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Abstract we have developed a new procedure for combining lists of substorm onset times from
multiple sources. We apply this procedure to observational data and to magnetohydrodynamic (MHD)
model output from 1-31 January 2005. We show that this procedure is capable of rejecting false positive
identifications and filling data gaps that appear in individual lists. The resulting combined onset lists
produce a waiting time distribution that is comparable to previously published results, and superposed
epoch analyses of the solar wind driving conditions and magnetospheric response during the resulting
onset times are also comparable to previous results. Comparison of the substorm onset list from the MHD
model to that obtained from observational data reveals that the MHD model reproduces many of the
characteristic features of the observed substorms, in terms of solar wind driving, magnetospheric response,
and waiting time distribution. Heidke skill scores show that the MHD model has statistically significant
skill in predicting substorm onset times.

Plain Language Summary Magnetospheric substorms are a process of explosive energy release
from the plasma environment on the nightside of the Earth. We have developed a procedure to identify
substorms that uses multiple forms of observational data in combination. Our procedure produces a list

of onset times for substorms, where each onset time has been independently confirmed by two or more
observational data sets. We also apply our procedure to output from a physical model of the plasma
environment surrounding the Earth and show that this model can predict a significant fraction of the
substorm onset times.

1. Introduction

Geomagnetic substorms consist of an explosive release of stored solar wind energy from the magnetotail,
much of which is deposited in the ionosphere. Originally, they were observed as an auroral phenomenon
(e.g., Akasofu, 1964), consisting of sudden brightening of auroral emissions accompanied by rapid changes
in their spatial distribution. It is now recognized that a rapid reconfiguration of the nightside magnetic field,
consisting of a plasmoid release and dipolarization, is a fundamental component of the substorm process.
The plasmoid release coincides with the formation of field-aligned currents, termed the substorm current
wedge, connecting the auroral zone to the magnetotail (e.g., Kepko et al., 2015). When the concept of the
current wedge was first introduced, it was imagined as a pair of equal and opposite currents entering and
exiting the ionosphere at the same latitude but different longitudes. More recent work has shown evidence
that the upward and downward currents may overlap in longitude (Clauer & Kamide, 1985) and that the real
structure may involve multiple filaments of upward and downward current (Forsyth et al., 2014), possibly
organized into localized regions of flow-driven current termed “wedgelets” (Liu et al., 2013). However, some
doubt has been cast on the wedgelet model (Forsyth et al., 2014), and the manner in which wedgelets might
contribute to filamentation remains an open question (Kepko et al., 2015). Similarly, the behavior of the
earthward flow upon arrival at the inner magnetosphere has not been clearly determined from observations
(Sergeev et al., 2012).
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Other open questions remain regarding the conditions that lead to substorm onset and the timing of
events leading to and following from substorm onset. For instance, the question of how substorm onset
is influenced by solar wind conditions has not been fully resolved, with some holding that some or all sub-
storms are “triggered” by changes in solar wind conditions (e.g., Caan et al., 1977; Hsu & McPherron, 2003,
2004; Lyons et al., 1997; Russell, 2000) and others claiming that the observed characteristics of substorms
can be explained without invoking solar wind triggering (e.g., Freeman & Morley, 2009; Johnson & Wing,
2014; Morley & Freeman, 2007; Newell & Liou, 2011; Wild et al., 2009). Similarly, the question of where
a substorm originates in geospace (magnetotail, ionosphere, or somewhere else) has remained open for a
number of years (e.g., Angelopoulos et al., 2008; Henderson, 2009; Korth et al., 1991; Rae et al., 2009).

A major factor limiting progress on these questions is a lack of sufficient observational data, due to the need
for simultaneous observations in particular locations or simply the need for more complete spatial coverage
of the magnetosphere. However, addressing this problem directly requires launching additional satellites
with the required instrumentation, and this is a long and costly process. Global magnetohydrodynamic
(MHD) models have the potential to address the problem of limited observational coverage by providing
predictions of currents, velocities, and magnetic fields throughout the magnetosphere. These predictions
can provide insights into magnetospheric dynamics that would require an impractically large number of
spacecraft to obtain using observations alone. The ability of MHD simulations to shed light on substorm
dynamics has been demonstrated already by a number of studies (e.g., Birn & Hesse, 2013; El-Alaoui et al.,
2009; Ohtani & Raeder, 2004). The capability of MHD models to provide a global, spatially resolved picture
of the magnetosphere has been used in previous studies to shed light on cause and effect relationships relat-
ing to the evolution of a substorm (e.g., Raeder et al., 2010; Zhu et al., 2004). However, such results have
been limited to single event studies or idealized test cases, which leaves open questions about the degree to
which MHD models can reproduce substorm dynamics consistently and reliably. Despite years of applica-
tion of MHD models to substorms, no MHD model has been rigorously validated with regard to its ability
to predict substorm onsets.

Validating any model (MHD or otherwise) for substorm prediction is complicated by the fact that sub-
stantial disagreement remains within the community about what constitutes a substorm. While a general
consensus exists around several of the main features of substorms, the community has not developed a set
of criteria for identifying substorm onsets that is unambiguous, comprehensive, and widely agreed upon.
This remains the case despite decades of attempts to clarify the salient characteristics of substorms (e.g.,
Akasofu, 1964, 1968; Akasofu & Meng, 1969; Baker et al., 1996; Caan et al., 1978; Hones, 1984; Kepko et al.,
2015; Lui, 1991; McPherron, 1970; McPherron et al., 1973; Pytte, McPherron, Kivelson, et al., 1976; Pytte,
Mcpherron, Kokubun, et al., 1976; Rostoker et al., 1980; Rostoker, 2002; Sergeev et al., 2012). As a result,
different researchers studying the same time period often come to substantially different conclusions about
what events should be considered substorms.

A major factor contributing to the sometimes discordant results obtained is the fact that substorms pro-
duce numerous observational signatures, most of which have substantial limitations. Although a substorm
is generally regarded as a global phenomenon, many of its effects are localized in a particular region. As a
result, gaps in observational data can easily prevent detection of a substorm. For instance, the sparse dis-
tribution of ground-based magnetometers can result in negative bay onsets not being detected (Newell &
Gjerloev, 2011). In situ observations are subject to similar limitations: Dipolarizations and plasmoids can
only be detected when a satellite is on the nightside of the Earth and in the right range of distance, MLT
sector, and latitude. Moreover, a plasmoid that propagates too slowly relative to the observing spacecraft
might go unnoticed (Nishida et al., 1986). At the same time, many observational features used to identify
substorms can be created by other processes, resulting in false positives. For instance, single-satellite obser-
vations may not be able to distinguish a plasmoid from other transient features in the current sheet (such as
thickening, thinning, or bending) (Eastwood et al., 2005). A storm sudden commencement can result in a
negative bay at auroral magnetometers (Heppner, 1955; Sugiura et al., 1968), as can a pseudobreakup (Aikio
et al., 1999; Koskinen et al., 1993; Kullen et al., 2009; Ohtani et al., 1993). A discussion of the challenges
faced by researchers in distinguishing different magnetospheric phenomena from each other can be found
in McPherron (2015).

Differences in results obtained when different observational data sets are used can be substantial. An illus-
trative example is Boakes et al. (2009), which compared substorm onsets previously published by Frey et al.
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(2004) based on analysis of auroral images with energetic particle observations at geosynchronous orbit.
Boakes et al. (2009) found that 26% of the auroral expansion onsets had no corresponding energetic particle
injection even though a satellite was in position to detect such an injection and suggested that such events
might not be substorms.

The difficulty in positively identifying substorm onsets presents a problem for validation of substorm models.
In the absence of a definitive substorm onset list against which to validate a model, those seeking to validate
a substorm prediction model are left to choose among the published lists or create a new one. Given the
substantial differences between the existing onset lists, validation against any single onset list leaves open
the question of whether the validation procedure is testing the model's ability to predict substorms or merely
the model's ability to reproduce a particular onset list, whose contents may or may not really be substorms.

