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Abstract Quantitative assessment of modeling and forecasting of continuous quantities uses a variety
of approaches. We review existing literature describing metrics for forecast accuracy and bias, concentrating
on those based on relative errors and percentage errors. Of these accuracy metrics, the mean absolute
percentage error (MAPE) is one of the most common across many fields and has been widely applied
in recent space science literature and we highlight the benefits and drawbacks of MAPE and proposed
alternatives. We then introduce the log accuracy ratio and derive from it two metrics: the median symmetric
accuracy and the symmetric signed percentage bias. Robust methods for estimating the spread of a
multiplicative linear model using the log accuracy ratio are also presented. The developed metrics are
shown to be easy to interpret, robust, and to mitigate the key drawbacks of their more widely used
counterparts based on relative errors and percentage errors. Their use is illustrated with radiation belt
electron flux modeling examples.

1. Introduction

The utility, or value, of any forecast model is determined by how well the forecast predicts the quantities
being modeled. There exists, however, a wide range of metrics to assess forecast quality and a similarly wide
range of views on just what a “good” forecast is (see, e.g., Jolliffe & Stephenson, 2011; Murphy, 1993; Thornes &
Stephenson, 2001). One key measure of the quality of a forecast is in how much it deviates from the observa-
tion. Although a forecast is strictly a prediction of events that have not yet occurred, this work treats simulation
results as a forecast, regardless of the time interval. For application to validation of a reanalysis model
(“hindcasting”) the model output corresponds to the forecast and the validation data correspond to the
observation (see, e.g., Jolliffe & Stephenson, 2011).

Model validation in regimes where the data vary over a limited range typically uses metrics that have the same
scale and units as the quantities being modeled. For example, Lundstedt et al. (2002) presented a forecast
model for the Dst index and evaluated the performance of their model using distributions of the forecast error
as well as examining the root-mean-square error (RMSE). Another example applying this type of metric in
model validation is that of Glocer et al. (2009), who evaluated the impact of including the Polar Wind Outflow
Model in the Space Weather Modeling Framework by examining the RMSE of the magnetic field strength and
elevation angle at geosynchronous orbit. One clear benefit of metrics that have the same units as the data is
that they are easy to interpret.

For data from different data sets or time periods, or that cover multiple scales, accuracy measures that are
independent of the scale of the data (such as percentage errors) are often used. An example of such data is
radiation belt electron fluxes. Although the variability in electron fluxes at a given location and energy can be
large (e.g., Friedel et al., 2002; Selesnick & Blake, 1997), scale-dependent measures could still be appropriate.
However, there can be several orders of magnitude difference between electron fluxes at L ≃ 4 and geosyn-
chronous orbit, with each location displaying different levels of variability (e.g., Li et al., 2005; Morley et al.,
2017; Reeves et al., 2011). Thus, comparing scale-dependent accuracy measures can be problematic. Simi-
larly, the measurements across a single orbit of a satellite in a highly elliptical orbit cover regions that could
be argued to be of different scale and dynamics (e.g., Reeves et al., 2013). Throughout this manuscript we use
examples from, or based on, radiation belt electron flux, but the presented work is applicable to any type of
data where accuracy and bias measures that are independent of the scale of the data are desirable.
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One approach to giving more equal weight to errors across several orders of magnitude is to use metrics
that are based on relative errors (Subbotin & Shprits, 2009; Zhelavskaya et al., 2016) or are otherwise scaled
to normalize the errors (Athanasiu et al., 2003; Welling, 2010). Alternatively, the data themselves can be
transformed through the application of a power function, such as taking logarithms or applying a Box-Cox
transform (Wilks, 2006). By transforming the data this way (Francq & Menvielle, 1996; Osthus et al., 2014), the
use of scale-dependent accuracy measures may be better justified, as well as application of methods that
assume homoscedasticity (i.e., the variance does not depend on the independent variable) (Sheskin, 2007). It
is important to note that transforming the data alters the scale and may invalidate the assumptions behind
other analyses.

Estimates of accuracy and bias aim to describe aspects of forecast quality, and no single metric of accuracy
(or bias) is meaningful across all situations. How the metric penalizes different magnitudes and directions
of forecast error should be considered. Should errors of equal magnitude be penalized equally? Should an
underestimate by a factor of 2 have the same penalty as an overestimate by a factor of 2? How does the penalty
implied by the metric scale with the size of the error? Finally, is the metric sensitive to assumptions about how
the forecast error is distributed?

This paper assumes a number of desirable properties for metrics of model performance: (1) The metrics must
be meaningful for data that cover orders of magnitude, (2) underprediction and overprediction by the same
factor should be penalized equally, (3) the metrics should be easy to interpret, and (4) the metrics should be
robust to the presence of outliers and bad data. This list of desirable properties is not universal but is likely to
be relevant to a number of space weather applications.

We will begin with a brief review of model performance metrics, before giving a more in-depth discussion
of the mean absolute percentage error and some variants of that metric. We then introduce metrics based
on the log of the accuracy ratio that satisfy the list of desirable properties: the median symmetric accuracy
and the symmetric signed percentage bias. Through the use of simple examples, as well as a multiplicative
linear model, we then illustrate the behavior and drawbacks of metrics based on the percentage error, as
well as the new metrics described in this paper. We also demonstrate the use of the log accuracy ratio in
robustly estimating the spread of the error distribution in a multiplicative noise model. Finally, we show two
illustrative examples of electron radiation belt prediction in which we discuss the application of both new and
commonly used metrics. The examples presented aim at characterizing the accuracy and bias for an end user
or for tracking of overall model performance with time. Using accuracy and bias metrics for understanding
how well a particular model captures particular physical processes, for example, requires a different approach,
and we briefly discuss how model performance metrics might be used differently for this purpose.

2. Measures of Forecast Quality

Scalar accuracy measures describe the average correspondence between individual pairs of forecasts and
observations (Murphy, 1993). Various metrics can be used for this (e.g., mean square error) (see, e.g., Déqué,
2011; Walther & Moore, 2005; Wilks, 2006), and a selection will be described later in this section and
summarized in Table 1. Our discussion begins with the forecast error, 𝜀

𝜀 = y − x (1)

where x denotes the observation and y denotes the predicted value. Thus, the forecast error is negative when
the forecast under predicts and is positive for an overprediction. Usually, we have multiple (n) pairs of forecast
and observation ((xi, yi), where i = 1,… , n) so it is helpful to aggregate these errors and present summary
statistics (the summary statistics can be aggregated over subsets of the data, as well as the full set.)

The forecast bias describes the difference between the average forecast and the average observation (Murphy,
1993). A standard measure of bias is the mean error (ME; cf. Table 1), defined as the arithmetic mean of the set
of forecast errors. Forecasts that, on average, overestimate or underestimate the observed value display bias.
A negative number indicates a systematic underprediction, whereas a positive bias would indicate a system-
atic overprediction.

