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Abstract

Machine learning (ML) algorithms have been widely applied to analyze geotechnical engineering problems due to recent
advances in data science. However, flexible ML models trained with limited data can exhibit unexpected behaviors, leading
to low interpretability and physical inconsistency, thus, reducing the reliability and robustness of ML models for risk
forecasting and engineering applications. As input features for geotechnical engineering applications often represent
physical parameters following intrinsic and often monotonic relationships, incorporating monotonicity into ML models can
help ensure the physical realism of model outputs. In this study, monotonicity was introduced as a soft constraint into
artificial neural network (ANN) models, and their results were compared with several benchmark ML models. During the
training process, data augmentation and point-wise gradient were used to evaluate the monotonicity of model predictions,
and monotonicity violations were minimized through a modified loss function. A compilation of slope stability case
histories from the literature was used for model development, benchmarking their performance, and evaluating the effects
of monotonicity constraints. Cross-validation procedures were used for all model performance evaluations to reduce bias in
sample selections. Results showed that unconstrained ML models produced predictions that violate monotonicity in many
parts of the input space. However, by adding monotonicity constraints into ANN models, monotonicity violations were
effectively reduced while maintaining relatively high performance, thus providing a more robust and interpretable pre-
diction. Using slope stability prediction as a proxy, the methods developed in this study to incorporate monotonicity
constraints into ML models can be applied to many geotechnical engineering applications. The proposed approach
enhances the reliability and interpretability of ML models, resulting in more accurate and consistent outcomes for real-
world applications.
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1 Introduction

Slope stability analysis is an important component of
landslide risk assessment. As communities expand into
hilly terrains to accommodate continued population and
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economic growth, an increasing number of infrastructure
systems become vulnerable to geohazards, including slope
failures. Furthermore, climate change is expected to cause
more frequent extreme rainfalls and wildfires, which may
result in a higher occurrence of landslides and related
damages [12]. Therefore, predicting slope stability with
high levels of accuracy and efficiency is essential.

Slope stability evaluation has been traditionally
accomplished using physics-based approaches, which
depend on physical laws from soil mechanics to determine
slope stability conditions. The factor of safety based on
limit equilibrium methods (LEMs) (e.g., [2, 29, 40]) or
numerical methods such as finite element methods (FEMs)
(e.g., [14]) has been widely used to quantify slope stability.
However, due to the complex nature of hillslope subsurface
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conditions, successful determination of slope stability
using physics-based methods requires extensive site
investigation and analysis, limiting the scale and efficiency
of slope stability analysis as well as its applicability to risk
management over a large region. On the other hand, data-
driven methods, which use statistical and machine learning
(ML) methods to develop functional relationships between
input and output, have been widely used by researchers to
predict slope stability (e.g., [9, 18, 24, 26, 28, 32, 34, 42,
43, 51, 53]). However, these methods were mainly devel-
oped and validated on small datasets as slope stability case
histories are relatively scarce. Based on the literature
review by Mahmoodzadeh et al. [34] and Lin et al. [28],
only 169 samples were used on average for the develop-
ment of data-driven models in slope stability studies (see
Fig. 1). Hence, these studies do not belong in the big data
category in the context of ML applications. In Fig. 1, two
studies with dataset sizes between 601 and 700 samples
used simulated datasets generated by geotechnical engi-
neering software (e.g., [16]); these datasets were synthetic
and different from actual slope case histories.

Although ML models are powerful in extracting features
from data, they usually need a sufficient amount of data to
achieve high performance. Flexible ML models with large
hypothesis space may have unexpected behavior in parts of
the input space not covered by training data, reducing the
reliability and interpretability of ML models for risk fore-
casting and engineering applications [50]. Therefore, ML
models should be constrained to improve their general-
ization capability. Figure 2 illustrates the model response
for a flexible model and a monotonically constrained model
for predicting the same dataset. As shown in Fig. 2, the
monotonically constrained model can better represent the
general trend for the dataset. The monotonic relationships
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Fig. 1 Histogram showing dataset size used in previous studies for
slope stability prediction
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Fig. 2 Illustration of ML model predictions based on a flexible model
vs. a monotonic model

