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Abstract—The application of traveling wave (TW) principles
for fault detection in distribution systems is challenging because of
multiple reflections from the laterals and other lumped elements,
particularly when we consider communication-free applications.
In [1], we proposed the use of Shapelets to characterize fault
signatures as we move towards a more realistic data-driven
solution. The Shapelet can be correlated with the physical
characteristics of TW generation process, in contrast to choosing
a predefined basis such as Wavelets. This paper is an extension of
this work to comprehensively evaluate Shapelets for identifying
the fault types, in addition to their locations in single-phase,
three-phase, and IEEE 13-bus distribution systems. We also
propose using the voltage waveforms instead of the forward
waves, which eliminates the need for a CT. The proposed method
can identify fault locations within a local region with ≈ 99%

accuracy and classify the fault types with an accuracy of over
90%.

Index Terms—Traveling Waves, Distribution Systems,
Shapelets, Fault Classification, Machine learning

I. INTRODUCTION

The protection of distribution systems with high penetra-

tions of inverter-based distributed energy resources (DERs)

is a major challenge for utilities. The traditional over-current

relays may not detect faults due to the current limiting circuitry

in the DERs that could limit the fault current to ≈ 1.2 pu [2].

In addition, the faster control mechanisms of the DERs and

low inertia systems may require ultra-fast tripping protec-

tion schemes (FTPS). Promising approaches include Traveling

Wave (TW) based protection.

In this extended version of [1], we present a comprehensive

evaluation of the use of Shapelets as a tool for extracting

traveling wave features for protective relaying in distribution

systems. The scope selected for the investigation assumes a

communication-free, single-ended, scheme for a main feeder

section with laterals. The present paper extends the work

in [1] and presents comprehensive studies and evaluations

using a simple 5-bus three-phase system and the IEEE 13 bus

distribution test system. The development of an actual relay

paradigm will be reported in the future.

The use of fault-generated TW as a means for ultra-high-

speed fault detection and location has been a subject of

extensive research, with implementations reported in the early

seventies [3]. Observation of wave arrival times of TW at a

specific location can be used to infer the occurrence, location,
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and type of fault. This phenomenon is transitory and requires

the analysis to be performed on a small time window of a

few microseconds or milliseconds duration. Further research

[4, 5], and advancements in microprocessors, led to practical

applications for EHV Transmission [5]. The application of TW

relays to a long, untapped, section of EHV, or HVDC lines is

a mature area [6]. In [7], a dynamic state estimation technique

based on the TW principles is proposed for double-ended

transmission lines. It requires GPS-synchronized measure-

ments at both ends of the line and a high-fidelity model of the

protected line which is not suitable for the distribution systems

and a communication-free approach is desired. Therefore, TW

protection is a subject of active research for the distribution

systems [8, 9, 10, 11, 12, 13].

There are two primary issues that need attention in TW-

based protection for distribution systems. First, both the de-

tection and location of the fault are important. We suspect

that a lower resolution in location may be acceptable in

relaying applications; the high resolution is desired, post-fault,

for needed repair and maintenance operations. Second, the

distribution feeders represent a more challenging application

because of short travel times, tapped laterals, and complex

terminations. This means that TW reflected from a number of

laterals results in an overlap or ‘clutter’. Fig. 1 shows the TWs

extracted from the measured phase-A voltages in the case of a

3-phase to ground fault. The system used to generate it is a 3-

phase 5-bus test system with the laterals shown in Fig. 2. For

the case without laterals, the upstream and downstream laterals

were simply removed. In the absence of lateral TWs can be

observed to have a nearly periodic pattern making it easier to

detect wave arrival times. For the case of laterals, it can be

observed that the TW waveform becomes more complex and

cluttered. Thus, it becomes difficult to isolate waves reflected

from different nodes, which in turn makes detection as well

as location determination more difficult.
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Fig. 1: Clutter due to the presence of laterals shown for a TW

waveform in case of a 3-phase to ground fault.

Section II reviews the recent advances in TW-based relaying
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principles applied for distribution systems protection. The gaps

in the literature are identified and the use of Shapelets as a tool

for TW feature extraction is summarized. Section III describes

the proposed approach to building an algorithm for fault

type and location classification. The simulation and results

are discussed in Section IV. The comprehensive performance

evaluation of the proposed approach is discussed in Section V,

followed by the conclusion in Section VI.

