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Abstract

Objective: The factors that influence seizure timing are poorly understood, and 

seizure unpredictability remains a major cause of disability. Work in chronobiol-

ogy has shown that cyclical physiological phenomena are ubiquitous, with daily 

and multiday cycles evident in immune, endocrine, metabolic, neurological, and 

cardiovascular function. Additionally, work with chronic brain recordings has 

identified that seizure risk is linked to daily and multiday cycles in brain activity. 

Here, we provide the first characterization of the relationships between the cycli-

cal modulation of a diverse set of physiological signals, brain activity, and seizure 

timing.

Methods: In this cohort study, 14 subjects underwent chronic ambulatory moni-

toring with a multimodal wrist- worn sensor (recording heart rate, accelerometry, 

electrodermal activity, and temperature) and an implanted responsive neuro-

stimulation system (recording interictal epileptiform abnormalities and elec-

trographic seizures). Wavelet and filter– Hilbert spectral analyses characterized 

circadian and multiday cycles in brain and wearable recordings. Circular statis-

tics assessed electrographic seizure timing and cycles in physiology.
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1  |  INTRODUCTION

Chronic brain recordings, spanning months to years, from 

humans,1– 4 dogs,5,6 and mice,7 have established that sei-

zure risk fluctuates over daily (circadian) and multiday 

(multidien) cycles for most individuals with epilepsy. 

Pioneering work from the early 20th century identified 

circadian and multiday8– 10 periodicities in seizure occur-

rences based on clinical records and seizure diaries at su-

pervised care facilities. More recently, chronic intracranial 

recordings from clinical4,11– 14 and investigational1,2,5,6,15 

devices have revealed that interictal epileptiform activ-

ity (IEA) is modulated over circadian and multiday cy-

cles, and that seizures occur at preferred phases of these 

cycles.3 These cycles in IEA and seizure risk may reflect 

changing brain excitability,16– 18 with implications for sei-

zure risk forecasting.13

Research in chronobiology has established the impor-

tance of the cyclical modulation of human physiology in 

normal health and disease.19– 24 Multiday cycles, includ-

ing circaseptan25 (weekly) and circamonthly26 cycles, 

have been identified in the regulation of immune,19 en-

docrine,21 metabolic,27 and cardiovascular28 systems, in 

human behavior,25 and in brain excitability16,18 and seizure 

risk.2– 6,12 Recent work using a wearable fitness device29 

provides exciting evidence that long timescale changes in 

physiology (heart rate [HR]) are also linked to seizure risk. 

The mechanisms connecting seizure risk and HR cycles 

are unclear, but may include interaction between brain 

excitability and autonomic regulation,29– 31 in addition to 

behavioral and homeostatic mechanisms.

Wearable devices that provide multimodal physiology 

recordings are available in popular commercial smart-

watch systems, and medical grade wearable sensors have 

gained US Food and Drug Administration approval for a 

variety of indications, including seizure detection.32 There 

have been novel applications of commercial wearable de-

vices, including identification of atrial fibrillation,33 and 

presymptomatic COVID- 19 detection.34 Chronic ambu-

latory monitoring has the potential to facilitate chrono-

therapy, in which interventions are provided or behaviors 

adjusted to personalized time- varying models of disease.

Here, we tested the hypotheses that daily and multiday 

cycles regulate a diverse set of physiological processes in 

people with epilepsy, that these long timescale dynam-

ics can be measured by a multimodal wrist- worn device, 

and that electroencephalographically (EEG)- confirmed 

seizures occur preferentially at a particular phase of 

physiological cycles. All participants were monitored 

Results: Ten subjects met inclusion criteria. The mean recording duration was 

232 days. Seven subjects had reliable electroencephalographic seizure detections 

(mean = 76 seizures). Multiday cycles were present in all wearable device signals 

across all subjects. Seizure timing was phase locked to multiday cycles in five 

(temperature), four (heart rate, phasic electrodermal activity), and three (accel-

erometry, heart rate variability, tonic electrodermal activity) subjects. Notably, 

after regression of behavioral covariates from heart rate, six of seven subjects had 

seizure phase locking to the residual heart rate signal.

Significance: Seizure timing is associated with daily and multiday cycles in mul-

tiple physiological processes. Chronic multimodal wearable device recordings 

can situate rare paroxysmal events, like seizures, within a broader chronobiol-

ogy context of the individual. Wearable devices may advance the understanding 

of factors that influence seizure risk and enable personalized time- varying ap-

proaches to epilepsy care.

