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Abstract
Machine learning (ML) algorithms have been widely applied to analyze geotechnical engineering problems due to recent

advances in data science. However, flexible ML models trained with limited data can exhibit unexpected behaviors, leading

to low interpretability and physical inconsistency, thus, reducing the reliability and robustness of ML models for risk

forecasting and engineering applications. As input features for geotechnical engineering applications often represent

physical parameters following intrinsic and often monotonic relationships, incorporating monotonicity into ML models can

help ensure the physical realism of model outputs. In this study, monotonicity was introduced as a soft constraint into

artificial neural network (ANN) models, and their results were compared with several benchmark ML models. During the

training process, data augmentation and point-wise gradient were used to evaluate the monotonicity of model predictions,

and monotonicity violations were minimized through a modified loss function. A compilation of slope stability case

histories from the literature was used for model development, benchmarking their performance, and evaluating the effects

of monotonicity constraints. Cross-validation procedures were used for all model performance evaluations to reduce bias in

sample selections. Results showed that unconstrained ML models produced predictions that violate monotonicity in many

parts of the input space. However, by adding monotonicity constraints into ANN models, monotonicity violations were

effectively reduced while maintaining relatively high performance, thus providing a more robust and interpretable pre-

diction. Using slope stability prediction as a proxy, the methods developed in this study to incorporate monotonicity

constraints into ML models can be applied to many geotechnical engineering applications. The proposed approach

enhances the reliability and interpretability of ML models, resulting in more accurate and consistent outcomes for real-

world applications.
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1 Introduction

Slope stability analysis is an important component of

landslide risk assessment. As communities expand into

hilly terrains to accommodate continued population and

economic growth, an increasing number of infrastructure

systems become vulnerable to geohazards, including slope

failures. Furthermore, climate change is expected to cause

more frequent extreme rainfalls and wildfires, which may

result in a higher occurrence of landslides and related

damages [12]. Therefore, predicting slope stability with

high levels of accuracy and efficiency is essential.

Slope stability evaluation has been traditionally

accomplished using physics-based approaches, which

depend on physical laws from soil mechanics to determine

slope stability conditions. The factor of safety based on

limit equilibrium methods (LEMs) (e.g., [2, 29, 40]) or

numerical methods such as finite element methods (FEMs)

(e.g., [14]) has been widely used to quantify slope stability.

However, due to the complex nature of hillslope subsurface
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conditions, successful determination of slope stability

using physics-based methods requires extensive site

investigation and analysis, limiting the scale and efficiency

of slope stability analysis as well as its applicability to risk

management over a large region. On the other hand, data-

driven methods, which use statistical and machine learning

(ML) methods to develop functional relationships between

input and output, have been widely used by researchers to

predict slope stability (e.g., [9, 18, 24, 26, 28, 32, 34, 42,

43, 51, 53]). However, these methods were mainly devel-

oped and validated on small datasets as slope stability case

histories are relatively scarce. Based on the literature

review by Mahmoodzadeh et al. [34] and Lin et al. [28],

only 169 samples were used on average for the develop-

ment of data-driven models in slope stability studies (see

Fig. 1). Hence, these studies do not belong in the big data

category in the context of ML applications. In Fig. 1, two

studies with dataset sizes between 601 and 700 samples

used simulated datasets generated by geotechnical engi-

neering software (e.g., [16]); these datasets were synthetic

and different from actual slope case histories.

Although ML models are powerful in extracting features

from data, they usually need a sufficient amount of data to

achieve high performance. Flexible ML models with large

hypothesis space may have unexpected behavior in parts of

the input space not covered by training data, reducing the

reliability and interpretability of ML models for risk fore-

casting and engineering applications [50]. Therefore, ML

models should be constrained to improve their general-

ization capability. Figure 2 illustrates the model response

for a flexible model and a monotonically constrained model

for predicting the same dataset. As shown in Fig. 2, the

monotonically constrained model can better represent the

general trend for the dataset. The monotonic relationships

between input and output variables are common prior

knowledge in ML applications [20]. The input parameters

for slope stability predictions often represent physical

parameters, such as soil strength parameters, hydrological

parameters, and slope geometries, and usually contribute

monotonically to slope stability conditions based on prin-

ciples of soil mechanics (e.g., [31]). For example, with

everything else being equal, the factor of safety is expected

to increase monotonically as soil strength parameters

increase and decrease as the slope angle increases. How-

ever, ML models trained purely on data may not reflect

these physical relationships resulting in low interpretability

and poor generalization capability. Moreover, standard ML

models often have difficulties capturing monotonic rela-

tionships directly from data, even if the dataset is mono-

tonic [15]. For example, Li and Wang [24] developed an

artificial neural network (ANN) model and a support vector

machine (SVM) model based on slope case histories to

predict slope stability conditions and factors of safety.

They conducted a sensitivity analysis and compared model

predictions with empirical equations. Results showed that

the trained ANN model’s predictions exhibited non-

monotonic behavior with respect to input features and were

contradictory to our physical understanding of slope failure

(e.g., the predicted slope stability decreases as soil cohe-

sion increases); the SVM model, on the other hand, has

better generalization capability than the ANN model. Zhou

et al. [53] conducted a sensitivity analysis of their trained

ML models for slope stability predictions, which also

exhibited strong non-monotonic relationships with respect

to changes in input variables, limiting the interpretability

and generalization capability of their models.