II. PROBLEM FORMULATION

Faults generate TW which travel through the distribution

line from the location of the fault to the opposite ends, at a

speed near the velocity of light. The TW relay is placed at

one end of the distribution line. The occurrence, location, and

type of fault are estimated by observing these wave arrival

times. However, due to the presence of multiple lateral lines

in the distribution lines, these waves are also reflected at the

junctions of each lateral before reaching the TW relay. The

superposition of these TW reflections results in clutter, which

in turn makes it extremely difficult to estimate the wave arrival

times. TW-based protection in tapped (multiterminal) lines has

been addressed in some recent literature e.g.,[5, 6, 14]. The

basic ideas rely on a knowledge of the sequence of wave

arrivals followed by some form of pattern matching with the

actual waves during a fault. Our exploration draws upon these

ideas. One of the ways to address this challenge is to use

sophisticated signal processing and machine learning (ML)

algorithms to extract relevant information from the TW [9, 11].

Reference [15] provides a rather comprehensive survey of

recent research in this area with an emphasis on the increasing

penetration of distributed resources.

A. Traveling waves in distribution systems








































  

 



















Fig. 2: Lattice diagram illustrating the TW phenomena in a

distribution feeder with laterals.

We consider the feeder shown in Fig. 2, taken to be a single-

phase feeder for our initial study. The relay R at bus 1 is

to detect faults on the primary feeder sections M1 and M2,

between buses 2 and 5, using TW principles. The desired

scheme is single-ended (communication-free) The primary

feeder has two laterals separated by 2 km. The upstream

and downstream laterals have lengths of 1 km and 2 km,

respectively. All lines have identical characteristics with a

travel time of 5.5 µs/km. Suppose a fault occurs at X on M2

a distance of 1 km from the downstream lateral. The Lattice

diagram [16] in Fig. 2 shows the pattern of TW due to the

fault. The solid and dotted lines in the lattice diagram represent

the forward and the backward waves, respectively.

The waves on upstream laterals are shown in green and

those from the downstream laterals are shown in blue. The

reflections from the fault arriving at the relay through the

primary (main) feeder are shown in red. The first arrival and

reflection (A) from the fault through the main feeder acts

as the reference. In the absence of laterals and load taps, a

single-ended scheme can detect and locate the fault by 1)

detecting the forward and backward waves labeled ‘A’ and

‘B’, respectively, and 2) estimating the time between the two.

It can be observed that before wave B from the main feeder

arrives, there are several wave arrivals from the fault as well

as the laterals. In fact, the lateral return precedes the one from

the fault. The shapes of the waves will depend on distortion

(attenuation, dispersion), the coefficient of reflection at various

junctions, and the shape of the incident wave, and will fade

with time. For a distribution feeder, the Relay R must account

for these intermediate waves [6, 14, 15, 17] to detect and locate

the fault by observing the arrival times with respect to the

reference.

The system in Fig. 2 was simulated using Mat-

lab/Simulink/Simscape. Details are provided in Section IV.

The forward (top) and backward (bottom) waves seen by the

relay are shown on the bottom right of Fig. 2, and are keyed

to the lattice diagram. The TW relay must detect the periodic

arrival of reflected waveforms. It should be noted that the

periodicity will be different for the main feeder and each of the

laterals (with the exception of two or more laterals of the same

impedance at a fixed location). If some of these reflections

have very close time-of-arrival at the relay then constructive

or destructive interference may occur. This will result in clutter

and introduce ambiguity. Other sources of ambiguity include

transformers (loads), capacitor banks, DERS, impedance and

arcing in the fault, and measurement noise. TWs similar

to those due to a fault can also be produced by switching

operations. This clutter makes it extremely challenging to

estimate the location of the fault by analyzing, particularly

if high location resolution is desired in real-time. The relay

must isolate waves or wave arrivals of interest to detect faults.

Wavelet analysis is one of the prominent approaches for

extracting information from TW clutters [18, 19, 20]. Despite

their success in some scenarios, there is no consensus on what

the best mother wavelet is [21, 22]. By using Shapelets, we

can select the best basis that is not constrained to the existing

wavelet basis functions and is governed by the physical

phenomenon for TW generation.

B. Hypothesis

Shapelets are discriminative sub-sequences of time series

that best characterize inter-class differences and have been suc-

cessful in several classification tasks [23, 24, 25]. Motivated

by this we formulate the following hypotheses:

1) Shapelets as discriminants: If we discover a set of

discriminative sub-sequence/Shapelets and treat them as

This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIA.2023.3331661

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on December 18,2023 at 19:15:53 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INDUSTRIAL APPLICATION, VOL. XX, NO. XX, MONTH 20XX 3

(a)

(b)

Fig. 3: (a) Magnitude and Phase response, (b) impulse, step,

and ramp response of the bandpass filter.

basis functions for extracting information/features from

the TW signals, can these features be used to classify

different types of faults and find their locations?

2) The mother-Shapelet : Can we design an analytical

Shapelet that can be interpreted as a global template

(similar to the mother wavelet or basis function)? Do the

dilated and translated versions of this template capture

the fault signatures?

3) Applicability: Is it reliable and computationally feasible

to develop a fault detection and classification technique

based on features extracted from Shapelet analysis?

