Check for
Updates

Mining SQL Problem Solving Patterns using Advanced Sequence
Processing Algorithms

Sophia Yang
University of Illinois
Urbana-Champaign

USA
sophiay2@illinois.edu

ABSTRACT

SQL is a crucial language for managing relational database sys-
tems, and is an essential skill for individuals in roles such as re-
searchers, developers, and business professionals who work with
databases. However, learning SQL can be a challenge, presenting
an opportunity to study the various methods students use to arrive
at semantically equivalent SQL queries. In this study, we exam-
ined students’ SQL submissions to homework assignments in the
Database Systems course offered to upper-level undergraduate and
graduate students at the University of Illinois Urbana-Champaign
during the Fall 2022 semester. Our goal was to understand how
students arrive at SQL solutions and overcome challenges in the
learning process by building on prior research on line chart visual-
izations that instructors can use to increase visibility on students
who are struggling. However, a major limitation of this approach
was the difficulty for instructors to sift through a large number of
visuals representing each student’s performance on a SQL problem
and generate action items at scale, especially when dealing with
enrollments of over 700 students. To overcome this limitation, we
developed a novel technique to generate textual representations
of the student submission sequence using global sequence align-
ment scores and regular expression algorithms to further compact
these submission sequences. This allows instructors to gain insights
quickly, on an aggregate level, and in an automated manner, en-
abling them to identify students who may be struggling with SQL
based on their submission sequence characteristics and take appro-
priate action to improve database education. Our study discovered
common textual submission patterns and pattern elements, and we
present our recommendations to instructors to improve database
education based on these findings.

CCS CONCEPTS

« Applied computing — Education; - Social and professional
topics — Computing education.

KEYWORDS

SQL, database education, online assessment, pattern mining, se-
quence alignment, compaction, regular expression, algorithms

This work is licensed under a Creative Commons Attribution International 4.0 License.

DataEd °23, June 23, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0207-5/23/06.
https://doi.org/10.1145/3596673.3596973

Geoffrey L. Herman
University of Illinois
Urbana-Champaign

USA
glherman@illinois.edu

37

Abdussalam Alawini
University of Illinois
Urbana-Champaign

USA
alawini@illinois.edu

ACM Reference Format:

Sophia Yang, Geoffrey L. Herman, and Abdussalam Alawini. 2023. Mining
SQL Problem Solving Patterns using Advanced Sequence Processing Algo-
rithms. In 2nd International Workshop on Data Systems Education: Bridging
education practice with education research (DataEd "23), June 23, 2023, Seat-
tle, WA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3596673.3596973

1 INTRODUCTION

SQL is the primary language for managing data that is widely
supported by most Database Management Systems, making it an
essential skill for users, developers, and researchers who interact
with databases [11]. The language has a highly structured, English-
like syntax that makes itself accessible to beginners, since it does not
depend on expertise in other programming languages. Despite this,
as noted in prior research, some students still encounter challenges
in learning SQL, and the need to analyze how students come up
with their SQL solutions and the difficulties they face is crucial [22].

To improve the efficiency and effectiveness of analyzing how
students arrive at their SQL solution query, it would be beneficial
for database instructors to examine student SQL submissions in an
automated manner. In particular, instructors who use auto-graders
to accept student submissions for SQL problems can gain valuable
insights by tracing students’ attempts and progress towards con-
structing the correct solution. These insights can assist instructors
in identifying challenging SQL concepts that students commonly
struggle with and adjusting their instructional strategies to address
these challenges. By analyzing student submissions in an automated
way, instructors can optimize their teaching and support students
in acquiring SQL skills more efficiently.

Our research work builds upon and extends our previous re-
search work on line chart visualization types that display a stu-
dent’s submission pattern based on the sequence alignment score
between each of their submissions on a SQL problem and their
final submission [32]. A major limitation of the work includes the
scalability factor of the visuals - in a class of a few hundred students,
it’s not practical to have instructors sift through all of the line chart
graphs to determine which students are struggling apart from ones
who are succeeding, because:

Total # of Visuals = # of Students * # of SOL Problems
We address and overcome this limitation by generating textual
representations of the student submission sequence based on the
global sequence alignment score inputs, and then applying regular
expression algorithms to compact and aggregate these textual repre-
sentation submission sequences. Therefore, our research questions


https://doi.org/10.1145/3596673.3596973
https://doi.org/10.1145/3596673.3596973
https://doi.org/10.1145/3596673.3596973
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3596673.3596973&domain=pdf&date_stamp=2023-06-23

DataEd "23, June 23, 2023, Seattle, WA, USA

include: 1) what are the different types of SQL solution submission pat-
terns students display? and 2) do certain submission patterns indicate
students encountering obstacles in their learning path?