Monotonicity is desirable for ML models to ensure the

physical consistency of model outputs. Recent research has

focused on adding monotonicity or interaction constraints

into ML models to address the fairness, interpretability,

and generalization issues in various scientific domains [27].

For example, Daw et al. [10] embedded a monotonicity
Fig. 1 Histogram showing dataset size used in previous studies for

slope stability prediction

y
Monotonic model

Flexible model

Fig. 2 Illustration of ML model predictions based on a flexible model

vs. a monotonic model

Acta Geotechnica

123



constraint into the loss function to model lake temperatures

at variable depths. Their monotonicity constraint was

designed to ensure the model prediction reflects a mono-

tonic relationship between water depth and density of water

(i.e., denser water should be at a deeper depth) and provide

physically consistent results. In addition, Stanley et al.

[45, 47] applied monotonic constraints to their ML models

for landslide susceptibility mapping, in which a direction

was assigned to model response for each input variable

using prior knowledge based on their contribution to

landslide risk (e.g., non-decreasing monotonicity between

soil moisture and landslide risk). Bandai and Ghezzehei [4]

developed a physics-informed neural network (PINN) for

the inverse solution of the Richardson-Richards equation

and the estimations of water retention curves and hydraulic

conductivity functions. The weight parameters of their

PINN model were constrained to be non-negative such that

the network can produce positive monotonic relationships

for water retention curves and hydraulic conductivity

functions with respect to matric potential. Monotonicity

constraints have been incorporated into conventional ML

algorithms and statistical models (e.g., [3, 5–8, 15, 25, 46]).

In addition, with recent advances in deep learning, the

current research interest has focused on incorporating

monotonicity constraints efficiently into neural networks,

which can be achieved by either using specifically designed

architecture (e.g., [1, 36, 52]) or altering the learning

process through regularization (e.g., [17, 27]).

Although embedding monotonicity constraints into ML

models has been a trending topic in the data science

community, there is a lack of monotonicity and general-

ization capability of existing ML models for geotechnical

engineering applications (e.g., slope stability predictions).

The primary purpose of this study is to improve the

robustness and interpretability of ML models in the

geotechnical engineering domain by embedding mono-

tonicity constraints guided by prior knowledge, using slope

stability predictions as an example. Two tasks were

accomplished in this study: (1) the monotonicity consis-

tency of commonly used ML models was evaluated, and

(2) monotonicity constraints were incorporated into ML

models, and their effects on model performance were

evaluated. In the following sections, a database used to

develop and validate the ML models is first described,

followed by descriptions of ML models, the framework for

evaluating monotonicity inconsistency, implementation of

monotonic constraints, and the design of experiments.

Lastly, the performance of these models was compared and

evaluated, and the effects of monotonicity constraints were

demonstrated.

2 Input parameters for slope stability
prediction

The stability of a slope is a combined effect of gravity, soil

properties, hydrologic conditions, and slope geometries. In

geotechnical engineering, six parameters are commonly

used to represent these effects (e.g., [31, 44]); they are soil

unit weight (c), cohesion (c), internal friction angle (/),
slope angle (b), slope height (H), and pore pressure ratio

(ru). Values of these parameters have been well-docu-

mented in slope failure case histories and have been widely

used for developing data-driven models for slope stability

predictions (e.g., [28, 53]). Among these parameters, the

soil strength parameters c and / are stabilizing factors, and

c, b, H, and ru are often considered destabilizing factors

based on typical circular failure mechanisms for soil slopes

(e.g., [30, 31]).

It should be noted that when analyzing slope stability

problems, the complex soil profile and the resultant com-

plex slip surface are important considerations but not

incorporated as input parameters in this study. The intent of

this study is to demonstrate the advantages of incorporating

monotonicity constraints in ML models through a classical

geotechnical engineering application that has been widely

studied using traditional ML methods; the selection of

these six input parameters is more suitable for slopes with a

relatively uniform soil profile for simplicity.

2.1 Database description

In the present study, a slope case history database compiled

by Hoang and Pham [18] was used to develop and evaluate

the performance of ML models and the effects of mono-

tonicity constraints. The database contains 168 slope case

histories from previously published literature for circular

failure slopes. The database reports values of six influ-

encing factors related to slope stability (i.e., c, c, /, b, H,
and ru) and slope stability conditions (i.e., stable/failure)

for each record in the database. Most of these slopes are

soil or highly weathered rock slopes, except several slopes

with large cohesion values, which are likely to be rock

slopes. For the present study, three samples in the dataset

with c[ 200 kPa were removed and 165 samples

remained, including 83 positive samples (i.e., stable slopes)

and 82 negative samples (failed slopes). Basic descriptive

statistical analysis for the reduced database is summarized

in Table 1. Figure 3 presents box plots showing the dis-

tribution of each influencing factor. The box corresponds to

the likely range of variation (i.e., between the first and third

quartiles). The lines extending from the bottom and top of

each box mark the minimum and maximum values,

respectively, within a statistically acceptable range. Any
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value outside this range, called an outlier, is displayed as an

individual point. Figure 3 shows that the values of each

influencing factor cover a wide range of variations, and

distributions of these influencing factors are not uniform.