We propose and explore the use of Shapelets to implicitly

‘isolate’ wave arrivals and then extract the most important

features from the TW reflection clutter. These features are fed

to an ML classifier to estimate the approximate location of

the fault (categorized as different classes) and the type of the

fault (categorized as different classes).

III. METHODS

TW relays are intended to detect high-frequency electro-

magnetic transient signatures corresponding to a fault. A

TW relay uses a current transformer (CT) and/or a potential

transformer (PT) to measure voltage (v(t)) and current (i(t))
waveforms on a line and digitizes them with a high sampling

rate.

A. Test System

Modeling requirements to recreate and study TW in distri-

bution systems are discussed in [26]. The report emphasizes

the need for additional modeling, simulation, and experiments

to fully understand TW phenomena in distribution systems and

to use them for fault detection and identification. Our study

uses a simplified 5-bus distribution system simulation setup

as shown in Fig. 2. The system under study has two different

configurations and associated sets of parameters.

In [1] we considered a single-phase distribution system with

an ideal ac source connected to a feeder with two laterals

(same as described in Section II). The feeder and laterals

are modeled as distributed parameter lines without parameter

frequency dependence. We explored the detection of faults at

various distances from the relay with varying fault resistances

and inception angles. This paper extends the studies using a

three-phase 5-bus distribution system as well as the IEEE 13

bus Distribution Test System [27]. For all the experiments in

this paper, we consider a sampling rate of 10 MHz which

results in a temporal resolution of 0.1 µs. The very high

sampling rate can provide sub-100 meters resolution of the

fault location. Additionally, at the proof of concept stage,

we have started with the higher sampling rate as a baseline

from which sensitivity studies can be performed. The available

TW relays ( e.g., SEL T401L) have a sampling rate of

1MHz [28], we propose that the sampling rate of 10MHz for

applications in distribution systems. For a separate project, we

have installed 10MHz sensors in the field to capture the TW,

so we have shown that this level of sampling rate is possible.

B. Pre-processing

The voltage and current signals were decomposed into the

forward and backward waves based on the principles of the

Telegraphers equation [16]. These waveforms were processed

through an analog band-pass filter (BPF) with a center fre-

quency of 118.5 kHz. The magnitude, phase, impulse, step,

and ramp response of the filter are shown in Fig. 3(a), and

(b). For a sinusoidal 200 kHz filter input, the filter delay

was observed to be approximately 0.4 µs compared to the

wave travel time of 5.5 µs/km. As such we anticipate errors

and mis-classifications due to this filter. The filter has an

almost linear phase response within the pass band (shown as

vertical dotted lines). The transformations (e.g. symmetrical

components) are also useful in extracting features. However,

in this paper, we use the raw filtered forward waveform for

all the single-phase experiments. For the three-phase system

and IEEE 13 bus experiments, instead of using forward waves,

we used filtered voltage waveforms. Using voltage waveforms

instead of forward waves results in a potential reduction in

one pre-processing stage (no current sensor and forward-

backward decomposition required). The voltage waveforms

corresponding to each phase in the 3-phase system were

processed individually through the BPF.

C. Shapelet Discovery

We use the algorithm in [24] to discover a set of 10
Shapelets, with the objective of distinguishing faults from

steady-state waveforms. The algorithm uses signal subse-

quences to propose test Shapelets (similar to wavelets but

with no admissibility criteria) and ranks them based on the

Shapelet signal ’distance’ (correlation) and the ability to

classify. This offline process is computationally intensive.

The hyper-parameters for the Shapelet discovery algorithm

were chosen as learning rate = 0.1, weight regularizer = 0.1,
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Fig. 4: Mother Shapelets discovered from the single-phase

and three-phase datasets with the objective to maximally

discriminate faults from steady-state.

0 50 100 150
Time ( s)

-60

-40

-20

0

20

A
rb

ita
ry

 u
ni

ts

Waveform
Shapelet

Fig. 5: Mother Shapelet at different translations and scales

superimposed over an arbitrary TW waveform.

and the number of iterations = 46. The Shapelet length was

chosen as 102 samples based on empirical observations and the

algorithm suggested in [24]. The discovered Shapelets were

ranked based on their discriminating ability. This essentially

means that the Shapelet having the highest rank possibly

captures the most frequently occurring transient portion of the

fault waveform.

In Fig. 4, we show the best (mother) Shapelets discovered

from fault datasets created from the single-phase and three-

phase configurations (explained in Section IV-A1). The simi-

larity of this shape to the step and ramp response of the pre-

processing band pass filter shown in Fig. 3, or a combination

of these, suggests that the Shapelet in a TW could be tied to the

pre-processing filter response. The Shapelet also reflects partial

contributions from reflections at the reactive impedance of the

source. Fig 5 shows the magnitude scaled mother Shapelet

superimposed over an arbitrarily chosen TW waveform, at

multiple locations. The similarity of the scaled and translated

mother Shapelet to a segment of the TW waveform implies

that it can act as a good basis for teasing out constituent waves.

