A. Test System

Modeling requirements to recreate and study TW in distri-
bution systems are discussed in [26]. The report emphasizes
the need for additional modeling, simulation, and experiments
to fully understand TW phenomena in distribution systems and
to use them for fault detection and identification. Our study
uses a simplified 5-bus distribution system simulation setup

as shown in Fig. 2. The system under study has rwo different
configurations and associated sets of parameters.

In [1] we considered a single-phase distribution system with
an ideal ac source connected to a feeder with two laterals
(same as described in Section II). The feeder and laterals
are modeled as distributed parameter lines without parameter
frequency dependence. We explored the detection of faults at
various distances from the relay with varying fault resistances
and inception angles. This paper extends the studies using a
three-phase 5-bus distribution system as well as the IEEE 13
bus Distribution Test System [27]. For all the experiments in
this paper, we consider a sampling rate of 10 M Hz which
results in a temporal resolution of 0.1 ps. The very high
sampling rate can provide sub-100 meters resolution of the
fault location. Additionally, at the proof of concept stage,
we have started with the higher sampling rate as a baseline
from which sensitivity studies can be performed. The available
TW relays ( e.g., SEL T401L) have a sampling rate of
1M H z [28], we propose that the sampling rate of 100 H z for
applications in distribution systems. For a separate project, we
have installed 10M H z sensors in the field to capture the TW,
so we have shown that this level of sampling rate is possible.

B. Pre-processing

The voltage and current signals were decomposed into the
forward and backward waves based on the principles of the
Telegraphers equation [16]. These waveforms were processed
through an analog band-pass filter (BPF) with a center fre-
quency of 118.5 kHz. The magnitude, phase, impulse, step,
and ramp response of the filter are shown in Fig. 3(a), and
(b). For a sinusoidal 200 kHz filter input, the filter delay
was observed to be approximately 0.4 ps compared to the
wave travel time of 5.5 pus/km. As such we anticipate errors
and mis-classifications due to this filter. The filter has an
almost linear phase response within the pass band (shown as
vertical dotted lines). The transformations (e.g. symmetrical
components) are also useful in extracting features. However,
in this paper, we use the raw filtered forward waveform for
all the single-phase experiments. For the three-phase system
and IEEE 13 bus experiments, instead of using forward waves,
we used filtered voltage waveforms. Using voltage waveforms
instead of forward waves results in a potential reduction in
one pre-processing stage (no current sensor and forward-
backward decomposition required). The voltage waveforms
corresponding to each phase in the 3-phase system were
processed individually through the BPF.

C. Shapelet Discovery

We use the algorithm in [24] to discover a set of 10
Shapelets, with the objective of distinguishing faults from
steady-state waveforms. The algorithm uses signal subse-
quences to propose test Shapelets (similar to wavelets but
with no admissibility criteria) and ranks them based on the
Shapelet signal ’distance’ (correlation) and the ability to
classify. This offline process is computationally intensive.
The hyper-parameters for the Shapelet discovery algorithm
were chosen as learning rate = 0.1, weight regularizer = 0.1,
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@ indicate phase reversal upon reflection. The local peaks can
‘i be identified automatically by finding points that are greater
g in magnitude than their adjoining (immediate before and after)
B points. However, such an approach is sensitive to noise and
§ based on the TW clutter there could be several local peaks.
% - To solve this problem, we specify two peak selection criteria.
E The first criterion introduces a constraint on the relative peak

Time (us)

Fig. 4: Mother Shapelets discovered from the single-phase
and three-phase datasets with the objective to maximally
discriminate faults from steady-state.
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Fig. 5: Mother Shapelet at different translations and scales
superimposed over an arbitrary TW waveform.

and the number of iterations = 46. The Shapelet length was
chosen as 102 samples based on empirical observations and the
algorithm suggested in [24]. The discovered Shapelets were
ranked based on their discriminating ability. This essentially
means that the Shapelet having the highest rank possibly
captures the most frequently occurring transient portion of the
fault waveform.