Therefore, data standardization was used for scaling the

database to ensure model training results. Figure 4 presents

the correlation matrix plot for the samples in the dataset,

which visualizes pairwise relationships between input

attributes. In Fig. 4, the central diagonal plots are the

univariate histograms for each feature. The plots below the

main-diagonal show scatter plots with fitted regression

lines for any pairs of features in the dataset; the numbers

above the central diagonal are the correlation coefficient

between features. As shown in Fig. 4, no strong correlation

was found between input features except a moderate cor-

relation between c and H (i.e., r ¼ 0:64) and between /
and b (i.e., r ¼ 0:60).

3 Methodologies

3.1 Definition of individual monotonicity

The objective of an ML model is to learn a mathematical

model f that maps from an input space X to an output space

Y using samples ðx; yÞ 2 ðX � YÞ. Following the formula-

tion proposed by Liu et al. [27], who assumed that the input

x is partitioned into x¼ xa; x:a½ � where a is an input feature

of interest and :a is its complement (i.e., all other fea-

tures), xa and x:a are the corresponding sub-vectors of x.

The model f is monotonically increasing with respect to

feature a if f ðxa; x:aÞ� f ðx0a; x:aÞ and monotonically

decreasing with respect to feature a if

f ðxa; x:aÞ� f ðx0a; x:aÞ, for all xa � x0a, where xa and x0a are

sub-vectors of feature a, and xa � x0a denotes the inequality

for all the elements (i.e., xi � x0i for all i 2 a). Model pre-

dictions that disobey monotonic relationships for each of

these two categories can be considered a violation of the

corresponding monotonicity and f is said to be individually

monotonic on x if no monotonic adversarial examples can

be found.

In the present study, increasing monotonicity was

enforced and evaluated for soil strength parameters c and /
, and soil unit weight c (i.e., the slope becomes more

stable as these parameters increase), whereas decreasing

monotonicity was enforced and evaluated for slope

geometry parameters b and H, and hydrological condition

parameter ru (i.e., the slope becomes less stable as these

parameters increase). Based on this setup, monotonicity

constraints were applied to all features. It should be noted

Table 1 Descriptive statistics of the database used in the present

study

c (kN/m3) c (kPa) / (deg) b (deg) H (m) ru (-)

Mean 21.67 29.89 28.57 35.81 103.83 0.22

Std 4.13 33.22 10.63 10.07 134.19 0.16

Min 12.00 0.00 0.00 16.00 3.60 0.00

25th 18.84 10.05 24.50 30.00 12.00 0.00

50th 20.96 19.96 30.15 35.00 50.00 0.25

75th 25.00 37.50 36.00 45.00 115.00 0.30

Max 31.30 150.05 45.00 59.00 511.00 0.50

Fig. 3 Box plots showing the distribution of each influencing factor in the database
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that c is usually considered a destabilizing factor for slope

stability based on some equilibrium analysis (e.g., [31]),

assuming all of the parameters are independent. However,

due to correlations between c and other parameters in

nature, a slope with higher soil unit weight may be more

stable, which has been noted in studies based on slope

stability case histories (e.g., [32]). For example, a higher c
typically indicates a denser arrangement of soil particles

and/or a larger proportion of coarse-grained particles,

which could contribute to higher soil strength and a more

stable slope. Thus, this study considers c as a stabilizing

factor to represent this aspect of geotechnical domain

knowledge that is not included in typical physics-based

models for slope stability analysis. It should be noted that

the method proposed in this study is designed to apply

monotonicity constraints to any chosen subset of input

features. In practice, it is recommended to use expert

domain knowledge to identify and select the features with

the highest degree of confidence; by enforcing mono-

tonicity constraints on these specific features, model per-

formance can be optimized, thereby enhancing accuracy

Fig. 4 Pairwise relationships between variables in the dataset

Acta Geotechnica

123



and ensuring consistency with established domain

knowledge.

3.2 Proposed formulations for incorporating
monotonicity constraints

In practice, monotonicity violations are challenging to

inspect across the entire input space unless the model is

constructed to be monotonic [27]. For the present study, the

monotonicity inconsistency (MI) of each feature was

examined through an augmented dataset where inputs were

conditioned to be monotonic with respect to the corre-

sponding feature. For the input dataset x ¼ xa; x:a½ �, the
augmented dataset x̂ for verifying monotonicity on feature

a was constructed as x̂ ¼ x̂a; x̂:a½ � such that x̂a contains all

the elements from xa sorted in ascending order (i.e.,

x̂a½i�\x̂a½iþ 1�) and x̂:a ¼ x:a. Then the difference in

model predictions can be computed for any adjacent sam-

ple pairs as:

Df ðx̂Þ½i� ¼ f ðx̂½iþ 1�Þ � f ðx̂½i�Þ ð1Þ

the MI for feature a can then be calculated as the average

of all the violations of monotonicity using the equation

below:

MIa ¼

1

n� 1

Xn�1

i¼1

maxð0;�Df ðx̂Þ½i�Þ; for increasing

monotonicity

1

n� 1

Xn�1

i¼1

maxð0;Df ðx̂Þ½i�Þ; for decreasing

monotonicity

8
>>>>>>><

>>>>>>>:

ð2Þ

where n is the number of samples. Based on Eq. (2), the

monotonicity inconsistency for all the input features can be

calculated as:

MI ¼
XN

a¼1

MIa ð3Þ

where N is the total number of features. It should be noted

that the monotonicity inconsistency evaluated by Eqs. (1–

3) can be applied to a broad range of models, as mono-

tonicity was evaluated based on an augmented dataset that

was conditioned to be monotonic. Detailed implementation

of MI can be found in Algorithm 1.