K E Y W O R D S

biomarkers, chronobiology, seizure forecasting, wearable devices

Key Points

• Multimodal wearable recordings can assess 

the chronobiology of diverse physiological pro-

cesses and provide context for seizure timing

• Seizure timing is associated with daily and 

multiday cycles in multiple physiological pro-

cesses in some individuals with focal epilepsy

• Prospective studies of cycle- based seizure fore-

casting are needed
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simultaneously with a multimodal wearable device mea-

suring HR, beat- to- beat HR variability (HRV), accelerom-

etry (ACC), temperature (TEMP), and tonic and phasic 

components of electrodermal activity (EDAt and EDAp) 

and an intracranial responsive neurostimulation (RNS) 

device that provides objective EEG measures of IEA and 

electrographic seizure activity (Figures 1 and S1).

2  |  MATERIALS AND METHODS

2.1 | Subjects

Subjects undergoing clinical treatment with an im-

planted RNS device (NeuroPace RNS)35 were considered 

for enrollment in this observational cohort study. The 

RNS device was managed per routine clinical practice. 

Prescreening attempted to identify individuals with 

reliable RNS electrographic seizure records. Fourteen 

individuals provided written informed consent and 

were enrolled in the study, and underwent concurrent 

monitoring with the RNS device and a research- grade 

multimodal wrist- worn sensor device (E4, Empatica). 

Participants were provided with two wrist- worn devices 

that were exchanged daily for nearly continuous record-

ing with recharging and data transmission. Inclusion 

criteria required at least 100 days of monitoring. 

Subjects were recruited between November 2019 and 

February 2021, with monitoring lasting up to 12 months. 

Subjects received their care at Mayo Clinic. The study 

was approved by the Mayo Clinic Institutional Review 

Board (IRB 18– 008357) and listed on Clini calTr ials.

gov (NCT03745118). We confirm that we have read the 

Journal's position on issues involved in ethical publica-

tion and affirm that this report is consistent with those 

guidelines.

F I G U R E  1  Chronic brain and wearable recordings. Unprocessed chronic brain and wearable device recordings are shown. (A) Brain 

and wearable recording device illustration, and representative interictal recordings. (B) Concurrent brain and wearable ictal recordings 

(Subject 3). (C) Data from 10 subjects were analyzed, seven of whom had reliable electrographic seizure detections (marked by lightning 

bolts). (D) Concurrent chronic ambulatory brain and wearable recordings; 2- day moving average values are shown; red dots mark seizure 

onset times. Interictal and chronic recordings are from Subject 4. ACC, accelerometry; BVP, blood volume pulse; ECoG, electrocorticogram; 

EDA, electrodermal activity; EDAp, phasic component of EDA; EDAt, tonic component of EDA; HR, heart rate; HRV, HR variability; IBI, 

interbeat interval; IEA, interictal epileptiform activity; TEMP, temperature.
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2.2 | Wearable sensor recordings

The wrist- worn Empatica E4 device provides measures of 

blood volume pulse (BVP) from which HR and HRV were 

calculated, three- axis ACC, TEMP, and EDA from which 

tonic and phasic components were calculated. EDA, a meas-

ure of skin conductance, measures sympathetic arousal 

through autonomic innervation of sweat glands.36,37

2.2.1 | Preprocessing wearable 
sensor recordings

Chronic ambulatory wrist- worn sensor recordings are sus-

ceptible to artifacts, and noisy and nonrecording epochs 

were removed using validated signal quality measures.38 

Briefly, HR and HRV signal quality was assessed by the 

variance in the peak- to- trough amplitude of the raw BVP 

signal assessed in 5- s nonoverlapping blocks, after remov-

ing minor peaks (i.e., dicrotic notch). The peak- to- trough 

variance rejection threshold was determined by the knee- 

point (MATLAB function knee_pt.m39) in the sorted vari-

ance values (threshold = ¼ knee- point value). The ACC 

signal equaled the root- mean- squared three- axis ACC re-

cording. ACC and TEMP data were removed when the de-

vice was off the body (TEMP outside of 29– 40°C). The EDA 

signal can be prone to movement artifacts, and the signal 

quality index was defined as the rate of raw EDA ampli-

tude change over 1- s epochs38 with the 10th percentile of 

extreme values removed, coupled with the BVP- based sig-

nal quality assessment using ½ knee- point value threshold.