between input and output variables are common prior
knowledge in ML applications [20]. The input parameters
for slope stability predictions often represent physical
parameters, such as soil strength parameters, hydrological
parameters, and slope geometries, and usually contribute
monotonically to slope stability conditions based on prin-
ciples of soil mechanics (e.g., [31]). For example, with
everything else being equal, the factor of safety is expected
to increase monotonically as soil strength parameters
increase and decrease as the slope angle increases. How-
ever, ML models trained purely on data may not reflect
these physical relationships resulting in low interpretability
and poor generalization capability. Moreover, standard ML
models often have difficulties capturing monotonic rela-
tionships directly from data, even if the dataset is mono-
tonic [15]. For example, Li and Wang [24] developed an
artificial neural network (ANN) model and a support vector
machine (SVM) model based on slope case histories to
predict slope stability conditions and factors of safety.
They conducted a sensitivity analysis and compared model
predictions with empirical equations. Results showed that
the trained ANN model’s predictions exhibited non-
monotonic behavior with respect to input features and were
contradictory to our physical understanding of slope failure
(e.g., the predicted slope stability decreases as soil cohe-
sion increases); the SVM model, on the other hand, has
better generalization capability than the ANN model. Zhou
et al. [53] conducted a sensitivity analysis of their trained
ML models for slope stability predictions, which also
exhibited strong non-monotonic relationships with respect
to changes in input variables, limiting the interpretability
and generalization capability of their models.
Monotonicity is desirable for ML models to ensure the
physical consistency of model outputs. Recent research has
focused on adding monotonicity or interaction constraints
into ML models to address the fairness, interpretability,
and generalization issues in various scientific domains [27].
For example, Daw et al. [10] embedded a monotonicity
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constraint into the loss function to model lake temperatures
at variable depths. Their monotonicity constraint was
designed to ensure the model prediction reflects a mono-
tonic relationship between water depth and density of water
(i.e., denser water should be at a deeper depth) and provide
physically consistent results. In addition, Stanley et al.
[45, 47] applied monotonic constraints to their ML models
for landslide susceptibility mapping, in which a direction
was assigned to model response for each input variable
using prior knowledge based on their contribution to
landslide risk (e.g., non-decreasing monotonicity between
soil moisture and landslide risk). Bandai and Ghezzehei [4]
developed a physics-informed neural network (PINN) for
the inverse solution of the Richardson-Richards equation
and the estimations of water retention curves and hydraulic
conductivity functions. The weight parameters of their
PINN model were constrained to be non-negative such that
the network can produce positive monotonic relationships
for water retention curves and hydraulic conductivity
functions with respect to matric potential. Monotonicity
constraints have been incorporated into conventional ML
algorithms and statistical models (e.g., [3, 5-8, 15, 25, 46]).
In addition, with recent advances in deep learning, the
current research interest has focused on incorporating
monotonicity constraints efficiently into neural networks,
which can be achieved by either using specifically designed
architecture (e.g., [1, 36, 52]) or altering the learning
process through regularization (e.g., [17, 27]).

Although embedding monotonicity constraints into ML
models has been a trending topic in the data science
community, there is a lack of monotonicity and general-
ization capability of existing ML models for geotechnical
engineering applications (e.g., slope stability predictions).
The primary purpose of this study is to improve the
robustness and interpretability of ML models in the
geotechnical engineering domain by embedding mono-
tonicity constraints guided by prior knowledge, using slope
stability predictions as an example. Two tasks were
accomplished in this study: (1) the monotonicity consis-
tency of commonly used ML models was evaluated, and
(2) monotonicity constraints were incorporated into ML
models, and their effects on model performance were
evaluated. In the following sections, a database used to
develop and validate the ML models is first described,
followed by descriptions of ML models, the framework for
evaluating monotonicity inconsistency, implementation of
monotonic constraints, and the design of experiments.
Lastly, the performance of these models was compared and
evaluated, and the effects of monotonicity constraints were
demonstrated.

2 Input parameters for slope stability
prediction

The stability of a slope is a combined effect of gravity, soil
properties, hydrologic conditions, and slope geometries. In
geotechnical engineering, six parameters are commonly
used to represent these effects (e.g., [31, 44]); they are soil
unit weight (y), cohesion (c), internal friction angle (¢),
slope angle (f3), slope height (H), and pore pressure ratio
(r,). Values of these parameters have been well-docu-
mented in slope failure case histories and have been widely
used for developing data-driven models for slope stability
predictions (e.g., [28, 53]). Among these parameters, the
soil strength parameters ¢ and ¢ are stabilizing factors, and
v, B, H, and r, are often considered destabilizing factors
based on typical circular failure mechanisms for soil slopes
(e.g., [30, 31]).

It should be noted that when analyzing slope stability
problems, the complex soil profile and the resultant com-
plex slip surface are important considerations but not
incorporated as input parameters in this study. The intent of
this study is to demonstrate the advantages of incorporating
monotonicity constraints in ML models through a classical
geotechnical engineering application that has been widely
studied using traditional ML methods; the selection of
these six input parameters is more suitable for slopes with a
relatively uniform soil profile for simplicity.

2.1 Database description

In the present study, a slope case history database compiled
by Hoang and Pham [18] was used to develop and evaluate
the performance of ML models and the effects of mono-
tonicity constraints. The database contains 168 slope case
histories from previously published literature for circular
failure slopes. The database reports values of six influ-
encing factors related to slope stability (i.e., y, ¢, ¢, f, H,
and r,) and slope stability conditions (i.e., stable/failure)
for each record in the database. Most of these slopes are
soil or highly weathered rock slopes, except several slopes
with large cohesion values, which are likely to be rock
slopes. For the present study, three samples in the dataset
with ¢ > 200 kPa were removed and 165 samples
remained, including 83 positive samples (i.e., stable slopes)
and 82 negative samples (failed slopes). Basic descriptive
statistical analysis for the reduced database is summarized
in Table 1. Figure 3 presents box plots showing the dis-
tribution of each influencing factor. The box corresponds to
the likely range of variation (i.e., between the first and third
quartiles). The lines extending from the bottom and top of
each box mark the minimum and maximum values,
respectively, within a statistically acceptable range. Any
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Table 1 Descriptive statistics of the database used in the present
study