It is assumed throughout this paper that the quantity of interest is scalar. A number of approaches could be
used to measure accuracy and bias for vector quantities such as the geomagnetic field (see also Tsyganenko,
2013; Wilks, 2006), but a simple and intuitive approach would be to calculate model performance metrics
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Table 1
A Summary of Key Metrics

Metric Definition Symmetry Scale/Order dependent Comments

Error metrics

𝜀 y − x Y Scale Forecast error

Q y∕x N Order Ratio; complement of forecast relative error

Accuracy metrics

MSE
(

1
n

n∑
i=1

𝜀2
i

)
Y Scale Different units/scale; quadratic penalty

RMSE

√(
1
n

n∑
i=1

𝜀2
i

)
Y Scale Same units as x, y; quadratic penalty

MAE 1
n

n∑
i=1

||𝜀i
|| Y Scale Same units as x, y; linear penalty

MdAE M ||𝜀i
|| Y Scale Same units as x, y; linear penalty; robust and resistant

MAPE 100
n

n∑
i=1

||||
𝜀i
xi

|||| N Order Percentage; penalizes overprediction more heavily

sMAPE 100 1
n

n∑
i=1

||||
yi−xi

(xi+yi)∕2

|||| Y Order Percentage; unintuitive normalization; handles x = 0

𝜁 100
(

e(M(|loge(Qi)|)) − 1
)

Y Order Percentage; robust and resistant

Bias metrics

ME 1
n

n∑
i=1

𝜀i Y Scale Same units as x, y

MPE 100
n

n∑
i=1

𝜀i
xi

N Order Percentage; penalizes overprediction more heavily

MdLQ M loge(Qi) Y Order Different scale

SSPB 100 sgn(MdLQ) (e(|MdLQ|) − 1) Y Order Percentage; robust and resistant

Note. The columns give, in order, the abbreviation or symbol of the metric (as used in the text), the definition, whether the penalty is symmetric, whether the metric
is scale or order dependent, and selected attributes.

like those presented in this paper on the magnitudes of the quantity only. Additional metrics to quantify the
angular difference would then be required (e.g., Brito & Morley, 2017).

Forecast skill quantifies the accuracy of a set of model predictions relative to a reference prediction (Jolliffe &
Stephenson, 2011; Wilks, 2006). One common reference is the accuracy of using the sample’s climatological
mean. For the specific case of using the mean square error (see section 2.1) as our accuracy metric and the
sample mean as our reference, the skill score is typically called the prediction efficiency (e.g., Osthus et al.,
2014). While the skill score quantifies improvement over a reference model (in the chosen accuracy metric) and
requires an accuracy metric be calculated, it does not convey information about the accuracy of any specific
set of model predictions. In this paper we focus on quantifying accuracy and bias for a single set of model
predictions and do not discuss model skill.

2.1. Metrics Based On Scale-Dependent Errors
Like the bias, accuracy measures typically begin with the forecast errors, 𝜀i but then transform the data so that
the direction of difference is removed. This is typically done by either squaring the forecast error or taking the
absolute value of the forecast error. The mean square error (MSE; cf. Table 1) takes the former approach, and
it can be seen that the mean square error is analogous to the variance penalizing large errors more heavily
than small errors. Squaring the errors leads to the units and scale being different from the forecast quantity,
which makes the MSE difficult to interpret. Transforming MSE back to the original scale by taking the square
root then gives the root-mean-square error (RMSE).

As we are concerned with estimating the accuracy of a forecast the decision of which error metric should be
used depends on the relative cost of different errors. For example, if the error doubles, is this twice as bad?
or is it more than twice as bad? Is an overestimate worse than an underestimate of the same magnitude? If
we wish to reduce the penalty on large errors, we can use the mean absolute error (MAE). This is defined as
the arithmetic mean of |𝜀i|, as shown in Table 1. This metric is more resistant to outliers as it uses |𝜀| rather
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than 𝜀2. It may, therefore, be more appropriate in cases where the errors are not normally distributed, where
outliers are present, or where large forecast errors are not required to be weighted more heavily.

Both the RMSE and MAE estimate the typical magnitude of error using the mean. As the mean is not a robust
measure of central tendency, we can improve the robustness of our accuracy metric by using a common
robust measure of location: the median. Aggregating over all i using the median function (M) gives us the
median absolute error (MdAE; cf. Table 1).

A good summary of scale-dependent measures of accuracy and bias can be found in Walther and Moore
(2005). As seen here, scale-dependent metrics imply that deviations of the same magnitude have equal impor-
tance at different magnitudes of the base quantity. For example, an error of 𝜀 = 100 is penalized equally at
x = 103 and x = 106.

2.2. Metrics Based On Order-Dependent Errors
When measuring the accuracy of a prediction in an order-dependent manner, the magnitude of relative error
is often used; it is defined as the absolute value of the ratio of the error to the actual observed value. When
multiplied by 100, this gives the absolute percentage error (APE). This measure is generally only used when
the quantity of interest is strictly positive, and we make this assumption throughout.

We first define the relative error, 𝜂,

𝜂 = y − x
x

= 𝜀
x

(2)

Following the discussion given in section 2.1, we then remove the direction of difference by taking |𝜂|,
the absolute relative error. Defining relative error with equation (2), we find the magnitude of relative error
and convert to a percentage to obtain the absolute percentage error. We then aggregate over multiple
prediction-observation pairs using the mean, giving us the mean absolute percentage error (MAPE):

MAPE = 100 1
n

n∑
i=1

||𝜂i
|| (3)

To assess the bias using a percentage error, we simply aggregate the relative errors using the mean and then
convert to a percentage, giving us the mean percentage error (MPE; cf. Table 1). Other metrics based on the
relative error or similar order-dependent errors are given in Table 1.

As seen here, order-dependent metrics such as relative and percentage errors imply that deviations of the
same order have equal importance at different magnitudes of the base quantity. For example, an error of
𝜀 = 100 where x = 103 has an equal penalty to an error 𝜀 = 1 where x = 10; both give a relative error of 0.1
and thus a percentage error of 10%. Order-dependent metrics are meaningful for data that cover orders of
magnitude, and percentage errors are easy to interpret, so measures such as MAPE satisfy both the first and
third desirable qualities for measures of model performance.

3. Mean Absolute Percentage Error and Variants

MAPE is used in many different fields of research, from population research (e.g., Swanson et al., 2000) to busi-
ness forecasting (e.g., Kohzadi et al., 1996), atmospheric science (e.g., Grillakis et al., 2013; Zheng & Rosenfeld,
2015), and space science (e.g., Reikard, 2011; Zhelavskaya et al., 2016). MAPE has also been used in valida-
tion of radiation belt models (Kim et al., 2012; Li et al., 2014; Tu et al., 2013), and these are discussed further
in section 3.2. However, though meaningful in a wide range of situations and easy to interpret, MAPE is not
without problems that may be important in any given application.

3.1. Some Problems With MAPE
The following problems have been noted by various authors:

1. MAPE becomes undefined when the true value is zero (Hyndman & Koehler, 2006).
2. MAPE is asymmetric with respect to overforecasting and underforecasting (Hyndman & Koehler, 2006;

Makridakis, 1993; Tofallis, 2015).
3. APE is constrained to be positive, so its distribution is generally positively skewed (Hyndman & Koehler,

2006; Swanson et al., 2000).
4. MAPE is not resistant to outliers (Swanson et al., 2000; Tofallis, 2015).
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Due to the first point, unless a physically reasonable approach can be determined to work with cases where
x = 0, MAPE is not an appropriate metric where the quantity being predicted is likely to be zero (e.g., Tofallis,
2015). We also note that unless the data used are positive-valued ratio-level data (having a meaningful, nonar-
bitrary zero point) (Sheskin, 2007; Stevens, 1946), the APE has limited meaning (Hyndman & Anathasopoulos,
2014). For example, radiation belt fluxes are constrained to lie in the interval [0,∞) and the units of flux have
a true zero; therefore, APE can be used for radiation belt flux predictions and model validation. Neither the Kp
geomagnetic index (Menvielle & Berthelier, 1991) nor the Celsius temperature scale is ratio-level data (Stevens,
1946) (these are ordinal and interval data, respectively), and thus, metrics based on relative errors should not
be used. Further discussion of zeros and measurement backgrounds is given in section 6.