In Fig. 4, we show the best (mother) Shapelets discovered
from fault datasets created from the single-phase and three-
phase configurations (explained in Section IV-Al). The simi-
larity of this shape to the step and ramp response of the pre-
processing band pass filter shown in Fig. 3, or a combination
of these, suggests that the Shapelet in a TW could be tied to the
pre-processing filter response. The Shapelet also reflects partial
contributions from reflections at the reactive impedance of the
source. Fig 5 shows the magnitude scaled mother Shapelet
superimposed over an arbitrarily chosen TW waveform, at
multiple locations. The similarity of the scaled and translated
mother Shapelet to a segment of the TW waveform implies
that it can act as a good basis for teasing out constituent waves.

D. Feature Extraction

We used the Shapelet with the highest rank as the mother
Shapelet and computed its correlation with the composite TW
waveform observed at the relay. The mother Shapelet was
essentially translated in time and its Euclidian distance from
the composite waveform is referred to as the correlation co-
efficient. The correlation coefficients for an arbitrarily chosen
composite waveform are shown in Fig. 6. The peaks represent
the highest correlation points in one traversal of the TW
wave and alternatively, imply the time of arrival. The valley
also implies the time of arrival, however, the negative values

prominence to be less than 0.1. Peak prominence is essentially
the height of the peak from the mean value of the signal.
As the correlation coefficients are normalized in the range
of [—1,+1], the choice of peak prominence of 0.1 implies
that every identified peak must correspond to at least 10%
matching with the chosen Shapelet basis. The second criterion
for peak identification is based on the relative location of
consecutive peaks. We specify this as a minimum separation
of 0.5 s between any two consecutive peaks. A separation
of 0.5 us corresponds to approximately 100 meters, which in
turn defines the minimum resolution in fault location.

Minimum value of prominence for peaks/valleys = 0.1
[normalized correlatior‘\]
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Fig. 6: Constraints to identify peaks and valleys.

We extracted the following set of features based on the
location and magnitude of the peaks and valleys.

o Feature 1: Magnitude of first IV correlation peaks ex-
cluding the first peak

« Feature 2 : Distance between first N pairs of consecutive
correlation peak locations/ time lags

o Feature 3 : Magnitude of first N correlation valleys
excluding the first valleys

o Feature 4 : Distance between first [V pairs of consecutive
correlation valley locations/ time lags

For the three-phase system, we processed the voltage and
current waveform from individual phases separately to extract
three sets of features. These features were then merged to
create a feature set for a pattern.

E. Building a classifier

Instead of choosing a non-linear classifier such as a neural
network, we first evaluated a linear classifier. The linear clas-
sifier works when the decision boundary separating different
classes can be defined by lines, planes, or hyper-planes [29].
If the extracted features have sufficient discriminating ability
then a linear combination of the features may transform the
data onto a linearly separable plane. Motivated by the intuition
that the Shapelet features can infer the fault location, we used
the multi-class linear discriminant analysis (LDA) classifier.
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We assume that each class has the same covariance but with
different means.

In LDA, each class (Y') generates data (X) using a multi-
variate normal distribution. In our case, the data X essentially
is the extracted set of features. The model assumes X has a
Gaussian mixture distribution. The classifier predicts such that
the expected classification cost in (1) is minimized.

F— g
Y Tgy:ini

K
min Kk; P(k/x)C(y/k) (1)

Where ¢ is the predicted classification. K is the number
of classes. P(k/x) is the posterior probability of class & for
observation x. C(y/k) is the cost of classifying an observation
as y when its true class is k, defined in (2).