7 kN/m®) ¢ (kPa) ¢ (deg) P (deg) H(m) r,(-)
Mean 21.67 29.89  28.57 35.81 103.83 0.22
Std 4.13 33.22 10.63 10.07 134.19 0.16
Min 12.00 0.00 0.00 16.00 3.60 0.00
25th 18.84 10.05 24.50 30.00 12.00 0.00
50th 20.96 1996  30.15 35.00 50.00 0.25
75th 25.00 37.50 36.00 45.00 115.00 0.30
Max 31.30 150.05  45.00 59.00 511.00 0.50

value outside this range, called an outlier, is displayed as an
individual point. Figure 3 shows that the values of each
influencing factor cover a wide range of variations, and
distributions of these influencing factors are not uniform.
Therefore, data standardization was used for scaling the
database to ensure model training results. Figure 4 presents
the correlation matrix plot for the samples in the dataset,
which visualizes pairwise relationships between input
attributes. In Fig. 4, the central diagonal plots are the
univariate histograms for each feature. The plots below the
main-diagonal show scatter plots with fitted regression
lines for any pairs of features in the dataset; the numbers
above the central diagonal are the correlation coefficient
between features. As shown in Fig. 4, no strong correlation
was found between input features except a moderate cor-
relation between y and H (i.e., r = 0.64) and between ¢
and f (i.e., r = 0.60).

3 Methodologies
3.1 Definition of individual monotonicity

The objective of an ML model is to learn a mathematical
model f that maps from an input space X to an output space
Y using samples (x,y) € (X x Y). Following the formula-
tion proposed by Liu et al. [27], who assumed that the input
x is partitioned into x=[x,, x—,] where o is an input feature
of interest and —a is its complement (i.e., all other fea-
tures), x, and x_, are the corresponding sub-vectors of x.
The model f is monotonically increasing with respect to
feature o if f(xy,x-4)>f(x,,x,) and monotonically
decreasing ~ with  respect to  feature a @ if
(X, x00) <f(x),x-), for all x, >x/,, where x, and x/, are
sub-vectors of feature o, and x, > x; denotes the inequality
for all the elements (i.e., x; 2x§ for all i € o). Model pre-
dictions that disobey monotonic relationships for each of
these two categories can be considered a violation of the
corresponding monotonicity and f is said to be individually
monotonic on x if no monotonic adversarial examples can
be found.

In the present study, increasing monotonicity was
enforced and evaluated for soil strength parameters ¢ and ¢
, and soil unit weight y (i.e., the slope becomes more
stable as these parameters increase), whereas decreasing
monotonicity was enforced and evaluated for slope
geometry parameters f§ and H, and hydrological condition
parameter r, (i.e., the slope becomes less stable as these
parameters increase). Based on this setup, monotonicity
constraints were applied to all features. It should be noted
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Fig. 3 Box plots showing the distribution of each influencing factor in the database
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Fig. 4 Pairwise relationships between variables in the dataset

that y is usually considered a destabilizing factor for slope
stability based on some equilibrium analysis (e.g., [31]),
assuming all of the parameters are independent. However,
due to correlations between y and other parameters in
nature, a slope with higher soil unit weight may be more
stable, which has been noted in studies based on slope
stability case histories (e.g., [32]). For example, a higher 7
typically indicates a denser arrangement of soil particles
and/or a larger proportion of coarse-grained particles,
which could contribute to higher soil strength and a more
stable slope. Thus, this study considers y as a stabilizing

factor to represent this aspect of geotechnical domain
knowledge that is not included in typical physics-based
models for slope stability analysis. It should be noted that
the method proposed in this study is designed to apply
monotonicity constraints to any chosen subset of input
features. In practice, it is recommended to use expert
domain knowledge to identify and select the features with
the highest degree of confidence; by enforcing mono-
tonicity constraints on these specific features, model per-
formance can be optimized, thereby enhancing accuracy
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and ensuring consistency with established domain
knowledge.

3.2 Proposed formulations for incorporating
monotonicity constraints

In practice, monotonicity violations are challenging to
inspect across the entire input space unless the model is
constructed to be monotonic [27]. For the present study, the
monotonicity inconsistency (MI) of each feature was
examined through an augmented dataset where inputs were
conditioned to be monotonic with respect to the corre-
sponding feature. For the input dataset x = [x,,x-,], the
augmented dataset X for verifying monotonicity on feature
o was constructed as X = [x,, X-,] such that ¥, contains all
the elements from x, sorted in ascending order (i.e.,
Xyli] <X,[i+1]) and X, =%, Then the difference in
model predictions can be computed for any adjacent sam-
ple pairs as:

Af ()] = f(xli +1]) — f(x[i)) (1)
the MI for feature o can then be calculated as the average

of all the violations of monotonicity using the equation
below:

Algorithm 1 Monotonicity inconsistency inspected by data augmentation

n—1
: Z max (0, —Af(xX)[i]), for increasing
=13
monotonicit
MI, = - y
1 Z max(0, Af(¥)[i]), for decreasing
n= 4
monotonicity
(2)

where n is the number of samples. Based on Eq. (2), the
monotonicity inconsistency for all the input features can be
calculated as:

N
MI =ML, (3)
a=1

where N is the total number of features. It should be noted
that the monotonicity inconsistency evaluated by Eqgs. (1-
3) can be applied to a broad range of models, as mono-
tonicity was evaluated based on an augmented dataset that
was conditioned to be monotonic. Detailed implementation
of MI can be found in Algorithm 1.