D. Feature Extraction

We used the Shapelet with the highest rank as the mother

Shapelet and computed its correlation with the composite TW

waveform observed at the relay. The mother Shapelet was

essentially translated in time and its Euclidian distance from

the composite waveform is referred to as the correlation co-

efficient. The correlation coefficients for an arbitrarily chosen

composite waveform are shown in Fig. 6. The peaks represent

the highest correlation points in one traversal of the TW

wave and alternatively, imply the time of arrival. The valley

also implies the time of arrival, however, the negative values

indicate phase reversal upon reflection. The local peaks can

be identified automatically by finding points that are greater

in magnitude than their adjoining (immediate before and after)

points. However, such an approach is sensitive to noise and

based on the TW clutter there could be several local peaks.

To solve this problem, we specify two peak selection criteria.

The first criterion introduces a constraint on the relative peak

prominence to be less than 0.1. Peak prominence is essentially

the height of the peak from the mean value of the signal.

As the correlation coefficients are normalized in the range

of [−1,+1], the choice of peak prominence of 0.1 implies

that every identified peak must correspond to at least 10%
matching with the chosen Shapelet basis. The second criterion

for peak identification is based on the relative location of

consecutive peaks. We specify this as a minimum separation

of 0.5 µs between any two consecutive peaks. A separation

of 0.5 µs corresponds to approximately 100 meters, which in

turn defines the minimum resolution in fault location.

Fig. 6: Constraints to identify peaks and valleys.

We extracted the following set of features based on the

location and magnitude of the peaks and valleys.

• Feature 1: Magnitude of first N correlation peaks ex-

cluding the first peak

• Feature 2 : Distance between first N pairs of consecutive

correlation peak locations/ time lags

• Feature 3 : Magnitude of first N correlation valleys

excluding the first valleys

• Feature 4 : Distance between first N pairs of consecutive

correlation valley locations/ time lags

For the three-phase system, we processed the voltage and

current waveform from individual phases separately to extract

three sets of features. These features were then merged to

create a feature set for a pattern.

E. Building a classifier

Instead of choosing a non-linear classifier such as a neural

network, we first evaluated a linear classifier. The linear clas-

sifier works when the decision boundary separating different

classes can be defined by lines, planes, or hyper-planes [29].

If the extracted features have sufficient discriminating ability

then a linear combination of the features may transform the

data onto a linearly separable plane. Motivated by the intuition

that the Shapelet features can infer the fault location, we used

the multi-class linear discriminant analysis (LDA) classifier.
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We assume that each class has the same covariance but with

different means.

In LDA, each class (Y ) generates data (X) using a multi-

variate normal distribution. In our case, the data X essentially

is the extracted set of features. The model assumes X has a

Gaussian mixture distribution. The classifier predicts such that

the expected classification cost in (1) is minimized.

ŷ = arg min
y=1,2−−K

K
∑

k=1

ˆP (k/x)C(y/k) (1)

Where ŷ is the predicted classification. K is the number

of classes. ˆP (k/x) is the posterior probability of class k for

observation x. C(y/k) is the cost of classifying an observation

as y when its true class is k, defined in (2).

C(y/k) =

{

1, if y 6= k

0, if y = k
(2)

F. Classifying a pattern

The chosen mother Shapelet and pre-trained LDA classifica-

tion model are stored/deployed at the TW relay module. Clas-

sification requires a computation of the correlation between

the Shapelet and the incoming signal, at each successive lag

of the Shapelet with respect to the signal. This step would have

to be performed in real-time and is not very computationally

intensive since the length (span) of the Shapelet is short

(102 samples in our experiments). The peaks and valleys are

detected from the correlation coefficients and the chosen set

of features is extracted. These features are then fed as input to

the trained LDA model to predict the class to which the fault

belongs.

We use two different classifiers, (i) fault-location classifier

to identify approximate fault locations; and (ii) fault-type

classifier to determine the type of the fault. Both the classifiers

are fed with the same set of input features. The block diagram

of the proposed scheme is shown in Fig. 7.

IV. SIMULATIONS & RESULTS

A. Case 1: Single phase test system

This subsection summarizes results for the single-phase

system reported in [1]. Additionally, we discuss a number of

parametric studies to explore the robustness of the classifica-

tion results.

1) Dataset: We created a database with a comprehensive

set of fault waveforms by varying the fault resistance and fault

location parameters in the simple simulation setup. For the

single-phase systems, as there is only one type of fault (line-to-

ground), we only demonstrate the fault-location classification.