To elaborate on the second point, a prediction of 1,000 where the observed value is 500 gives a different
magnitude of error (100%) than a prediction of 500 where the observed value is 1,000 (50%). Underprediction
is therefore less heavily penalized than overprediction, even if the order of the error is the same. Similarly,
given x = 105 and two models y1 = 5 × 104 (a factor of 2 under prediction) and y2 = 1.75 × 105 (a factor of
1.75 overprediction), the APE for model 1 is 50% and the APE for model 2 is 75%; based on the APE or for
aggregated measurements the MAPE, model 1 is deemed to be more accurate yet in many applications we
would not wish to penalize the overprediction more heavily. MAPE, therefore, does not satisfy the second
desirable property for a metric of model performance given earlier in this paper. Variants of MAPE have been
proposed that mitigate this asymmetry (e.g., Flores, 1986; Makridakis, 1993) by normalizing the forecast error
by the mean of x and y, for example,

sMAPE = 100 1
n

n∑
i=1

||||
yi − xi

(xi + yi)∕2

|||| (4)

The unconventional normalization in the relative error makes the resulting percentage error unintuitive in
its interpretation, though this does address the cases where one of y or x is zero as well as mitigating the
asymmetry of MAPE.

Regarding the third point, given that APE has a lower bound of zero but has no upper bound they are likely
to be skewed positive. Take a case where the forecast errors are distributed approximately normally and are
symmetric about the true value. By taking the absolute values, the distribution of APE is now highly skewed. By
subsequently using the arithmetic mean, which is a poor measure of central tendency in skewed distributions,
MAPE is prone to overstating the error (Swanson et al., 2011).

Finally, MAPE is easily affected by outliers as the mean has a breakdown point of zero (Hampel, 1974). Given a
set of predictions with APE of [5,3,10,2,5,120] %, MAPE takes the value 24.16%; reducing the error on the final
prediction from 120% to 30% reduces the MAPE to 9.17%. Therefore, any large errors due to, for example, bad
data or late prediction of a large change will be heavily penalized by taking the arithmetic mean. This means
that MAPE also fails to satisfy the fourth desirable property (robustness) given above. Swanson et al. (2000)
describe a method for reducing the impact of outliers in which the distribution of APE is symmetrized, using
a modification of the Box-Cox transform (Wilks, 2006). Specifically, they use (Swanson et al., 2000)

y(𝜆) = (x𝜆 − 𝜆)∕𝜆 when 𝜆 ≠ 0 (5)

y(𝜆) = loge(x) when 𝜆 = 0 (6)

and the optimal value of 𝜆 is found using maximum likelihood estimation. After finding the optimal value of 𝜆,
the absolute percentage errors are transformed using equations (5) and (6) and the mean of the transformed
APEs (called MAPE-Transformed or MAPE-T) is used in place of MAPE. Though mitigating the impact of skewed
distributions and outliers in estimating the mean, the value of MAPE-T is difficult to interpret as it no longer
represents a percentage error. This was addressed by Coleman and Swanson (2007) (see also Swanson et al.,
2011) in their presentation of MAPE-R (MAPE-rescaled), where MAPE-T is reexpressed in the original scale of
the data by applying the inverse of the modified Box-Cox transform to MAPE-T.

3.2. Selected Applications of MAPE and Variants
As mentioned above, MAPE is used widely for model validation in many fields, including the space sciences.
To predict the effective dose of galactic cosmic radiation received on transpolar aviation routes, Hwang et al.
(2015) developed a model that forecasts the heliocentric potential (HCP) from a lagged time series of monthly
sunspot number. The HCP is a required input for the Federal Aviation Administration’s CARI-6 M software
for dose estimation. Zhelavskaya et al. (2016) have developed a neural network to predict the frequency

MORLEY ET AL. 73

 15427390, 2018, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1002/2017SW

001669, W
iley O

nline Library on [18/12/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Space Weather 10.1002/2017SW001669

of the upper-hybrid resonance to derive electron number densities in the inner magnetosphere, using Van
Allen Probes electric field data. These authors used MAPE to assess the accuracy of their predictions, both in
predicted frequency and predicted number density. We note that the electron number density, like radiation
belt electron flux, is constrained to be positive and has a physically meaningful zero. Further, the electron num-
ber density can vary by orders of magnitude over a single orbit as well as at a fixed location due to dynamical
processes. Hwang et al. (2015) and Zhelavskaya et al. (2016) calculated MAPE directly, without first transform-
ing the data, and their reported percentage errors are therefore directly interpretable, though should still be
interpreted keeping the drawbacks described in section 2.2 in mind. The effect of the asymmetry of MAPE is
explored further in section 5.1.

Kim et al. (2012) used MAPE as the accuracy metric for comparing their model results with observations from
the CRRES satellite. However, they defined MAPE using log-transformed data. This approach was subsequently
used by Tu et al. (2013) and Li et al. (2014). In addition to the main drawbacks of MAPE described above,
applying equation (3) to log-transformed data can be demonstrated to be incorrect (see, e.g., Morley, 2016).
Effectively, replacing xi and yi in equation (3) with log10(xi) and log10(yi) means that the quantity being calcu-
lated is the arithmetic mean of | logxi

(yi∕xi)|. This change of base renders the arithmetic mean meaningless,
and if xi is large, then the result will incorrectly be a very small error. It is worth noting that, for small errors,
loge(yi∕xi) is an approximation of the relative error. Thus, when (yi∕xi) is of order unity, 100 loge(Q) gives an
approximate percentage error. If all errors are small (i.e., all (yi∕xi) ∼ 1), then aggregating | loge(yi∕xi)| using a
mean is a good estimate of MAPE.

Other measures similar to MAPE have been proposed and applied in radiation belt modeling. For example,
Subbotin and Shprits (2009) used a set of metrics based on what they called the normalized difference. The
normalized difference was calculated for 2-D grids of simulation results. The equation can be given as (see
Table 4 of Subbotin & Shprits, 2009)

NDi(f ) = 100
yi(f ) − xi(f )

max(yi(f ) + xi(f ))∕2
(7)

where f denotes the additional dimension and i indicates the primary index variable for consistency with
the rest of this manuscript. The results were then aggregated using the mean of |NDi| to give the “average
difference” and using the maximum of |NDi| to give the “maximum difference.” These are seen to be similar
in construction to sMAPE (Makridakis, 1993) but using the maximum value of the means of each (forecast and
observation) pair instead of simply using the mean of y and x. The average difference is identical to sMAPE
when yi and xi are uniform in f . When varying in f , the interpretation becomes more difficult as the forecast
error is not normalized to either the forecast, the observation, or even the mean of (x, y). The normalized
difference and average difference have subsequently been used by Drozdov et al. (2017) to examine differ-
ences between different configurations of the Versatile Electron Radiation Belt model (Subbotin & Shprits,
2009). While Subbotin and Shprits (2009) provide descriptions of how to interpret these metrics and provide
use cases for them on higher dimensionality data, they cannot easily be interpreted as measures of accuracy
(as defined in section 2).