1, ify+#k
Cly/k) =1, if‘;”:k @)

FE. Classifying a pattern

The chosen mother Shapelet and pre-trained LDA classifica-
tion model are stored/deployed at the TW relay module. Clas-
sification requires a computation of the correlation between
the Shapelet and the incoming signal, at each successive lag
of the Shapelet with respect to the signal. This step would have
to be performed in real-time and is not very computationally
intensive since the length (span) of the Shapelet is short
(102 samples in our experiments). The peaks and valleys are
detected from the correlation coefficients and the chosen set
of features is extracted. These features are then fed as input to
the trained LDA model to predict the class to which the fault
belongs.

We use two different classifiers, (i) fault-location classifier
to identify approximate fault locations; and (ii) fault-type
classifier to determine the type of the fault. Both the classifiers
are fed with the same set of input features. The block diagram
of the proposed scheme is shown in Fig. 7.

IV. SIMULATIONS & RESULTS
A. Case 1: Single phase test system

This subsection summarizes results for the single-phase
system reported in [1]. Additionally, we discuss a number of
parametric studies to explore the robustness of the classifica-
tion results.

1) Dataset: We created a database with a comprehensive
set of fault waveforms by varying the fault resistance and fault
location parameters in the simple simulation setup. For the
single-phase systems, as there is only one type of fault (line-to-
ground), we only demonstrate the fault-location classification.
We created a set of total 3600 patterns and divided them into
9 classes based on the location of the fault. The faults at the
upstream and downstream laterals are combined to form one
class. The faults on the main feeder were categorized into
8 segments of 500 meters each, corresponding to the other
8 classes, making the distance resolution to be 500 meters.
This choice of 500 meters is arbitrary. As the placement of
DER evolves, the resolution could be chosen accordingly.

The fault locations were uniformly distributed within each
segment/class. At each fault location, the fault resistance
was varied randomly between 0.1 to 2 2 with a uniform
distribution, to create an exhaustive set of patterns.

2) Results: We performed 10-fold cross-validation to eval-
uate the performance of the LDA classifier. By performing
cross-validation, we use all our patterns in the dataset, both
for training and for testing while evaluating the classifier on
examples it has never seen before. For the dataset without
noise, the mean classification accuracy of all the 10-folds
was 99.56% with a standard deviation of 0.42%. The small
value of the standard deviation indicates that the classifier is
consistent. This implies that training the classifier on patterns
of the data set chosen randomly and deploying it will lead to
similar performance.

To further analyze the classification performance in terms
of the confusion matrix, we divided the data set randomly
into 70% training data (280 patterns in each class) and 30%
(120 patterns in each class) testing data, chosen randomly.
The classifier was trained with 70% training data and the
resulting confusion matrix with 30% test data is shown in
Fig. 8(a). In this case, the classification accuracy was found
to be 99.35%. It can be observed that for Class-5, six patterns
are wrongly classified as the neighboring Class-6. Similarly,
1 patterns from Class-8 are wrongly classified as Class-7.
The misclassified patterns were found to lie near the decision
boundary of two neighboring classes. For instance, the 6 mis-
classified patterns in Class-5 correspond to the faults occurring
at locations between 3.45 to 3.5 km (within 50 meters from
the starting class boundary for Class-6). The confusion matrix
for the entire data set is shown in Fig. 8(b), to identify the
classes that are vulnerable when the ML model is deployed.
In our case, it leads to the similar conclusion we derived from
the 70-30 train-test data, i.e., a few patterns at the boundary
of Class-5 and 8 are misclassified to their adjoining class.

TABLE I: Classification accuracy with different SNRs.