Research has indicated that students may follow diverse learning
paths and that their learning experience can be significantly im-
proved if instructors can identify how individual students learn [14].
Our research aims to enhance the educational quality of students
learning SQL in database courses, building upon the aforemen-
tioned findings. Specifically, we analyze the data from the Database
Systems course at the University of Illinois Urbana-Champaign,
which usually has over 400 enrollees; the Fall 2022 semester has
over 700 enrollees. Our focus is on students’ submissions to SQL
homework assignments during the Fall 2022 semester. Throughout
the course, students participate in multiple SQL in-class group ex-
ercises and an individual homework assignment with 10-15 SQL
problems. These problems are automatically graded, and students
receive immediate feedback after each submission. However, due to
the large class size, it can be challenging for instructors to quickly
identify common areas of difficulty or individual students in need
of additional support. Furthermore, the number of submissions
for each SQL problem is too numerous to be manually examined,
as students typically submit more than 20 attempts per problem
on average. The present paper presents a method for evaluating
students’ advancement as they attempt to solve an SQL problem,
facilitating instructors in recognizing the diverse methods students
use to solve the same SQL problem.

2 RELATED WORKS

Extensive research has been conducted on the difficulties and mis-
understandings that students face when learning procedural pro-
gramming languages like Java [12, 15, 17], C++ [5, 6, 15, 30], and
Python [5, 15, 17]. However, there has been comparatively less
research on declarative or database query languages such as SQL
[2, 16, 18, 24, 26, 27]. Most of the existing studies have focused
on the SQL problems and concepts that students commonly find
challenging. For example, Taipalus et al. analyzed over 33,000 SQL
queries submitted by students and found that students make a vari-
ety of syntax, semantic, and logic errors [27]. Some of the syntax
errors they identified were previously reported in the literature,
including undefined parameters, data type mismatch, and date time
field overflow [2]. Taipalus and Perilé [26] investigated persistent
error types that students encounter when forming SQL queries,
as well as the SQL query concepts that give rise to such errors.
Other studies have examined different types of SQL queries that
students find challenging to write [3, 21], the most common SQL
semantic errors [1], and semantic error categorizations by Brass
and Goldberg [7].

While earlier studies have identified problematic SQL concepts
and problems for students, few have delved into the reasons why
students struggle with them. To gain insight into the causes be-
hind these SQL misconceptions, a qualitative approach is necessary.
In a think-aloud study, Miedema et al. [18] analyzed 21 students’
problem-solving processes and identified four reasons for their
SQL errors: interference from prior course knowledge, incorrect
generalization of answers, flawed mental models, and confusion

38

Yang, et al.

between SQL and natural language. Miedema et al. [20] also exam-
ined factors contributing to self-inflicted query complexity based
on correctness, execution order, edit distance, and query intricacy.

In addition to exploring the challenges students face when learn-
ing SQL, researchers have investigated methods for visualizing and
detecting these obstacles and learning approaches [10, 19, 31, 32].
For example, Miedema and Fletcher [19] developed the SQLVis
system, which uses visual query representation (VQR) to help be-
ginners develop proficiency in writing SQL queries. Similarly, Dana-
paramita and Gatterbauer [10] created QueryViz to enhance un-
derstanding of SQL queries through visualization. Authors of this
paper have also developed visualization techniques, such as by uti-
lizing edit distance and clustering, to detect learning obstacles and
approaches through students’ SQL submission sequences [31, 32].

Although prior research has explored why students encounter
difficulties while writing SQL queries [3, 18, 24, 26], few recom-
mendations have been made for SQL educators to take actionable
steps. One suggestion is to improve SQL compilation error mes-
sages since students often struggle and give up when encountering
syntax errors [2, 24]. Another recommendation is to address the
misconceptions that arise from transferring prior knowledge from
mathematics, natural language, and other programming languages
[18], although this is not unique to teaching SQL and has been
noted in other programming languages as well [9, 25]. Previous
studies have also highlighted the advantages of generating auto-
mated instructor recommendations based on the different types of
SQL solution submission patterns that students exhibit [31].