4. Introducing Robust, Symmetric Measures Based On the Log Accuracy Ratio

We now aim to describe two measures of model performance that satisfy the four desirable properties enu-
merated previously. We begin by defining the accuracy ratio, Q, as y∕x, that is, the ratio of the predicted
value to the observed value. The name “accuracy ratio” was coined by Tofallis (2015), who note that Q is the
complement of the relative error (𝜂 = Q − 1) and so will have the same distribution as the relative error
but shifted by one unit. Tofallis (2015) also showed that loge(Q) is a superior accuracy measure to MAPE for
data where the variance depends on the magnitude of the variable (as is often the case with space physics
data, such as radiation belt electron fluxes; e.g., Morley et al., 2016; Reeves et al., 2011). The interested reader
is also referred to Kitchenham et al. (2001) for a discussion of the accuracy ratio in measuring model per-
formance. It is instructive to note that the log of the accuracy ratio is identical to the forecast error for
log-transformed x and y.

We note that previous work on radiation belt electron data has used ratios of the observed to predicted val-
ues. Chen et al. (2007) defined the “PSD matching ratio,” R, (see also Yu et al., 2014) as the ratio of phase
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space densities, where the denominator is always the smaller of the two values. Here we generalize this to our
prediction-observation pair (x, y)

x′ = x if x < y else y

y′ = y if x < y else x

R = y′

x′

(8)

The matching ratio R can be alternatively expressed using the accuracy ratio. Specifically, we use the fact that
log(x∕y) = − log(y∕x), and thus, | log(x∕y)| = | log(y∕x)| = log(y′∕x′). To transform this back to the original
units and scale, we exponentiate

loge(R) = loge(y′∕x′)
= | loge(y∕x)|
= | loge(Q)|

R = exp(| loge(Q)|)

(9)

Morley et al. (2016) used the accuracy ratio to compare electron fluxes computed from the Global Positioning
System constellation with “gold standard” measurements from the Van Allen Probes mission. When present-
ing graphical summaries of these data, Morley et al. (2016) showed log10(Q) “so that the ratios are symmetric
both above and below 1.” Taking the logarithm ensures that a factor of 3 difference between x and y is the
same magnitude of error, regardless of the direction of error. However, even though log transforming the data
will tend to symmetrize positively skewed distributions, the actual distributions of log10(Q) may not be sym-
metric. For this reason, Morley et al. (2016) used the median of log10(Q) as a measure of central tendency. This
quantity also represents a robust measure of bias, though it suffers from a lack of intuitive interpretability. The
effect of the transformation does not depend on the base of logarithm used here, although the interpretation
of the exact value does depend on the base used.

4.1. Accuracy: Median Symmetric Accuracy
We propose a measure of accuracy derived from logarithms of the accuracy ratio. The specific aim is to mitigate
many of the problems inherent in using MAPE (see section 3.1) and that maintain the interpretability of MAPE
and satisfy all the desirable properties given at the end of section 1. Specifically, we follow the lead of Tofallis
(2015) and Morley et al. (2016) in using log(Q) and modify our accuracy metric such that it is interpretable as
a percentage error. We use the natural log in this presentation, but note that any base can be used as long as
the antilog is found correctly. This metric was first suggested by Morley (2016), but we here expand on the
derivation and meaning of this accuracy metric before testing the behavior of this metric.

We begin by taking the absolute values of loge(Q). This transformation ensures that the metric is symmetric in
the sense that switching the values of the predicted and observed value gives the same error (unlike MAPE).
We then aggregate over all prediction-observation pairs using the median function and then exponentiate
to return to the original units and scale.

exp
(

M
(||loge(Qi)||

))
(10)

As the median function is an order statistic, this is equivalent to the median matching ratio. The resulting
value has a lower bound of 1, so we subtract one such that our metric lies in the range [0,∞). This subtraction
allows the interpretation as an unsigned (symmetric) fractional error, and multiplying this by 100 yields an
equivalent percentage error.

𝜁 = 100
(

exp
(

M
(||loge(Qi)||

))
− 1

)
(11)

This metric, 𝜁 , is therefore named the median symmetric accuracy (cf. Morley, 2016). We can see that for two
prediction-observation pairs, (1.7 × 105, 105) and (1.7 × 102, 102), 𝜁 is 70% in both cases; this is the same as
the correct application of MAPE. Using log-transformed data gives absolute percentage errors of [4.6, 11.5]%
and an incorrect estimate of MAPE as 8.1%. The results from 𝜁 are also symmetric with respect to the reversal
of the predictions and observations, in contrast with MAPE.

As noted previously, we specifically aim for a metric that is intuitive and can be interpreted as a percentage
error. We now show that the median symmetric accuracy (𝜁 ) is equivalent to the median percentage error,
when the relative error is defined to always have the same direction.
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Space Weather 10.1002/2017SW001669

Taking our predicted and observed values to be y and x, as defined previously, we can define y′ to be the
larger value and x′ to be the smaller value. We now define a new “unsigned” forecast error, 𝜀′ = y′ − x′, and
thus a new unsigned relative error

𝜂′ = y′ − x′

x′
(12)

It can be seen that 𝜂′ is equal to R−1 where R is the matching ratio defined in equation (8). Using equation (9)
along with the fact that quantiles are preserved under monotonic transformations, we see that

𝜁 = 100
(

exp
(

M
(||loge(Qi)||

))
− 1

)

= 100
(

M
(

Ri − 1
))

= 100
(

M
(
𝜂′i
))

(13)

Thus, the median symmetric accuracy is equivalent to the median unsigned percentage error. In practice, this
relationship is exact only when n is odd or when n is large. In the case of even n the median in equation (11)
will give the geometric mean of the two central unsigned percentages, where equation (13) will give the
arithmetic mean. This effect will only impact very small, even-valued n, and since the geometric mean of a
lognormal distribution is equal to the median, we recommend using 𝜁 as defined in equation (11).

The median symmetric accuracy mitigates the problems with asymmetric penalty and effects of outliers
(problems 2 and 4 described in section 3.1) yet maintains interpretability. By using a robust and resistant
measure of central tendency, we minimize the effect of the skewness of the distribution of absolute errors
(problem 3). 𝜁 therefore satisfies all four desirable properties listed at the start of this paper and mitigates
several key problems of MAPE as an accuracy metric. We note that 𝜁 is undefined when the smaller value in
the forecast-observation pair is zero and returns to this point in section 6. The interpretation of this metric is
that 50% of the unsigned percentage errors are smaller than 𝜁 . If we interpret the median as being an indi-
cator of the “typical” value in a distribution, then we can further say that 𝜁 represents the typical unsigned
percentage error.

4.2. Bias: Symmetric Signed Percentage Bias
The bias (mean error; cf. Table 1) gives values smaller than 0 for a systematic underprediction and values
greater than 0 for a systematic overprediction. An order-dependent alternative should be interpretable in the
same way. The physical meaning of the accuracy ratio is clear, making the median accuracy ratio an easily
interpretable quantity (Morley et al., 2016; Rodriguez et al., 2017). However, it is centered on 1 and is not sym-
metric. Assuming that symmetry is a desirable property for our bias metric, then we can use the median log
accuracy ratio (e.g., Morley, 2016; Morley et al., 2016). Underprediction will give a negative value of M(log(Q)),
and overprediction will give a positive value; an unbiased forecast will yield M(log(Q)) = 0. This symmetry
about zero then mirrors the more common measures of bias, the mean error, and mean percentage error. Due
to the log transform, the choice of base affects the result and will determine the level of interpretability for
any given data set. We therefore present a new measure of bias based on the log accuracy ratio.