We created a set of total 3600 patterns and divided them into

9 classes based on the location of the fault. The faults at the

upstream and downstream laterals are combined to form one

class. The faults on the main feeder were categorized into

8 segments of 500 meters each, corresponding to the other

8 classes, making the distance resolution to be 500 meters.

This choice of 500 meters is arbitrary. As the placement of

DER evolves, the resolution could be chosen accordingly.

The fault locations were uniformly distributed within each

segment/class. At each fault location, the fault resistance

was varied randomly between 0.1 to 2 Ω with a uniform

distribution, to create an exhaustive set of patterns.

2) Results: We performed 10-fold cross-validation to eval-

uate the performance of the LDA classifier. By performing

cross-validation, we use all our patterns in the dataset, both

for training and for testing while evaluating the classifier on

examples it has never seen before. For the dataset without

noise, the mean classification accuracy of all the 10-folds

was 99.56% with a standard deviation of 0.42%. The small

value of the standard deviation indicates that the classifier is

consistent. This implies that training the classifier on patterns

of the data set chosen randomly and deploying it will lead to

similar performance.

To further analyze the classification performance in terms

of the confusion matrix, we divided the data set randomly

into 70% training data (280 patterns in each class) and 30%
(120 patterns in each class) testing data, chosen randomly.

The classifier was trained with 70% training data and the

resulting confusion matrix with 30% test data is shown in

Fig. 8(a). In this case, the classification accuracy was found

to be 99.35%. It can be observed that for Class-5, six patterns

are wrongly classified as the neighboring Class-6. Similarly,

1 patterns from Class-8 are wrongly classified as Class-7.

The misclassified patterns were found to lie near the decision

boundary of two neighboring classes. For instance, the 6 mis-

classified patterns in Class-5 correspond to the faults occurring

at locations between 3.45 to 3.5 km (within 50 meters from

the starting class boundary for Class-6). The confusion matrix

for the entire data set is shown in Fig. 8(b), to identify the

classes that are vulnerable when the ML model is deployed.

In our case, it leads to the similar conclusion we derived from

the 70-30 train-test data, i.e., a few patterns at the boundary

of Class-5 and 8 are misclassified to their adjoining class.

TABLE I: Classification accuracy with different SNRs.

SNR (dB) 45 40 35 30 25 20

Accuracy (%) Mean 99.55 99.55 99.53 99.55 99.33 92.47
Std. Dev. 0.47 0.47 0.49 0.46 0.49 1.22

The classifier performs quite well for the simulated data.

However, the field data will have measurement noise and for

low-intensity-high frequency TW waves, this could have a

severe impact. To assess the effect of noise we added white

Gaussian noise to the filtered waveform before extracting

the features. As we do not know the actual measurement

noise characteristics for the TW, white Gaussian distribution

seemed a reasonable assumption [30]. The mean and standard

deviations of 10-fold cross-validation accuracy for different

signal-to-noise ratio (SNR) conditions are presented in Table I.

The classification performances were minimally affected (stays

at a mean of ≈ 99.5% with ≈ ±0.5% standard deviation) for

SNR of up 25 dB. However, for 20 dB SNR, the accuracy

dropped to 92.47% with an increase in standard deviation

to ±1.22%. Considering that, we are introducing noise after

pre-processing with the band pass filter, 20 dB SNR is a
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Fig. 7: Block diagram showing the modules of a TW relay based on Shapelets.

(a) (b)

Fig. 8: Confusion matrix with (a) 30% test data and 70%

training data, and (b) for the entire data set, without noise.

(a) (b)

Fig. 9: Confusion matrix with (a) 30% test data and 70%

training data, and (b) for the entire data set, at 30 dB SNR.

very extreme test. Therefore, the proposed method can be

considered robust against measurement noise.

In Fig. 9(a), the confusion matrix computed for the 30% test

data at 30 dB SNR is shown. The model was trained with the

rest 70% training data. Comparing it with the case without

noise (Fig. 8), only one additional pattern in Class-2 got

misclassified into neighboring Class-3. It further demonstrates

the robustness to additive noise. The confusion matrix for the

entire dataset shown in Fig. 9(a) also reinforces the same

conclusion that few patterns at the boundary of Class-2, 5,

and 8 are at the risk of being misclassified to their adjoining

class, at 30 dB SNR.

B. Case 2: Three-phase test system

The single-phase case evaluated the performance of the

Shapelet in localizing faults. We extend the evaluation to 3-

phase systems to not only assess the ability to identify fault

location but also to diagnose the type of fault.