HR was calculated from the raw BVP signal: HR = 1/

IBI, where IBI = interbeat interval. Beat- to- beat HRV 

was defined as: HRV =

(

IBIi+1− IBIi
)2

. As previously de-

scribed,36,37 the raw preprocessed EDA data were low pass 

filtered using a zero- phase shift 4th order Butterworth filter 

with .045- Hz cutoff frequency to generate EDAt, whereas 

EDAp was equal to the amplitude of the .05– .25- Hz band 

of the continuous Morlet wavelet transform.

Denoised data were used to generate hourly average 

values for all wearable signals: ACC, HR, HRV, EDAt, 

EDAp, and TEMP. If fewer than 30 epochs (5 s per epoch) 

were retained after denoising in an hour, the hour was 

discarded from analysis. Example tracings are shown in 

Figure 1D, with 10- point smoothing.

2.3 | Interictal epileptiform activity and 
electrographic seizure detection

The RNS device provides limited intracranial EEG (iEEG) 

recordings, and uses clinician- defined detectors to quantify 

IEA and electrographic seizures (Figure  1), as previously 

described.4,40 The device records hourly rates of IEA, which 

were used to assess cycles in IEA activity. The device also 

stores between 60 and 180 s of time series data (a "long epi-

sode") when the seizure detector is triggered, with capacity 

for approximately 10 min of time series data on the device. 

"Long episode" recordings are overwritten in chronological 

order when memory is full. Data are transferred approxi-

mately daily using an at- home telemetry device to a cloud- 

based system for clinician review. As previously described,40 

EEG seizures were verified by a board- certified epileptolo-

gist (N.M.G.) and experienced reader (B.J.). Seizure analy-

ses were limited to subjects for whom "long episodes" 

available for visual confirmation did not exceed the device's 

storage capacity except rarely. Only visually reviewed "long 

episode" recordings were considered for seizure classifica-

tion. At least 20 seizures were required for analysis.

2.4 | Data discontinuities

Missing data were interpolated using a 49- h moving me-

dian (accounting for slow fluctuations in physiology), with 

circadian cycle correction using Pearson system random 

numbers drawn from the distribution of data correspond-

ing to the same hour of the day (Pearson system random 

numbers accommodate for nonnormal skew and kurto-

sis; Figure  S2). Subjects had excellent device adherence 

(Table S1). The entire recording duration was included for 

analyses to maintain consistency in record durations and 

seizure counts for each channel.

2.5 | Circadian and multiday cycles 
in epilepsy

2.5.1 | Time– frequency analyses of 
wearable recordings

Circadian and multiday cycles in chronic wearable and 

brain recordings were analyzed using previously described 

methods.6 Here, circadian refers to cycles of approximately 

24 h and does not distinguish sleep– wake state changes 

and endogenous circadian rhythms. Amplitude spec-

tral density (ASD) plots were generated from the time- 

averaged continuous Morlet wavelet transform of hourly 

averaged brain and wearable data (similar to prior work,29 

but using wavelet amplitude as opposed to power [pro-

portional to amplitude squared]; Figure S3). A 1000- trial 

simulation using normally distributed noise defined the 

5th percentile significance threshold. Cycles were defined 

as relative maxima in the ASD plots for circa 12- h, 1- day, 

weekly (5– 9 days), bi- /triweekly (10– 24 days), and monthly 

(25– 35 days) cycles. Multiday groupings are consistent with 
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multiday chronotypes.12 At most one period was included 

per multiday category to assess seizure phase locking; the 

cycle of shortest period length per category was used. We 

additionally assessed cycles by subject- specific significance 

threshold defined by resampled surrogate data, which pro-

vided comparable results (Figures S4 and S5).