Input:

Training data: x = [xLZ , xﬁa] , where x, is the corresponding sub-vector for

feature a with n elements, x_, is its complement

Output:
Monotonicity inconsistency (MI)
l: for o —1,2,...,~vdo

2: Construct augmented data X =[%

ad—a

the feature subset x_,

%], where £ , =X _ is the mean of

3 Sort %, in ascending order such that £, [i +1]> %, [/]

4 Compute forward difference Af (X)[i]=f(x[i +1])— f(x[i])

5: if enforcing increasing monotonicity for « then

6 Inspect increasing monotonicity: MI, = ﬁ 2:11 max(0,—Af (%)[i])
7 else [enforcing decreasing monotonicity for o]

8: Inspect decreasing monotonicity: MI, = ﬁ z:}l max(0, Af (%)[])
9: end for

10: return output MI = Z:Zl MI,

@ Springer
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Conventional ML algorithms such as XGBoost [6]
and gradient boost machine (GBM) [35] that enforce
monotonicity at the algorithm level or ANNs that enforce
monotonicity through specifically designed architecture are
often restrictive and complex [27]. Evidence has shown
that these methods typically do not generalize well (e.g.,
[3, 23]). The present study enforced monotonicity through
data-based regularizations by modifying the loss function
used in the training process. This approach is straightfor-
ward and can be easily applied to off-the-shelf models. A
generic form of the loss function L with monotonicity
constraint can be expressed as:

L= Ldata + /LrR + /lmonoLmono (4)

where Lg,, measures the supervised error between the
model prediction and the ground truth, R is the model
complexity loss, and L., is the monotonicity loss which
measures the consistency of model predictions. Parameters
Ar, and Apon, are hyper-parameters that determine the
weight of each term in the loss function. Note that the first
two terms on the right-hand side of Eq. (4) are standard
losses for ML models. This study applied the proposed
methods to slope stability predictions, which can be con-
sidered a binary classification problem, and the following
binary cross-entropy loss is typically used:

1 . .
Laaa =, > iog(5) + (1 =) log(1 =) 5)

The monotonicity of model predictions with respect to
input features can be enforced by evaluating the point-wise
gradients [17], which are partial derivatives computed at
input data points. The monotonicity 10ss L, for feature
o can be calculated as the summation of all the violations
of monotonicity using the equation below:

1 n
—Zmax(o7 — f(x[lb), for increasing
né4= Ox, [1]
L _ monotonicity
mono,o. — 1< d .
- max(0, f(x[z])% for decreasing
i=1 X [l]
monotonicity

(6)

Based on Eq. (6), the monotonicity loss for all the input
features can be calculated as:

N
Liyono = ZLmom),a (7)
a=1

It should be noted that training data distributions may
affect the performance of the proposed monotonicity con-
straints if Ly, is only evaluated at training sample loca-
tions, as the effect of L,,,,, is localized around data points
where monotonicity was measured. As the calculation of
Lyono does not require labels, it can be used to evaluate
monotonicity at any arbitrary location in the input space. In
the present study, data augmentation was used to generate
simulated data that covers the input space based on the
uniform distribution (i.e., X~ Uni(x)) to improve the
robustness of the proposed monotonicity constraints; as
such, the proposed method pays equal attention and
enforces monotonicity uniformly across the entire input
space. Detailed implementation of L,,,, can be found in
Algorithm 2. The present study implemented the proposed
framework for incorporating monotonicity constraints in
the ANN model, which offers flexibility in designing and
optimizing custom loss functions with the backpropagation
algorithm [38].
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Algorithm 2 Monotonicity loss using point-wise gradients

Input:

Training data: x = [xa ,xﬁa] , where x, is the corresponding sub-vector for

feature a with n elements, x_,

is its complement

Output:

Monotonicity loss (L,,,, )

1: if data augmentation is true

2 Construct augmented data and % ~ Uni(x)

3: else

4: No data augmentation and % = x

5: for o—1,2,.. .~ do

6 if enforcing increasing monotonicity for o then

7 Inspect increasing monotonicity 7, = = 1 Zn: max(0, — w)
) ns ox,[i]

8: else [enforcing decreasing monotonicity for a]

9: Inspect decreasing monotonicity £, =~ = zma x(0, A (x[l]))

ox, [1]
10: end for

11: return output L, = ZZZI Lo

3.3 Description of ML models

ANN is a type of ML method and the heart of deep learning
algorithms; its structure is inspired by the biological neural
networks that constitute animal brains. A typical ANN
comprises node layers, such as an input layer, multiple
hidden layers, and an output layer. Each node (neuron) in
ANN layers contains an associated weight and specific
threshold. When activated, it passes processed data to the
next layer. ANN develops functional relationships between
inputs and outputs by adjusting connections between layers
and node weights during the training process. The weights
of hidden layers in ANN models are usually initialized
based on random values of certain statistical distributions
[50]. However, input data with limited observations is
often insufficient to steer the model toward an accept-
able performance. Similar to the concept of transfer
learning commonly used in computer vision [48], one can
use domain knowledge to inform the initialization of model
parameters. This way, the pre-trained model learns feature
representations for the desired task and can be fine-tuned
using actual observations. For example, Read et al. [39]
and Jia et al. [19] used pre-trained models trained on
simulated data from physics-based models to enhance the
accuracy and generalizability of their deep learning (DL)