As far as we know, no previous research has explored the various
types of SQL solution submission patterns exhibited by students,
with the goal of identifying problematic patterns and advocating
for automated instructor recommendations. In order to achieve
this, we employ regular expression methodologies used in previous
research [8, 28] to transform input data for line chart visualizations
[32] into a string representation that is easier to analyze, aggre-
gate, and understand (for transparency in data processing). Our
objectives are two-fold, based on previous work: First, we want to
examine the different SQL solution submission patterns that stu-
dents display. Secondly, we aim to identify patterns of submission
that may indicate students’ struggle in learning how to write SQL
queries, in order to provide practical recommendations to database
instructors, enabling them to support students early on as they
require assistance.

3 DATA COLLECTION

We obtained data from the Fall 2022 semester of CS 411 Database
Systems, a course offered to both upper-level undergraduate and
graduate students at the University of Illinois Urbana-Champaign.
The course was taught using a flipped-classroom approach where
students were provided with pre-recorded lectures and were tested
on the material through short quizzes. In-class time was primarily
reserved for group activities that aimed to reinforce the concepts
taught in the pre-recorded lectures. Additionally, students were
assigned a homework assignment consisting of approximately 15
SQL questions to be completed over a period of one week. A total
of 702 students were enrolled in the course during the Fall 2022
semester.



Mining SQL Problem Solving Patterns using Advanced Sequence Processing Algorithms

SQL Files

PrairieLearn

Most Common Submission Patterns,
Troublesome Submission Patterns, and
Recommendations to Instructors

Preprocess &
Tokenize SQL
Queries

DataEd ’23, June 23, 2023, Seattle, WA, USA

Compute
Sequence
Alignment Score

Generate String
Representation of
Line Chart

Validate String
Representation
with Line Chart

Sequence
Compaction with
Regular Expression

Figure 1: System Overview Diagram.

After acquiring a dataset that contains all students’ SQL sub-
mission files and their submission order, we adhered to the data
safety procedures outlined by the University of Illinois Urbana-
Champaign (UIUC) Institutional Review Board (IRB) to ensure the
anonymity of the students. To achieve this, we eliminated all identi-
fying information from the SQL files and assigned a random number
to each student as their identifier.

3.1 Description of Homework Assignments

We obtained our data from PrairieLearn, which is an online learning
management system that autogrades students’ code and provides
immediate feedback on their submissions [29]. To validate students’
solutions, PrairieLearn compares their query’s data result output
with the expected solution’s data result output using a binary grad-
ing scale (partial credit is not given, although students may see
the passed and failed test cases). Homework questions may be an-
swered in any order with unlimited attempts until the deadline, and
students can revisit previously answered questions, even if they
were answered correctly. An SQL problem and its corresponding
instructor solution are presented below as an example.

Write an SQL query that returns the ProductName of
each product made by the brand ‘Samsung’ and the
number of customers who purchased that product. Only
count customers who have purchased more than 1 Sam-
sung product. Order the results in descending order of
the number of customers and in descending order of
ProductName.

SELECT Pr1.ProductName, COUNT(C1.Customerld) as numCustomers
FROM Products Pr1 NATURAL JOIN Purchases Pul
NATURAL JOIN Customers C1
WHERE Pr1.BrandName = ‘Samsung’
AND C1.Customerld IN (
SELECT C2.Customerld
FROM Customers C2 NATURAL JOIN Purchases Pu2
NATURAL JOIN Products Pr2
WHERE Pr2.BrandName = 'Samsung’
GROUP BY C2.Customerld
HAVING COUNT(C2.Customerld) > 1
)
GROUP BY Prl1.ProductName
ORDER BY numCustomers DESC, Pr1.ProductName DESC;

4 SYSTEM OVERVIEW

The diagram in Figure 1 presents an overview of our system. To be-
gin, we collect data from PrairieLearn [29], where students submit
their SQL solution queries for the Database Systems course. Each
submission attempt is represented by a .sql file in our dataset. The