1) Dataset: The dataset for the 3-phase comprised of

different types of faults (line-to-ground, line-line-to-ground,

line-to-line, three-phase, and three-phase-to-ground) listed in

Table II. For each of these fault types, a set of 1350 patterns

was created with the parametric variations and class labels as

discussed in Section IV-A1, except that the fault resistance

took a value between 0.025−2 ohm with incremental steps of

0.4. We also varied the inception angle of the fault between

0− 360° at increments of 70° by varying the source angle. A

total of 14, 850 (11×1350) patterns were generated. In order to

mimic the real-world characteristics, we added white Gaussian

noise to keep the SNR at 40 dB. The Shapelet discovery for

the 3-phase dataset followed the same principle as that of the

single-phase. The best Shapelet (S3Φ
1

) was used as the mother

shapelet (shown in Fig. 4) to extract the features discussed in

Section III-D.

2) Results: In the 3-phase case, we have two classifiers

in action; first, to classify the type of the fault, and second,

to identify the approximate location of the fault. Both the

classifiers were fed with the same set of features and carried

out the inferences in parallel.

(a) Fault-type classification: The confusion matrix in Fig. 10

summarizes the classification performance for the identifi-

cation of fault types with features comprising of first 41
peaks/valleys. The mean classification accuracy with 10-fold

cross-validation for all the 11 classes is 86.43% with a

standard deviation of 0.74%. The three-phase (abc and abcg)

faults were observed to have a relatively lower classification

accuracy.

(b) Fault-location classification: Table II summarizes the

fault location classification performance for each type of

fault with 10-fold cross-validation. The mean fault location

classification accuracy for abc faults was observed to be the

least (98.86%). For all other 10 types of faults, the accuracy

was ≥ 99%.

This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIA.2023.3331661

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on December 18,2023 at 19:15:53 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INDUSTRIAL APPLICATION, VOL. XX, NO. XX, MONTH 20XX 7

1 2 3 4 8 9 10 115 6 7

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

7

7

3

17

15

3

1

1

17

9

1

8

6

3

21

5

5

1

23

299

16

24

2

20

12

3

25

9

10

13

4

23

54

1

8

28

17

1

12

20

34

8

7

5

316

94

6

12

2

5

3

75

290

442

450

441

348

371

444

413

430

Predicted Class
(a)

1 2 3 4 8 9 10 115 6 7

1

2

3

4

5

6

7

8

9

10

11

Tr
ue

 C
la

ss

38

9

5

28

58

5

6

5

65

31

5

4

5

24

47

14

15

7

7

39

37

28

9

37

21

4

85

15

2

25

22

27

67

7

1

136

2

2

20

49

1

50

6

40

76

7

42

29

14

14

1100

178

14

22

12

3

9

8

253

1496

1493

1491

1216

1129

1282

1481

1441

1444

1136

Predicted Class
(b)

Fig. 10: Confusion matrix for fault type classification with (a)

30% test data and 70% training data, and (b) for the entire

3-phase data set at 40 dB SNR. The class labels are mapped

onto fault types as: ag:1, bg:2, cg:3, abg:4, bcg:5, acg:6, ab:7,

bc:8, ac:9, abcg:10, abc:11

TABLE II: Fault location classification accuracy with 10-fold

cross-validation for 3-phase dataset.

Fault Type Accuracy (%)

Mean (µ) Std. Dev. (σ)

Single Phase-Ground
ag 99.87 0.45
bg 99.93 0
cg 100 0.28

Double Phase-Ground
abg 99.33 1.53
bcg 99.2 0.7
acg 99.6 1.17

Phase-Phase
ab 100 0.21
bc 99.93 0.28
ac 99.93 0

Three Phase
abcg 99 0.66
abc 98.86 0.63

C. Case 3: IEEE 13-bus distribution feeder

We considered the 13-bus distribution test system [27]

shown in Fig. 11 for a comprehensive evaluation of the

proposed approach. The line segment between node 632 and

671 was considered as the observed line for protection and the

TW relay was assumed to be placed on node 632. The 632-

671 is a 0.61 km long line that was divided into 7 segments

of 87 meters to create Classes 1-7, based on the location

of the fault. The faults were simulated at three segments

Fig. 11: Experimental setup for 13-bus distribution test feeder.

corresponding upstream (at bus 632), on the observed line

(632 − 671), and downstream (671 − 680), respectively. The

faults at the upstream and the downstream were labeled as

Class-0, resulting in a total of 8 classes for fault location

identification. The fault resistance and inception angle were

varied between 0.05 − 2 Ω and 0 − 360°, respectively, to

create 120 patterns for each class. The noise was added

to each TW pattern to keep the SNR at 40 dB. The fault

location classification accuracy with 10-fold cross-validation

corresponding to each type of fault is summarized in Table III.

The mean fault type classification accuracy with 10-fold cross-

validation was found to be 92.84% with a standard deviation

of 0.81.