With cycles of interest identified for each brain and 

wearable channel, the filter– Hilbert analytic signal deter-

mined instantaneous phase, frequency, and amplitude, as 

described previously.6 Filtering was performed with third- 

order zero- phase shift (noncausal) finite impulse response 

filters, with center periods in units of days of .3 to 2.0 in-

cremented by .1, 2.5 to 10 incremented by .5, and 11 to the 

maximum period length incremented by 1.0. Maximum 

period length was determined by the record duration and 

filter spread. Data within the influence of boundary ef-

fects were excluded.6

2.5.2 | Regression of behavioral covariates 
(ACC)

Physical activity can influence physiology measured by 

wearables, unrelated to brain excitability or seizure pro-

pensity (e.g., HR change with exercise). We evaluated 

covariation between ACC (proxy for behavioral physical 

activity) and all wearable signals to characterize the im-

pact of physical activity. The MATLAB Curve Fitting Tool 

was used to fit and regress the ACC signal from each wear-

able channel (see Supplemental Information for regression 

model). Goodness of fit was assessed by the coefficient of 

determination (R2). These analyses were performed on the 

2- day moving average of signals to prevent the circadian 

cycle from dominating the correlation. The residual signals 

after regression of ACC were evaluated for multiday cycles. 

Multiday cycle periods in residual signals were defined as 

relative maxima in the ASD plot, similar to prior work.6

2.6 | Seizure phase locking to cycles 
in epilepsy

Seizure timing was assessed relative to the instantane-

ous phase of circadian and multiday cycles. Endogenous 

cycles in physiology may vary around a central period 

tendency and shift relative to clock time.25,41,42 To accom-

modate for this, the Hilbert- transform analytic signal was 

calculated from the average bandpass composite centered 

at the period duration of interest (within ±25% of central 

period), as described.6 Circular statistics characterized sei-

zure phase locking to physiological cycles.

Coherence provides a frequency band- specific mea-

sure of the correlation between signals. The magnitude 

squared coherence of brain and wearable recordings was 

evaluated at circadian and multiday cycle durations of in-

terest. The association between brain– wearable coherence 

and seizure phase locking (R- value amplitude) was evalu-

ated for multiday cycles using a linear regression model.

2.7 | Phase– phase plots

Phase– phase plots characterize the association of seizure 

timing with circadian and multiday cycles, that is, the ideal-

ized seizure risk (noncausal analyses). Phase– phase plots can 

represent multiscale seizure risk, depicting phase data from 

different cycles for each seizure. Phase– phase plots were 

generated with surface fitting (surface linear interpolation) 

of three- dimensional histograms of seizure timing in phase– 

phase space. Seizure risk states (high, medium, low) were 

categorized using thresholds such that approximately 5%– 

10% of phase– phase space time was spent in the high- risk 

state, 10%– 20% in medium risk, and 70%– 80% in low risk.

2.8 | Statistics

Circular statistics provide a framework for analyzing di-

rectional data, recently reviewed for epilepsy applica-

tions,3 and our approach has been described previously.6 

The MATLAB CircStat Toolbox43 was used for analyses 

including generation of circular histograms, and result-

ant vector determination (amplitude and phase angle of 

the resultant vector, or R- value, of seizure timing relative 

to the phase of physiological cycles). An R- value = 0 indi-

cates events have no phase preference for a given cycle; an 

R- value = 1 indicates that events always recur at the same 

phase of a cycle. The Rayleigh and Hodges– Ajne Omnibus 

tests were used to characterize statistical significance of 

seizure phase locking; statistical significance reflects the 

Rayleigh test unless otherwise indicated. Statistics were 

evaluated at the .05 significance level. Statistical tests 

were two- sided. Benjamini– Hochberg false discovery 

rate correction was applied to circular statistics using 

n = 7 recording channels. The association between brain– 

wearable coherence and seizure phase locking (R- value) 

was evaluated using a linear regression model with p- 

value determination.

3  |  RESULTS

3.1 | Subjects

Fourteen subjects were enrolled in the study; 10 subjects 

met inclusion criteria, seven of whom had reliable RNS 
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seizure detections (Table  S1). Four subjects had insuffi-

cient device adherence to meet inclusion criteria.

3.2 | Chronic wearable sensor and 
brain recordings

For the 10 subjects analyzed, there was excellent implanted 

and wearable device adherence (Table S1). Remote moni-

toring of participant data uploads identified rare wearable 

device malfunction, and the device was replaced.

3.3 | Multiscale cycles in 
physiological signals

There was a high prevalence of ultradian (cycle frequency 

faster than daily), circadian, and multiday cycles across 

subjects and signals (Figure  2). Prominent circadian cy-

cles were seen in ACC, HR, HRV, EDAt, TEMP, and IEA 

more so than EDAp. Significant multiday cycles were 

seen in all subjects for all channels; however, there was 

relatively greater amplitude of cycles in IEA compared to 

wearable signals. Circa weekly and biweekly cycles were 

prominent in wearable recordings for some subjects.