One potential way to address the problems of onset list accuracy is to use multiple substorm signatures
in combination, checking them against each other to remove false positives and avoid missed identifica-
tions. The resulting consensus list may prove more reliable than any of its constituent lists, providing a
more comprehensive and trustworthy set of onsets. Comparing two or three substorm signatures by hand
for individual events has been commonplace since the beginning of substorm research (e.g., Akasofu, 1960;
Cummings & Coleman, 1968; Lezniak et al., 1968), and a number of researchers have produced statistics
comparing onset lists for two or more substorm signatures (e.g., Boakes et al., 2009; Chu et al., 2015; Forsyth
etal., 2015; Kauristie et al., 2017; Liou, 2010; Moldwin & Hughes, 1993). McPherron and Chu (2017) demon-
strated that a better onset list could be obtained using the midlatitude positive bay (MPB) index and the SML
index together than by using either data set alone.

Despite an awareness within the community that multiple observational signatures are required to positively
identify a substorm, McPherron and Chu (2017) has been the only work to date that uses multiple signatures
to create a combined onset list, and no attempt to create an onset list using more than two different signatures
has been published. This may in part be due to the complexities involved in doing so. As was discussed
earlier, the absence of a particular signature does not always indicate the absence of a substorm, while at the
same time some identified signatures may not in fact be substorms. Ideally, a combined list should somehow
allow for these possibilities and correct for them. Further complicating matters is the fact that different
signatures may be identified at different times for the same substorm (e.g., Kepko, 2004; Liou et al., 1999,
2000; Rae et al., 2009).

In the present work we present a new procedure which uses multiple substorm signatures to identify sub-
storm onsets. By using multiple data sets consisting of different classes of observations, we reduce the risk of
missing substorms due to gaps in individual data sets. At the same time, the new procedure aims to reduce
false identifications by only accepting substorm onsets that can be identified by multiple methods. Our pro-
cedure is generalizable to any combination of substorm onset signatures and allows for the possibility that
the signatures may not be precisely simultaneous. We demonstrate the technique on observational data from
January 2005. We present evidence that the procedure is successful at reducing false identifications while
avoiding missed identifications due to observational data gaps and that the resulting onset list is consis-
tent with the known characteristics of substorms. Finally, we demonstrate the technique on output from an
MHD simulation of the same January 2005 time period and show preliminary evidence of predictive skill
on the part of the MHD model.

2. Methodology

2.1. Identification of Substorm Events From Combined Signatures

Our procedure for combining multiple substorm onset lists consists of first convolving each onset list with
a Gaussian kernel. The result of this convolution is rescaled using an error function (erf) in order to keep
the values bounded by 1. The rescaled convolutions of the onset lists are then summed together to produce
a nominal “substorm score.” For a series of onset times 7;; from a set of onset lists i, this score is given by

Rgigs Nonget (t— i*)z
@ = Derf < 2 e <‘T:2)> ’ N

i=1 j=1
where ¢ is a tunable kernel width. The i's each represent a particular substorm onset list. The onset lists each
represent a distinct substorm signature and are described in detail in sections 2.4 and 2.5. The j's represent

the onset times in each onset list. To obtain a list of onset times, we search for local maxima in the score
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Figure 1. An illustration of the procedure used to combine multiple substorm onset lists into a single one. Panels (a—e)
show scores obtained by convolving individual onset lists with a Gaussian kernel (using ¢ = 13.8 min), while (d) shows
the combined score obtained by adding together the scores in panels (a—e). The threshold T = 1.6 is marked with a red
horizontal line, and vertical dashed lines are drawn through local maxima of the combined score that exceed this
threshold.

f(t) and keep any maxima that rise above a specified threshold T. We apply this procedure to the onset lists
produced from the simulation and separately apply the procedure to the observational data.

The process is illustrated in Figure 1 for the 24-hr time period of 31 January 2005. Figure 1 was created using
a kernel width ¢ = 13.8 min and a threshold T = 1.6. These values were selected using an optimization
process that will be described later. The specifics of how the signatures were identified will be discussed
in section 2.4, but to illustrate the convolution procedures, it suffices to say that a list of candidate onset
times was identified separately for each signature. Figures 1a-1e show the scores obtained from the onset
list obtained from each signature. Figure 1f shows the sum of the scores in Figures 1a-1e. The threshold
value T is drawn in red, and vertical dashed lines mark the onset times identified from local maxima of the
combined score that exceed the threshold. In order to exceed the threshold, signatures from two different
lists must occur within a few minutes of each other, and this occurred seven times during the time period
shown in Figure 1.

It is worth noting that the individual onset lists in Figure 1 are substantially different from each other, each
identifying substorms at different times from the others and two including candidate onset times that are
not near those in any other list. As long as a value of T > erf(1) is used, our procedure rejects those onsets,
such as the dipolarization around 1300 UT and the AL onset around 1400 UT, which appear only in one list.
Onsets are then counted only if two or more occur close enough in time to each other that the score rises
above the threshold T. For the value T = 1.6 used in this illustration, onsets from two different lists falling
within approximately 0.89¢ of each other will produce a peak that exceeds T. Reducing the threshold from
T = 1.6 would tend to increase the total number of substorm identifications, while increasing it would tend
to lower the number of substorm identifications. The implications of changing the threshold will be explored
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further in section 3.2. Note also that if the score remains above the threshold for a period of time and multiple
local maxima are found within that period, all of them are counted as substorm onsets. For example, the
local maxima around 1130 UT and a second one just before 1200 UT are both counted as substorm onsets.

In general, increasing T will make the list more restrictive and shorter, while decreasing T will make the
list less restrictive. However, any local maximum in f{t) will have a value of at least erf(1) ~ 0.843, so any
threshold T < erf(1) will produce the least restrictive onset list possible for a given kernel width o, and
further reduction of T will have no affect on the resulting list. If we choose a threshold T > erf(1), we effec-
tively require at least two signatures to identify a substorm onset. The temporal separation between these
signatures must be small enough that their respective kernels overlap significantly. However, one cannot
in general identify a specific maximum separation that determines this threshold. Rather, the threshold T
determines the minimum height of the peak and therefore influences the maximum separation between
signatures contributing to a single onset in the combined list.

Even if the threshold is set below erf(1), so that every local maximum in f(¢) is included in the combined list,
the convolution process will result in combining some signatures that occur near each other. In order for
two signatures to be counted as independent onsets (without any additional nearby signatures), they must
be separated by more than approximately 2.55¢ so that two local maxima can form in the resulting function
f(t). Smaller separations than this will result in a single local maximum that falls between the two signatures.
If more than two signatures occur within the same vicinity, smaller separations can give two maxima in f.
For instance, onsets at 0, 1.6, and 3.1¢ from three separate lists will result in two local maxima in f. Thus,
the number of subordinate onset lists and the choice of T and ¢ interact with each other to influence the
characteristics of the resulting onset list. The implications of the choice of threshold T and kernel width o
will be explored further later in the paper.

The convolution process effectively acts as a low-pass filter, with the choice of ¢ determining the minimum
time between successive onsets. As discussed in section 1, different substorm signatures may not be detected
simultaneously even if they are related to the same substorm. For instance, Liou et al. (1999) and Liou et al.
(2000) found geosynchronous energetic particle injections tended to lag the onset of auroral breakup by
1-3 min, while the high-latitude magnetic bay can be delayed up to tens of minutes relative to the onset of
auroral breakup. Some of the findings of Liou et al. (2000) were challenged by Kepko and McPherron (2001)
and Kepko (2004), but even Kepko (2004) found that Earthward plasma flows could precede auroral onset
by 1-3 min. These results and others suggest that a kernel width of 6 ~ 3 min represents a lower bound for
appropriate values of ¢, unless the analysis is restricted to a set of observational signatures that have been
shown to occur nearly simultaneously. An upper end of the appropriate range for ¢ can be identified by
noting that previous research has shown that successive substorms rarely occur within 30 min of each other
(e.g., Borovsky et al., 1993; Frey, 2010). This suggests that ¢ should be chosen to be under 30 min but leaves
substantial room for tuning.

Some of the underlying onset lists could have onsets occurring close enough that their kernel functions
overlap substantially. Scaling the convolved scores using the error function erf(x) helps prevent an onset list
with closely spaced signatures from contributing too strongly to the combined list. If two signatures occur
simultaneously in the same onset list, this could indicate a greater confidence in the signature, but this
should arguably not be weighted as strongly as two independent signatures from separate data sets. The erf
function is approximately linear for small values, so that the general shape of the Gaussian kernel is retained
except for an approximately 15.7% reduction in the height of the peak. If two signatures occur at the same
time in the same list, the resulting peak height is only 0.995, a 15.3% increase from the single-signature
case. If three or more signatures occur simultaneously in the same underlying list, the result is an even
smaller increase as the peak height asymptotically approaches 1. Thus, an isolated signature in one of the
underlying onset lists contributes significantly to the total score, but multiple closely spaced detections of
the same signature do not cause that signature to dominate the combined onset list.

2.2. Event Description

To test our technique, we selected the month of January 2005. Morley (2007) and Morley et al. (2009) had
previously identified substorms from this time period, and from the data analyzed in those papers this time
period was determined to have a sufficient number of substorms to enable statistical analysis. The substorm
database provided by the SuperMag collaboration (http://supermag.jhuapl.edu/substorms/) (Gjerloev,
2012), which contains onsets identified from the SML index (Newell & Gjerloev, 2011) using the Newell and
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Gjerloev (2011) algorithm, lists 322 substorms during this period, placing it in the top 3% of 31-day periods
included in that data set. The substorm onset lists from Borovsky and Yakymenko (2017) include 124 AL
onsets and 109 energetic particle injections during January 2005, placing that month in the top 3% in terms
of AL onsets and in the top 7% in terms of energetic particle injections, compared with other 31-day periods
from the same onset lists. Frey et al. (2004) (whose list has subsequently been updated to include 2003-2005
and published online at http://sprg.ssl.berkeley.edu/image/) list 97 substorms in January 2005, placing the
month in the top 13% of 31-day periods in that data set. Chu et al. (2015) found 167 onsets during this month,
placing it in the top 9% of 31-day intervals analyzed in that paper. Forsyth et al. (2015) found 356 onsets dur-
ing this month, placing it in the top 6% of 31-day intervals in that data set (here, we use the middle of three
lists included in the supporting information of that paper, with an expansion threshold of 75%). In addition,
two of the “supersubstorms” (AL < —2, 500 nT) identified by Hajra et al. (2016) occurred during this time
period.

Three geomagnetic storms occurred during this month: one on 7 January with a minimum Sym-H of
—112 nT, one on 16 January with a minimum Sym-H of —107 nT, and one on 21 January with a minimum
Sym-H of —101 nT. A table of the minima, maxima, and quartiles of various observed quantities over the
course of the month can be found in Haiducek et al. (2017). Of particular note is the consistently high solar
wind speed (median solar wind speed was 570 km/s), which may have contributed to the relatively high
frequency of substorms during this period.

2.3. Model Description

The simulations presented in this work were performed using the Block-Adaptive-Tree Solar Wind,
Roe-Type Upwind Scheme (BATS-R-US) MHD solver (De Zeeuw et al., 2000; Powell et al., 1999). This was
coupled to the Ridley Ionosphere Model (Ridley et al., 2003, 2004) and the Rice Convection Model (RCM,
Sazykin, 2000; Toffoletto et al., 2003; Wolf et al., 1982). The Space Weather Modeling Framework (SWMF,
Téth et al., 2005, 2012) provided the interface between the different models. The model settings and grid
configuration for the simulation are described in detail in Haiducek et al. (2017), which includes results
from the same simulation. (In Haiducek et al., 2017 the simulation was referred to as “Hi-res w/ RCM” to
distinguish it from the other two simulations included in that paper.) The inputs to the model are solar wind
parameters (velocity, magnetic field, temperature, and pressure) and F10.7 radio flux. Solar wind parame-
ters were obtained from the OMNI data set, supplemented with data from the ACE spacecraft as described
in Haiducek et al. (2017). Data from the ACE SWEPAM instrument used in this process, as well as the solar
wind input file used with SWMF, are provided in the supporting information. The results of Haiducek et al.
(2017) showed that the simulation produced good predictions of the Sym-H, AL, and Kp indices on average.
On the other hand, the model was found to underpredict the frequency of occurrence for strongly negative
AL values, suggesting a tendency to underpredict the strength or occurrence rate of substorms.

2.4. Identification of Model Signatures

The substorm process results in numerous observational signatures that can be leveraged for identification.
These include plasmoid releases, magnetic perturbations observable in the auroral zone and at midlatitudes,
dipolarization of nightside magnetic fields observable from geosynchronous orbit, earthward injection of
energetic particles, and auroral brightenings. Several of these can be synthesized using MHD as well. Unfor-
tunately, as was discussed in section 1, all of these signatures can be produced by other processes besides
substorms, and this is true for both the observations and the model output. For instance, magnetospheric
convection, pseudobreakups, and poleward boundary intensifications can cause a negative bay response in
the northward magnetic field component at auroral zone magnetometers, which could be interpreted as sub-
storm onsets (Aikio et al., 1999; Kim et al., 2005; Koskinen et al., 1993; Ohtani et al., 1993; Pytte et al., 1978).
On the other hand, substorms could occur but not be identified because of the limited spatial coverage of
observational data, as was shown by Newell and Gjerloev (2011) for auroral zone magnetic field. Substorms
could also be missed simply because they produce a response below the threshold selected for analysis (e.g.,
Forsyth et al., 2015). Even for analysis of model output, many of these factors remain relevant, and we aim to
mitigate this by using multiple signatures to identify our substorms. Specifically, we identify dipolarization
signatures at 6-7 R, distances (Korth et al., 1991; Nagai, 1987), negative bays in the AL index (Borovsky &
Yakymenko, 2017; Kamide et al., 1974; Newell & Gjerloev, 2011), positive bays in the MPB index (Chu et al.,
2015), and plasmoid releases (Hones et al., 1984; Ieda et al., 2001).
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Figure 2. Model signatures for an example substorm. (a) B, variations at x = —7 Ry along the GSM x axis. (b) AL index.
(c) MPB index. Apparent substorm onset times are marked with triangles in (a-c). (d-f) x-z (GSM) cut planes, at 5-min
intervals, colored by pressure. Closed magnetic field lines are drawn in white and open field lines in black. Earth is
drawn as a pair of black and white semicircles, surrounded by a gray circle denoting the inner boundary of the MHD
domain. The location x = -7 R, from which the data in (a) was obtained, is marked with a blue circle. The apparent
X-line location is marked with a red triangle.

Figure 2 shows examples of substorm signatures from a substorm event on 2 January 2005. This substorm
was selected for illustrative purposes because it can be identified by all four of the signatures used in the
model output. A handful of previous researchers have identified substorm onsets during the time period
shown in the plot (2000-2200 UT). Borovsky and Yakymenko (2017) found an AL onset at 2026 UT on
this day and a geosynchronous particle injection at 2130 UT. Chu et al. (2015) identified an MPB onset at
2112 UT. The SuperMag substorm database (populated using the Newell and Gjerloev (2011) algorithm)
contains onsets at 2016, 2038, and 2059 UT. Figures 2a-2c show time series plots of B, at x = =7 R (GSM),
the AL index, and the MPB index. Apparent onset times identified from each curve are marked by triangles.
Figures 2d-2f show the MHD solution within the x-z (GSM) plane at 5-min intervals during a plasmoid
release. The backgrounds of Figures 2d-2f are colored according to the plasma pressure. Closed magnetic
field lines are plotted in white and open field lines in black. The Earth is shown as a pair of black and
white semicircles and surrounded by a gray circle denoting the inner boundary of the MHD domain. The
approximate location of the reconnection region is denoted by a red triangle, and a blue dot marks where
x=-7 Ry, along the noon-midnight line (this is the location from which the data in Figure 2a were obtained).

2.4.1. Plasmoid Release

A fundamental characteristic of a substorm is the tailward release of a plasmoid (e.g., Hones et al., 1984),
and this is the first substorm signature we will describe. In observations, plasmoids are identified by a bipo-
lar variation of B, as observed by a spacecraft near the central plasma sheet (e.g., Eastwood et al., 2005;
ITeda et al., 2001; Slavin et al., 1989, 1992). MHD models provide data throughout the magnetosphere rather
than being limited to a few point observations, and this enables several additional techniques for identifying
plasmoids. One approach is to plot variables such as temperature, velocity, and magnetic field over time for
different x coordinates along a line through the central plasma sheet at midnight. This produces a 2-D map
showing the time evolution of the MHD solution in the plasma sheet, in much the same way that keograms
are used to visualize the time evolution of auroral emissions (Raeder et al., 2010). Plasmoids appear in
such maps as tailward propagating magnetic field perturbations, with corresponding tailward flow velocity.
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Another approach for identifying plasmoids was proposed by Honkonen et al. (2011), who used the mag-
netic field topology derived from an MHD simulation to identify a plasmoid, which they define as a set of
closed field lines that enclose a region of reconnecting open field lines. Probably the most common method
is to plot magnetic field lines in the x-z plane, looking for evidence of a flux rope in the form of wrapped up
or self-closed field lines, as in, for example, Slinker et al. (1995).

The method of visually identifying plasmoids by searching for regions of wrapped-up field lines is the one
used in the present work. We require that such features be located in or near the central plasma sheet and
that they exhibit tailward motion. For each such plasmoid, we record the time of the first indication of
tailward motion and the x and z coordinates of the apparent X-line at that time. Plasmoids for which the
X-line is beyond 35 Ry downtail are ignored. Figures 2d-2f show examples of the images that are used for
this analysis. For the event in Figure 2, the first apparent tailward motion occurred at 2054 UT, and this
time is shown in Figure 2d. The X-line occurs at around x=-32 Ry, and the plasmoid extends from there to
—60 Ry. Figures 2e and 2f show the same plasmoid 5 and 10 min after release. Tailward motion is clearly

apparent, with the center of the plasmoid moving from x ~ —55 to x & —80 Ry in 10 min.
2.4.2. Dipolarization

While the plasmoid propagates tailward, the magnetic fields Earthward of the X-line undergo a dipolariza-
tion. Previous studies have identified dipolarizations by searching for sharp increases in B, (e.g., Birn et al.,
2011; Frithauff & Glassmeier, 2017; Lee & Lyons, 2004; Liu et al., 2013; Runov et al., 2009, 2012) or elevation
angle

B
6 =tan"!| ——1, @)

\/B:+B?

(e.g., Coroniti & Kennel, 1972; McPherron, 1970; Noah & Burke, 2013) within the nightside magnetotail. A
number of studies have also used a decrease in

3

coincident with the increase in B, or 6, as criteria for identifying a dipolarization onset (e.g., Korth et al.,
1991; Liou et al., 2002; Nagai, 1987; Schmid et al., 2011). Automated procedures for identifying dipolariza-
tions have been developed by Fu et al. (2012) and Liu et al. (2013). We found the Fu et al. (2012) algorithm
unsuitable for our purposes because it uses flow velocity as part of its criteria, for which we had no obser-
vational data from the GOES satellites used in the analysis. The Liu et al. (2013) algorithm was designed for
THEMIS and uses B, alone for event selection. Since our data were from 6-7 R, from the Earth (where the
fields differ substantially from those seen by THEMIS), we developed a new algorithm which uses varia-
tions in B,, |B,|, and § to identify dipolarizations from the model output. The new procedure is described in
detail in Appendix A. The algorithm was used to identify dipolarization signatures along the orbits of GOES
10 and 12 and at a fixed point located at x = —7 R in GSM coordinates on the Sun-Earth line; this point is
identified by a blue circle in Figures 2d-2f. A plot of B, at x = —7 Ry, is shown in Figure 2a, and two dipo-
larization onsets identified using our procedure are marked on the plot with triangles. The first of these is
closely aligned with the plasmoid release time.

2.4.3. Auroral Zone Negative Bay

The dipolarization process can be interpreted as a partial redirection of cross-tail current into the ionosphere
(e.g., Bonnevier et al., 1970; Kamide et al., 1974; Kaufmann, 1987; Lui, 1978; McPherron et al., 1973). The
ionospheric closure of this current results in a negative bay in the northward component of the magnetic
field on the ground in the auroral zone (Davis & Sugiura, 1966). As a result, substorm onsets can be identi-
fied by sharp negative diversions of the AL index. A number of algorithms have previously been developed
for identifying substorm onsets from the AL index, including the Newell and Gjerloev (2011) (SuperMag)
algorithm and the Substorm Onsets and Phases from Indices of the Electrojet algorithm (Forsyth et al., 2015).

In the present paper we identify AL onsets using the algorithm presented in Borovsky and Yakymenko
(2017). This algorithm was chosen for its simplicity and because it produces a distribution of intersubstorm
timings that is consistent with that obtained from other signatures, as Borovsky and Yakymenko (2017)
demonstrated through comparison with timings of energetic particle injections. We apply the Borovsky and
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Yakymenko (2017) algorithm to a synthetic AL index computed from the model output using virtual mag-
netometers as described in Haiducek et al. (2017). An example AL onset is shown in Figure 2b. A negative
bay onset, marked by a triangle, occurs just before 2100 UT, just after the plasmoid release at 2054 UT.

2.4.4. MPB

The integrated effect of the currents closing between the tail and auroral zone results in a northward diver-
sion of the ground magnetic field in the middle latitudes, called a MPB(McPherron et al., 1973). Often, MPBs
are identified manually through examination of individual magnetometers (e.g., Caan et al., 1978; Forsyth
et al., 2015; McPherron, 1972; McPherron et al., 1973; Nagai et al., 1998). However, the ASYM-H index
may also be used (Iyemori & Rao, 1996; Nosé et al., 2009). More recently, Chu et al. (2015) and McPherron
and Chu (2017) have developed procedures to compute what they call the MPB index, which is specifically
designed to respond to a MPB, along with procedures for identifying substorm onsets using the MPB index.
In the present paper we use the MPB index implementation described in Chu et al. (2015) and its accompa-
nying onset identification procedure. To evaluate the MPB index from the model output, we use a ring of 72
virtual magnetometers placed at a constant latitude of 48.86° and evenly spaced in MLT. We compute esti-
mated magnetic fields for the locations of these magnetometers by performing a Biot-Savart integral over
the entire MHD domain and to this add the contributions of the Hall and Pedersen currents computed using
Ridley Ionosphere Model; this procedure is described in Yu and Ridley (2008) and Yu et al. (2010). Using the
estimated magnetic fields at these virtual magnetometer locations, we compute the MPB index and associ-
ated substorm onsets using the procedures described in Chu et al. (2015). An example of the MPB response
is shown in Figure 2c. The MPB onset time occurs roughly 10 min after the plasmoid release time but is well
aligned with the second of the two dipolarizations in Figure 2a.

2.5. Identification of Substorm Events From Observational Data

When possible, we use the same procedures to identify substorm signatures in the observational data as we
do with the model output. This includes the dipolarizations, AL index, and MPB index. In some cases modi-
fications are required due to limitations in the availability of observational data; for instance, ground-based
magnetometers are normally restricted to being placed on land with suitable terrain, and the locations
of satellite observations are constrained by orbital mechanics. On the other hand, some observations rely
on physical phenomena that cannot be modeled by the MHD code, such as energetic particle injections
and auroral brightenings. In an effort to obtain the best possible identifications of observed substorms, we
use as many observational data sets as possible, which for this time period included GOES magnetic field
observations, the AL and MPB indices, energetic particle injections at geosynchronous orbit, and auroral
brightenings.