39

data cleansing process removes all irrelevant information and iden-
tifiers from the .sql files. We then use the Python sqlparse library [4]
to tokenize the SQL queries based on their component type, includ-
ing Punctuation, Keyword, Comment, Name, Literal, Operator, etc. To
reduce noise in our dataset, we exclude components of SQL queries
that do not contribute to the query’s meaning, such as comments
and white-spaces. The remaining tokens are used to calculate global
sequence alignment scores between each student’s submissions and
their final attempt. The sequence alignment scores are used to gen-
erate string representations of line chart visualizations[32]; the
string representations then undergo sequence compaction via the
regular expression algorithm [8, 28]. We validate all textual repre-
sentations alongside their corresponding line chart graphs, before
and after each mentioned step, to ensure consistent accuracy. Ulti-
mately, we examine the prevalent submission patterns displayed by
students, identifying patterns that suggest challenges and potential
areas of difficulty. We use this information as a basis to provide
instructors with recommendations to support their teaching and to
help students overcome these challenges.

4.1 Computing the Global Alignment Scores

We utilized the Needleman-Wunsch algorithm [23] based on dy-
namic programming to implement a global sequence alignment
that optimally aligns the keys of two given sequences end-to-end,
making it highly sensitive to differences in the lengths of the se-
quences. Modifications were made to the scoring matrix and keys
during implementation. Instead of using the alphabetical letters, we
defined our alignment dictionary with the tokenized components
of the SQL queries. This approach allowed us to assign an equiva-
lent weight to each token in the alignment scores, eliminating any
bias based on token length. For instance, a match with a SELECT
token would carry the same weight as an alignment match with a
NATURAL JOIN token, instead of having the SELECT token count
as six matches and the NATURAL JOIN token count as 12 matches
based on character count.

We provide an example alignment of two pre-processed SQL
query submissions to aid in the visualization of the computation of
global alignment scores.

Submission x:

['select ', 'customerid ', 'firstname ', 'phonenumber', 'from',
‘customers ', 'where ', 'firstname','="',""%a" "]

Submission y:

['select ', 'customerid ', 'firstname ', 'phonenumber', 'from',
'customers ', 'as','c', 'where','c', firstname','s"',"'"%a""',
‘or','c','lastname’,'=","'"b%" "]



DataEd "23, June 23, 2023, Seattle, WA, USA

Yang, et al.

Alignment Score 1 2 3 4 5 6 5 4 5 4 5 6 7 6 5 4 3 2
Submission x select customerid firstname phonenumber from customers - - where - firstname = "%a" - - - - -
Submission y select customerid firstname phonenumber from customers as ¢ where ¢ firstname = "%a" or ¢ lastname = "b%"

Table 1: Example of global sequence alignment

Table 1 displays the global alignment that was obtained, where
the green highlights indicate matches (with an alignment score
of +1) and the red highlights represent mismatches/gaps (with an
alignment score of -1). The final alignment score of 2 is marked in
blue. The top row of numbers denotes the current alignment score
up until the specified sequence component.

4.2 Textual Representation of Line Charts

We use the global alignment scores and the median length (defined
by the number of SQL tokens) of all students’ submissions for a
particular problem to generate textual line-chart visualizations that
depict how students progressed to their final solution. To determine
the median length of all submissions for each homework problem,
we leverage the NumPy [13] library’s percentile function to obtain
the number of SQL tokens that a 50th percentile submission con-
tains. We found the mean length to be rather skewed, since there
were students who had either an extremely high number of sub-
missions or very long queries; therefore, the median was a better
measure.

Next, we calculate the difference in alignment scores between
each consecutive submission for a student on a SQL homework
problem and compare that value with the number of tokens a 50th
percentile submission contains. If the absolute difference is less than
one-third of the tokens in a median length submission, we denote
that submission attempt with the “ ” character as it only has minor
changes, resulting in a nearly flat line chart shape between the two
submissions. If the difference is between one-third and two-thirds of
the tokens in a median length submission, we label that submission
attempt with the “ *” or “” ” characters, depending on the value
sign, as it has moderate changes, resulting in a moderately sloping
line chart shape between the two submissions. If the difference
is greater than or equal to two-thirds of the tokens in a median
length submission, we label that submission attempt with the “/”
or “\” characters, depending on the value sign, as it has significant
changes, resulting in a steeply sloping line chart shape between the
two submissions. Finally, if there was only one submission attempt
found for the student on the problem, we denote it with a “.”
(representing one data point on the line chart).

We chose one-third and two-thirds as our thresholds in this ex-
ploratory study among other tested values since these values made
our resulting textual representations more accurate and consistent
with their corresponding line chart features; we plan to run further
studies with more robust testing for the optimal threshold number.