3.4 | Circadian cycles and seizure risk 
in epilepsy

Circadian cycles were common across all recording chan-

nels and seen with ACC, HR, HRV, and TEMP (n = 10 

subjects), EDAt and IEA (n = 9), and EDAp (n = 6). 

Daily cycles were evaluated relative to fixed clock time 

(Figure  3A), and to circadian fluctuations in physiology 

(Figure 3B).

Three of seven subjects had seizure phase locking to 

circadian EDAp cycles; six of seven subjects had seizure 

phase locking to circadian cycles for all other signals 

(Figures 3B and 4C). There was no clear group- level circa-

dian phase preference for seizure timing.

3.5 | Behavioral activity and 
wearable recordings

HR had the strongest correlation with ACC (Figure S7), 

with median R2 = .32, whereas median R2 was <.10 for 

each remaining wearable channel, (p = .0025, two- sample 

t- test; Figure  S7B). Seizure cycles were assessed using 

the residual HR signal following regression with ACC 

(Figure S8).

3.6 | Multiday cycles and seizure risk

Multiday cycles were evaluated for all signals and subjects 

(Figure 2). Seizure phase locking to multiday cycles were 

common: TEMP (n = 5/7 subjects), HR and EDAp (four 

subjects), ACC, HRV, and EDAt (three subjects), IEA (six 

subjects). Figure 4C shows the total number of multiday 

cycles with significant seizure phase locking across all 

subjects (evaluated for circa weekly, bi- /triweekly, and 

monthly cycles). The residual HR signal (after ACC re-

gression), compared to the original HR, had an increase 

from four to six subjects with seizure phase locking to 

multiday cycles, with an increase from five to eight total 

multiday cycles. Table S2 provides data on subject clinical 

characteristics and seizure cycles.

At the group level, there was a preference for seizure 

phase locking to the peak (late rising/peak/early falling) 

phase of the residual HR signal (Figure 4B), and group level 

F I G U R E  2  Amplitude spectral density (ASD) of chronic brain and wearable device recordings. The top row presents the time- averaged 

ASD for each channel across all subjects. The bottom panel shows the count of relative maxima for multiday cycles in the ASD above 

the 95th percentile of normally distributed white noise (red dotted line). Vertical gray dashed lines mark daily, 7- day, and 14- day cycle 

periods. ACC, accelerometry; EDA, electrodermal activity; HR, heart rate; HRV, HR variability; IEA, interictal epileptiform activity; TEMP, 

temperature.
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phase preference was less prominent in other wearable sig-

nals. There was a group preference for seizure phase lock-

ing to the rising phase of multiday IEA cycles (one outlier; 

Figure  4A), consistent with previous reports.3,4 Table  S3 

compares results using the Rayleigh versus Omnibus tests.

Figure  4D shows the R- value amplitude of seizure 

phase locking to all multiday cycles across recording chan-

nels (limited to one cycle per multiday category). R- value 

amplitudes were generally larger for IEA than wearable 

signals. Seizure phase locking to the residual HR signal 

was increased compared to raw HR data.

3.7 | Coherence between wearable 
sensor and brain recordings

There were high levels of coherence between wear-

able and brain recordings for circadian cycles (median 

coherence of IEA to: ACC = .89, HR = .89, HRV = .81, 

EDAt = .75, EDAp = .60, TEMP = .83). For multiday cycles, 

a regression model of wearable signals to IEA coherence 

and seizure phase locking R- values did not demonstrate 

a consistent association (Figure S9). The linear fit model 

evaluating coherence and seizure phase locking to multi-

day cycles had a slope of .24, R2 = .10, p = .21 for residual 

HR, compared to slope of .075, R2 = .0085, p = .73 for the 

original HR signal. A direct comparison of IEA and each 

wearable signal did not demonstrate any strong associa-

tions (Table S4; median R2 < .04 for each wearable signal).

3.8 | Multiscale cycles and seizure risk

The association between multiscale (circadian and 

multiday) cycles and seizure risk is shown in Figure  5. 