SNR (dB) 45 40 35 30 25 20
Accuracy (%) Mean 99.55| 99.55| 99.53| 99.55| 99.33| 92.47
Std. Dev. | 047 | 047 | 049 | 046 | 049 | 1.22

The classifier performs quite well for the simulated data.
However, the field data will have measurement noise and for
low-intensity-high frequency TW waves, this could have a
severe impact. To assess the effect of noise we added white
Gaussian noise to the filtered waveform before extracting
the features. As we do not know the actual measurement
noise characteristics for the TW, white Gaussian distribution
seemed a reasonable assumption [30]. The mean and standard
deviations of 10-fold cross-validation accuracy for different
signal-to-noise ratio (SNR) conditions are presented in Table I.
The classification performances were minimally affected (stays
at a mean of ~ 99.5% with ~ 4+0.5% standard deviation) for
SNR of up 25 dB. However, for 20 dB SNR, the accuracy
dropped to 92.47% with an increase in standard deviation
to +1.22%. Considering that, we are introducing noise after
pre-processing with the band pass filter, 20 dB SNR is a
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Fig. 7: Block diagram showing the modules of a TW relay based on Shapelets.
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Fig. 8: Confusion matrix with (a) 30% test data and 70%
training data, and (b) for the entire data set, without noise.
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Fig. 9: Confusion matrix with (a) 30% test data and 70%
training data, and (b) for the entire data set, at 30 dB SNR.

very extreme test. Therefore, the proposed method can be
considered robust against measurement noise.

In Fig. 9(a), the confusion matrix computed for the 30% test
data at 30 dB SNR is shown. The model was trained with the
rest 70% training data. Comparing it with the case without
noise (Fig. 8), only one additional pattern in Class-2 got
misclassified into neighboring Class-3. It further demonstrates
the robustness to additive noise. The confusion matrix for the
entire dataset shown in Fig. 9(a) also reinforces the same
conclusion that few patterns at the boundary of Class-2, 5,
and 8 are at the risk of being misclassified to their adjoining
class, at 30 dB SNR.

B. Case 2: Three-phase test system

The single-phase case evaluated the performance of the
Shapelet in localizing faults. We extend the evaluation to 3-
phase systems to not only assess the ability to identify fault
location but also to diagnose the type of fault.

1) Dataset: The dataset for the 3-phase comprised of
different types of faults (line-to-ground, line-line-to-ground,
line-to-line, three-phase, and three-phase-to-ground) listed in
Table II. For each of these fault types, a set of 1350 patterns
was created with the parametric variations and class labels as
discussed in Section IV-Al, except that the fault resistance
took a value between 0.025— 2 ohm with incremental steps of
0.4. We also varied the inception angle of the fault between
0 — 360° at increments of 70° by varying the source angle. A
total of 14,850 (11x1350) patterns were generated. In order to
mimic the real-world characteristics, we added white Gaussian
noise to keep the SNR at 40 dB. The Shapelet discovery for
the 3-phase dataset followed the same principle as that of the
single-phase. The best Shapelet (S3®) was used as the mother
shapelet (shown in Fig. 4) to extract the features discussed in
Section III-D.

2) Results: In the 3-phase case, we have two classifiers
in action; first, to classify the type of the fault, and second,
to identify the approximate location of the fault. Both the
classifiers were fed with the same set of features and carried
out the inferences in parallel.

(a) Fault-type classification: The confusion matrix in Fig. 10
summarizes the classification performance for the identifi-
cation of fault types with features comprising of first 41
peaks/valleys. The mean classification accuracy with 10-fold
cross-validation for all the 11 classes is 86.43% with a
standard deviation of 0.74%. The three-phase (abc and abcg)
faults were observed to have a relatively lower classification
accuracy.

(b) Fault-location classification: Table II summarizes the
fault location classification performance for each type of
fault with 10-fold cross-validation. The mean fault location
classification accuracy for abc faults was observed to be the
least (98.86%). For all other 10 types of faults, the accuracy
was > 99%.
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Fig. 10: Confusion matrix for fault type classification with (a)
30% test data and 70% training data, and (b) for the entire
3-phase data set at 40 dB SNR. The class labels are mapped
onto fault types as: ag:1, bg:2, cg:3, abg:4, bcg:5, acg:6, ab:7,
bc:8, ac:9, abcg:10, abce:11

TABLE II: Fault location classification accuracy with 10-fold
cross-validation for 3-phase dataset.