@ Springer

models for lake temperature prediction. Ma et al. [33]
transferred weights trained on a dense USA dataset to data-
sparse regions like Chile and China. In this study, random
samples of the six influencing factors were first generated
based on uniform distributions with the same range of
values as those shown in Table 1, and values of the factor
of safety (FS) for these simulated samples were calculated
based on the stability chart for uniform slopes by Micha-
lowski [31]. Figure 5 presents the data augmentation pro-
cedure used in this study. ANN models were trained to
predict FS using these simulated samples during model
pre-training (see Fig. 7). Subsequently, for the fine-tuning
of these models, the output layer for the ANN models was
modified by adding a sigmoid activation function for the
classification task, and the pre-trained weights were used to
initialize training for the ANN models to predict slope
stability conditions using case histories. Figure 6 presents
the workflow for developing the ANN models in this study.
The same model structure and model validation procedure
were used to evaluate the model performance for preparing
the pre-trained model. In addition to ANN, the present
study considered four commonly used conventional ML
models for slope stability classifications, including logistic
regression (LR), SVM, random forest (RF), and GBM.
These models have been successfully used in various
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Fig. 6 Schematic illustration of model training procedure, including both data augmentation and model pre-training

engineering applications, including slope stability predic- 3.4 Evaluations metrics

tions (e.g., [53]). A detailed introduction to these models

can be found in Kuhn and Johnson [21]. The performance of classification models is typically
evaluated based on the confusion matrix and receiver
operating characteristic (ROC) curve. The confusion
matrix reports the four possible outcomes of model
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predictions: (1) true positive (TP), which represents the
number of correctly predicted positive samples; (2) true
negative (TN), which represents the number of correctly
predicted negative samples; (3) false positive (FP), which
represents the number of incorrectly predicted positive
class; and (4) false negative (FN), which represents the
number of incorrectly predicted negative class. Six per-
formance indicators for classification tasks can be calcu-
lated using these four parameters: accuracy, precision,
recall, F, true positive rate (TPR), and false positive rate
(FPR).

TP +TN
Accuracy = (8)
TP +FN + TN + FP
TP
Precision —
recision = o0 9)
TP
Recall = ——— (10)
TP + FN
Fy = 2 % prs:c.ision x recall (11)
precision + recall
TP
TPR=— (12)
TP + FN
FP
FPR = ——— 13
FP + TN (13)

Note that the F; score provides an aggregate measure of
the model performance score by combining precision and
recall into a single metric. The ROC curve is a 2D plot of
FPR vs. TPR for all classification thresholds. The area
under the ROC curve (AUC) can be calculated based on the
ROC curve, providing an aggregate measure of model
performance. AUC is often used as a single-value evalua-
tion for classification models as it measures the model’s
capability to distinguish two classes. A no-skill model (i.e.,
similar to random guessing) will have an AUC score of 0.5,
whereas a perfect model will have an AUC score of 1.0. In
addition to the evaluation metrics mentioned previously,
the present study used MI as an additional score to measure
the monotonicity of model predictions. In summary, six
evaluation metrics were considered in the present study for
a comprehensive model performance evaluation, including
accuracy, precision, recall, F;, AUC, and ML

3.5 Dataset partition and model development

The model development framework in the present study
involves two components: model selection and model
performance evaluation. For model selection, each baseline
model used in the present study contains hyperparameters;
these hyperparameters need to be carefully tuned to ensure
model performance. For model evaluations, the perfor-
mance of ML models needs to be evaluated on new

@ Springer

datasets to test their generalization performance. The k-fold
cross-validation technique [41] was used for dataset parti-
tion in the present study for both model selection and
model performance evaluation. In cross-validation, the
dataset is divided into k folds and the ML model is trained
using k-1 folds and validated using the remaining one fold.
This process repeats k times to allow each fold to be served
as a validation fold, and the final model performance is the
average model performance for each validation fold. For
the present study, k =5 was used (i.e., five-fold cross-
validation) for the consideration of computation efficiency
and bias. The cross-validation procedure measures the
generalization performance of a model fitted to all avail-
able data [49]. In the present study, the hyperparameters of
each model were tuned to minimize generalization per-
formance on each cross-validation. The generalization
performance evaluated for those optimal hyperparameter
values can then be used to obtain the best model. This
approach is also known as flat cross-validation and has
been widely used by researchers to select both the algo-
rithms and the hyperparameters (e.g., [13, 22]); this
approach is computationally inexpensive and performs
similarly to some more comprehensive cross-validation
techniques, such as nested cross-validation [49]. In the
present study, PyTorch [38] was used to develop the ANN
model, and the rest of the models were developed using
Scikit-learn [37]. In addition, the cross-validation proce-
dure for all the models was repeated five times (resulting in
25 candidate models in total) to account for variations in
random seeds and ensure the repeatability of the results.

4 Results and discussion
4.1 Performance of ML models

The AUC score measures the model’s capability in dis-
criminating positive (stable) and negative (failure) classes;
its value is not affected by the classification threshold. In
the present study, the hyperparameters for each ML model
were tuned to achieve the highest validation AUC score
based on the five-fold cross-validation procedure with five
repetitions; the validation performance of 25 candidate
models was reported in this study to represent model per-
formance. The optimum hyperparameters for LR, SVM,
RF, GBM, and ANN can be found in Table 2.

The output of ML models is the probability of possible
outcomes for each sample. A default threshold of 0.5 was
used to split the model predictions into two categories for
binary classification; subsequently, the classification scores
were calculated according to these predicted binary out-
comes. Table 3 presents the classification performance on
the validation dataset based on the five-fold cross-
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validation procedure with five repetitions. As shown in
Table 3, the trained ML models achieved an average AUC
score of 0.936, an accuracy of 0.885, and a F; score of
0.883. These values are relatively high and suggest that the
trained ML models can effectively differentiate slope sta-
bility conditions (i.e., stable vs. failure). In addition, it can
be noted from Table 3 that the performance varies among
these ML models. For example, the LR model exhibited the
worst performance due to its simplicity, whereas ML
models with ensemble techniques such as RF and GBM
achieved the highest classification performance with aver-
age AUC scores above 0.96. The SVM and ANN models
achieved intermediate performance with average AUC
scores of 0.925 and 0.947, respectively. In addition,
Table 3 also shows that the five ML models had an average
MI score of 0.025, indicating monotonicity inconsistency
in the model predictions. Based on the results in Table 3, it
can be concluded that ML models can achieve high levels
of classification performance; however, the trained models
may produce predictions that violate monotonicity rela-
tionships, which can be attributed to the randomness in
developing ML models and in the training dataset.