Figure  5A shows individual examples of circadian and 

multiday cycles in wearable brain recordings; circadian 

cycles are evident in the high- frequency component of 

the tracing, whereas multiday fluctuations in physiology 

are apparent in the 2- day moving average, reflected in cir-

cadian and multiday filtered tracings. Seizure timing was 

greatest during periods of co- occurrence of the high- risk 

phases of circadian and multiday cycles. Figure 5D shows 

the group averaged phase– phase plots for all significant 

circadian and multiday cycles.

Figure 5D shows a continuum of seizure risk levels indi-

cated by the seizure burden color scale. Alternatively, data 

can be categorized into discrete seizure risk states. To illus-

trate this, high risk (>.4), medium risk (≥.15 and ≤.4), and a 

low risk (<.15) thresholds were assigned, and relative seizure 

burden and time in a risk state were calculated (Table 1). 

Risk thresholds were constant across signals. For true sei-

zure forecasting applications, risk category thresholds could 

be individualized. The residual HR signal provided the best 

F I G U R E  3  Circadian cycles of seizure risk. (A) Daily average wearable sensor and brain recordings over the duration of monitoring, 

relative to clock time. Error bars reflect SEM. Seizures relative to daily clock time are marked by black circles. (B) Resultant vector of 

seizure phase locking to circadian physiology. Only statistically significant resultant vectors are shown (dashed vectors indicate statistical 

significance by Rayleigh but not Omnibus test). Red and blue arrows correspond to the subjects in A and black arrows correspond to the 

remaining subjects. ACC, accelerometry; EDA, electrodermal activity; HR, heart rate; HRV, HR variability; IEA, interictal epileptiform 

activity; TEMP, temperature.
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combination of risk discrimination and subject inclusion, 

followed by TEMP, HR, and EDAp, followed by ACC with 

good seizure phase locking but few subjects, and finally 

EDAt and HRV with poor seizure phase locking and few 

subjects (Table 1). IEA had the best overall combination of 

risk discrimination and subject inclusion.

4  |  DISCUSSION

This work demonstrates that circadian and multiday cy-

clical changes in a diverse set of noninvasive measures 

of physiology are common in people with drug- resistant 

focal epilepsy, and that seizure timing is linked to pre-

ferred phases of these cycles for most people. Circadian 

and multiday cycles of seizure risk were seen across 

chronic wearable recording channels, which included 

ACC, HR, HRV, EDAt, EDAp, and TEMP; multiscale cy-

cles were present in concurrent brain recordings of IEA, 

consistent with prior reports.3,4 This work used a unique 

dataset of ultra- long- term ambulatory recordings from a 

wrist- worn device and a clinical RNS brain implant, con-

taining >2300 days of recordings from 10 participants, and 

535 electrographic seizures from the seven participants 

with reliable electrographic seizure detections.

Seizure phase locking to multiday cycles was most 

common for the HR and EDAp (n = 4/7 subjects) and 

TEMP (n = 5). There was increased seizure phase locking 

to residual HR (HR after regression of physical activity) 

multiday cycles, with phase locking seen in six subjects. In 

comparison, six subjects had seizure phase locking to mul-

tiday IEA cycles. To our knowledge, this is the first study 

to assess the chronobiology of people with epilepsy with 

chronic multimodal physiological recordings and iEEG 

confirmation of seizures. These findings suggest that sei-

zure timing is linked to cycles in human physiology for 

some individuals with focal epilepsy, and highlights the 

importance of chronobiology in epilepsy.

Seizure phase locking to circadian cycles was observed 

across wearable device and brain recording channels 

(less so for EDAp). Circadian changes in epilepsy are 

well known,23 and circadian chronotypes are evident in 

F I G U R E  4  Multiday cycles of seizure risk. (A) Polar plots of the resultant vector of seizure phase locking to multiday cycles of chronic 

brain and wearable recordings (dashed vectors indicate statistical significance by Rayleigh but not Omnibus test; a single white/black 

arrowhead in [A] EDA tonic and one in [B] HR residual indicate statistical significance on Omnibus but not Rayleigh test). (B) Polar plot of 

the resultant vector of seizure phase locking to multiday cycles of residual HR. (C) Histogram showing the prevalence of significant seizure 

phase locking to circadian and multiday cycles. Seizure phase locking to residual HR after regression of behavioral activity (ACC) is marked 

in shades of red. (D) Sorted resultant vector amplitude (R- value) for seizure phase locking to multiday cycles. The HR plot shows seizure 

phase locking R- values for HR cycles and residual HR cycles. Plots show R- value for all significant peaks in amplitude spectral density plots 