Fault Type Accuracy (%)
Mean () Std. Dev. (o)
ag 99.87 0.45
Single Phase-Ground  bg 99.93 0
cg 100 0.28
abg 99.33 1.53
Double Phase-Ground bcg 99.2 0.7
acg 99.6 1.17
ab 100 0.21
Phase-Phase be 99.93 0.28
ac 99.93 0
abcg 99 0.66
Three Phase abc 98.86 0.63

C. Case 3: IEEE 13-bus distribution feeder

We considered the 13-bus distribution test system [27]
shown in Fig. 11 for a comprehensive evaluation of the
proposed approach. The line segment between node 632 and
671 was considered as the observed line for protection and the
TW relay was assumed to be placed on node 632. The 632-
671 is a 0.61 km long line that was divided into 7 segments
of 87 meters to create Classes 1-7, based on the locatic
of the fault. The faults were simulated at three segmen

Substation @ 650
Transformer /Qb/v
646 45 TWReY [ 633 634
® . o——e
Up-stream Faults
Faults on observed line
611 684 692 675
@ ®

Down-stream Faults

652 680

Fig. 11: Experimental setup for 13-bus distribution test feeder.

corresponding upstream (at bus 632), on the observed line
(632 — 671), and downstream (671 — 680), respectively. The
faults at the upstream and the downstream were labeled as
Class-0, resulting in a total of 8 classes for fault location
identification. The fault resistance and inception angle were
varied between 0.05 — 2 Q and 0 — 360°, respectively, to
create 120 patterns for each class. The noise was added
to each TW pattern to keep the SNR at 40 dB. The fault
location classification accuracy with 10-fold cross-validation
corresponding to each type of fault is summarized in Table III.
The mean fault type classification accuracy with 10-fold cross-
validation was found to be 92.84% with a standard deviation
of 0.81.

TABLE III: Fault-location classification accuracy with 10-fold
cross-validation for IEEE 13-bus dataset.

ag bg cg abg bcg acg ab bc ac abc abcg
©99.6 100 100 99.9 99.9 99.5 100 100 99.8 99.5 99.7
o 04 0 0 0.3 03 1.1 0 0 0.4 0.7 0.7

V. PERFORMANCE EVALUATIONS
A. Impact of feature count on classification performance

The feature count is an important factor in the performance
of the classifiers. The number of peaks/valleys considered
for computing feature values as a function of fault location
accuracy for the 3-phase test system dataset is shown in
Fig. 12. It was observed that although the mean fault location
classification accuracy increases with increasing feature count,
the performance with 21, 31 and 41 peaks have relatively
similar profiles.

However, for the fault type classification, the feature count
has a much higher significance. The fault type classification
accuracy for 11, 21, 31, and 41 peaks were 67.04, 83.83,
and 86.43, respectively. The set of features from 4/-peaks
was found to be a reasonable choice for both fault type
classification and identification of fault locations.

102

T T T T
[ W 11-peaks I 21-peaks []31-peaks INEM41-peaks

100

ol i

6| |
be sbc  shog

94
B by cg abg bog scg @b ac

Accuracy

Fig. 12: Impact of feature count on fault location classification
accuracy.

B. Shapelet resemblance to band-pass filter response

In order to evaluate the contribution of the BPF to the shape
of the Shapelets, we considered the normalized step response
of the BPF (shown in Fig. 3b) as the mother Shapelet. We
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Fig. 13: Comparison of (a) fault-location classification and
(b) fault-type classification accuracy, with auto-correlation and
Shapelets.

extracted the features (with 41 peaks preserved) from the 3-
phase test system dataset and evaluated the performance of the
classifiers. The mean accuracy for the fault type classification
with 10 fold cross validation was observed to be 85.55% with
a standard deviation of 1.11. This is close to the accuracy
obtained with the discovered Shapelet, which was 86.43%. For
fault location classification, the mean of the average accuracy
corresponding to each type of fault was found to be > 95%.
This implies that the BPF response has a significant contribu-
tion to the shape of the mother Shapelet. The significance of
this observation is that, if indeed the BPF response can serve
as a good wavelet, the Shapelet discovery process could be
significantly simplified.