TABLE III: Fault-location classification accuracy with 10-fold

cross-validation for IEEE 13-bus dataset.

ag bg cg abg bcg acg ab bc ac abc abcg

µ 99.6 100 100 99.9 99.9 99.5 100 100 99.8 99.5 99.7

σ 0.4 0 0 0.3 0.3 1.1 0 0 0.4 0.7 0.7

V. PERFORMANCE EVALUATIONS

A. Impact of feature count on classification performance

The feature count is an important factor in the performance

of the classifiers. The number of peaks/valleys considered

for computing feature values as a function of fault location

accuracy for the 3-phase test system dataset is shown in

Fig. 12. It was observed that although the mean fault location

classification accuracy increases with increasing feature count,

the performance with 21, 31 and 41 peaks have relatively

similar profiles.

However, for the fault type classification, the feature count

has a much higher significance. The fault type classification

accuracy for 11, 21, 31, and 41 peaks were 67.04, 83.83,

and 86.43, respectively. The set of features from 41-peaks

was found to be a reasonable choice for both fault type

classification and identification of fault locations.

Fig. 12: Impact of feature count on fault location classification

accuracy.

B. Shapelet resemblance to band-pass filter response

In order to evaluate the contribution of the BPF to the shape

of the Shapelets, we considered the normalized step response

of the BPF (shown in Fig. 3b) as the mother Shapelet. We
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Fig. 13: Comparison of (a) fault-location classification and

(b) fault-type classification accuracy, with auto-correlation and

Shapelets.

extracted the features (with 41 peaks preserved) from the 3-

phase test system dataset and evaluated the performance of the

classifiers. The mean accuracy for the fault type classification

with 10 fold cross validation was observed to be 85.55% with

a standard deviation of 1.11. This is close to the accuracy

obtained with the discovered Shapelet, which was 86.43%. For

fault location classification, the mean of the average accuracy

corresponding to each type of fault was found to be > 95%.

This implies that the BPF response has a significant contribu-

tion to the shape of the mother Shapelet. The significance of

this observation is that, if indeed the BPF response can serve

as a good wavelet, the Shapelet discovery process could be

significantly simplified.

C. Effect of clutter complexity

The clutter complexity for the TW signature could largely

vary based on the network configurations. In order to eval-

uate the generalization of Shapelets, we conducted another

experiment with highly complex TW clutters. As the clutter

complexity depends on the number of reflections that get

superimposed when the TW signal is observed, the short lateral

segments will consequently make the observed TW clutter

more complex. Therefore, we reduced the length of upstream

and downstream laterals in the 3-phase test system to 0.75 and

0.5 km, respectively. We also added noise to the measured

voltage waveforms to keep the SNR at 40 dB. The fault-

location accuracy with 10-fold cross-validation is summarized

in Table IV. The fault-type classification accuracy has a mean

of 81.4502% with a standard deviation of 0.87092. Comparing

these with that of without clutter complexity, although the

classification accuracy decreases by a small amount they are

still > 99% for fault location and > 80% for fault type.

TABLE IV: Fault-location classification accuracy with 10-fold

cross-validation for the 3-phase dataset with short segments.

ag bg cg abg bcg acg ab bc ac abc abcg

µ 100 99.2 100 98.3 98 98.5 99.9 99.6 99.5 98.4 98.4

σ 0 0.73 0 0.72 0.88 0.98 0.2 0.6 0.5 0.9 0.6

D. Computational complexity

The Shapelet discovery is an offline process that needs

to be performed during the design phase to identify the

mother Shapelet. As the step response of the BPF resembles

the shape of the mother Shapelet, it can be treated as the

mother Shapelet without significantly affecting the classifica-

tion performance. The computational complexity for Shapelet

matching is O(N ×M) for a Shapelet of length M over N
samples, which is minimal as M << N . The peak/valley

picking can be efficiently implemented without the need for

any high-performance processors. These factors make the

feature extraction lightweight. Finally, we use a simple LDA-

based classifier that is easy to train and extremely fast in

making inferences/predictions. For a MATLAB R2022a imple-

mentation of the 3-phase fault type and location classification

system in the Apple M2 processor with 8 GB RAM, the

entire process of feature computation for a signal takes a

mean time of 1.5 ms, and prediction takes a mean time of

0.0065 ms. These computational times will further go down

for an optimized embedded implementation.