4.2 Effect of model pre-training

In this study, a uniform distribution is employed to gen-
erate 1000 simulated samples that span the entire input
space formed by the range of values as those shown in
Table 1 for the pre-training of the ANN model. This
approach ensures an equitable representation of all regions
within the input space, thereby enabling the model to
allocate equal attention and consideration to all parts of the
input space during the learning process. The FS values for
these simulated samples were then calculated based on the
stability chart for uniform slopes by Michalowski [31];
subsequently, ANN models were trained to predict FS
using these simulated samples. Figure 7 presents the model

Table 2 Summary of hyperparameters tunned based on the cross-
validation procedure

Model Parameters

LR Slover: LBFGS; penalty: L2; C: 1.0
SVM  Kernel: RBF; C:1000; gamma: Scale

RF Criterion: Gini; n_estimators: 100; minimum_samples_split:
2; minimum_samples_leaf:1

GBM  Loss: Deviance; learning rate: 1.0; n_estimators: 100;
minimum_samples_split: 2; minimum_samples_leaf: 1,
maximum_depth = 5

ANN  Number of hidden layers: 3; neurons per layer: 16; activation

function: tanh; optimizer: Adam; learning rate: 0.005;
epoch:114

Table 3 Summary of model performance based on the cross-valida-
tion procedure

Model  Accuracy Precision Recall F; AUC MI

LR 0.795 0.815 0.774  0.788 0.856 0.001
SVM 0.892 0911 0879  0.891 0.925 0.028
RF 0.909 0.923 0.899 0908 0.965 0.020
GBM 0915 0.932 0901 0914 0964 0.052
ANN 0.882 0.888 0.887  0.883 0.947 0.025
Avg 0.879 0.894 0.868  0.877 0.931 0.025

performance in predicting the simulated dataset based on
the cross-validation procedure. As shown in Fig. 7, the
trained ANN model achieved an average validation R? of
0.92, suggesting an excellent performance. The trained
model from the third fold was randomly chosen as a pre-
trained model for developing classification models to pre-
dict slope stability based on the case histories using the
model development procedure described in Sect. 3.3; the
weights in the pre-trained model were fine-tuned by
learning from case histories. Figure 8 compares the per-
formance between ANN models with and without pre-
training vs. training epoch based on the cross-validation
procedure. In Fig. 8, the solid line represents the mean
value, and the shaded area represents standard deviations.
As shown in Fig. 8a, compared with ANN models without
pre-training, ANN models with pre-training had higher
AUC scores with faster convergence and a smaller range of
variations during the training process. This performance
improvement can be attributed to the fact that the pre-
trained model contains feature representations for the
desired task (i.e., pre-trained to predict the stability chart as
shown in Fig. 7); thus, the subsequent training using actual
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Calculated F'S (based on Michalowski 2002)

Fig. 7 ANN model performance in predicting simulated dataset based
on cross-validation procedure
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Table 4 Summary of ANN model performance with and without pre-training

Model Accuracy Precision Recall Fy AUC MI
ANN 0.882 0.888 0.887 0.883 0.947 0.025
ANN 0.916 0.937 0.899 0.915 0.959 0.044
(pre-training)
Relative diff + 3.85% + 5.60% + 1.39% + 3.62% + 1.27% + 73.75%
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Fig. 9 Summary of MI, for trained ML models based on cross-validation procedure

observations can achieve global minimum easier than ANN
models initialized using randomly generated weights.
Figures. 8b and c¢ present monotonicity inconsistency
measured by L,,,, and MI, respectively; these two fig-
ures show that monotonicity inconsistency generally
increases with training epochs, and ANN models with pre-
training exhibited higher monotonicity inconsistency. This
can be attributed to the fact that the pre-trained model was
well-trained by a large number of simulated data; thus, the
subsequent fine-tuning tended to adjust excessively to the
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data from case histories and learn complex field situations.
Table 4 summarizes the performance of ANN models with
and without pre-training. As shown in Table 4, ANN
models with pre-training performed better in all the clas-
sification metrics; however, they have significantly higher
monotonicity inconsistency than ANN models without pre-
training. Results in Fig. 8 and Table 4 suggest that ANN
models may benefit from pre-trained weights and gain
improvements in certain data science evaluation criteria;
however, one should pay attention when adopting pre-
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Fig. 10 Partial dependence plots based on trained ML models showing the effect of ¢ and ¢ for predicting slope stability conditions: a LR;

b SVM; ¢ RF; d GBM; e ANN; and f ANN (pre-training)

trained weights and examine the model’s physics consis-
tency using domain knowledge (Table 4).