Algorithm 1 Monotonicity inconsistency inspected by data augmentation
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Conventional ML algorithms such as XGBoost [6]

and gradient boost machine (GBM) [35] that enforce

monotonicity at the algorithm level or ANNs that enforce

monotonicity through specifically designed architecture are

often restrictive and complex [27]. Evidence has shown

that these methods typically do not generalize well (e.g.,

[3, 23]). The present study enforced monotonicity through

data-based regularizations by modifying the loss function

used in the training process. This approach is straightfor-

ward and can be easily applied to off-the-shelf models. A

generic form of the loss function L with monotonicity

constraint can be expressed as:

L ¼ Ldata þ krRþ kmonoLmono ð4Þ

where Ldata measures the supervised error between the

model prediction and the ground truth, R is the model

complexity loss, and Lmono is the monotonicity loss which

measures the consistency of model predictions. Parameters

kr, and kmono are hyper-parameters that determine the

weight of each term in the loss function. Note that the first

two terms on the right-hand side of Eq. (4) are standard

losses for ML models. This study applied the proposed

methods to slope stability predictions, which can be con-

sidered a binary classification problem, and the following

binary cross-entropy loss is typically used:

Ldata ¼
1

n

Xn

i¼1

yi logðŷiÞ þ ð1� yiÞ logð1� ŷiÞ ð5Þ

The monotonicity of model predictions with respect to

input features can be enforced by evaluating the point-wise

gradients [17], which are partial derivatives computed at

input data points. The monotonicity loss Lmono;a for feature

a can be calculated as the summation of all the violations

of monotonicity using the equation below:

Lmono;a ¼

1

n

Xn

i¼1

maxð0;� of ðx½i�Þ
oxa½i�

Þ; for increasing

monotonicity

1

n

Xn

i¼1

maxð0; of ðx½i�Þ
oxa½i�

Þ; for decreasing

monotonicity

8
>>>>>>><

>>>>>>>:

ð6Þ

Based on Eq. (6), the monotonicity loss for all the input

features can be calculated as:

Lmono ¼
XN

a¼1

Lmono;a ð7Þ

It should be noted that training data distributions may

affect the performance of the proposed monotonicity con-

straints if Lmono is only evaluated at training sample loca-

tions, as the effect of Lmono is localized around data points

where monotonicity was measured. As the calculation of

Lmono does not require labels, it can be used to evaluate

monotonicity at any arbitrary location in the input space. In

the present study, data augmentation was used to generate

simulated data that covers the input space based on the

uniform distribution (i.e., x̂�UniðxÞ) to improve the

robustness of the proposed monotonicity constraints; as

such, the proposed method pays equal attention and

enforces monotonicity uniformly across the entire input

space. Detailed implementation of Lmono can be found in

Algorithm 2. The present study implemented the proposed

framework for incorporating monotonicity constraints in

the ANN model, which offers flexibility in designing and

optimizing custom loss functions with the backpropagation

algorithm [38].
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3.3 Description of ML models

ANN is a type of ML method and the heart of deep learning

algorithms; its structure is inspired by the biological neural

networks that constitute animal brains. A typical ANN

comprises node layers, such as an input layer, multiple

hidden layers, and an output layer. Each node (neuron) in

ANN layers contains an associated weight and specific

threshold. When activated, it passes processed data to the

next layer. ANN develops functional relationships between

inputs and outputs by adjusting connections between layers

and node weights during the training process. The weights

of hidden layers in ANN models are usually initialized

based on random values of certain statistical distributions

[50]. However, input data with limited observations is

often insufficient to steer the model toward an accept-

able performance. Similar to the concept of transfer

learning commonly used in computer vision [48], one can

use domain knowledge to inform the initialization of model

parameters. This way, the pre-trained model learns feature

representations for the desired task and can be fine-tuned

using actual observations. For example, Read et al. [39]

and Jia et al. [19] used pre-trained models trained on

simulated data from physics-based models to enhance the

accuracy and generalizability of their deep learning (DL)

models for lake temperature prediction. Ma et al. [33]

transferred weights trained on a dense USA dataset to data-

sparse regions like Chile and China. In this study, random

samples of the six influencing factors were first generated

based on uniform distributions with the same range of

values as those shown in Table 1, and values of the factor

of safety (FS) for these simulated samples were calculated

based on the stability chart for uniform slopes by Micha-

lowski [31]. Figure 5 presents the data augmentation pro-

cedure used in this study. ANN models were trained to

predict FS using these simulated samples during model

pre-training (see Fig. 7). Subsequently, for the fine-tuning

of these models, the output layer for the ANN models was

modified by adding a sigmoid activation function for the

classification task, and the pre-trained weights were used to

initialize training for the ANN models to predict slope

stability conditions using case histories. Figure 6 presents

the workflow for developing the ANN models in this study.

The same model structure and model validation procedure

were used to evaluate the model performance for preparing

the pre-trained model. In addition to ANN, the present

study considered four commonly used conventional ML

models for slope stability classifications, including logistic

regression (LR), SVM, random forest (RF), and GBM.

These models have been successfully used in various

Algorithm 2 Monotonicity loss using point-wise gradients
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engineering applications, including slope stability predic-

tions (e.g., [53]). A detailed introduction to these models

can be found in Kuhn and Johnson [21].

3.4 Evaluations metrics

The performance of classification models is typically

evaluated based on the confusion matrix and receiver

operating characteristic (ROC) curve. The confusion

matrix reports the four possible outcomes of model

Fig. 5 Illustration of data augmentation procedure

x

… …

…

…

…

Inputs

…

Outputs

…

Input space

Dataset samples (x)
Augmented samples (   )

… …

…

…

…

…

Hidden layersInputs
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Fig. 6 Schematic illustration of model training procedure, including both data augmentation and model pre-training
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predictions: (1) true positive (TP), which represents the

number of correctly predicted positive samples; (2) true

negative (TN), which represents the number of correctly

predicted negative samples; (3) false positive (FP), which

represents the number of incorrectly predicted positive

class; and (4) false negative (FN), which represents the

number of incorrectly predicted negative class. Six per-

formance indicators for classification tasks can be calcu-

lated using these four parameters: accuracy, precision,

recall, F1, true positive rate (TPR), and false positive rate

(FPR).

Accuracy ¼ TPþ TN

TPþ FNþ TNþ FP
ð8Þ

Precision ¼ TP

TPþ FP
ð9Þ

Recall ¼ TP

TPþ FN
ð10Þ

F1 ¼
2� precision� recall

precisionþ recall
ð11Þ

TPR ¼ TP

TPþ FN
ð12Þ

FPR ¼ FP

FPþ TN
ð13Þ

Note that the F1 score provides an aggregate measure of

the model performance score by combining precision and

recall into a single metric. The ROC curve is a 2D plot of

FPR vs. TPR for all classification thresholds. The area

under the ROC curve (AUC) can be calculated based on the

ROC curve, providing an aggregate measure of model

performance. AUC is often used as a single-value evalua-

tion for classification models as it measures the model’s

capability to distinguish two classes. A no-skill model (i.e.,

similar to random guessing) will have an AUC score of 0.5,

whereas a perfect model will have an AUC score of 1.0. In

addition to the evaluation metrics mentioned previously,

the present study used MI as an additional score to measure

the monotonicity of model predictions. In summary, six

evaluation metrics were considered in the present study for

a comprehensive model performance evaluation, including

accuracy, precision, recall, F1, AUC, and MI.

3.5 Dataset partition and model development

The model development framework in the present study

involves two components: model selection and model

performance evaluation. For model selection, each baseline

model used in the present study contains hyperparameters;

these hyperparameters need to be carefully tuned to ensure

model performance. For model evaluations, the perfor-

mance of ML models needs to be evaluated on new

datasets to test their generalization performance. The k-fold

cross-validation technique [41] was used for dataset parti-

tion in the present study for both model selection and

model performance evaluation. In cross-validation, the

dataset is divided into k folds and the ML model is trained

using k-1 folds and validated using the remaining one fold.

This process repeats k times to allow each fold to be served

as a validation fold, and the final model performance is the

average model performance for each validation fold. For

the present study, k = 5 was used (i.e., five-fold cross-

validation) for the consideration of computation efficiency

and bias. The cross-validation procedure measures the

generalization performance of a model fitted to all avail-

able data [49]. In the present study, the hyperparameters of

each model were tuned to minimize generalization per-

formance on each cross-validation. The generalization

performance evaluated for those optimal hyperparameter

values can then be used to obtain the best model. This

approach is also known as flat cross-validation and has

been widely used by researchers to select both the algo-

rithms and the hyperparameters (e.g., [13, 22]); this

approach is computationally inexpensive and performs

similarly to some more comprehensive cross-validation

techniques, such as nested cross-validation [49]. In the

present study, PyTorch [38] was used to develop the ANN

model, and the rest of the models were developed using

Scikit-learn [37]. In addition, the cross-validation proce-

dure for all the models was repeated five times (resulting in

25 candidate models in total) to account for variations in

random seeds and ensure the repeatability of the results.

4 Results and discussion

4.1 Performance of ML models

The AUC score measures the model’s capability in dis-

criminating positive (stable) and negative (failure) classes;

its value is not affected by the classification threshold. In

the present study, the hyperparameters for each ML model

were tuned to achieve the highest validation AUC score

based on the five-fold cross-validation procedure with five

repetitions; the validation performance of 25 candidate

models was reported in this study to represent model per-

formance. The optimum hyperparameters for LR, SVM,

RF, GBM, and ANN can be found in Table 2.

The output of ML models is the probability of possible

outcomes for each sample. A default threshold of 0.5 was

used to split the model predictions into two categories for

binary classification; subsequently, the classification scores

were calculated according to these predicted binary out-

comes. Table 3 presents the classification performance on

the validation dataset based on the five-fold cross-
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validation procedure with five repetitions. As shown in

Table 3, the trained ML models achieved an average AUC

score of 0.936, an accuracy of 0.885, and a F1 score of

0.883. These values are relatively high and suggest that the

trained ML models can effectively differentiate slope sta-

bility conditions (i.e., stable vs. failure). In addition, it can

be noted from Table 3 that the performance varies among

these ML models. For example, the LR model exhibited the

worst performance due to its simplicity, whereas ML

models with ensemble techniques such as RF and GBM

achieved the highest classification performance with aver-

age AUC scores above 0.96. The SVM and ANN models

achieved intermediate performance with average AUC

scores of 0.925 and 0.947, respectively. In addition,

Table 3 also shows that the five ML models had an average

MI score of 0.025, indicating monotonicity inconsistency

in the model predictions. Based on the results in Table 3, it

can be concluded that ML models can achieve high levels

of classification performance; however, the trained models

may produce predictions that violate monotonicity rela-

tionships, which can be attributed to the randomness in

developing ML models and in the training dataset.

4.2 Effect of model pre-training

In this study, a uniform distribution is employed to gen-

erate 1000 simulated samples that span the entire input

space formed by the range of values as those shown in

Table 1 for the pre-training of the ANN model. This

approach ensures an equitable representation of all regions

within the input space, thereby enabling the model to

allocate equal attention and consideration to all parts of the

input space during the learning process. The FS values for

these simulated samples were then calculated based on the

stability chart for uniform slopes by Michalowski [31];

subsequently, ANN models were trained to predict FS

using these simulated samples. Figure 7 presents the model

performance in predicting the simulated dataset based on

the cross-validation procedure. As shown in Fig. 7, the

trained ANN model achieved an average validation R2 of

0.92, suggesting an excellent performance. The trained

model from the third fold was randomly chosen as a pre-

trained model for developing classification models to pre-

dict slope stability based on the case histories using the

model development procedure described in Sect. 3.3; the

weights in the pre-trained model were fine-tuned by

learning from case histories. Figure 8 compares the per-

formance between ANN models with and without pre-

training vs. training epoch based on the cross-validation

procedure. In Fig. 8, the solid line represents the mean

value, and the shaded area represents standard deviations.

As shown in Fig. 8a, compared with ANN models without

pre-training, ANN models with pre-training had higher

AUC scores with faster convergence and a smaller range of

variations during the training process. This performance

improvement can be attributed to the fact that the pre-

trained model contains feature representations for the

desired task (i.e., pre-trained to predict the stability chart as

shown in Fig. 7); thus, the subsequent training using actual

Table 2 Summary of hyperparameters tunned based on the cross-

validation procedure

Model Parameters

LR Slover: LBFGS; penalty: L2; C: 1.0

SVM Kernel: RBF; C:1000; gamma: Scale

RF Criterion: Gini; n_estimators: 100; minimum_samples_split:

2; minimum_samples_leaf:1

GBM Loss: Deviance; learning rate: 1.0; n_estimators: 100;

minimum_samples_split: 2; minimum_samples_leaf: 1,

maximum_depth = 5

ANN Number of hidden layers: 3; neurons per layer: 16; activation

function: tanh; optimizer: Adam; learning rate: 0.005;

epoch:114

Table 3 Summary of model performance based on the cross-valida-

tion procedure

Model Accuracy Precision Recall F1 AUC MI

LR 0.795 0.815 0.774 0.788 0.856 0.001

SVM 0.892 0.911 0.879 0.891 0.925 0.028

RF 0.909 0.923 0.899 0.908 0.965 0.020

GBM 0.915 0.932 0.901 0.914 0.964 0.052

ANN 0.882 0.888 0.887 0.883 0.947 0.025

Avg 0.879 0.894 0.868 0.877 0.931 0.025

Fig. 7 ANN model performance in predicting simulated dataset based

on cross-validation procedure
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observations can achieve global minimum easier than ANN

models initialized using randomly generated weights.

Figures. 8b and c present monotonicity inconsistency

measured by Lmono and MI, respectively; these two fig-

ures show that monotonicity inconsistency generally

increases with training epochs, and ANN models with pre-

training exhibited higher monotonicity inconsistency. This

can be attributed to the fact that the pre-trained model was

well-trained by a large number of simulated data; thus, the

subsequent fine-tuning tended to adjust excessively to the

data from case histories and learn complex field situations.

Table 4 summarizes the performance of ANN models with

and without pre-training. As shown in Table 4, ANN

models with pre-training performed better in all the clas-

sification metrics; however, they have significantly higher

monotonicity inconsistency than ANN models without pre-

training. Results in Fig. 8 and Table 4 suggest that ANN

models may benefit from pre-trained weights and gain

improvements in certain data science evaluation criteria;

however, one should pay attention when adopting pre-

Fig. 8 ANN model performance with and without pre-training vs. training epoch: a AUC; b Lmono; and c MI

Table 4 Summary of ANN model performance with and without pre-training

Model Accuracy Precision Recall F1 AUC MI

ANN 0.882 0.888 0.887 0.883 0.947 0.025

ANN

(pre-training)

0.916 0.937 0.899 0.915 0.959 0.044

Relative diff ? 3.85% ? 5.60% ? 1.39% ? 3.62% ? 1.27% ? 73.75%

Fig. 9 Summary of MIa for trained ML models based on cross-validation procedure
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trained weights and examine the model’s physics consis-

tency using domain knowledge (Table 4).

4.3 Monotonicity evaluation for ML models

The monotonicity of model predictions with respect to each

input feature was evaluated using MIa based on an aug-

mented dataset that was conditioned to be monotonic.

Figure 9 presents boxplots showing monotonicity incon-

sistency measured by MIa for all the trained ML models

based on the cross-validation procedure with five repeti-

tions. As shown in Fig. 9, positive values of MIa can be

generally observed for all the trained ML models, indi-

cating that model predictions disobey the pre-set mono-

tonicity criteria. It can be noted that monotonicity

inconsistencies are mainly observed in features b, H, and
ru. Among all the ML algorithms, the GBM model

exhibited the worst monotonicity consistency as measured

by MIa. In contrast, the LR model exhibited the best

monotonicity consistency, which can be expected as the LR

model is unconditionally monotonic at the algorithm level.

However, positive values of MIa can still be observed for

LR models due to sampling randomness in the training

datasets.

In addition to MIa, the partial dependence (pd) plots [11]

were used to evaluate the relationship between the model

predictions and each input feature, marginalizing over the

values of all the other complement features. Computa-

tionally, the values of pd for feature a at xa can be calcu-

lated as the average in model predictions as:

pdðxaÞ ¼
1

n

Xn

i¼1

f ðxa; xi:aÞ ð14Þ

In the present study, the pd value for each xa was cal-

culated using 25 randomly generated samples of x:a within
the input space. The partial dependence plots can then be

obtained by calculating pd at multiple values of xa. In

addition, as each ML model may have a different range of

response with respect to input features, the calculated

values of pd were normalized to the range between zero

and one using the equation below to facilitate comparison:

pdnorm ¼ pd �minðpdÞ
maxðpdÞ �minðpdÞ ð15Þ

Figure 10 presents the partial dependence plot based on

trained ML models showing the effect of c and / for

predicting slope stability conditions, each subplot in

Fig. 10 is generated using one trained model randomly

Fig. 10 Partial dependence plots based on trained ML models showing the effect of c and / for predicting slope stability conditions: a LR;

b SVM; c RF; d GBM; e ANN; and f ANN (pre-training)
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chosen from the candidate models trained using the cross-

validation procedure. A higher value of pdnorm indicates

that the model predicts the slope to be more stable, and a

lower pdnorm value indicates that the model predicts the

slope to be less stable. As shown in Fig. 10, all ML models

generally predicted a higher value of pdnorm with an

increase in soil strength parameters c and /; however,

monotonicity inconsistencies can be observed for all ML

models except the LR model, as indicated by the color

contours. Figure 11. presents the corresponding partial

dependence plot based on trained ML models showing the

effect of b, H, and ru for predicting slope stability

Fig. 11 Partial dependence plots based on trained ML models showing the effect of b, H, and ru for predicting slope stability conditions: a LR;

b SVM; c RF; d GBM; e ANN; and f ANN (pre-training)

Fig. 12 Effect of kmono on the performance of ANN models based on cross-validation procedure: a Lmono; b MI; and c AUC
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conditions. As shown in Fig. 11, all trained ML models

have difficulties producing the correct monotonicity rela-

tionship, even the LR model predicts the slope stability

condition increases with increasing b value. Moreover, the

model response with respect to b, H, and ru for all of the

other ML models except the LR model is more complex

and less interpretable, which is also evident from box plots

in Fig. 9 for features b, H, and ru. Based on the results

shown in Figs. 9, 10 and 11, it can be concluded that ML

models trained purely on data may not reflect the correct

monotonicity relationships and produce results contradic-

tory to geotechnical domain knowledge, which can be a

particular concern for future slope stability predictions

using these trained ML models. Figures 9, 10 and 11 also

suggest that model evaluation criteria in data science may

be inadequate and judgment of model performance using

domain knowledge is needed.

4.4 Effect of monotonicity constraints

In the present study, monotonicity was enforced through

the Lmono term in the loss function during the training

process. Values of Lmono were computed in two ways: (1) at

training data points or (2) at augmented data points ran-

domly sampled from the input space based on uniform

distribution. Figure 12 presents the effect of kmono on

model performance by averaging results from all trained

models from the cross-validation procedure with five rep-

etitions. Note that kmono ¼ 0 corresponds to models without

constraint and a greater kmono value corresponds to a

stronger regularization from the monotonicity loss term

(i.e., Lmono). Figure 12 shows that in all cases as kmono
increases, monotonicity inconsistency measured by Lmono
and MI significantly decreases and a slight drop in classi-

fication performance (i.e., AUC score) can be observed.

This indicates that the proposed monotonicity constraint

can steer the model prediction to comply with the pre-set

monotonicity relationship. The decrease in classification

performance is expected as the Lmono term reduces the

model’s flexibility, and the dataset may not reflect the

monotonicity relationship due to randomness. In addition,

by comparing Figs. 12a and b, the effect of Lmono with data

augmentations can not be easily observed by Lmono com-

puted on validation datasets; however, their effect on

enforcing monotonicity over the input space can be

observed through MI, which also used data augmentation.

The monotonicity enforced through Lmono with data aug-

mentations can reduce MI values much more rapidly to

zero than those without data augmentations. This indicates

that data augmentations can produce a more robust

Fig. 13 Comparison of gradients between ANN models with and without monotonicity constraint (kmono ¼ 0:75): a ANN models without

constraint; b ANN models with Lmono; c ANN models with Lmono and data augmentation; d ANN (pre-training) models without constraint; e ANN
(pre-training) models with Lmono; and f ANN (pre-training) models with Lmono and data augmentation
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regularization of monotonicity over a much larger region in

the input space. Moreover, it can be noted that enforcing

monotonicity with data augmentation resulted in a more

significant drop in classification performance at the same

kmono value than those without data augmentation (see

Fig. 12c). However, these models still perform adequately

well with much more generalizable responses in terms of

monotonicity consistency that aligns with domain

knowledge.

Figure 13 presents the boxplots with kernel density

estimates showing gradients of ANN model outputs with

respect to each input feature; these gradients are computed

using all trained models from the cross-validation proce-

dure with five repetitions. For each model, a simulated

dataset of 250 samples was uniformly sampled within the

input space, and the gradients for each model were com-

puted using this simulated dataset (i.e., each boxplot con-

tains 6,250 data points). As shown in Figs. 13a and d,

gradients for ANN models without constraints exhibited

non-monotonic behavior as values of gradients for each

feature contain different signs. It can be noted in Figs. 13b

and e that monotonicity consistency can be generally

improved by enforcing monotonicity through Lmono at

training data points. However, this approach does not

perform well for features that exhibit strong non-mono-

tonicity (e.g.,, H). As shown in Figs. 13c and f, enforcing

monotonicity through Lmono with data augmentation can

eliminate the majority of monotonicity inconsistencies over

the entire input space.

Figure 14 presents the partial dependence plot showing

the effect of c and / for predicting slope stability for ANN

models without monotonicity constraints, with Lmono
applied to all features, and with Lmono applied to all features

with data augmentation. Each row in Fig. 14 contains

partial dependence plots based on trained models from one

cross-validation. By comparing Figs. 14a through c,

monotonicity consistency in model predictions is improved

due to the Lmono term in the loss function, and this effect

can be further improved by computing Lmono with data

augmentation. Figure 15 presents the corresponding plots

showing the effect of b, H, and ru for predicting slope

stability for ANN models; a similar trend can be observed.

Avg.
AUC = 0.951
MI = 0.002

Avg.
AUC = 0.965
MI = 0.023

Avg.
AUC = 0.973
MI = 0.039

Fig. 14 Partial dependence plots (pdnorm) showing the effect of c and / for predicting slope stability conditions for ANN models (with pre-

training): a no constraint; b Lmono applied to all features; and c Lmono applied to all features with data augmentation
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Based on Figs. 14 and 15, it can be concluded that the

trained models can better capture monotonic relationships

between input futures and slope stability conditions by

enforcing monotonicity and producing predictions that are

significantly more interpretable and align with our physical

understanding of slope stability.

5 Discussion

Monotonicity constraints simplify the relationship between

input and output variables, making it easier to predict how

the model will behave when faced with new or unseen data

(i.e., better extrapolation and generalization capability),

especially when these relationships are based on known

physical laws or established domain knowledge. In addi-

tion, monotonic relationships are often easier to interpret

and understand than non-monotonic ones. When dealing

with complex geotechnical problems, having an inter-

pretable model can help engineers and decision-makers

understand the factors influencing the predictions, gain

insights into the underlying processes, and gain their con-

fidence in the developed model. Therefore, monotonicity is

essential in ML applications in geotechnical engineering as

it helps address issues related to physical consistency,

safety and reliability, interpretability, and regulatory

compliance. Besides predicting slope stability, the pro-

posed methods in this study can help facilitate the appli-

cation of ML in other predictive tasks in geotechnical

engineering, such as bearing capacity prediction, settle-

ment prediction, and liquefaction potential assessment. It

can also help ML applications in regional landslide sus-

ceptibility mapping.

This study demonstrated the value of enforcing mono-

tonicity for ML models to produce predictions aligned with

our geotechnical domain knowledge. However, the pro-

posed method has several limitations that need to be

addressed in future research. For example, the proposed

method only applied a single weight term to control the

degree of regularization for the monotonicity loss term.

Ideally, different weights should be applied to each feature

as they contribute differently to monotonicity

Avg.
AUC = 0.951
MI = 0.002

Avg.
AUC = 0.965
MI = 0.023

Avg.
AUC = 0.973
MI = 0.039

Fig. 15 Partial dependence plots (pdnorm) showing the effect of b, H, and ru for predicting slope stability conditions for ANN models (with pre-

training): a no constraint; b Lmono applied to all features; and c Lmono applied to all features with data augmentation
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inconsistency, which can be formulated into an optimiza-

tion problem. In addition, the proposed monotonicity

constraint was enforced through the loss function, which

can not guarantee unconditional monotonicity. The per-

formance of the proposed monotonicity constraint should

be further evaluated with different datasets. Moreover, as

geotechnical engineering problems often exhibit complex

behavior, values of additional constraints should be eval-

uated, such as interaction and convexity/concavity

constraints.

6 Conclusions

With recent advances in data science, ML models have

been adopted in many applications. However, the appli-

cability of ML models for modeling scientific problems

involving complex physics is still limited as ML models

purely rely on features from data for model development.

ML models trained with pure data, especially with limited

data, can often produce counter-intuitive predictions, rais-

ing challenges in applying data science models in

geotechnical engineering applications. This study presents

methods for evaluating and enforcing the monotonicity of

model predictions which help ML models produce pre-

dictions that align with domain knowledge. The slope

stability predictions were used as an example problem to

demonstrate the effectiveness of the proposed methods.

The following conclusions can be drawn from the results of

this study.

(1) Commonly used ML models without constraints can

achieve high performance based on certain data

science evaluation matrices. However, the trained

models may produce predictions that violate

geotechnical domain knowledge.

(2) Pre-trained weights based on simulated data can be

beneficial in improving ML model performance;

however, the model with pre-trained weights exhib-

ited more significant monotonicity inconsistency.

(3) The proposed monotonicity constraint can effec-

tively steer the model prediction to comply with pre-

set monotonicity relationships. Moreover, the effec-

tiveness of the proposed monotonicity constraint can

be enhanced with data augmentation.
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elements. Géotechnique 49:387–403. https://doi.org/10.1680/

geot.1999.49.3.387
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