4.3 Sequence Compaction of the Textual
Representation

In order to simplify the textual representations of student submis-

sion patterns and reduce noise, we employ a compaction method

to eliminate duplicate elements that appear consecutively in a se-

quence. For instance, if a sequence has consecutive “_” characters,

40

only one will be displayed unless following other elements later
in the sequence. This results in a more streamlined representa-
tion of submission patterns, which facilitates aggregation across
all students.

To further compact the sequence, we use the string regular ex-
pression algorithm to match “ *” with “ * ” characters, denoting this
representation as a “ * ” or a “U” depending on the direction of the
curve on the line chart. Similarly, we match “\” with “/” characters
and also denote this representation as a “ * ” or a “U” depending on
the direction of the curve on the line chart.

We validate the accuracy of the sequence both before and after
each compaction step to ensure that the resulting representation is
still representative of the corresponding line chart features.

5 RESULTS

Pattern # of Occurrences % of All Occurrences

_ 3748 35.44%
1201 11.36%

_ 767 7.25%
_/_ 641 6.06%
312 2.95%

Table 2: Top 5 Student Submission Patterns Across All SQL
Homework Problems

We will present our findings on the different types of SQL solu-
tion submission patterns exhibited by students, which result from
our regular expression and sequence compaction techniques. Ta-
ble 2 displays the top five submission patterns observed across all
SQL homework problems and students for the sake of brevity, in
response to our first research question, “what are the different types
of SQL solution submission patterns students display?” The results
were surprising since the most frequent submission pattern was “_”
indicating that the students made only minor changes between each
submission before reaching their final solution. The second most
common pattern was . ” showing that the majority of students
submitted only once to the SQL problem, and most of them got
it right. The other three patterns suggested that the students first
made minor modifications to their SQL query before making mod-
erate or significant changes and then arrived at their final solution
or made some more minor adjustments before reaching their final
solution.

We also looked at the frequency of occurrence of each repre-
senting sequence element across all students and SQL homework
problems in order to get a better idea of which sub-patterns or
“snippets” within student submission patterns are most common.
The results are shown in table 3 in descending order by frequency.
Not surprisingly, based on our earlier findings, the “_” element
appeared most of the time, indicating that students mostly made



Mining SQL Problem Solving Patterns using Advanced Sequence Processing Algorithms

Element # of Occurrences % of All Occurrences

- 16276 57.46%
’ 4001 14.12%
/ 3080 10.87%
U 2426 8.56%
. 1201 4.24%
° 684 2.41%
A 347 1.22%
\ 312 1.10%

Table 3: Frequency of Occurrence of Each Textual Sequence
Element Across All SQL Homework Problems

minor changes throughout their submission sequence. The next
two patterns, “ * 7 and “/”, indicates that students are getting in-
creasingly closer to their final submission query. The occurrence
of the “U” element in our sequence compaction process suggests
that the student initially submitted a query, deviated from it and
then returned to a query that was equally dissimilar from the final
solution as their earlier attempt. We speculate that this pattern may
indicate query testing, where the student comments out a portion
of their query to identify the source of the error and then submits
arevised query that is highly similar to their initial attempt. Our
analysis of the data supports this hypothesis, as we found that test-
ing occurred in 77.55% of cases where the “U” pattern was observed
(with submissions at both ends of the “U” being similar within our
thresholds for minor changes). The “ *” and “\” elements signify
that the student drifted away from their final submission, while “*”
elements indicate that the student initially made progress toward
the final solution but then moved away from it again by modifying
their query. Fortunately, these patterns are less prevalent.

5.1 Patterns That Require Instructor Attention

We would like to present the elements within submission sequences
that we believe require extra instructor attention to address our
second research question, “do certain submission patterns indicate
students encountering obstacles in their learning path?”

We recommend that instructors review certain elements within
student submission sequences, “ *”, “\”, “ * ”,and “ . ”, due to the fol-
lowing reasoning: students making progress away from their final
SQL submission query may indicate struggling or a flawed mental
model with misconceptions towards SQL syntax or semantics. In
particular, instructors should pay attention to students who have
the “\” element in their submission sequence. Students with the “ * ”
in their submission sequences may represent uncertainty with SQL
concepts, as they make valid progress in their query but then revert
those edits to arrive at a query further away from their final solu-
tion. For instructors who assign advanced SQL problems to their
students, they should be especially mindful of the students with the
“.” submission pattern, as these students only had one submission
attempt; this is particularly concerning if the student arrived at a
correct solution on advanced SQL problems prior to receiving any
feedback from the autograder, or if they did not spend much time
on the problem. These behaviors, which may indicate plagiarism
or cheating, should be further investigated by the instructor.