4.3 Monotonicity evaluation for ML models

The monotonicity of model predictions with respect to each
input feature was evaluated using MI, based on an aug-
mented dataset that was conditioned to be monotonic.
Figure 9 presents boxplots showing monotonicity incon-
sistency measured by MI, for all the trained ML models
based on the cross-validation procedure with five repeti-
tions. As shown in Fig. 9, positive values of MI, can be
generally observed for all the trained ML models, indi-
cating that model predictions disobey the pre-set mono-
tonicity criteria. It can be noted that monotonicity
inconsistencies are mainly observed in features f§, H, and
r,. Among all the ML algorithms, the GBM model
exhibited the worst monotonicity consistency as measured
by MI,. In contrast, the LR model exhibited the best
monotonicity consistency, which can be expected as the LR
model is unconditionally monotonic at the algorithm level.
However, positive values of MI, can still be observed for
LR models due to sampling randomness in the training
datasets.

In addition to MI,, the partial dependence (pd) plots [11]
were used to evaluate the relationship between the model
predictions and each input feature, marginalizing over the
values of all the other complement features. Computa-
tionally, the values of pd for feature o at x, can be calcu-
lated as the average in model predictions as:
pd(x,) = %Zf(xouxl—m) (14)

i=1

In the present study, the pd value for each x, was cal-
culated using 25 randomly generated samples of x_, within
the input space. The partial dependence plots can then be
obtained by calculating pd at multiple values of x,. In
addition, as each ML model may have a different range of
response with respect to input features, the calculated
values of pd were normalized to the range between zero
and one using the equation below to facilitate comparison:

pd — min(pd)
max(pd) — min(pd) (15)

pdnorm =

Figure 10 presents the partial dependence plot based on
trained ML models showing the effect of ¢ and ¢ for
predicting slope stability conditions, each subplot in
Fig. 10 is generated using one trained model randomly
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Fig. 12 Effect of A0, on the performance of ANN models based on cross-validation procedure: a Lyn,; b MI; and ¢ AUC

chosen from the candidate models trained using the cross-
validation procedure. A higher value of pd,,., indicates
that the model predicts the slope to be more stable, and a
lower pd,,., value indicates that the model predicts the
slope to be less stable. As shown in Fig. 10, all ML models
generally predicted a higher value of pd,,., with an
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increase in soil strength parameters ¢ and ¢; however,
monotonicity inconsistencies can be observed for all ML
models except the LR model, as indicated by the color
contours. Figure 11. presents the corresponding partial
dependence plot based on trained ML models showing the
effect of f, H, and r, for predicting slope stability
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conditions. As shown in Fig. 11, all trained ML models
have difficulties producing the correct monotonicity rela-
tionship, even the LR model predicts the slope stability
condition increases with increasing f§ value. Moreover, the
model response with respect to f§, H, and r, for all of the
other ML models except the LR model is more complex
and less interpretable, which is also evident from box plots
in Fig. 9 for features 5, H, and r,. Based on the results
shown in Figs. 9, 10 and 11, it can be concluded that ML
models trained purely on data may not reflect the correct
monotonicity relationships and produce results contradic-
tory to geotechnical domain knowledge, which can be a
particular concern for future slope stability predictions
using these trained ML models. Figures 9, 10 and 11 also
suggest that model evaluation criteria in data science may
be inadequate and judgment of model performance using
domain knowledge is needed.

4.4 Effect of monotonicity constraints

In the present study, monotonicity was enforced through
the L,n, term in the loss function during the training
process. Values of L,,,,, were computed in two ways: (1) at
training data points or (2) at augmented data points ran-
domly sampled from the input space based on uniform

distribution. Figure 12 presents the effect of ,,,, on
model performance by averaging results from all trained
models from the cross-validation procedure with five rep-
etitions. Note that 4,,,,, = 0 corresponds to models without
constraint and a greater /,,,, value corresponds to a
stronger regularization from the monotonicity loss term
(i-e., Liono). Figure 12 shows that in all cases as Zuyono
increases, monotonicity inconsistency measured by L.,
and MI significantly decreases and a slight drop in classi-
fication performance (i.e., AUC score) can be observed.
This indicates that the proposed monotonicity constraint
can steer the model prediction to comply with the pre-set
monotonicity relationship. The decrease in classification
performance is expected as the L,,,, term reduces the
model’s flexibility, and the dataset may not reflect the
monotonicity relationship due to randomness. In addition,
by comparing Figs. 12a and b, the effect of L,,,,, with data
augmentations can not be easily observed by L., com-
puted on validation datasets; however, their effect on
enforcing monotonicity over the input space can be
observed through MI, which also used data augmentation.
The monotonicity enforced through L,,,, with data aug-
mentations can reduce MI values much more rapidly to
zero than those without data augmentations. This indicates
that data augmentations can produce a more robust

@ Springer



Acta Geotechnica

(a) No constraint

40
@ Avg.
20 AUC = 0.973
= MI=0.039
0 50 100 0 50 100 50 100 0 50 100
¢ (kPa) ¢ (kPa) ¢ (kPa) ¢ (kPa) ¢ (kPa)
(b) Linono applied to all features (Ayono = 0.1)
40
@ Avg.
= AUC =0.965
20
< MI=0.023
0 50 100 0 50 100 50 100 0 50 100
¢ (kPa) ¢ (kPa) ¢ (kPa) ¢ (kPa) ¢ (kPa)
(¢) Linono applied to all features (Anono = 0.1) with data augmentation
40
ED Avg.
20 AUC = 0.951
< MI=0.002
0 T v -
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
¢ (kPa) ¢ (kPa) ¢ (kPa) ¢ (kPa) ¢ (kPa)
[ s |
0.0 0.2 0.4 0.6 0.8 1.0
Pnorm

Fig. 14 Partial dependence plots (pd,om) showing the effect of ¢ and ¢ for predicting slope stability conditions for ANN models (with pre-
training): a no constraint; b L,,,, applied to all features; and ¢ L,,,,, applied to all features with data augmentation

regularization of monotonicity over a much larger region in
the input space. Moreover, it can be noted that enforcing
monotonicity with data augmentation resulted in a more
significant drop in classification performance at the same
Amono value than those without data augmentation (see
Fig. 12c). However, these models still perform adequately
well with much more generalizable responses in terms of
monotonicity consistency that aligns with domain
knowledge.