Ideally, our bias metric should have the same desirable properties given in section 1, including an interpretable
scale. To achieve this, we first estimate the magnitude of the bias by taking the absolute value of M(log(Q))
(we use natural logarithms here for ease of notation), taking the antilog, and subtracting 1 so that the lower
limit is zero. We then find the direction of the bias using the signum function and multiply by 100 to express
as a percentage.

SSPB = 100 sgn(M(loge(Qi)))(exp(|M(loge(Qi))|) − 1) (14)

The symmetric signed percentage bias (SSPB) can therefore be interpreted similarly to a mean percent-
age error but is not affected by the likely asymmetry in the distribution of percentage error and robustly
estimates the central tendency of the error. As SSPB is based on relative errors, penalizes underpredic-
tion and overprediction equally, is robust, and is interpretable as a percentage, it meets all of our stated
desirable properties.

5. Applications

To illustrate the use of the metrics described above, we generate a series of data, z, that we use as our ground
truth. Figure 1a shows 80 keV electron flux data from the MagEIS instrument (Blake et al., 2013) on the Van
Allen Probes mission (Mauk et al., 2013) as a function of time on 19–20 January 2014. We define a series, z,
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Space Weather 10.1002/2017SW001669

Figure 1. (a) Spin-averaged electron flux at 80 keV measured by the MagEIS instrument on the Van Allen Probes
(RBSP A) satellite on 19–20 January 2014. (b) A time series constructed (equation (15)) to approximate the electron flux
data for the purpose of illustrating the application of the metrics presented in this paper.

to approximate these data using a model that varies cyclically between very small and very large values,
varying over approximately 5 orders of magnitude. This is shown in Figure 1b and is given by

g = 10sin(i) + 10cos(2i)−sin(i)

z = 2g
(15)

We also define a noisy series derived from z that we can use as our imperfect “model.” A multiplicative linear
model is used here to compare several metrics. If we assume a counting process, such as measuring particle
radiation, and ignore detection issues such as instrument dead time, then we can assume the process to be
Poisson. As the mean of a Poisson process increases, so does the variance. That is, the error becomes larger
as the expected value becomes larger. Note that as the mean of a Poisson distribution becomes large, the
Poisson distribution can be well approximated by a Gaussian distribution.

An ordinary linear model has a number of assumptions, one of which is that the data are homoscedastic,
that is, the variance of the data is assumed to be constant. Particle fluxes are well known to display unequal
variance. Specifically, the variance increases as the flux increases. The log transformation is variance stabilizing,
so to ensure that the variance of our error term scales with the estimated flux value, we assume a Gaussian
error distribution in log(flux). Then our estimate of the flux (ẑ) can be modeled as the true flux (z) plus an error
term (Γ). This model is thus illustrative of the particle flux use case.

loge(ẑ) = loge(z) + Γ (16)

ẑ = z exp(Γ) (17)

ẑ = z exp(𝜎𝜐 + 𝜖) (18)

where Γ represents our error distribution, 𝜐 represents a random variate drawn from a standard normal dis-
tribution, and 𝜎 is the standard deviation of the error distribution. To model a systematic bias in the error, we
include 𝜖; if 𝜖 = 0, then the Gaussian error is centered on log(z).

5.1. Symmetry and Robustness Properties
Taking our series z, we first apply simple noise models in which we apply a constant offset of a factor of 2; we
use both 2z and z∕2. We then derive a third noisy series where each point i is randomly chosen to be either
2zi or zi∕2. We then calculate MAPE, sMAPE, and 𝜁 . As expected, 𝜁 gives the same answer (= 100%) in each
of the three cases. By contrast, MAPE gives answers of 50% (2z), 100% (z∕2), and 74.3% (random) and sMAPE
gives answers of 66.6̇% in each case. While 𝜁 and sMAPE both penalize overprediction and underprediction
equally, MAPE represents an equal order of error differently depending on the direction of the error. Of these
metrics, only 𝜁 consistently gives the intuitive answer that a factor of 2 difference is a 100% error.

We now turn to the performance of each metric on a more realistic case, (x, y) = (z, ẑ). Series ẑ is described
by equation (18) and is displayed as a time series in Figure 2a. These data are displayed versus z in Figure 2b.
The inset panels show zoomed areas to illustrate the scale of the noise in ẑ.
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Space Weather 10.1002/2017SW001669

Figure 2. Series ẑ plotted as (a) a function of index i and (b) a scatter plot against z. Each panel has an inset window
expanding a small section of the displayed area to better show the scatter in the points.

Figure 3 shows probability distributions for different error estimates for the case of z as our observation and ẑ
as our prediction. The vertical dashed lines mark the median of each distribution, and the vertical solid lines
mark the arithmetic mean. Figure 3a shows the distribution of the percentage error. It can be seen clearly that
this distribution is asymmetric. Taking the absolute values gives the distribution of APE, shown in Figure 3b.
The probability distribution of loge(Q) is shown in Figure 3c and can be seen to be both centered near zero
and symmetric. Taking the absolute values gives the distribution of the symmetric accuracy (| loge(Q)|), which
is shown in Figure 3d. The median symmetric accuracy (𝜁 ) is 22.71%, and the MAPE is 24.33%. Taking the
median of loge(Q) and applying equation (14) gives the symmetric signed percentage bias (SSPB) as −1.1%,
while inspection of Figure 3a shows that the mean percentage error (MPE) is 5.04%.

We illustrate the “rescaled” MAPE of Swanson et al. (2011) in Figure 4. Figure 4a shows the distribution of APE:
this panel is identical to Figure 3b. We then apply the modified Box-Cox transform of Swanson et al. (2000)

Figure 3. Probability distributions of (a) percentage error, (b) absolute percentage error, (c) loge(Q), and (d) symmetric
accuracy for (x, y) = (z, ẑ). Mean values for the presented distributions are marked with solid vertical lines, and median
values are indicated by dashed vertical lines.
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Figure 4. Probability distributions of (a and c) absolute percentage error (APE) and (b and d) Box-Cox transformed APE.
The vertical dashed lines on Figures 4a and 4c and 4b and 4d represent MAPE and MAPE-T, respectively. Figures 4b
and 4d are annotated with the values of MAPE-R and the value of 𝜆 from the Box-Cox transform. Figures 4a and 4b show
results using series (z, ẑ), wherein Figures 4c and 4d show results where 10% of the points in the Gaussian noise model
have been replaced by outliers from a Gaussian of standard deviation 8𝜎.

to these data to get APE-transformed. This distribution is shown in Figure 4b, and MAPE-T is calculated as the
mean of this symmetrized distribution of APEs. Finally, we calculate MAPE-R by applying the inverse of the
modified Box-Cox transform to MAPE-T (Coleman & Swanson, 2007; Swanson et al., 2011):

MAPE − R = ((𝜆) (MAPE − T + 1))
1
𝜆 (19)

For this example we see that MAPE-R is calculated as 15.03%. This value depends critically on 𝜆, which will
vary with the exact distribution of APE. The value is difficult to interpret as the rescaling effectively weights
the different magnitudes of APE differently (see Swanson et al., 2011), and comparisons between models are
not straightforward.

We now increase the weight of the tails in our noise model. To do this, we randomly select 10% of the indices, i,
for series ẑ and recalculate ẑi with a value of 𝜎 that is 8 times larger. Figure 5 shows results for the present case
where ẑ has been contaminated by a much broader error distribution. Figure 5a shows the distribution of the
percentage error. Comparing Figure 5a to Figure 3a shows that the distributions are visually very similar. The
resulting distribution of APE is shown in Figure 5b. The probability distribution of loge(Q) for the contaminated
series is shown in Figure 5c, and the distribution of absolute values (| loge(Q)|) is shown in Figure 5d. In this
case, 𝜁 is almost unchanged at 22.79% and the MAPE is slightly different at 24.71%. The SSPB still estimates
the bias as −1.1%, and the MPE has increased very slightly to 5.32%.

Having now added a contaminating distribution, we recalculate MAPE-T and MAPE-R, shown in Figures 4c
and 4d. The inclusion of outliers increases the weight of the tail of the distribution, and hence, the modi-
fied Box-Cox transform has a different 𝜆. This leads to a different rescaling of APE and in this case a MAPE-R
(14.3%) that is lower than the case without outliers (15.05%). In this case the sensitivity of MAPE-R to the trans-
form leads us to the incorrect conclusion that the error has decreased. This test clearly illustrates that values
of MAPE-R for different samples are not necessarily comparable in a meaningful way and that interpreting
MAPE-R is difficult, at best.
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Figure 5. Same as Figure 3 where 10% of the points in the Gaussian noise model have been replaced by outliers from
a Gaussian of standard deviation 8𝜎.

5.2. Estimating 𝝈 for a Multiplicative Linear Model
Previous authors have also used errors based on the forecast errors in log flux (e.g., Ginet et al., 2013; O’Brien
& McPherron, 2003; Weiss et al., 1997). While this may simply seem like a convenient transformation to make
metrics like the RMSE scale independent, it can be demonstrated to have a clear meaning. Specifically, in the
case of an unbiased error distribution the RMSE is an estimator of the standard deviation of a Gaussian error
distribution. The estimated standard deviation is defined as

𝜎̂ =

√√√√ 1
N

N∑
i=1

(
xi − x̄

)2
(20)

and can be compared to the root-mean-square error (see Table 1). The RMSE of log flux therefore estimates the
standard deviation for a multiplicative linear model in which the error is Gaussian in log space; we estimate 𝜎
for our multiplicative linear model using the RMSE where 𝜀 = loge(z)− loge(ẑ). Due to the log transformation,
𝜀 is now simply loge(Q).

We can also estimate 𝜎 robustly using loge(Q). Calculating the median absolute error of 𝜀 = loge(z)− loge(ẑ) is
equivalent to calculating the median of | loge(Q)|. Above we estimate the standard deviation using the RMSE;
similarly, we here estimate the median absolute deviation (MAD) using M(| loge(Q)|). The median absolute
deviation provides a consistent estimator of the standard deviation by

𝜎̂ = b MAD (21)

where b is a scale factor that is distribution dependent. To scale MAD for consistency with 𝜎 for a Gaussian
distribution, we set b = 1.4826 (e.g., Rousseeuw & Croux, 1993).

An alternative measure for the spread of a distribution has been presented by Rousseeuw and Croux (1993).
Their Sn estimator has been shown to be very robust, among other desirable properties.

Sn = c Mi(Mj(|xi − xj|)) (22)

where i = 1,… , n and j = 1,… , n. The outer median is defined to be the low median, given by the order
statistic of rank (n + 1)∕2, so that for an even number of data points the lower of the two central values
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Figure 6. Two-dimensional histograms of 𝜎 versus estimated 𝜎. Figures 6a, 6c, and 6e show the estimates using the ẑ
with a Gaussian error distribution. Figures 6b, 6d, and 6f show the estimates where 10% of the points have been
replaced with ẑ with errors from a much broader Gaussian. (a, b) Estimates of 𝜎 using the RMS of loge(Q). (c, d) Estimates
using the median of | loge(Q)|. (e, f ) Estimates using the Sn estimator. Each panel has a black dashed line marking y = x.

is always taken. The inner median is defined to be the high median, given by the order statistic of rank (n∕2)+1,
so in the case of an even number of data points the higher of the two central values is always taken. In the
case of an odd number of data points the high and low medians are identical and in all cases the high and
low medians are actual data points, whereas a standard median of an even-length series is given as the arith-
metic mean of the two central values and is not guaranteed to be an actual value in the data set. Sn provides
an unbiased estimate of 𝜎 for a Gaussian distribution when c = 1.1926 (Rousseeuw & Croux, 1993). Sn is not
referenced to a measure of location and is therefore suitable for use with asymmetric distributions. We will
also estimate 𝜎 using Sn, where x is given by loge(Q).

We generate a series ẑ for𝜎 = (0, 6) in steps of 0.005. For each value of𝜎 we estimate it using each of the above
methods. Figure 6 shows 2-D histograms of 𝜎 against (a) the RMSE of loge(Q), (b) the MdAE of loge(Q), and (c)
the Sn of loge(Q). The color of each cell shows the density of points. The annotations give the slope, intercept,
and standard error of a linear fit to the data. For reference, each panel has a black dashed line marking y = x.
In the case of a single Gaussian error distribution all the metrics estimate 𝜎 consistently. The standard error of
the estimate using the median absolute error is slightly larger than the other two methods, with RMSE having
the lowest standard error (the linear fit uses ordinary least squares and hence will minimize this quantity). The
Sn estimator provides the best estimate of 𝜎. When we include additional noise, the performance of the RMSE
is noticeably worsened, and Sn(loge(Q)) remains a good estimator of 𝜎 for the dominant noise model.

6. Zero-Valued Predictions or Observations

The metrics developed in this work that have not addressed the problem that measures based on relative
error become undefined when zeros are present. In practice, we note that there is always a measurement
threshold. In the radiation belts the measured electron flux at very high energies (several MeV) is typically
near instrument background levels. If a count of zero is recorded in a detector, that does not mean zero flux.
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There remains a nonzero probability of a finite flux. A model predicting anywhere between zero and a defined
threshold level should not be penalized. We propose that when the observed value, or the predicted value,
falls below the defined measurement threshold for the predictand, the value is fixed to the threshold. That is,
a very low, but finite, model prediction (below the observable threshold) when the instrument count rate is
zero does not get penalized. While other authors have used approaches like the sMAPE metric to address this,
we aim to preserve the interpretability of the metrics while considering the physical meaning of a zero mea-
surement or prediction. This approach will not be universally appropriate, and other approaches to measuring
accuracy (such as thresholding and applying categorical metrics) should be considered.

In the illustrative example above, which represents the electron flux measured at a satellite traversing the
radiation belts (e.g., Van Allen Probes) at a relatively low energy, zero-valued predictions or observations are
likely to be rare and use of a lower threshold in calculating performance metrics is likely to be justified. A fore-
cast or observation that is often zero raises the likelihood of overstating prediction quality by this method.
For the case of measuring solar energetic protons of >10 MeV the observations are typically at or near back-
ground. In this case, because the transient enhancements are relatively rare a constant prediction of zero
(or of the background) would give an excellent accuracy but fails to predict the event of interest. For assessing
the accuracy and bias of models for rare events, different approaches should be considered. For example, the
data could be converted to categorical forecasts and the accuracy and bias calculated from the contingency
table (Wilks, 2006). Probabilistic approaches that account for the probability of observing a value above the
observing threshold could also be used.