41

DataEd ’23, June 23, 2023, Seattle, WA, USA

6 LIMITATIONS AND FUTURE WORK

Given that our study is centered around data gathered exclusively
from the University of Illinois Urbana-Champaign, whose Com-
puter Science department ranks among the top in the field, the
generalizability of our results could be impacted by the characteris-
tics of the students and their data. To ensure greater generalizability,
it is advisable to collect and analyze data from other institutions
and universities.

Our work assumes that each student’s final submission is their
best attempt at solving the SQL problem, however, this is not always
accurate. In future work, we plan to improve accuracy by using each
student’s best submission (first correct attempt or final attempt if
no correct attempts) instead of just the final submission attempt,
by combining the submission grades and query data.

In our future work, we aim to enhance our analysis by incorpo-
rating student performance data, allowing us to establish stronger
correlations between student submission sequences and their aca-
demic success or challenges. As the “_” pattern constitutes 35.44%
of all student submissions (table 2), we intend to conduct further
analysis of the submission behaviors within this category to iden-
tify any underlying trends based on data such as the number of
submission attempts and the changes made to the query between

« »

each submission. The 35.44% is unexpectedly high to us as the “’
pattern requires all elements of a submission sequence to be “_”;
furthermore, the “ ” element had occurred 57.46% out of all ele-
ments within patterns (table 3) - a much higher percentage than
the anticipated one-thirds threshold value.

Additionally, we plan to investigate student submission sequences
containing the “/” element to explore what prompts students to
make significant changes in their queries. We speculate that stu-
dents might have an “ah-ha!” moment when making such changes
and moving closer to their final query. To explore this further, we
propose a qualitative approach involving an interview study to in-
vestigate students’ cognitive processes. Finally, we aim to integrate
the methodologies presented into an automated dashboard system
that can be easily utilized by instructors, and to then evaluate the

effectiveness of this tool through an empirical study.

7 CONCLUSION

In this study, we have introduced a novel technique for efficiently
and automatically evaluating and consolidating student SQL sub-
missions by creating textual representations of the submission
sequences through analyzing the global sequence alignment scores
between submissions. To eliminate ambiguity and identify common
patterns in the student submission sequences, we applied sequence
compaction and regular expression procedures. The resulting se-
quence patterns and the element frequencies may then be utilized
to generate suggestions for database instructors to improve their
students’ learning experience and rectify misconceptions with SQL
query concepts before they become too challenging to correct. This
approach enables proactive support, as opposed to reactive inter-
vention when misconceptions have already taken root.

ACKNOWLEDGMENTS

This work is funded by the National Science Foundation (NSF)
award number 2021499.



DataEd "23, June 23, 2023, Seattle, WA, USA

REFERENCES
[1] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior,

[2

[4

(5

—

—_—

—_—

and Raymond Lister. 2016. Students’ Semantic Mistakes in
Writing Seven Different Types of SQL Queries. In Proceedings
of the 2016 ACM Conference on Innovation and Technology
in Computer Science Education (Arequipa, Peru) (ITiCSE ’16).
Association for Computing Machinery, New York, NY, USA,
272-277. https://doi.org/10.1145/2899415.2899464

Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior,
and Raymond Lister. 2016. Students’ syntactic mistakes in
writing seven different types of SQL queries and its application
to predicting students’ success. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. ACM,
New York, NY, USA, 401-406.

Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lis-
ter. 2015. A Quantitative Study of the Relative Difficulty for
Novices of Writing Seven Different Types of SQL Queries. In
Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education (Vilnius, Lithuania)
(ITiCSE ’15). ACM, New York, NY, USA, 201-206.

Andi Albrecht. 2020. 0.4.1 (2020). https://pypi.org/project/
sqlparse/

Nabeel Alzahrani, Frank Vahid, Alex Edgcomb, Kevin Nguyen,
and Roman Lysecky. 2018. Python Versus C++ An Analysis of
Student Struggle on Small Coding Exercises in Introductory
Programming Courses. In Proceedings of the 49th ACM Tech-
nical Symposium on Computer Science Education. ACM, New
York, NY, USA, 86-91.