C. Effect of clutter complexity

The clutter complexity for the TW signature could largely
vary based on the network configurations. In order to eval-
uate the generalization of Shapelets, we conducted another
experiment with highly complex TW clutters. As the clutter
complexity depends on the number of reflections that get
superimposed when the TW signal is observed, the short lateral
segments will consequently make the observed TW clutter
more complex. Therefore, we reduced the length of upstream
and downstream laterals in the 3-phase test system to 0.75 and
0.5 km, respectively. We also added noise to the measured
voltage waveforms to keep the SNR at 40 dB. The fault-
location accuracy with 10-fold cross-validation is summarized
in Table IV. The fault-type classification accuracy has a mean
of 81.4502% with a standard deviation of 0.87092. Comparing

these with that of without clutter complexity, although the
classification accuracy decreases by a small amount they are
still > 99% for fault location and > 80% for fault type.

TABLE IV: Fault-location classification accuracy with 10-fold
cross-validation for the 3-phase dataset with short segments.

ag bg cg abg bcg acg ab bc ac abc abcg
p 100 99.2 100 98.3 98 98.5 99.9 99.6 99.5 98.4 98.4
c 0 0730 07208809802 06 05 09 0.6

D. Computational complexity

The Shapelet discovery is an offline process that needs
to be performed during the design phase to identify the
mother Shapelet. As the step response of the BPF resembles
the shape of the mother Shapelet, it can be treated as the
mother Shapelet without significantly affecting the classifica-
tion performance. The computational complexity for Shapelet
matching is O(N x M) for a Shapelet of length M over N
samples, which is minimal as M << N. The peak/valley
picking can be efficiently implemented without the need for
any high-performance processors. These factors make the
feature extraction lightweight. Finally, we use a simple LDA-
based classifier that is easy to train and extremely fast in
making inferences/predictions. For a MATLAB R2022a imple-
mentation of the 3-phase fault type and location classification
system in the Apple M2 processor with 8 GB RAM, the
entire process of feature computation for a signal takes a
mean time of 1.5 ms, and prediction takes a mean time of
0.0065 ms. These computational times will further go down
for an optimized embedded implementation.

E. Comparison with Auto-correlation

We analyzed an auto-correlation-based technique in order
to evaluate the relative importance of the Shapelets in charac-
terizing faults. The auto-correlation coefficients for individual
waveforms were computed over a fixed time window for the
3-phase test dataset. The auto-correlation peaks and valleys
were identified and the same set of features was extracted as
described in Section III-D. The comparison of mean accuracy
for fault-location classification corresponding to each type of
fault and fault-type classification are shown in Fig. 13. We
observed that the line-line-ground (abg, bcg, acg) and 3-phase
(abc, abcg) faults are relatively difficult to classify and have
lower accuracies for both locations as well as types. With auto-
correlation, patterns belonging to these classes are even harder
to distinguish. Whereas, the Shapelet approach consistently
boosts classification performance for these fault classes. For
the fault locations classification, the mean accuracy with auto-
correlation and Shapelets are 98.68% and 99.61%, respec-
tively. with 10-fold cross-validation. For fault types, the overall
accuracy with auto-correlation is 82.6% which gets boosted to
85.53% with Shapelet. Another advantage of Shapelets is the
reduction in computational complexity. Auto-correlation has a
computational complexity of O(N?) for a sequence of length
N samples and this reduces to O(N x M) for a Shapelet of
length M << N.
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FE. Comparison with other techniques