Figure 13 presents the boxplots with kernel density
estimates showing gradients of ANN model outputs with
respect to each input feature; these gradients are computed
using all trained models from the cross-validation proce-
dure with five repetitions. For each model, a simulated
dataset of 250 samples was uniformly sampled within the
input space, and the gradients for each model were com-
puted using this simulated dataset (i.e., each boxplot con-
tains 6,250 data points). As shown in Figs. 13a and d,
gradients for ANN models without constraints exhibited
non-monotonic behavior as values of gradients for each
feature contain different signs. It can be noted in Figs. 13b
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and e that monotonicity consistency can be generally
improved by enforcing monotonicity through L,,,, at
training data points. However, this approach does not
perform well for features that exhibit strong non-mono-
tonicity (e.g.,, H). As shown in Figs. 13c and f, enforcing
monotonicity through L,,,, with data augmentation can
eliminate the majority of monotonicity inconsistencies over
the entire input space.

Figure 14 presents the partial dependence plot showing
the effect of ¢ and ¢ for predicting slope stability for ANN
models without monotonicity constraints, with L,
applied to all features, and with L,,,,, applied to all features
with data augmentation. Each row in Fig. 14 contains
partial dependence plots based on trained models from one
cross-validation. By comparing Figs. 14a through c,
monotonicity consistency in model predictions is improved
due to the L., term in the loss function, and this effect
can be further improved by computing L,,,, with data
augmentation. Figure 15 presents the corresponding plots
showing the effect of f, H, and r, for predicting slope
stability for ANN models; a similar trend can be observed.
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Based on Figs. 14 and 15, it can be concluded that the
trained models can better capture monotonic relationships
between input futures and slope stability conditions by
enforcing monotonicity and producing predictions that are
significantly more interpretable and align with our physical
understanding of slope stability.

5 Discussion

Monotonicity constraints simplify the relationship between
input and output variables, making it easier to predict how
the model will behave when faced with new or unseen data
(i.e., better extrapolation and generalization capability),
especially when these relationships are based on known
physical laws or established domain knowledge. In addi-
tion, monotonic relationships are often easier to interpret
and understand than non-monotonic ones. When dealing
with complex geotechnical problems, having an inter-
pretable model can help engineers and decision-makers
understand the factors influencing the predictions, gain

insights into the underlying processes, and gain their con-
fidence in the developed model. Therefore, monotonicity is
essential in ML applications in geotechnical engineering as
it helps address issues related to physical consistency,
safety and reliability, interpretability, and regulatory
compliance. Besides predicting slope stability, the pro-
posed methods in this study can help facilitate the appli-
cation of ML in other predictive tasks in geotechnical
engineering, such as bearing capacity prediction, settle-
ment prediction, and liquefaction potential assessment. It
can also help ML applications in regional landslide sus-
ceptibility mapping.

This study demonstrated the value of enforcing mono-
tonicity for ML models to produce predictions aligned with
our geotechnical domain knowledge. However, the pro-
posed method has several limitations that need to be
addressed in future research. For example, the proposed
method only applied a single weight term to control the
degree of regularization for the monotonicity loss term.
Ideally, different weights should be applied to each feature
as they contribute differently to monotonicity
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inconsistency, which can be formulated into an optimiza-
tion problem. In addition, the proposed monotonicity
constraint was enforced through the loss function, which
can not guarantee unconditional monotonicity. The per-
formance of the proposed monotonicity constraint should
be further evaluated with different datasets. Moreover, as
geotechnical engineering problems often exhibit complex
behavior, values of additional constraints should be eval-
uvated, such as interaction and convexity/concavity
constraints.

6 Conclusions

With recent advances in data science, ML models have
been adopted in many applications. However, the appli-
cability of ML models for modeling scientific problems
involving complex physics is still limited as ML models
purely rely on features from data for model development.
ML models trained with pure data, especially with limited
data, can often produce counter-intuitive predictions, rais-
ing challenges in applying data science models in
geotechnical engineering applications. This study presents
methods for evaluating and enforcing the monotonicity of
model predictions which help ML models produce pre-
dictions that align with domain knowledge. The slope
stability predictions were used as an example problem to
demonstrate the effectiveness of the proposed methods.
The following conclusions can be drawn from the results of
this study.

(1) Commonly used ML models without constraints can
achieve high performance based on certain data
science evaluation matrices. However, the trained
models may produce predictions that violate
geotechnical domain knowledge.

(2) Pre-trained weights based on simulated data can be
beneficial in improving ML model performance;
however, the model with pre-trained weights exhib-
ited more significant monotonicity inconsistency.

(3) The proposed monotonicity constraint can effec-
tively steer the model prediction to comply with pre-
set monotonicity relationships. Moreover, the effec-
tiveness of the proposed monotonicity constraint can
be enhanced with data augmentation.
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