(6] Joseph Bergin. 1996. Java as a better C++. ACM SIGPLAN

Notices 31, 11 (1996), 21-27.

[7] Stefan Brass and Christian Goldberg. 2006. Semantic errors

[9

—

in SQL queries: A quite complete list. Journal of Systems and
Software 79, 5 (2006), 630-644. https://doi.org/10.1016/j.jss.
2005.06.028 Quality Software.

Carl Chapman and Kathryn T. Stolee. 2016. Exploring Reg-
ular Expression Usage and Context in Python. In Proceed-
ings of the 25th International Symposium on Software Testing
and Analysis (Saarbriicken, Germany) (ISSTA 2016). Associa-
tion for Computing Machinery, New York, NY, USA, 282-293.
https://doi.org/10.1145/2931037.2931073

Michael Clancy. 2005. Misconceptions and attitudes that inter-
fere with learning to program. In Computer science education
research. Taylor & Francis, 95-110.

[10] Jonathan Danaparamita and Wolfgang Gatterbauer. 2011.

QueryViz: Helping Users Understand SQL Queries and Their
Patterns. In Proceedings of the 14th International Confer-
ence on Extending Database Technology (Uppsala, Sweden)
(EDBT/ICDT ’11). Association for Computing Machinery, New
York, NY, USA, 558-561. https://doi.org/10.1145/1951365.
1951440

[11] Ashley DiFranza. 2020. 5 Reasons SQL is the Need-to-Know

Skill for Data Analysts. (2020).

[12] AnnE Fleury. 2000. Programming in Java: Student-constructed

rules. In Proceedings of the thirty-first SIGCSE technical sympo-
sium on Computer science education. 197-201.

42

Yang, et al.

[13] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt,

(14

[15

[19

[22

4

—

—

—

]

—_

Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser,
Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. 2020. Array programming
with NumPy. Nature 585, 7825 (Sept. 2020), 357-362. https:
//doi.org/10.1038/541586-020-2649-2

Robert C. Jinkens. 2009. Nontraditional Students: Who Are
They? SIGCSE Bull. 43, 4 (Dec. 2009), 979-987.

Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jarvinen.
2005. A study of the difficulties of novice programmers. Acm
sigese bulletin 37, 3 (2005), 14-18.

Hongjun Lu, Hock Chuan Chan, and Kwok Kee Wei. 1993. A
Survey on Usage of SQL. SIGMOD Rec. 22, 4 (dec 1993), 60-65.
https://doi.org/10.1145/166635.166656

Linda Mannila, Mia Peltoméki, and Tapio Salakoski. 2006.
What about a simple language? Analyzing the difficulties in
learning to program. Computer science education 16, 3 (2006),
211-227.

Daphne Miedema, Efthimia Aivaloglou, and George Fletcher.
2021. Identifying SQL Misconceptions of Novices: Findings
from a Think-Aloud Study. In Proceedings of the 17th ACM Con-
ference on International Computing Education Research (Virtual
Event, USA) (ICER 2021). Association for Computing Machin-
ery, New York, NY, USA, 355-367. https://doi.org/10.1145/
3446871.3469759

Daphne Miedema and George Fletcher. 2021. SQLVis: Visual
Query Representations for Supporting SQL Learners. In 2021
IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC). 1-9. https://doi.org/10.1109/VL/HCC51201.
2021.9576431

Daphne Miedema, George Fletcher, and Efthimia Aivaloglou.
2022. So Many Brackets! An Analysis of How SQL Learn-
ers (Mis)Manage Complexity during Query Formulation. In
Proceedings of the 30th IEEE/ACM International Conference on
Program Comprehension (Virtual Event) (ICPC ’22). Associa-
tion for Computing Machinery, New York, NY, USA, 122-132.
https://doi.org/10.1145/3524610.3529158

Andrew Migler and Alex Dekhtyar. 2020. Mapping the SQL
Learning Process in Introductory Database Courses. In Pro-
ceedings of the 51st ACM Technical Symposium on Computer
Science Education (Portland, OR, USA) (SIGCSE °20). Associa-
tion for Computing Machinery, New York, NY, USA, 619-625.
https://doi.org/10.1145/3328778.3366869

A. Mitrovic. 1998. Learning SQL with a Computerized Tutor.
In Proceedings of the Twenty-Ninth SIGCSE Technical Sympo-
sium on Computer Science Education (Atlanta, Georgia, USA)
(SIGCSE ’98). ACM, New York, NY, USA, 307-311.