In this sub-section, we present an objective comparison of
the performance of the proposed approach with some recently
proposed techniques, as there is significant variability in the
dataset size, fault types considered, fault location tasks, fault
parameters, measurement noise, performance metric calcu-
lation, and training & validation of the ML models. The
proposed approach is demonstrated for a feeder in the distri-
bution systems. For larger systems, it can simply be replicated
individually for each feeder without scalability issues. In [19]
a continuous wavelet transform (CWT) based multi-resolution
analysis, along with boosted trees/random forest classifier is
proposed and results in an accuracy of 93.97% for fault type
classification in the IEEE 34 bus test system. An improvement
in this accuracy to 96% was reported in [20] with CWT
features and a deep convolutional neural network (CNN). In
both these approaches, the fault types are categorized into
either of three classes, single-line-to-ground fault, line-to-
line fault, or 3-Phase fault. Compared to these, the proposed
approach distinguishes among individual sub-types of faults
resulting in 11 classes. To make the comparison more relevant,
we merged the 11 classes to form the three classes for the IEEE
13 bus test system and observed a mean accuracy of 96.7%
with 10-fold cross-validation. This fault-type classification
accuracy is slightly higher compared to both the previous
approaches. Although this does not appear to be a significant
improvement, the proposed technique alleviates the need to use
computationally demanding CWT or deep CNN. In addition,
the deep Learning classifiers may also suffer from over-fitting
if not trained on a sufficiently large dataset. This implies
that the models could have high validation accuracy but may
have poor generalization. In our evaluations, we used a simple
discriminant analysis classifier that emphasizes the discrimi-
nation ability of the extracted features and performed 10-fold
cross-validation. Another difference is that for simulations in
[19, 20] faults are created only at the system nodes, whereas
we simulate faults at various locations of the lines. We also
performed the evaluation under the measurement noise with
an SNR of 40 dB.

In [31] a comprehensive performance comparison of various
fault location algorithms is presented. In addition, the authors
propose a Mathematical Morphology (MM) and Stationary
Wavelet Transform (SWT) based feature extraction algorithm.
The features are then fed to the RF classifier and regressor to
predict the fault locations. For an RF model trained with 70%
training data and 30% validation data at an SNR 45 dB, they
report an average error of 1367.2 ft (416.72 meters). Compared
to this, the proposed fault location classification algorithm for
the IEEE 13 bus distribution system, has a resolution of 87
meters and achieves an overall accuracy of > 99%, for all the
fault types. Faults can be located and classified with less than
0.5 ms of measured data after the TW arrival.

VI. DISCUSSIONS AND CONCLUSION

This paper proposes a relatively simple Shapelet-based
approach to classify faults in the distribution systems through
TW principles. In contrast to choosing a pre-defined basis
function such as wavelets, we extracted a set of discriminating

sub-sequences (Shapelets) from a dataset with different fault
characteristics. One of the extracted Shapelets was considered
as the template/basis (mother Shapelet) to extract features from
the TW clutter. The use of Shapelets was comprehensively
tested using 5-bus single- and three-phase systems, as well
as the more extensive IEEE 13-bus distribution test system.
For the 3-phase systems, we used the voltage waveforms
instead of forward waves, eliminating the need for current
transformers. We observed that the extracted features result in
a linear decision boundary, and with discriminant analysis, the
fault locations in the distribution system can be classified with
reasonable accuracy (> 99% in the absence of noise). We also
found the proposed Shapelet-based method to be robust against
measurement noise retaining a classification accuracy > 90%.
The Shapelet features were also used to classify different types
of faults in the distribution system. For the IEEE 13 bus test
system, the fault type classification accuracy was found to
be 92.84% for 11 classes and 96.7% for 3 classes (LG, LL,
and 3-phase). These results indicate the promising ability of
Shapelets in classifying distribution system faults.

Future work will address hardware implementation, the
use of advanced ML methods and sensitivity analysis, and
critical comparisons with existing relay solutions, as well as
techniques such as the ones described in [7, 8, 9, 11, 12].
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