(not limited to cycles with significant seizure phase locking as in A– C). ACC, accelerometry; EDA, electrodermal activity; EDAp, phasic 

EDA; EDAt, tonic EDA; HR, heart rate; HRV, HR variability; IEA, interictal epileptiform activity; TEMP, temperature.
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F I G U R E  5  Multiscale cycles of seizure risk. (A) Examples of chronic wearable sensor and brain and recordings, and below, circadian 

and multiday bandpass filtered tracings and seizure onset times. (B) Corresponding polar histogram plots, with pink arrows indicating R- 

value. The outer ring number is seizure count; for R- value amplitude, the outer ring = 1. (C) Corresponding phase– phase plots show seizure 

counts with respect to circadian and multiday cycles. Π = cycle trough, 0 and 2Π = peak, and ↑/↓ = rising or falling phase. (D) Group averaged 

phase– phase plots for all significant (Rayleigh test) circadian and multiday cycles. Phase– phase plots were normalized to the total number 

of seizures per subject, and the median circadian and multiday phases were centered prior to averaging. The color map scale has a fixed 

proportional scale relative to the total seizure count for each channel, for direct comparisons between channels. The top right inset script is 

the number of subjects (S) and phase- phase analyses (PhPh) included in the group plot. ACC, accelerometry; e = power of 10 (1e2 = 1 × 102); 

EDA, electrodermal activity; HR, heart rate; HRV, HR variability; IEA, interictal epileptiform activity; TEMP, temperature.
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chronic brain recordings.12 The strong circadian coher-

ence between wearable (particularly ACC and HR) and 

brain recordings suggests wearables can track circadian 

cycles of seizure risk, and accommodate changing behav-

ioral and sleep/wake patterns.

This work is particularly notable for the presence of 

seizure phase locking to multiday cycles in wearable re-

cordings. This finding is similar to seizure phase locking 

to multiday cycles in brain recordings, seen here and in 

prior work.3,4,6,7,13 Of the wearable signals, seizure phase 

locking to multiday cycles was most common for the re-

sidual HR signal, and additionally TEMP, EDAp, and orig-

inal HR.

The physiological signals measured by the wearable 

device in this study can be impacted by behavioral activ-

ities (reflected in ACC), which may be uncorrelated with 

endogenous physiological cycles. HR was found to have 

significantly greater correlation with ACC than the re-

maining wearable channels, and a residual HR channel 

(HR after regression of the ACC signal) had greater phase 

locking to multiday cycles (n = 6/7 subjects) compared 

to the original HR signal (n = 4). Additionally, there was 

a group- level preference for seizure phase locking to the 

peak (late rising/peak/early falling) phase of residual HR 

cycles. This suggests that models controlling for behav-

ioral covariates in wearable recordings may better reflect 

the endogenous regulation of physiology, with a greater 

association with seizure risk.

Each seizure occurrence can be described relative to the 

instantaneous phase of both circadian and multiday cycles 

to characterize multiscale cycles and seizure burden. When 

evaluating multiscale cycles, relevant variables include (1) 

the proportion of seizures that occur in each risk state, (2) 

the proportion of time in each risk state, and (3) the num-

ber of subjects for whom cycle- based analyses were appli-

cable. Seizure timing relative to wearable recordings was 

most strongly linked to the residual HR signal, followed by 

TEMP, EDAp, and HR, followed by ACC with poor subject 

counts but reasonable risk state classification, and finally 

EDAt and HRV with poor subject counts and poor risk 

state classification. Perhaps unsurprisingly, across all sig-

nals, seizures were most strongly linked to IEA.

Exactly how physiologically diverse human chro-

nobiology and epilepsy interact requires further study. 

Interactions between brain excitability and autonomic 

arousal is one possible mechanism, although in this study 

an assessment of IEA and wearable coherence, and sei-

zure phase locking to multiday cycles was not significant, 

suggesting wearables may provide information relevant 

to seizure risk that is independent from IEA. Activation 

of several brain regions has been implicated in the reg-

ulation of autonomic arousal, including the amygdala,31 

anterior cingulate, insula, thalamus, and prefrontal cor-

tex,44 suggesting that brain activity changes may be asso-

ciated with autonomic arousal. Cardiac function and EDA 

are under direct autonomic regulation. EDA is a measure 

of sympathetic arousal,36,37 and changes in sympathetic 

arousal, reflecting cognitive and physical stress, may affect 

seizure risk. Some work suggests divergent mechanisms 

for the regulation of EDAp versus EDAt,44 and drift in 

the EDAt signal is a concern for long recording periods.36 

Here, EDAp was more strongly associated with multiday 

seizure risk. Evidence of seizure phase locking to surface 

temperature is intriguing, and surface temperature tracks 

the phase of sex hormone- related physiological changes 

over the menstrual cycle.45

T A B L E  1  Multiscale idealized seizure risk categorization.

ACC HR HRV EDAt EDAp TEMP HR residual IEA

High risk: time in .08 .08 .04 .07 .09 .07 .08

Seizure burden .44 .33 .17 .35 .37 .34 .44

Medium risk: time in .13 .18 .31 .23 .17 .18 .16 .15

Seizure burden .26 .38 .54 .42 .35 .39 .31 .29

Low risk: time in .79 .75 .69 .73 .76 .72 .77 .77

Seizure burden .30 .29 .46 .42 .30 .24 .35 .27

Subjects, n 2a 3b 2a 3b 3b 4b 5c 5c

Phase– phase analyses, n 2a 4b 2a 4b 5b 4b 7c 9c

Note: "Time in" is the proportion of phase– phase space in that state. The "time in" high risk + medium + low = 1. "Seizure burden" is the proportion of seizures 

that occur in that risk category. "Seizure burden" high risk + medium + low = 1. The last two rows list the total number of subjects included per signal, and the 

total number of phase– phase analyses per signal.

Abbreviations: ACC, accelerometry; EDA, electrodermal activity; EDAp, phasic EDA; EDAt, tonic EDA; HR, heart rate; HRV, HR variability; IEA, interictal 

epileptiform activity; TEMP, temperature.
aLow subject and phase– phase analyses counts.
bModerate subject and phase– phase analyses counts.
cHigh subject and phase– phase analyses counts.
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Seizure phase locking to multiscale cycles in HR cor-

roborates recent findings from a long- term study of sei-

zure risk and HR cycles using patient- reported seizure 

diaries and a fitness watch.29 Our work supports these 

findings with electrographic confirmation of seizures and 

multimodal wearable recordings. Prior work has shown 

ictal and interictal HR changes in epilepsy30; concurrent 

ultra- long- term wearable and EEG recordings are needed 

to explore these relationships.

Chronic ambulatory monitoring poses particular chal-

lenges. Wearable recordings are prone to artifacts, and 

EDA is particularly susceptible to movement artifacts and 

signal drift.36 This work relied on previously validated38 

signal quality indices to remove noisy epochs. The long 

timescales of interest here allowed for stringent signal 

quality controls, and hourly averaged signals further limit 

the impact of artifacts. The use of objective EEG seizure 

detection35 avoided the unreliability of patient- reported 

diaries, but could not distinguish electrographic from 

electroclinical seizures. The impact of RNS stimulation on 

multiday cycles is not known; however, the lack of cor-

relation between IEA (and associated RNS stimulation) 

and wearable signals should limit this concern.

Ultra- long recordings are challenging to acquire, but 

bolster the reliability of results despite the small cohort, 

in which seven subjects had reliable EEG seizure de-

tections. Larger diverse cohorts are needed to evaluate 

the generalizability of these findings across different 

epilepsy types and seizure networks. This retrospective 

analysis of long timescale seizure dynamics, consis-

tent with prior efforts,3,4,6,12– 14,29 used zero- phase shift 

noncausal analyses, and efforts are underway to apply 

cycle- based seizure forecasting to prospective trials. 

Seizure risk forecasting may be improved by combining 

long timescale seizure risk cycles with an acute forecast 

algorithm, which has shown early promise with multi-

modal wearables.40 The relative ease of implementation 

of wrist- worn sensor recordings, low cost, and patient 

preference for a wrist- worn form factor38 make this an 

important area of study.

This work provides evidence that long timescale cy-

cles in noninvasive measures of human physiology are 

common in focal epilepsy, and that for many individu-

als, seizures occur at preferred phases of these cycles. 

Improvements in medical and consumer wearable devices 

will likely lead to wider adoption over time and advance 

the study of the chronobiology of epilepsy.
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