7. Sample Applications: Predicting Electron Flux and Fluence

We illustrate the use of 𝜁 and SSPB with two simple cases that are illustrative of possible space weather appli-
cations. We assume that a spacecraft operator (or stakeholder) is interested in predicting relativistic electron
flux or fluence at a specific spacecraft. First, we present the case of predicting electron flux at a satellite in a
highly elliptical, near-equatorial orbit, using a model that simulates a larger domain. The satellite orbit thus
represents a sparse trajectory through the model domain. We then present the case of predicting daily elec-
tron fluence at geosynchronous orbit, using a model that predicts exactly this quantity. It will be clear that no
single metric captures the full relationship between model and observation. For predictands that vary over
orders of magnitude and where overprediction or underprediction by the same factor should be penalized
equally, 𝜁 and SSPB give robust and easily interpretable results. Other commonly used metrics penalize the
errors differently and can be hard to interpret. Full presentations of model validation are beyond the scope of
this work, and we use these examples as illustrative case studies. For rigorous model validation, much longer
time periods should be used, covering a wide range of conditions, as well as performing quantitative com-
parison across the model domain. Further comments on the use of summary metrics, especially for higher
dimensionality data, are given in section 8.

7.1. Predicting Electron Flux Along an Orbit
In this first simple case, we require a 1-D time series of the electron flux at a given location and to quantify
the model performance we are interested in summarizing the model accuracy and bias for the simulation
interval. We use data from MagEIS as our observation and output from the Dynamic Radiation Environment
Assimilation Model (DREAM) (Reeves, 2011; Reeves et al., 2012) as our prediction. The configuration of DREAM
used for this simulation is a 1-D radial diffusion model that uses an ensemble Kalman filter for data assimilation,
with a source term whose amplitude is estimated as part of the assimilation process (see section 4.4 of Reeves
et al., 2012). As part of an ongoing validation study of DREAM, the month of January 2014 was run with input
data from the Synchronous Orbit Particle Analyzer (Belian et al., 1992) on three Los Alamos geosynchronous
satellites (1994-084, LANL-01A and LANL-04A). A virtual satellite was flown through the model output along
the trajectory of the Van Allen Probes RBSP A satellite, where apogee is inside geosynchronous orbit, and the
omnidirectional, differential number flux at 1.07 MeV was calculated.

Presenting only this short interval, with limited dynamics, ensures that the aspects of model performance
displayed through this interval are not masked by a large number of data points or varying model per-
formance as time and conditions change. We first describe the model performance qualitatively and then
calculate a range of metrics. The interpretation of these metrics will then be placed in the context of the qual-
itative description, so that the behavior of these metrics can be compared and discussed. Figure 7a shows
the omnidirectional flux measured by MagEIS on RBSP A (blue) and the flux at the same location predicted
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Figure 7. Comparisons of model flux or fluence to observations. Figures 7a and 7b show a comparison of
omnidirectional electron flux from the MagEIS instrument on RBSP A with predicted 1.07 MeV electron flux at that orbit
from DREAM. Times where the Van Allen Probes orbit was outside the domain of the DREAM run have been removed.
(a) The fluxes as a function of time. (b) A scatterplot of the DREAM fluxes and MagEIS fluxes, with y = x marked by a
black dashed line. (c, d) The same format as Figures 7a and 7b but showing daily fluence at >2 MeV from GOES
compared with the 1 day ahead forecast from the REFM model.

by DREAM (red). Times when the orbit of RBSP A was outside the model domain have been masked from both
time series and removed from this analysis. It can be seen that the fluxes are qualitatively similar and that vari-
ation in fluxes covers orders of magnitude. Figure 7b shows a scatterplot of the observed and predicted flux.
The abscissa is the flux predicted by DREAM, and the ordinate is the flux observed by MagEIS. A black dashed
line corresponding to y = x has been added to the plot.

Inspection of Figure 7a shows that at high fluxes, near the apogee of the Van Allen Probes orbit, the errors are
typically smaller but DREAM tends to slightly overpredict. Due to the slower orbital speed near apogee, the
majority of data points fall in this region. For this short time interval, DREAM consistently overestimates the
flux as the satellite more rapidly moves between apogee and perigee. As the inner boundary of the model
domain is approached, the MagEIS flux reaches a point of inflection while the DREAM flux continues to fall
thereby causing DREAM to underestimate the flux. During this interval there is minimal temporal variation
throughout the radiation belt and the bulk of the variation seen along the RBSP A orbit is due to its sampling
of a minimally varying spatial structure of the radiation belt. Applying the metrics defined in this paper, we
calculate that 𝜁 is 34.6% and the SSPB is 21.1%. The interpretation of these metrics is that half of the forecast
errors are smaller than a factor of 1.35 and that the median forecast error is an overestimate by 21.1%.

For comparison, we have calculated the other accuracy and bias metrics discussed above. The MAPE is 65.59%,
which is higher than 𝜁 due to two main factors: the tendency of DREAM to overpredict the flux results in
a larger penalty, although this by itself would tend to make MAPE similar to 𝜁 rather than exceeding it; the
mean error is much larger than the median due to the strongly asymmetric distribution of forecast errors.
The same reasons lead to a mean percentage error of 50.7%. Calculating sMAPE gives 44.4%. Bearing the
caveats of section 3.2 in mind, we also calculate the MAPE of the log-transformed flux. This results in an accu-
racy of 12.4%, and visual inspection of Figure 7 clearly shows that the typical forecast error is somewhat
larger than this; the MAPE of log flux would also be much smaller if we converted to differential flux per MeV.
We can also use scale-dependent measures to assess the accuracy and bias. The RMSE for this prediction
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is 202 cm−2s−1sr−1keV−1, and the mean error is 111 cm−2s−1sr−1keV−1. While the RMSE and mean error are
not incorrect, they more heavily weight large magnitudes of deviation, which are actually the smaller relative
errors in this situation. The RMSE of log-transformed flux is 0.38, which is an estimate of 𝜎 for a Gaussian noise
model; however, it is clear that the errors are not normally distributed in log space. The spread of the error
distribution is robustly estimated as Sn(loge(Q)) = 0.21, which is significantly smaller than the estimate using
RMSE of log flux.

7.2. Predicting Daily Electron Fluence at Geosynchronous Orbit
For this example we show the daily >2 MeV fluence from GOES and the prediction of that same quantity
using the REFM model (based on Baker et al., 1990), as reported by NOAA’s Space Weather Prediction Center.
Figure 7c shows the daily>2 MeV fluence measured by GOES (blue) and the prediction for that day from REFM
(red). It can be seen that the fluences are qualitatively similar and that variation in daily fluence covers orders
of magnitude. Figure 7d shows a scatterplot of the observed and predicted fluence. Inspection of Figure 7
shows that there is no clear systematic behavior in the errors over this interval. The data files for the displayed
interval have fill values for both the observed fluence and the predictions for 10–12 September 2017. These
are excluded from the plotting and the analysis. In addition, the 1 day ahead prediction from 29 August 2017
is a significant overestimate and appears as a significant outlier in Figure 7d. Applying the metrics defined in
this paper, we calculate that 𝜁 is 180.4% and the SSPB is−11.6%. The interpretation of these metrics is that half
of the forecast errors are smaller than a factor of 2.8 and that the median forecast error is an underestimate by
11.6%. The MAPE and MPE are dominated by the outlier and are both about 2.63×105%. We therefore exclude
this point from the rest of our analysis. On excluding the outlier we find that 𝜁 and SSPB have changed only
slightly, at 177.7% and −15.4% respectively.

As above, we have again calculated a range of accuracy and bias metrics (after excluding the fill values and
the outlier). The MAPE is 276.1%, which is higher than 𝜁 due to a few points with larger errors dominating the
mean. For the same reason the mean percentage error is 210.5%, suggesting a mean overestimate of around
a factor of 3. Note, however, that the SSPB is −15.4%, showing that most forecasts in this interval actually
underpredict slightly. Looking at the other metrics, we see that sMAPE = 94.9%, which would incorrectly
imply that the typical error is less than a factor of 2. As before, we bear the caveats of section 3.2 in mind
and calculate the MAPE of the log-transformed flux. This results in an accuracy of 6.7%, which is clearly not
representative of the actual forecast errors. Looking at the scale-dependent measures for accuracy and bias,
we see that the RMSE for this prediction is 1.20×109 cm−2sr−1 and the mean error is 1.66×108 cm−2sr−1. While
not technically incorrect, these metrics do not clearly communicate how well the model actually performs. The
RMSE of log-transformed flux is 0.66, and Sn(loge(Q)) = 0.69 suggesting that the errors are close to normally
distributed in log space. We note that we cannot compare any of these metrics to the performance statistics
supplied by NOAA as they provide skill relative to three reference forecasts (sample mean, persistence, and
recurrence) and do not explicitly give estimates of accuracy or bias.

8. Quantifying and Understanding Model Performance

We note that for simplicity we have used 1-D time series examples throughout and that our example illus-
trates the use of accuracy and bias metrics to summarize model performance. Calculating summary metrics,
aggregated across all data, is useful for the scenarios described in section 7. This approach would not, how-
ever, allow a model developer to fully understand where or why their higher-dimensional model is inaccurate.
For this use case, different approaches will likely be required.

For example, Schiller et al. (2017) investigated the differences between two radiation belt simulations (where
their output was PSD(𝜇 = const, K = const, L*, t)) of the same interval using several methods; each method
employed illustrates a different aspect of model performance. The difference between their two model runs
was in the loss and transport terms: model 1 used event-specific terms and model 2 used statistical models
to obtain the loss and transport terms. To understand where the model runs differ, and by how much, Schiller
et al. (2017) present log10(Q) as a function of time and L* (see their Figure 8c). This visualizes the relative
difference between the model runs in a 2-D slice of their model domain, allowing them to diagnose where
and when the models differ.

Schiller et al. (2017) additionally quantify the performance of each model run by validating against phase
space density measured at satellites from the Time History of Events and Macroscale Interactions during
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Substorms (THEMIS) mission. The THEMIS satellites trace trajectories through the model domain and hence
only sample part of the model space. To quantify the accuracy of each of their model runs, as a function of
time, they calculate RMSE (between model and THEMIS observation) aggregated over all L* and over 15 min
windows in time. Their model accuracy is then quantified by reporting the RMSE as a function of time. This
model validation approach mirrors the situation presented in section 7. The model performance over the full
interval could be summarized using 𝜁 and SSPB as described above and could be displayed as a function of
time by aggregating over subsets of the data similar to Schiller et al. (2017).

As mentioned previously, Subbotin and Shprits (2009) have developed metrics aimed at understanding where
and when differences between models exist. These metrics are typically applied to subsets of the model
domain. For example, to compare 2-D slices of PSD(L*,t) at constant 𝜇 and K they use ND (cf. equation (7). This
metric is similar to sMAPE in that the normalization uses the mean of x and y, but the normalization factor is
constant for any given time and is given by max (yi(f )+xi(f ))∕2 where the maximum value is taken over all L* at
a given time. An additional example of the ND metric being applied to characterize model performance over
a 2-D domain was given by Drozdov et al. (2017), who compared Van Allen Probes electron flux data (binned
in L* and time) with simulation output. They note that they use ND for this as “[i]t emphasizes how well the
simulation can reproduce the flux peaks and flux profiles around the maximum. In case of the comparison
between two simulations, it indicates the difference in the heart of the radiation belt and excludes the areas
of the low flux values, such as the slot region to avoid comparison of very small numbers.” Thus, while the
absolute value of ND may not be intuitive, it has demonstrated utility in understanding model performance
from a physical perspective.

The metrics presented in this paper can be applied to higher-dimensional data by, for example, aggregating
across particular dimensions of the data. For quantitative analysis of higher-dimensional data other metrics
for data-model comparison have been developed (see, e.g., Ch. 7 of Wilks, 2006) that have not been discussed
in this paper. For properly characterizing the performance of a model, the particular meaning of performance
metrics and the intended use (overall accuracy for customer, diagnosing deficiencies in model physics, etc.)
should be considered. Derived quantities can also help understand model performance, such as the location
of the peak in PSD in a radiation belt model. We reiterate our earlier statement that no single metric captures
the full relationship between model and observation. In the cases of comparing 2-D (or higher-dimensional)
domains the metrics presented in this paper could be used, with appropriate aggregation over subsets of the
domain but may not be appropriate for answering the questions posed by the model developer. Summary
metrics aggregated over all data may also be desirable in these cases so that overall model performance can
be assessed in tandem with localization of any model errors.

9. Summary

In situations where observed (or modeled) data can vary over orders of magnitude, we identify four desirable
properties for accuracy and bias metrics: (1) The metrics must be meaningful for data that cover orders of
magnitude, (2) underprediction and overprediction by the same factor should be penalized equally, (3) the
metrics should be easy to interpret, and (4) the metrics should be robust to the presence of outliers and bad
data. We have reviewed a number of commonly used model performance metrics and have illustrated the
ways in which these metrics do not display the given desirable properties. We have presented new measures
of accuracy and bias and demonstrated that they satisfy all listed desirable properties. The metrics discussed
in this paper are summarized in Table 1.

The new metrics presented in this work are interpretable as percentages but are designed to address known
problems with standard metrics based on percentage errors. To address these drawbacks while still preserving
the interpretability of MAPE, we present an accuracy measure based on the logarithm of the accuracy ratio.
This measure can be interpreted as a percentage error but does not penalize overprediction and underpre-
diction differently. This accuracy metric is called the median symmetric accuracy (cf. Morley, 2016), 𝜁 , which
is defined as

𝜁 = 100 (exp (M (|log(Q)|)) − 1)

In this paper we have shown that 𝜁 is equivalent to the median unsigned percentage error and we have
demonstrated its performance relative to other accuracy metrics similar to MAPE, showing that it satis-
fies the listed desirable properties. To provide a measure of bias that also satisfies the listed desirable
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properties, we derive and describe the Symmetric Signed Percentage Bias (SSPB) which is also based on the log
accuracy ratio.

SSPB = 100 sgn(MdLQ)(exp(|MdLQ|) − 1)
Metrics based on ratios, including relative errors, can be undefined where zeros are present, and we sug-
gest that in some cases a threshold related to the limits of measurement capability could be applied to both
prediction and observation for the purposes of assessing model accuracy and bias.

We have also shown how the log accuracy ratio is related to the standard deviation of a multiplicative linear
model and use robust estimators of the spread of log(Q) to estimate 𝜎 in a multiplicative linear model. We
recommend the use of Sn(loge(Q)) for this purpose, where Sn is a robust measure of spread first described by
Rousseeuw and Croux (1993).

In cases where accuracy and bias metrics are required that equally penalize errors of the same order—typically
predictands that span many orders of magnitude, such as radiation belt fluxes—we recommend the median
symmetric accuracy and the symmetric signed percentage bias. These new metrics are easily interpreted and
address some of the known problems associated with more standard approaches based on relative errors and
percentage errors. We have illustrated the use of these metrics with a simple example of predicting electron
flux along a satellite orbit. We have discussed some additional considerations required for more complicated
use cases.
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