Saul B. Needleman and Christian D. Wunsch. 1970. A general
method applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of Molecular Biology
48,3 (1970), 443—-453. https://doi.org/10.1016/0022-2836(70)
90057-4


https://doi.org/10.1145/2899415.2899464
https://pypi.org/project/sqlparse/
https://pypi.org/project/sqlparse/
https://doi.org/10.1016/j.jss.2005.06.028
https://doi.org/10.1016/j.jss.2005.06.028
https://doi.org/10.1145/2931037.2931073
https://doi.org/10.1145/1951365.1951440
https://doi.org/10.1145/1951365.1951440
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/166635.166656
https://doi.org/10.1145/3446871.3469759
https://doi.org/10.1145/3446871.3469759
https://doi.org/10.1109/VL/HCC51201.2021.9576431
https://doi.org/10.1109/VL/HCC51201.2021.9576431
https://doi.org/10.1145/3524610.3529158
https://doi.org/10.1145/3328778.3366869
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4

Mining SQL Problem Solving Patterns using Advanced Sequence Processing Algorithms

[24] Seth Poulsen, Liia Butler, Abdussalam Alawini, and Geoffrey L
Herman. 2020. Insights from student solutions to sql home-
work problems. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education.
ACM, New York, NY, USA, 404-410.

Yizhou Qian and James Lehman. 2017. Students’ misconcep-
tions and other difficulties in introductory programming: A
literature review. ACM Transactions on Computing Education
(TOCE) 18, 1 (2017), 1-24.

Toni Taipalus and Piia Peréla. 2019. What to Expect and
What to Focus on in SQL Query Teaching. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Ed-
ucation (Minneapolis, MN, USA) (SIGCSE ’19). Association
for Computing Machinery, New York, NY, USA, 198-203.
https://doi.org/10.1145/3287324.3287359

Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Er-
rors and complications in SQL query formulation. ACM Trans-
actions on Computing Education (TOCE) 18, 3 (2018), 1-29.
Ken Thompson. 1968. Programming Techniques: Regular Ex-
pression Search Algorithm. Commun. ACM 11, 6 (jun 1968),
419-422. https://doi.org/10.1145/363347.363387

(26]

(27]

(28]

43

DataEd ’23, June 23, 2023, Seattle, WA, USA

[29] Matthew West, Geoffrey L. Herman, and Craig B. Zilles. 2015.
PrairieLearn: Mastery-based Online Problem Solving with
Adaptive Scoring and Recommendations Driven by Machine
Learning.

Hoe-Chun Woon and Yoon-Teck Bau. 2017. Difficulties in
Learning C++ and GUI Programming with QT Platform: View
of Students. In Proceedings of the 2017 International Conference
on E-commerce, E-Business and E-Government. ACM, New York,
NY, USA, 15-19.

Sophia Yang, Geoffrey L. Herman, and Abdussalam Alawini.
2022. Analyzing Student SQL Solutions via Hierarchical Clus-
tering and Sequence Alignment Scores. In Ist International
Workshop on Data Systems Education (Philadelphia, PA, USA)
(DataEd °22). Association for Computing Machinery, New York,
NY, USA, 10-15. https://doi.org/10.1145/3531072.3535319
Sophia Yang, Ziyuan Wei, Geoffrey L. Herman, and Abdus-
salam Alawini. 2021. Analyzing Patterns in Student SQL Solu-
tions via Levenshtein Edit Distance. In Proceedings of the Eighth
ACM Conference on Learning @ Scale (Virtual Event, Germany)
(L@S °21). Association for Computing Machinery, New York,
NY, USA, 323-326. https://doi.org/10.1145/3430895.3460979

—
w
—_

—

[32

—


https://doi.org/10.1145/3287324.3287359
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/3531072.3535319
https://doi.org/10.1145/3430895.3460979

	Abstract
	1 Introduction
	2 Related Works
	3 Data Collection
	3.1 Description of Homework Assignments

	4 System Overview
	4.1 Computing the Global Alignment Scores
	4.2 Textual Representation of Line Charts
	4.3 Sequence Compaction of the Textual Representation

	5 Results
	5.1 Patterns That Require Instructor Attention

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments

