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Abstract

Objective: The factors that influence seizure timing are poorly understood, and
seizure unpredictability remains a major cause of disability. Work in chronobiol-
ogy has shown that cyclical physiological phenomena are ubiquitous, with daily
and multiday cycles evident in immune, endocrine, metabolic, neurological, and
cardiovascular function. Additionally, work with chronic brain recordings has
identified that seizure risk is linked to daily and multiday cycles in brain activity.
Here, we provide the first characterization of the relationships between the cycli-
cal modulation of a diverse set of physiological signals, brain activity, and seizure
timing.

Methods: In this cohort study, 14 subjects underwent chronic ambulatory moni-
toring with a multimodal wrist-worn sensor (recording heart rate, accelerometry,
electrodermal activity, and temperature) and an implanted responsive neuro-
stimulation system (recording interictal epileptiform abnormalities and elec-
trographic seizures). Wavelet and filter-Hilbert spectral analyses characterized
circadian and multiday cycles in brain and wearable recordings. Circular statis-
tics assessed electrographic seizure timing and cycles in physiology.

© 2023 International League Against Epilepsy.
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Results: Ten subjects met inclusion criteria. The mean recording duration was
232days. Seven subjects had reliable electroencephalographic seizure detections
(mean =76 seizures). Multiday cycles were present in all wearable device signals
across all subjects. Seizure timing was phase locked to multiday cycles in five
(temperature), four (heart rate, phasic electrodermal activity), and three (accel-
erometry, heart rate variability, tonic electrodermal activity) subjects. Notably,
after regression of behavioral covariates from heart rate, six of seven subjects had
seizure phase locking to the residual heart rate signal.

Significance: Seizure timing is associated with daily and multiday cycles in mul-
tiple physiological processes. Chronic multimodal wearable device recordings
can situate rare paroxysmal events, like seizures, within a broader chronobiol-
ogy context of the individual. Wearable devices may advance the understanding
of factors that influence seizure risk and enable personalized time-varying ap-

KEYWORDS

1 | INTRODUCTION

Chronic brain recordings, spanning months to years, from
humans, ™ dogs,s’6 and mice,” have established that sei-
zure risk fluctuates over daily (circadian) and multiday
(multidien) cycles for most individuals with epilepsy.
Pioneering work from the early 20th century identified
circadian and multiday®™° periodicities in seizure occur-
rences based on clinical records and seizure diaries at su-
pervised care facilities. More recently, chronic intracranial
recordings from clinical*'*™** and investigational>>%!>
devices have revealed that interictal epileptiform activ-
ity (IEA) is modulated over circadian and multiday cy-
cles, and that seizures occur at preferred phases of these
cycles.® These cycles in IEA and seizure risk may reflect
changing brain excitability,'"® with implications for sei-
zure risk forecasting.'

Research in chronobiology has established the impor-
tance of the cyclical modulation of human physiology in
normal health and disease.'*** Multiday cycles, includ-
ing circaseptan® (weekly) and circamonthly® cycles,
have been identified in the regulation of immune," en-
docrine,?* metabolic,”” and cardiovascular® systems, in
human behavior,” and in brain excitability'®'® and seizure
risk.>"®!* Recent work using a wearable fitness device®
provides exciting evidence that long timescale changes in
physiology (heart rate [HR]) are also linked to seizure risk.
The mechanisms connecting seizure risk and HR cycles
are unclear, but may include interaction between brain
excitability and autonomic regulation,”®*! in addition to
behavioral and homeostatic mechanisms.

proaches to epilepsy care.

biomarkers, chronobiology, seizure forecasting, wearable devices

Key Points

« Multimodal wearable recordings can assess
the chronobiology of diverse physiological pro-
cesses and provide context for seizure timing

« Seizure timing is associated with daily and
multiday cycles in multiple physiological pro-
cesses in some individuals with focal epilepsy

« Prospective studies of cycle-based seizure fore-
casting are needed

Wearable devices that provide multimodal physiology
recordings are available in popular commercial smart-
watch systems, and medical grade wearable sensors have
gained US Food and Drug Administration approval for a
variety of indications, including seizure detection.*® There
have been novel applications of commercial wearable de-
vices, including identification of atrial fibrillation,* and
presymptomatic COVID-19 detection.** Chronic ambu-
latory monitoring has the potential to facilitate chrono-
therapy, in which interventions are provided or behaviors
adjusted to personalized time-varying models of disease.

Here, we tested the hypotheses that daily and multiday
cycles regulate a diverse set of physiological processes in
people with epilepsy, that these long timescale dynam-
ics can be measured by a multimodal wrist-worn device,
and that electroencephalographically (EEG)-confirmed
seizures occur preferentially at a particular phase of
physiological cycles. All participants were monitored
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simultaneously with a multimodal wearable device mea-
suring HR, beat-to-beat HR variability (HRV), accelerom-
etry (ACC), temperature (TEMP), and tonic and phasic
components of electrodermal activity (EDAt and EDAp)
and an intracranial responsive neurostimulation (RNS)
device that provides objective EEG measures of IEA and
electrographic seizure activity (Figures 1 and S1).

2 | MATERIALS AND METHODS

2.1 | Subjects

Subjects undergoing clinical treatment with an im-
planted RNS device (NeuroPace RNS)*° were considered
for enrollment in this observational cohort study. The
RNS device was managed per routine clinical practice.
Prescreening attempted to identify individuals with
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reliable RNS electrographic seizure records. Fourteen
individuals provided written informed consent and
were enrolled in the study, and underwent concurrent
monitoring with the RNS device and a research-grade
multimodal wrist-worn sensor device (E4, Empatica).
Participants were provided with two wrist-worn devices
that were exchanged daily for nearly continuous record-
ing with recharging and data transmission. Inclusion
criteria required at least 100days of monitoring.
Subjects were recruited between November 2019 and
February 2021, with monitoring lasting up to 12 months.
Subjects received their care at Mayo Clinic. The study
was approved by the Mayo Clinic Institutional Review
Board (IRB 18-008357) and listed on ClinicalTrials.
gov (NCT03745118). We confirm that we have read the
Journal's position on issues involved in ethical publica-
tion and affirm that this report is consistent with those
guidelines.

Interictal Epileptiform Abnormalities
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FIGURE 1 Chronic brain and wearable recordings. Unprocessed chronic brain and wearable device recordings are shown. (A) Brain

and wearable recording device illustration, and representative interictal recordings. (B) Concurrent brain and wearable ictal recordings

(Subject 3). (C) Data from 10 subjects were analyzed, seven of whom had reliable electrographic seizure detections (marked by lightning

bolts). (D) Concurrent chronic ambulatory brain and wearable recordings; 2-day moving average values are shown; red dots mark seizure

onset times. Interictal and chronic recordings are from Subject 4. ACC, accelerometry; BVP, blood volume pulse; ECoG, electrocorticogram;
EDA, electrodermal activity; EDAp, phasic component of EDA; EDAt, tonic component of EDA; HR, heart rate; HRV, HR variability; IBI,
interbeat interval; IEA, interictal epileptiform activity; TEMP, temperature.
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2.2 | Wearable sensor recordings

The wrist-worn Empatica E4 device provides measures of
blood volume pulse (BVP) from which HR and HRV were
calculated, three-axis ACC, TEMP, and EDA from which
tonic and phasic components were calculated. EDA, a meas-
ure of skin conductance, measures sympathetic arousal
through autonomic innervation of sweat glands.>**’

2.2.1 | Preprocessing wearable
sensor recordings

Chronic ambulatory wrist-worn sensor recordings are sus-
ceptible to artifacts, and noisy and nonrecording epochs
were removed using validated signal quality measures.*®
Briefly, HR and HRV signal quality was assessed by the
variance in the peak-to-trough amplitude of the raw BVP
signal assessed in 5-s nonoverlapping blocks, after remov-
ing minor peaks (i.e., dicrotic notch). The peak-to-trough
variance rejection threshold was determined by the knee-
point (MATLAB function knee_pt.m*) in the sorted vari-
ance values (threshold=%4 knee-point value). The ACC
signal equaled the root-mean-squared three-axis ACC re-
cording. ACC and TEMP data were removed when the de-
vice was off the body (TEMP outside of 29-40°C). The EDA
signal can be prone to movement artifacts, and the signal
quality index was defined as the rate of raw EDA ampli-
tude change over 1-s epochs®® with the 10th percentile of
extreme values removed, coupled with the BVP-based sig-
nal quality assessment using %2 knee-point value threshold.

HR was calculated from the raw BVP signal: HR=1/
IBI, where IBI=interbeat interval. Beat-to-beat HRV
was defined as: HRV = (IBI;,, —IBIi)Z. As previously de-
scribed,*®?’ the raw preprocessed EDA data were low pass
filtered using a zero-phase shift 4th order Butterworth filter
with .045-Hz cutoff frequency to generate EDAt, whereas
EDAp was equal to the amplitude of the .05-.25-Hz band
of the continuous Morlet wavelet transform.

Denoised data were used to generate hourly average
values for all wearable signals: ACC, HR, HRV, EDAt,
EDAp, and TEMP. If fewer than 30 epochs (5 s per epoch)
were retained after denoising in an hour, the hour was
discarded from analysis. Example tracings are shown in
Figure 1D, with 10-point smoothing.

2.3 | Interictal epileptiform activity and
electrographic seizure detection

The RNS device provides limited intracranial EEG (iEEG)
recordings, and uses clinician-defined detectors to quantify
IEA and electrographic seizures (Figure 1), as previously

described.** The device records hourly rates of IEA, which
were used to assess cycles in IEA activity. The device also
stores between 60 and 180s of time series data (a "long epi-
sode”) when the seizure detector is triggered, with capacity
for approximately 10min of time series data on the device.
"Long episode” recordings are overwritten in chronological
order when memory is full. Data are transferred approxi-
mately daily using an at-home telemetry device to a cloud-
based system for clinician review. As previously described,*’
EEG seizures were verified by a board-certified epileptolo-
gist (N.M.G.) and experienced reader (B.J.). Seizure analy-
ses were limited to subjects for whom "long episodes”
available for visual confirmation did not exceed the device's
storage capacity except rarely. Only visually reviewed "long
episode” recordings were considered for seizure classifica-
tion. At least 20 seizures were required for analysis.

2.4 | Data discontinuities

Missing data were interpolated using a 49-h moving me-
dian (accounting for slow fluctuations in physiology), with
circadian cycle correction using Pearson system random
numbers drawn from the distribution of data correspond-
ing to the same hour of the day (Pearson system random
numbers accommodate for nonnormal skew and kurto-
sis; Figure S2). Subjects had excellent device adherence
(Table S1). The entire recording duration was included for
analyses to maintain consistency in record durations and
seizure counts for each channel.

2.5 | Circadian and multiday cycles
in epilepsy

2.5.1 | Time-frequency analyses of
wearable recordings

Circadian and multiday cycles in chronic wearable and
brain recordings were analyzed using previously described
methods.® Here, circadian refers to cycles of approximately
24 h and does not distinguish sleep-wake state changes
and endogenous circadian rhythms. Amplitude spec-
tral density (ASD) plots were generated from the time-
averaged continuous Morlet wavelet transform of hourly
averaged brain and wearable data (similar to prior work,”
but using wavelet amplitude as opposed to power [pro-
portional to amplitude squared]; Figure S3). A 1000-trial
simulation using normally distributed noise defined the
5th percentile significance threshold. Cycles were defined
as relative maxima in the ASD plots for circa 12-h, 1-day,
weekly (5-9 days), bi-/triweekly (10-24 days), and monthly
(25-35days) cycles. Multiday groupings are consistent with
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multiday chronotypes.'* At most one period was included
per multiday category to assess seizure phase locking; the
cycle of shortest period length per category was used. We
additionally assessed cycles by subject-specific significance
threshold defined by resampled surrogate data, which pro-
vided comparable results (Figures S4 and S5).

With cycles of interest identified for each brain and
wearable channel, the filter-Hilbert analytic signal deter-
mined instantaneous phase, frequency, and amplitude, as
described previously.’ Filtering was performed with third-
order zero-phase shift (noncausal) finite impulse response
filters, with center periods in units of days of .3 to 2.0 in-
cremented by .1, 2.5 to 10 incremented by .5, and 11 to the
maximum period length incremented by 1.0. Maximum
period length was determined by the record duration and
filter spread. Data within the influence of boundary ef-
fects were excluded.®

2.52 |
(ACC)

Regression of behavioral covariates

Physical activity can influence physiology measured by
wearables, unrelated to brain excitability or seizure pro-
pensity (e.g., HR change with exercise). We evaluated
covariation between ACC (proxy for behavioral physical
activity) and all wearable signals to characterize the im-
pact of physical activity. The MATLAB Curve Fitting Tool
was used to fit and regress the ACC signal from each wear-
able channel (see Supplemental Information for regression
model). Goodness of fit was assessed by the coefficient of
determination (R?). These analyses were performed on the
2-day moving average of signals to prevent the circadian
cycle from dominating the correlation. The residual signals
after regression of ACC were evaluated for multiday cycles.
Multiday cycle periods in residual signals were defined as
relative maxima in the ASD plot, similar to prior work.°

2.6 | Seizure phase locking to cycles
in epilepsy

Seizure timing was assessed relative to the instantane-
ous phase of circadian and multiday cycles. Endogenous
cycles in physiology may vary around a central period
tendency and shift relative to clock time.*>*"* To accom-
modate for this, the Hilbert-transform analytic signal was
calculated from the average bandpass composite centered
at the period duration of interest (within +25% of central
period), as described.® Circular statistics characterized sei-
zure phase locking to physiological cycles.

Coherence provides a frequency band-specific mea-
sure of the correlation between signals. The magnitude

Epilepsia-*

squared coherence of brain and wearable recordings was
evaluated at circadian and multiday cycle durations of in-
terest. The association between brain-wearable coherence
and seizure phase locking (R-value amplitude) was evalu-
ated for multiday cycles using a linear regression model.

2.7 | Phase-phase plots

Phase-phase plots characterize the association of seizure
timing with circadian and multiday cycles, that is, the ideal-
ized seizure risk (noncausal analyses). Phase-phase plots can
represent multiscale seizure risk, depicting phase data from
different cycles for each seizure. Phase-phase plots were
generated with surface fitting (surface linear interpolation)
of three-dimensional histograms of seizure timing in phase-
phase space. Seizure risk states (high, medium, low) were
categorized using thresholds such that approximately 5%-
10% of phase—-phase space time was spent in the high-risk
state, 10%-20% in medium risk, and 70%-80% in low risk.

2.8 | Statistics

Circular statistics provide a framework for analyzing di-
rectional data, recently reviewed for epilepsy applica-
tions,’ and our approach has been described previously.6
The MATLAB CircStat Toolbox* was used for analyses
including generation of circular histograms, and result-
ant vector determination (amplitude and phase angle of
the resultant vector, or R-value, of seizure timing relative
to the phase of physiological cycles). An R-value=0 indi-
cates events have no phase preference for a given cycle; an
R-value =1 indicates that events always recur at the same
phase of a cycle. The Rayleigh and Hodges—Ajne Omnibus
tests were used to characterize statistical significance of
seizure phase locking; statistical significance reflects the
Rayleigh test unless otherwise indicated. Statistics were
evaluated at the .05 significance level. Statistical tests
were two-sided. Benjamini-Hochberg false discovery
rate correction was applied to circular statistics using
n=7 recording channels. The association between brain-
wearable coherence and seizure phase locking (R-value)
was evaluated using a linear regression model with p-
value determination.

3 | RESULTS
3.1 | Subjects

Fourteen subjects were enrolled in the study; 10 subjects
met inclusion criteria, seven of whom had reliable RNS
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seizure detections (Table S1). Four subjects had insuffi-
cient device adherence to meet inclusion criteria.

3.2 | Chronic wearable sensor and
brain recordings

For the 10 subjects analyzed, there was excellent implanted
and wearable device adherence (Table S1). Remote moni-
toring of participant data uploads identified rare wearable
device malfunction, and the device was replaced.

3.3 | Multiscale cycles in
physiological signals

There was a high prevalence of ultradian (cycle frequency
faster than daily), circadian, and multiday cycles across
subjects and signals (Figure 2). Prominent circadian cy-
cles were seen in ACC, HR, HRV, EDAt, TEMP, and IEA
more so than EDAp. Significant multiday cycles were
seen in all subjects for all channels; however, there was
relatively greater amplitude of cycles in IEA compared to
wearable signals. Circa weekly and biweekly cycles were
prominent in wearable recordings for some subjects.

3.4 | Circadian cycles and seizure risk
in epilepsy

Circadian cycles were common across all recording chan-
nels and seen with ACC, HR, HRV, and TEMP (n=10
subjects), EDAt and IEA (n=9), and EDAp (n=6).
Daily cycles were evaluated relative to fixed clock time
(Figure 3A), and to circadian fluctuations in physiology
(Figure 3B).

Three of seven subjects had seizure phase locking to
circadian EDAp cycles; six of seven subjects had seizure
phase locking to circadian cycles for all other signals
(Figures 3B and 4C). There was no clear group-level circa-
dian phase preference for seizure timing.

3.5 | Behavioral activity and
wearable recordings

HR had the strongest correlation with ACC (Figure S7),
with median R®=.32, whereas median R’ was <.10 for
each remaining wearable channel, (p=.0025, two-sample
t-test; Figure S7B). Seizure cycles were assessed using
the residual HR signal following regression with ACC
(Figure S8).

3.6 | Multiday cycles and seizure risk
Multiday cycles were evaluated for all signals and subjects
(Figure 2). Seizure phase locking to multiday cycles were
common: TEMP (n=5/7 subjects), HR and EDAp (four
subjects), ACC, HRV, and EDAt (three subjects), IEA (six
subjects). Figure 4C shows the total number of multiday
cycles with significant seizure phase locking across all
subjects (evaluated for circa weekly, bi-/triweekly, and
monthly cycles). The residual HR signal (after ACC re-
gression), compared to the original HR, had an increase
from four to six subjects with seizure phase locking to
multiday cycles, with an increase from five to eight total
multiday cycles. Table S2 provides data on subject clinical
characteristics and seizure cycles.

At the group level, there was a preference for seizure
phase locking to the peak (late rising/peak/early falling)
phase of the residual HR signal (Figure 4B), and group level
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FIGURE 2 Amplitude spectral density (ASD) of chronic brain and wearable device recordings. The top row presents the time-averaged

ASD for each channel across all subjects. The bottom panel shows the count of relative maxima for multiday cycles in the ASD above

the 95th percentile of normally distributed white noise (red dotted line). Vertical gray dashed lines mark daily, 7-day, and 14-daycycle
periods. ACC, accelerometry; EDA, electrodermal activity; HR, heart rate; HRV, HR variability; IEA, interictal epileptiform activity; TEMP,

temperature.
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phase preference was less prominent in other wearable sig-
nals. There was a group preference for seizure phase lock-
ing to the rising phase of multiday IEA cycles (one outlier;
Figure 4A), consistent with previous reports.** Table S3
compares results using the Rayleigh versus Omnibus tests.

Figure 4D shows the R-value amplitude of seizure
phase locking to all multiday cycles across recording chan-
nels (limited to one cycle per multiday category). R-value
amplitudes were generally larger for IEA than wearable
signals. Seizure phase locking to the residual HR signal
was increased compared to raw HR data.

3.7 | Coherence between wearable
sensor and brain recordings

There were high levels of coherence between wear-
able and brain recordings for circadian cycles (median
coherence of IEA to: ACC=.89, HR=.89, HRV=.81,
EDAt=.75, EDAp=.60, TEMP =.83). For multiday cycles,
a regression model of wearable signals to IEA coherence
and seizure phase locking R-values did not demonstrate
a consistent association (Figure S9). The linear fit model
evaluating coherence and seizure phase locking to multi-
day cycles had a slope of .24, R’=.10, p=.21 for residual
HR, compared to slope of .075, R*=.0085, p=.73 for the
original HR signal. A direct comparison of IEA and each

wearable signal did not demonstrate any strong associa-
tions (Table S4; median R’ < .04 for each wearable signal).

3.8 | Multiscale cycles and seizure risk
The association between multiscale (circadian and
multiday) cycles and seizure risk is shown in Figure 5.
Figure 5A shows individual examples of circadian and
multiday cycles in wearable brain recordings; circadian
cycles are evident in the high-frequency component of
the tracing, whereas multiday fluctuations in physiology
are apparent in the 2-day moving average, reflected in cir-
cadian and multiday filtered tracings. Seizure timing was
greatest during periods of co-occurrence of the high-risk
phases of circadian and multiday cycles. Figure 5D shows
the group averaged phase-phase plots for all significant
circadian and multiday cycles.

Figure 5D shows a continuum of seizure risk levels indi-
cated by the seizure burden color scale. Alternatively, data
can be categorized into discrete seizure risk states. To illus-
trate this, high risk (>.4), medium risk (>.15 and <.4), and a
low risk (<.15) thresholds were assigned, and relative seizure
burden and time in a risk state were calculated (Table 1).
Risk thresholds were constant across signals. For true sei-
zure forecasting applications, risk category thresholds could
be individualized. The residual HR signal provided the best
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combination of risk discrimination and subject inclusion,
followed by TEMP, HR, and EDAp, followed by ACC with
good seizure phase locking but few subjects, and finally
EDAt and HRV with poor seizure phase locking and few
subjects (Table 1). IEA had the best overall combination of
risk discrimination and subject inclusion.

4 | DISCUSSION

This work demonstrates that circadian and multiday cy-
clical changes in a diverse set of noninvasive measures
of physiology are common in people with drug-resistant
focal epilepsy, and that seizure timing is linked to pre-
ferred phases of these cycles for most people. Circadian
and multiday cycles of seizure risk were seen across
chronic wearable recording channels, which included
ACC, HR, HRV, EDAt, EDAp, and TEMP; multiscale cy-
cles were present in concurrent brain recordings of IEA,
consistent with prior reports.>* This work used a unique
dataset of ultra-long-term ambulatory recordings from a

wrist-worn device and a clinical RNS brain implant, con-
taining >2300days of recordings from 10 participants, and
535 electrographic seizures from the seven participants
with reliable electrographic seizure detections.

Seizure phase locking to multiday cycles was most
common for the HR and EDAp (n=4/7 subjects) and
TEMP (n=>5). There was increased seizure phase locking
to residual HR (HR after regression of physical activity)
multiday cycles, with phase locking seen in six subjects. In
comparison, six subjects had seizure phase locking to mul-
tiday IEA cycles. To our knowledge, this is the first study
to assess the chronobiology of people with epilepsy with
chronic multimodal physiological recordings and iEEG
confirmation of seizures. These findings suggest that sei-
zure timing is linked to cycles in human physiology for
some individuals with focal epilepsy, and highlights the
importance of chronobiology in epilepsy.

Seizure phase locking to circadian cycles was observed
across wearable device and brain recording channels
(less so for EDAp). Circadian changes in epilepsy are
well known,” and circadian chronotypes are evident in
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TABLE 1 Multiscale idealized seizure risk categorization.

ACC HR HRV

High risk: time in .08 .08

Seizure burden 44 .33

Medium risk: time in 13 18 31
Seizure burden .26 .38 .54
Low risk: time in .79 .75 .69
Seizure burden .30 .29 46
Subjects, n 28 3P 22
Phase-phase analyses, n 2° 4° 2!

EDAt EDAp TEMP HR residual IEA
.04 .07 .09 .07 .08
17 .35 37 .34 44
.23 17 18 .16 15
42 .35 .39 31 .29
.73 .76 72 77 77
42 .30 24 .35 27
3 3 4° 5 5
4b sb 4b 7 9°

Note: "Time in" is the proportion of phase-phase space in that state. The "time in" high risk + medium +low =1. "Seizure burden" is the proportion of seizures
that occur in that risk category. "Seizure burden” high risk + medium +low =1. The last two rows list the total number of subjects included per signal, and the

total number of phase-phase analyses per signal.

Abbreviations: ACC, accelerometry; EDA, electrodermal activity; EDAp, phasic EDA; EDAt, tonic EDA; HR, heart rate; HRV, HR variability; IEA, interictal

epileptiform activity; TEMP, temperature.
*Low subject and phase-phase analyses counts.
"Moderate subject and phase-phase analyses counts.

“High subject and phase-phase analyses counts.

chronic brain recordings.'* The strong circadian coher-
ence between wearable (particularly ACC and HR) and
brain recordings suggests wearables can track circadian
cycles of seizure risk, and accommodate changing behav-
ioral and sleep/wake patterns.

This work is particularly notable for the presence of
seizure phase locking to multiday cycles in wearable re-
cordings. This finding is similar to seizure phase locking
to multiday cycles in brain recordings, seen here and in
prior work.>*®”!? Of the wearable signals, seizure phase
locking to multiday cycles was most common for the re-
sidual HR signal, and additionally TEMP, EDAp, and orig-
inal HR.

The physiological signals measured by the wearable
device in this study can be impacted by behavioral activ-
ities (reflected in ACC), which may be uncorrelated with
endogenous physiological cycles. HR was found to have
significantly greater correlation with ACC than the re-
maining wearable channels, and a residual HR channel
(HR after regression of the ACC signal) had greater phase
locking to multiday cycles (n=6/7 subjects) compared
to the original HR signal (n=4). Additionally, there was
a group-level preference for seizure phase locking to the
peak (late rising/peak/early falling) phase of residual HR
cycles. This suggests that models controlling for behav-
ioral covariates in wearable recordings may better reflect
the endogenous regulation of physiology, with a greater
association with seizure risk.

Each seizure occurrence can be described relative to the
instantaneous phase of both circadian and multiday cycles
to characterize multiscale cycles and seizure burden. When
evaluating multiscale cycles, relevant variables include (1)
the proportion of seizures that occur in each risk state, (2)

the proportion of time in each risk state, and (3) the num-
ber of subjects for whom cycle-based analyses were appli-
cable. Seizure timing relative to wearable recordings was
most strongly linked to the residual HR signal, followed by
TEMP, EDAp, and HR, followed by ACC with poor subject
counts but reasonable risk state classification, and finally
EDAt and HRV with poor subject counts and poor risk
state classification. Perhaps unsurprisingly, across all sig-
nals, seizures were most strongly linked to IEA.

Exactly how physiologically diverse human chro-
nobiology and epilepsy interact requires further study.
Interactions between brain excitability and autonomic
arousal is one possible mechanism, although in this study
an assessment of IEA and wearable coherence, and sei-
zure phase locking to multiday cycles was not significant,
suggesting wearables may provide information relevant
to seizure risk that is independent from IEA. Activation
of several brain regions has been implicated in the reg-
ulation of autonomic arousal, including the amygdala,’’
anterior cingulate, insula, thalamus, and prefrontal cor-
tex,* suggesting that brain activity changes may be asso-
ciated with autonomic arousal. Cardiac function and EDA
are under direct autonomic regulation. EDA is a measure
of sympathetic arousal,*®*” and changes in sympathetic
arousal, reflecting cognitive and physical stress, may affect
seizure risk. Some work suggests divergent mechanisms
for the regulation of EDAp versus EDAt,* and drift in
the EDAL signal is a concern for long recording periods.*
Here, EDAp was more strongly associated with multiday
seizure risk. Evidence of seizure phase locking to surface
temperature is intriguing, and surface temperature tracks
the phase of sex hormone-related physiological changes
over the menstrual cycle.*’
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Seizure phase locking to multiscale cycles in HR cor-
roborates recent findings from a long-term study of sei-
zure risk and HR cycles using patient-reported seizure
diaries and a fitness watch.*® Our work supports these
findings with electrographic confirmation of seizures and
multimodal wearable recordings. Prior work has shown
ictal and interictal HR changes in epilepsy’; concurrent
ultra-long-term wearable and EEG recordings are needed
to explore these relationships.

Chronic ambulatory monitoring poses particular chal-
lenges. Wearable recordings are prone to artifacts, and
EDA is particularly susceptible to movement artifacts and
signal drift.*® This work relied on previously validated*
signal quality indices to remove noisy epochs. The long
timescales of interest here allowed for stringent signal
quality controls, and hourly averaged signals further limit
the impact of artifacts. The use of objective EEG seizure
detection® avoided the unreliability of patient-reported
diaries, but could not distinguish electrographic from
electroclinical seizures. The impact of RNS stimulation on
multiday cycles is not known; however, the lack of cor-
relation between IEA (and associated RNS stimulation)
and wearable signals should limit this concern.

Ultra-long recordings are challenging to acquire, but
bolster the reliability of results despite the small cohort,
in which seven subjects had reliable EEG seizure de-
tections. Larger diverse cohorts are needed to evaluate
the generalizability of these findings across different
epilepsy types and seizure networks. This retrospective
analysis of long timescale seizure dynamics, consis-
tent with prior efforts,>*%'274% ysed zero-phase shift
noncausal analyses, and efforts are underway to apply
cycle-based seizure forecasting to prospective trials.
Seizure risk forecasting may be improved by combining
long timescale seizure risk cycles with an acute forecast
algorithm, which has shown early promise with multi-
modal wearables.*’ The relative ease of implementation
of wrist-worn sensor recordings, low cost, and patient
preference for a wrist-worn form factor*® make this an
important area of study.

This work provides evidence that long timescale cy-
cles in noninvasive measures of human physiology are
common in focal epilepsy, and that for many individu-
als, seizures occur at preferred phases of these cycles.
Improvements in medical and consumer wearable devices
will likely lead to wider adoption over time and advance
the study of the chronobiology of epilepsy.
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