E. Comparison with Auto-correlation

We analyzed an auto-correlation-based technique in order

to evaluate the relative importance of the Shapelets in charac-

terizing faults. The auto-correlation coefficients for individual

waveforms were computed over a fixed time window for the

3-phase test dataset. The auto-correlation peaks and valleys

were identified and the same set of features was extracted as

described in Section III-D. The comparison of mean accuracy

for fault-location classification corresponding to each type of

fault and fault-type classification are shown in Fig. 13. We

observed that the line-line-ground (abg, bcg, acg) and 3-phase

(abc, abcg) faults are relatively difficult to classify and have

lower accuracies for both locations as well as types. With auto-

correlation, patterns belonging to these classes are even harder

to distinguish. Whereas, the Shapelet approach consistently

boosts classification performance for these fault classes. For

the fault locations classification, the mean accuracy with auto-

correlation and Shapelets are 98.68% and 99.61%, respec-

tively. with 10-fold cross-validation. For fault types, the overall

accuracy with auto-correlation is 82.6% which gets boosted to

85.53% with Shapelet. Another advantage of Shapelets is the

reduction in computational complexity. Auto-correlation has a

computational complexity of O(N2) for a sequence of length

N samples and this reduces to O(N ×M) for a Shapelet of

length M << N .
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F. Comparison with other techniques

In this sub-section, we present an objective comparison of

the performance of the proposed approach with some recently

proposed techniques, as there is significant variability in the

dataset size, fault types considered, fault location tasks, fault

parameters, measurement noise, performance metric calcu-

lation, and training & validation of the ML models. The

proposed approach is demonstrated for a feeder in the distri-

bution systems. For larger systems, it can simply be replicated

individually for each feeder without scalability issues. In [19]

a continuous wavelet transform (CWT) based multi-resolution

analysis, along with boosted trees/random forest classifier is

proposed and results in an accuracy of 93.97% for fault type

classification in the IEEE 34 bus test system. An improvement

in this accuracy to 96% was reported in [20] with CWT

features and a deep convolutional neural network (CNN). In

both these approaches, the fault types are categorized into

either of three classes, single-line-to-ground fault, line-to-

line fault, or 3-Phase fault. Compared to these, the proposed

approach distinguishes among individual sub-types of faults

resulting in 11 classes. To make the comparison more relevant,

we merged the 11 classes to form the three classes for the IEEE

13 bus test system and observed a mean accuracy of 96.7%
with 10-fold cross-validation. This fault-type classification

accuracy is slightly higher compared to both the previous

approaches. Although this does not appear to be a significant

improvement, the proposed technique alleviates the need to use

computationally demanding CWT or deep CNN. In addition,

the deep Learning classifiers may also suffer from over-fitting

if not trained on a sufficiently large dataset. This implies

that the models could have high validation accuracy but may

have poor generalization. In our evaluations, we used a simple

discriminant analysis classifier that emphasizes the discrimi-

nation ability of the extracted features and performed 10-fold

cross-validation. Another difference is that for simulations in

[19, 20] faults are created only at the system nodes, whereas

we simulate faults at various locations of the lines. We also

performed the evaluation under the measurement noise with

an SNR of 40 dB.

In [31] a comprehensive performance comparison of various

fault location algorithms is presented. In addition, the authors

propose a Mathematical Morphology (MM) and Stationary

Wavelet Transform (SWT) based feature extraction algorithm.

The features are then fed to the RF classifier and regressor to

predict the fault locations. For an RF model trained with 70%
training data and 30% validation data at an SNR 45 dB, they

report an average error of 1367.2 ft (416.72 meters). Compared

to this, the proposed fault location classification algorithm for

the IEEE 13 bus distribution system, has a resolution of 87
meters and achieves an overall accuracy of > 99%, for all the

fault types. Faults can be located and classified with less than

0.5 ms of measured data after the TW arrival.

VI. DISCUSSIONS AND CONCLUSION

This paper proposes a relatively simple Shapelet-based

approach to classify faults in the distribution systems through

TW principles. In contrast to choosing a pre-defined basis

function such as wavelets, we extracted a set of discriminating

sub-sequences (Shapelets) from a dataset with different fault

characteristics. One of the extracted Shapelets was considered

as the template/basis (mother Shapelet) to extract features from

the TW clutter. The use of Shapelets was comprehensively

tested using 5-bus single- and three-phase systems, as well

as the more extensive IEEE 13-bus distribution test system.

For the 3-phase systems, we used the voltage waveforms

instead of forward waves, eliminating the need for current

transformers. We observed that the extracted features result in

a linear decision boundary, and with discriminant analysis, the

fault locations in the distribution system can be classified with

reasonable accuracy (> 99% in the absence of noise). We also

found the proposed Shapelet-based method to be robust against

measurement noise retaining a classification accuracy > 90%.

The Shapelet features were also used to classify different types

of faults in the distribution system. For the IEEE 13 bus test

system, the fault type classification accuracy was found to

be 92.84% for 11 classes and 96.7% for 3 classes (LG, LL,

and 3-phase). These results indicate the promising ability of

Shapelets in classifying distribution system faults.

Future work will address hardware implementation, the

use of advanced ML methods and sensitivity analysis, and

critical comparisons with existing relay solutions, as well as

techniques such as the ones described in [7, 8, 9, 11, 12].
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