We identify AL onsets by applying the procedure from Borovsky and Yakymenko (2017) to the SuperMag
SML index (Newell & Gjerloev, 2011). For simplicity, we will use the term AL throughout the paper to refer to
both the observed SML index and the synthetic AL computed from the model output. For the observed MPB
index and observed MPB onset times we use the values from the analysis previously published in Chu et al.
(2015). We identify dipolarizations by applying the procedure described in Appendix A to measurements
obtained with the magnetometers onboard GOES 10 and 12 (Singer et al., 1996).

In addition to the dipolarization, another substorm signature that can be observed at geosynchronous orbit
is the Earthward injection of energetic electrons and protons (e.g., DeForest & Mcllwain, 1971; Lezniak
et al., 1968). Previous studies have identified a temporal association between such particle injections and
auroral zone magnetic signatures (e.g., Kamide & MclIlwain, 1974; Lezniak et al., 1968; Weygand et al., 2008),
along with a connection between energetic particle injections and dipolarizations (e.g., Birn et al., 1998;
Sauvaud & Winckler, 1980). In the present work we use energetic particle injections identified by Borovsky
and Yakymenko (2017) using the Synchronous Orbit Particle Analyzer instrument (Cayton & Belian, 2007)
on the LANL-1990-095, LANL-1994-085, and LANL-97A satellites. The list of particle injections found in
the supporting information of Borovsky and Yakymenko (2017) is used as is.

Some of the energetic particles produced by the substorm enter the ionosphere and cause a brighten-
ing and reconfiguration of the aurora. These can be observed from the ground using all-sky imagers,
or from cameras onboard spacecraft. For the month of January 2005, observations from the Imager for
Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft are available for this purpose. The IMAGE
spacecraft was in a highly elliptical polar orbit with an apogee of 45,600 km and an orbital period of 14 hr,
providing 8-10 hr per orbit of good conditions for imaging the northern auroral oval (Frey et al., 2004). Frey
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Figure 3. Distributions of substorm waiting times for a range of identification thresholds and kernel widths used in the
identification procedure. (a-c) Observed waiting time distributions. (d-f) MHD waiting time distributions. (a, d)
Threshold = 1.0; (b, €) Threshold = 1.5; (c, f) Threshold = 2.0.

et al. (2004) examined images from the Far Ultraviolet Imager instrument onboard IMAGE and produced a
list of Northern Hemisphere substorm onsets for the years 2000-2002, since updated to include 2003-2005
and available online (https://sprg.ssl.berkeley.edu/sprite/ago96/image/wic_summary/substorms/). We use
the January 2005 portion of this list as part of our substorm identification.

3. Results

3.1. Substorm Waiting Times

The distribution of substorm waiting times (the amount of time that passes between successive substorms)
gives an indication of the occurrence frequency for substorms. A number of previous papers have examined
waiting times, including Borovsky et al. (1993) which identified substorm onsets from energetic particle
injections and found the modal waiting time to be around 2.75 hr. Chu et al. (2015) and McPherron and
Chu (2017) analyzed MPB onsets and reported modal waiting times of 80 and 43 min, respectively. Kauristie
et al. (2017) reported modal waiting times of 32 min for AL onsets identified by Juusola et al. (2011) and
23 min for SML onsets identified by the Newell and Gjerloev (2011) procedure. Hsu and McPherron (2012)
obtained a modal waiting time of about 1.5 hr for AL onsets, about 2 hr for onsets identified from tail lobe
fields, and about 2.5 hr for Pi2 onsets. Freeman and Morley (2004) reproduced the waiting time distribution
from Borovsky et al. (1993) using a solar wind driven substorm model.

To visualize the distributions of waiting times, we use kernel density estimates (KDEs) (Parzen, 1962), which
approximate the probability density function (PDF) of a distribution by convolving samples from the dis-
tribution with a Gaussian kernel. The resulting curve can be interpreted in the same way as a normalized
histogram. The width of the kernel is scaled using the standard deviation of the data multiplied by a scal-
ing factor b = 0.7 (see Appendix D for details). Since the waiting times can take only positive values, while
the Gaussian kernels used in the KDE give nonzero probabilities for negative values, we perform the KDE
in logarithmic space and transform the result to linear space for plotting as described in Appendix C. For
some of our KDE plots we have estimated confidence intervals using a bootstrapping procedure described
in Appendix D. This provides a means to assess whether the waiting time distribution obtained from the
model is significantly different from the observed distribution, in a statistical sense.
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To test the sensitivity of the waiting time distributions to the choice of kernel width and threshold, we plotted
waiting time distributions for a range of each parameter, as shown in Figure 3. Figure 3 shows the distribu-
tion of waiting times for the model and for the observations using three different choices of threshold and
four different kernel widths, ranging from ¢ = 5 min to o = 30 min. We found that values of ¢ < 5 min
resulted in a severe decrease in the number of substorms in the combined list, while o > 30 min risks merg-
ing unrelated substorm onsets together. The y axis of each panel shows the probability densities of waiting
time, and the x axis shows the waiting times. Figures 3a-3c show waiting time distributions from the obser-
vations, while Figures 3d-3f show waiting time distributions obtained from the MHD simulation. Figures 3a
and 3d show thresholds of 1.0, Figures 3b and 3e show thresholds of 1.5, and Figures 3c and 3f show thresh-
olds of 2.0. Within each plot, the kernel width ¢ used in the substorm identification procedure is varied from
o = 5min to ¢ = 30 min. ¢ = 5 min in purple with a dash-dot-dot pattern, ¢ = 10 min is plotted in red with
a dash-dot pattern, ¢ = 15 min in green with dots, ¢ = 20 min in orange with dashes, and ¢ = 30 min in
blue with a solid line.

From Figure 3, it is apparent that both the threshold and the kernel width affect waiting time distributions
substantially. The modal waiting time varies from approximately 0.25 to 2.5, while the height of the peak
varies from greater than 0.3 to less than 0.1. Note that, as discussed in section 2.1, any threshold T < 0.843
will produce an identical onset list for a given kernel width o; because of this, we chose thresholds T > 0.843
for all parts of Figure 3. As the threshold is increased, we expect the waiting times to increase as onset times
are removed from the combined list. Figure 3 shows that this is the case. For a given choice of ¢, the modal
waiting time tends to increase as the threshold is increased from 1 to 2. This is particularly noticeable for
the shortest kernel width ¢ = 5. For 0 = 5 and T = 1.0, the modal waiting time begins at less than a half
hour in both the model and the observations. When T is increased to 2.0, the modal waiting increases to
approximately 2 hr for the observations and 3 hr for the model. At the same time, the height of the peak
decreases as shorter waiting times at the left of the peak give way to longer waiting times in the tail of the
waiting time distribution.

The influence of ¢ on the waiting time distribution is somewhat more complicated and depends on the
value of T. For the lower threshold of T = 1.0, increasing ¢ results in an increase in the modal waiting time
and a decrease in the peak height. This suggests that larger values of ¢ are causing nearby peaks to merge.
As noted in section 2.1, the practice of selecting by local maxima results in a merging of signatures whose
separation is less than a certain multiple of ¢ (for two signatures, they will be merged if they fall within
2.55¢). Increasing ¢ may cause more signatures to be merged in this way, and this can result in a decrease
in the number of substorms and an increase in the waiting times, as seen in Figures 3a and 3d.

For higher values of T, increasing ¢ can sometimes cause an increase in the number of substorms rather
than a decrease and can decrease the waiting times as well. This is because as ¢ is increased, the height
of the peaks tends to increase as the sphere of influence for each signature increases with ¢. The effect of
increasing o causing nearby signatures to merge into a single onset still applies at the higher thresholds, but
o and T seem to interact to influence the waiting time distribution in sometimes complicated ways. While
for a threshold of 1.5 (Figures 3b and 3e) the modal waiting time increases monotonically with increasing
o, for a threshold of 2.0 (Figures 3c and 3f) it does not. (Note, however, that for the T = 2.0 cases the
total number of substorms contributing to the waiting time distributions is fewer than 100, so the lack of a
consistent relationship between o and the modal waiting time for T = 2.0 may simply be due to the waiting
time distribution being poorly sampled.) The influence of ¢ on the height of the waiting time distribution
for these higher threshold values is similarly complicated. With increasing o, the peak of the waiting time
distribution initially becomes higher and the tail shorter as seen in Figures 3b, 3c, 3e, and 3f. However, for
T = 1.5 the peak height levels off and decreases for the largest values of o.

The somewhat complicated influence that ¢ has on the waiting time distribution can be explained in part by
the fact that o can affect both ends of the waiting time distribution simultaneously. As ¢ increases, signatures
can combine to produce higher peaks that exceed the threshold where they could not for lower values of o.
This adds additional onsets to the combined list. In general, one expects such additions to lower the number
of long waiting times and increase the number of short waiting times, resulting in a reduction of the tail of
the waiting time distribution, a growth of the peak of the distribution, and a decrease in the modal waiting
time. However, at same time an increase in ¢ can cause separate onsets already included in the list at smaller
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for comparison). The Borovsky and Yakymenko (2017) AL onset list con-
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Figure 4. Distributions of substorm waiting times from the present paper Figure 4 shows the waiting time distribution obtained from the obser-

(thick solid lines), compared with other published lists that cover the same  vational data (thick blue line) and the model (orange line), along with

time period (dashed lines). The shaded region denotes the 95% confidence
interval for the observed waiting time distribution in the present work. The
total number of substorms in each list (which corresponds to the mean
waiting time) is given in parentheses in the legend.

waiting time distributions from six previously published substorm onset
lists that cover January 2005. The 95% confidence interval of the observed
distribution is denoted with light blue shading. The total number of sub-
storms in each list, which corresponds to the mean waiting time, is listed
in parentheses in the legend. The Supermag list was something of an out-
lier compared with the others, and its mode is not visible with the chosen axis limits. Figure B1 shows the
full Supermag waiting time distribution for January 2005.

Figure 4 shows that the waiting time distribution of the Borovsky and Yakymenko (2017) AL list (the green
dashed curve) falls near the middle of the published lists in terms of its waiting time distribution, not only
in terms of the mean waiting time but also in terms of the mode and overall shape of the distribution. The
observed onset list developed for the current paper (blue curve) produces a waiting time distribution that is
very close to that of the Borovsky and Yakymenko (2017) AL list. The MHD model produces a waiting time
distribution with a higher peak probability, but it falls entirely within the 95% confidence interval of the
observed distribution.

Figure 5 compares the waiting time distributions of the combined lists with those of the individual onset
lists used to create the combined lists. The observed onsets are shown in light blue, with the 95% confidence
interval represented as a shaded region of lighter blue. The MHD results are shown in dark blue. Figure 5a
shows the AL onsets, Figure 5b shows dipolarization onsets, Figure 5c shows MPB onsets, and Figure 5d
shows all signatures in combination.
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Figure 5. Substorm waiting times for MHD and observations. (a) AL onsets only, (b) dipolarizations only, and (c) MPB
onsets only. (d) All signatures combined.
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Table 1
A Generic Contingency Table

The distributions of waiting time between AL onsets (Figure 5a) show a
modal waiting time of around 1 hr for the simulation and 2 hr for the

observations. This is shorter than the 2.75 hr reported by Borovsky et al.

Predictions Y

Observations

v N (1993), and longer than the results of Juusola et al. (2011) and Newell and
Gjerloev (2011), but it is comparable to the approximately 1 hr reported by

a E Hsu and McPherron (2012). The model distribution for AL waiting time

c d

falls within the confidence intervals of the observed distribution for shorter

Table 2

(<1.5 hr) waiting times, though the model underestimates prevalence of
2-6 hr waiting times somewhat.

Dipolarizations produce a much narrower waiting time distribution (Figure 5b), with the modes of both
the modeled and observed distributions occurring at less than 1/2 hr of waiting time. This suggests that
the dipolarizations are substantially more frequent than AL onsets. Note that this modal waiting time is
shorter than the modal waiting time from any of the previously published lists shown in Figure 4, which
may indicate that many of the dipolarizations are not associated with substorms. The model reproduces the
observed waiting time distribution reasonably well, straying only slightly outside the confidence bounds of
the observed distribution.

The observed waiting time distribution for MPB onsets (Figure 5c) has a mode around 1 hr, in between those
of the dipolarizations and AL onsets. The model waiting time distribution has its mode positioned fairly
close to that of the observed distribution, but the height of the peak is noticeably higher and well outside
the confidence bounds of the observed distribution. This suggests that the model produces MPB onsets with
similar dynamics to reality in terms of recovery time but that the onsets occur more often. One possible
reason for this is that the model MPB index was computed using virtual magnetometers distributed evenly
across all longitudes, while the observed MPB index is necessarily computed using real magnetometers, for
which substantial gaps in spatial coverage may have prevented some substorms from producing an MPB
signature.

Figure 5d shows, for comparison, the same waiting time distributions already shown Figure 4 (they are
shown as solid blue and orange curves in that figure). Note that the modal waiting times are close to those
obtained from the AL and MPB onset lists (i.e., they are not reduced by the influence of the dipolarizations
included in the analysis). As we noted earlier in the section, the model waiting time distribution for the
combined onset list remains within the 95% confidence interval of the observed waiting time distribution,
even though this was not the case for the individual signatures. This suggests that a degree of consistency
is achieved between the observations and model in the combined list, which is not the case for individual
signatures.

3.2. Forecast Metrics

In order to evaluate the predictive capabilities of the model, we first apply the procedure described in section
2.1to the onset lists from the model and separately to the observed onset lists, in order to produce a combined
onset list for each. We next divide the month into 30-min bins and determine whether a substorm onset
from each combined list was present in each bin. We then classify each bin according to whether a substorm
was identified in the model, observations, neither, or both. The four categories are commonly displayed in
a two-by-two table called a contingency table, as shown generically in Table 1: In the upper left corner (a)
are true positives, the bins in which a substorm was found in both the model and the observations. Next are
false positives (b), in which substorms were found in the model only. In the bottom row of the table are false
negatives (c), in which substorms were found in the observations only, and true negatives (d), in which no
substorm was found.

To produce a contingency table using our data from January 2005, we first
produced lists of substorm onsets using the procedure described in section
2.1 and the parameters T,,, 40> Tobs> Omoder> @10 05 SEL tO the values given in
section 3.1.

Contingency Table for SWMF Versus Observations

Table 2 shows the contingency table produced from the onset lists obtained

Observations
- - using our procedure. We obtained 124 positive bins from the model list, 25 of
which were true positives. We obtained 122 positive bins from the observed
SWMF Y = % list. Since the observed list contains 124 substorms, this indicates that two of
N o7 1267 the 30-min bins contained two substorms from the observed list.
HAIDUCEK ET AL. 13 0f 33
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1.0 From the values in the contingency table we compute several metrics
summarizing the predictive abilities of the model. These include Proba-
bility of Detection (POD), Probability of False Detection (POFD), and the
087 Heidke skill score (HSS), all of which are in common use in space weather
s applications (e.g., Ganushkina et al., 2015; Glocer et al., 2016; Jordanova
% 0.6 - et al., 2017; Morley et al., 2018; Lopez et al., 2007; Pulkkinen et al., 2013;
5 Welling & Ridley, 2010). The POD, given by
3 0.4+ POD = -, )
g a+c
024 - Iobf‘i”;(;)(l(ii?’ (Wilks, 2011) indicates the relative number of times a substorm was fore-
s . TZZ;Z:OO 76) cast when one occurred in observations. A model that predicts all the
, —— Tobs=2.50 (47) observed events will have a POD of 1. POFD, given by
0.0 T T . :
0.0 0.2 0.4 0.6 0.8 1.0 POFD b )
Probability of False Detection = b+d

Figure 6. ROC curves for the MHD simulation. The threshold score for R . .
. o . . indicates the relative number of times that a substorm was forecast when
identifying substorms from the model output is varied to produce each

curve, resulting in changes in the probability of detection (POD) and none occurred. Smaller values of POFD indicate better performance, and

probability of false detection (POFD). Each curve is computed using a a model with no false predictions will have a POFD of 0.
particular threshold score T, for identifying observed substorms; the

thresholds and number of observed substorm identifications are listed in
the legend. The case of the observed threshold equal to 1.6 is highlighted 2011). The HSS is based on the proportion correct (PC), defined as
with a bold line, and the case of model threshold and the observed

threshold equal to 1.72 along this line is highlighted with a black circle. PC = &,
a+b+c+d

Skill scores are a measure of relative predictive accuracy (e.g., Wilks,

(6)

which measures the fraction of correct predictions relative to the total number of predictions. A perfect
forecast would have a PC of 1. The HSS adjusts PC relative to a reference value, PC,,, which is the value of
PC that would be obtained by a random forecast that is statistically independent of the observations, and is
given by

_(a+b)a+c)+(b+d)c+d)

PC,., = . 7
el (@+b+c+dy? @

The HSS is obtained from PC,,, as

pC - PCref _ 2(ad — bc)
1-PC,, (a+oc+d)+@+bb+d)’

HSS = (®

The HSS ranges from —1 to 1, where 1 represents a perfect forecast, 0 is equivalent to a no-skill random
forecast, and —1 represents the worst possible forecast.

All of the above metrics are subject to sampling uncertainties, meaning that any particular value could be
obtained simply by chance and might not be representative of the model's overall abilities. To address this,
we estimate 95% confidence intervals for each metric. The 95% confidence interval is a range in which we
estimate that each metric will fall for 95% of a given number of random samples of the data set. Since no
analytical formulas are known for computing confidence intervals for the HSS (Stephenson, 2000), we esti-
mate the confidence interval using bootstrapping (e.g., Conover, 1999). This approach was used previously
by Morley et al. (2018), and the procedure is described in detail in Appendix D.

We now apply the above forecast metrics to our substorm onset lists. Figure 6 shows receiver operating
characteristic (ROC) curves for the MHD model. An ROC curve, by definition, shows the POD of a pre-
dictive model as a function of the POFD, as the threshold for event identification is varied (e.g., Carter
et al., 2016; Ekelund, 2012). Such curves are commonly used in evaluating predictive models; a notable
recent example from the space weather field is Liemohn et al. (2018). For a perfect forecast, the ROC curve
would pass through the upper left corner of the plot (POD=1 and POFD=0), so the closer the ROC curve
comes to the upper left corner of the plot, the greater the overall accuracy of the forecast. To produce the
curves in Figure 6, the threshold T, used to identify a substorm in the model output is varied along the
length of each curve, while the threshold T, for identifying an observed substorm is held fixed. Each curve
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o Tops<erf(1) (250)
0.25 4 Tobs=1.60 (124)
Y Tops=2.00 (76)

¢ Tops=2.50 (47)
0.20 -

0.15 4

0.10 4

Heidke skill score

0.05 4

0.00

T
107! 10°

Nmodei/Nobs

Figure 7. Heidke skill score as a function of the frequency bias (the ratio of
the number of model substorm bins to the number of observed substorm
bins). The threshold scores T, and T,,4,; for identifying substorms have
been varied to test the sensitivity of skill scores and frequency biases to
these thresholds. Each color and shape corresponds to a particular
threshold score T, for identifying observed substorms; the thresholds and
number of observed substorm bins are listed in the legend. For a given
observed threshold, different skill scores and frequency biases are obtained
by varying the threshold for identifying a model substorm. Error bars
represent the 95% confidence interval for each skill score. The case of
observed threshold equal to 1.6 is drawn in bold, and the case of the model
threshold equal to 1.72 with the observed threshold equal to 1.6 is marked
with a black circle.

is computed using a different threshold value T,  for identifying an
observed substorm. T,,, = 0.5 is shown in blue, T,,; = 1.60 is shown
in orange, T,;,, = 2.0 is shown in green, and T,,, = 2.5 is shown in red.
The total number of observed substorms obtained with each threshold is
shown in parentheses in the legend. The orange curve, corresponding to
an observed threshold of 1.6, is drawn in bold since that is the threshold
that was chosen for use throughout the paper, except for tests like this
one in which the thresholds are varied. A black circle denotes the model
threshold of 1.72 along this green curve. A diagonal gray line shows where
POD equals POFD, indicating no skill. For a forecast, POD should exceed
POFD, and this is the case along the entire length of each curve (except
for the case POD = POFD = 0, where equality is expected).

Note that although a typical ROC curve continues to POD = POFD = 1,
ours ends at POFD = 0.2. The reason for this is that the practice of using
local maxima in the substorm score places a ceiling on the POD and
POFD based on the characteristics of the underlying substorm onset lists.
If the substorm score has no local maxima within a given 30-min window,
no substorm will be identified regardless of what threshold is used. Also
note that the curves corresponding to higher values of T, produce higher
values of POD. While higher POD is desirable, in this case it comes at the
cost of an unrealistically low total number of substorms in the observa-
tions (and correspondingly, an unrealistically high average waiting time).
Rather than maximizing POD, we chose instead in the present work to
choose thresholds T, and T,,,4, that produce realistic statistics in terms
of substorm waiting time.

Figure 7 shows the HSS as a function of the frequency bias (the ratio of
the total number of model substorm bins to the total number of observed

substorm bins). Figure 7 was produced by varying the modeled and observed thresholds in the same manner
as was done to produce Figure 6. This provides a means to test the sensitivity of HSS to changes in these
thresholds. The x axis value is obtained by dividing the total number of substorm bins obtained from model
output by the total number of bins obtained from the observational data. Different observed thresholds are
identified by color and shape in the same manner as Figure 6, with error bars denoting the 95% confidence
interval for each skill score. Also, like Figure 6, the case of the observed threshold equal to 1.6 is drawn with
bold lines, and the case of the model threshold equal to 1.72 with the observed threshold equal to 1.6 is

marked with a black circle.

® Tops<erf(1) (250)
Tons=1.60 (124)
¥ Tobs=2.00 (76) ‘

0.20 A

¢ Tobs=2.50 (47)
0.15 A

0.10 A (

Heidke skill score

0.05 -

0.00 + ‘

—0.05 4

107! 10° 100
NmodeilNobs

Figure 8. Heidke skill score as a function of frequency bias, using a kernel

width 6,4, = 10 min instead of the o,,,,4,; = 20 min width used

elsewhere. The format is the same as Figure 7.

For a perfect forecast, the model should produce the same number of sub-
storms as occur in the observations, in which case the frequency bias on
the x axis of Figure 7 will equal one. Since we chose the thresholds T,
and T,,,4,; SO that they produce the same mean waiting time, the black cir-
cle corresponding to our chosen thresholds corresponds with a frequency
bias very close to one.

For a skill score to represent a true predictive skill, it should be signif-
icantly greater than zero, in a statistical sense. This is indicated by the
lower end of the 95% confidence interval being greater than zero. A fore-
cast satisfying this criterion is estimated to produce an HSS greater than
zero 95% of the time. Figure 7 shows that the skill scores obtained from
the MHD model are significantly greater than zero in the majority of
cases. The only exception is a single case where T,,; = 2.5, which as dis-
cussed earlier produced an unrealistically large mean waiting time in the
observed onset list.

Figure 8 shows the same analysis as Figure 7 but with the kernel width
0 moder decreased from 20 to 10 min. This provides a means to test the sen-
sitivity of HSS to the kernel width ¢. The style and axes are the same as
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Table 3
Forecast Metrics for Each Signature
SWMF Obs. HSS, same HSS, all
events events POD POFD signature signatures
All 124 124 0.20 0.072 0.131 [0.061,0.20] 0.131 [0.062,0.20]
AL 85 130 0.18 0.045 0.166 [0.089,0.24] 0.125 [0.052,0.20]
MPB 201 167 0.27 0.111 0.148 [0.085,0.21] 0.129 [0.065,0.19]
Dipolarizations 166 9 0.26 0.089 0.121 [0.052,0.19] 0.083 [0.02,0.1]
Plasmoids 447 — — — — 0.042 [-9x107%,0.09]

Figure 7, and the case of the modeled threshold set to 1.72 and observed threshold both set to 1.6 is again
identified with a black circle. Figure 8 shows that the skill scores are sensitive to the choice of kernel width.
Halving the kernel width reduces many of the skill scores by about half. However, a majority (all but five)
remain significantly greater than zero as determined by their estimated 95% confidence intervals.

Table 3 shows the total number of events, POD, POFD, and HSS for each of the substorm onset lists obtained
from the model output. The first row of the table, labeled “All,” shows the metrics computed from all
signatures, combined into a single onset list using the methodology in section 2.1, while the remaining rows
show results for individual signatures. With the exception of the last column of the table, all quantities are
obtained by testing each signature in the model output with observed signatures of the same category (e.g.,
model AL is compared with observed AL). These numbers are absent for the plasmoids since there was no
observational plasmoid data with which to compare. Two columns are shown for HSS. The first (labeled
“HSS, same signature”) is computed using model and observed substorm onset lists obtained using the sig-
nature identified at the beginning of that row (all signatures combined in the case of the first row). The
second uses the same model onset list as the first, but the observed onset list is the one obtained using all
signatures combined together. This gives an indication of how well the individual model signature predicts
the combined (all signatures) observed substorm onsets. For the POD, POFD, and HSS, a bar over the num-
ber identifies the last significant digit, as determined by the limits of the 95% confidence interval. For the
skill scores, the limits of the confidence intervals are shown in brackets. The lower limits of the confidence
intervals are positive for every case except the plasmoids, indicating that the skill scores are significantly
greater than zero.

Of all the signatures, the plasmoids releases do the least well at predicting the observed substorms. The AL
and MPB signatures produce higher skill scores than the dipolarizations, but the confidence intervals for all
three overlap so the differences between them may not be statistically significant.

Far more plasmoid releases (447 in total) were identified than any other substorm signature, with the next
most common signature being MPB onsets with only 166 occurrences. This strongly implies that the plas-
moid release list contained a large number of false positives. While we have confidence that all the plasmoids
were real (in the sense that they occurred within the simulation), the much smaller number of AL and MPB
onsets (85 and 201, respectively) suggests that only a few of them were substorm related. The total number
of events in the combined substorm list obtained from the simulation is only 124. This means that more than
two thirds of the plasmoid releases were rejected by our substorm identification procedure and indicates that
the procedure used to combine signatures is largely successful at eliminating false positive identifications.

3.3. Relative Contribution of Signatures

Although we included multiple substorm signatures in the analysis, not all contribute equally. To assess the
relative contributions of different signatures to the combined list, we performed counts of the number of
substorms in the combined list to which each signature contributed and a count of the number of signatures
that contributed to each onset. For the purpose of this analysis, we count a signature as contributing to
an onset in the combined list if it accounts for more than 5% of the total value of f(¢) at the time of the
onset. Table 4 breaks down the substorms by the number of observational signatures contributing toward
the identification of each substorm in the combined list. The columns of the table are organized according
to the signature count or the number of signatures contributing more than 5% of f(t) for each substorm. The
signature counts are listed on the first row of Table 4, with a final column containing the total number of
substorms independent of the signature count. The next five rows show the number of substorms for which
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Table 4

Counts of Substorms for Which Each Signature Contributed More Than 5% of
the Total Score f(t), Broken Down by the Total Number of Signatures Exceeding
5% of the Total Score for Each Substorm in the Combined Onset List

Signature count 2 3 4
LANL 15 31 31
IMAGE/FUV 12 23 29
MPB 25 39 30
AL 16 32 34 88
Dipolarizations 6 13 16 41
Combined onsets 37 46 35 6 124

Any
83
70

100

A OO O & oW

Note. The last column is a sum of the preceding columns. The last row con-
tains the total number of substorms in the combined onset list having the
number of contributing signatures corresponding to that column.

each individual onset list contributed more than 5%, again broken down by the total number of contributing
signatures for each substorm. The final row shows the total number of substorms having each signature
count.

As an example, the first row of Table 4 shows that the LANL energetic particle data contributed at least 5%
to 83% substorms in the combined list. Of these, 15 had two signatures (including LANL) contributing to
the total f(t), 31 had three signatures, and so on. Thirty seven of the substorms in the combined list had two
signatures contributing, 46 had three contributing, and so on.

From Table 4 it is apparent that the dipolarizations contributed appreciably less to the combined list than
did the other signatures. In total, only 41 (33%) of the substorms in the combined list had corresponding
dipolarization signatures. The MPB list contributed to the greatest number of substorms at 100 (80.6%) of
the 124 substorms in the combined list. The number of signatures contributing to each substorm was quite
variable. A plurality (46) of the substorms had three contributing signatures, but a substantial number had
two or four as well.

Table 5 shows the number of substorms for which each signature from the model output contributed more
than 5% of the total substorm score f{(f). The counts are presented in the same format as Table 4, with the
information again separated columnwise according to the number of signatures exceeding the 5% level for
each substorm in the combined list. Table 5 shows that the plasmoids contributed to largest fraction (112%
or 90.3%) of substorms in the combined list, while the AL onsets contributed to the smallest portion (59% or
48%) of the combined list.

Interpreting Tables 4 and 5 is complicated by the interaction between different lists as part of the selec-
tion process. Although the plasmoids contribute to a majority of onsets in the combined list obtained from
model output, it does not necessarily follow that the plasmoids were the most influential in determining
what events are included in the model-derived onset list, because the plasmoids were also the most numer-
ous of all the signatures obtained from the model. The high fraction of substorms for which the plasmoids
contributed to the total score may therefore simply reflect a high frequency of occurrence for plasmoids,
rather than a high correlation with actual substorm onsets. This can be illustrated more clearly by consider-
ing hypothetically the addition of a randomly distributed list containing a very large number of onsets into

Table 5
Contingency Table for SWMF Versus Observations

Signature count 2 3 4 Any
Plasmoids 31 54 27 112
MPB 25 46 27 98
AL 5 27 27 59
Dipolarizations 17 47 27 91
Combined onsets 39 58 27 124
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the analysis. Such a random onset list would serve to increase f{t) approximately uniformly and would there-
fore have the same effect as reducing the threshold T. The randomly distributed signature would contribute
significantly to the total score for every onset, but the contents of the list would be determined primarily by
the other signatures and not the randomly distributed one. In much the same way, the plasmoids, whose
number exceeded the number of onsets in the combined list by a factor of 4, were likely not the most impor-
tant factor determining what onsets were included in the combined list. Instead, the other signatures were
likely be more influential in determining the contents of the combined list because of their role in restricting
which onsets are included. Similarly, the fact that MPB contributed to 80.6% of the observed onsets does not
necessarily indicate that the MPB index was most influential in determining the contents of the observed
onset list.

What does seem to follow from Tables 4 and 5 is that no single signature dominates the combined lists on its
own, judging from the fact that a majority of onsets had three or more contributing signatures. To further
test whether any signatures were dominating the list, we computed the relative contributions of individual
signature scores to the total score f(t). We identified the relative contribution of the largest contributing
signature for each onset in the combined list and took the median of this value for all substorms in the
list. This median was found to be 36.6% for the observational list and 37.3% for the model. This indicates
that the largest contribution of any single signature to f(f) was equal to or less than this median value for
a majority of substorms. Since the median value is well below 50%, this provides additional confirmation
that the method is successful in finding substorm onset times that can be identified by multiple signatures.
We also computed that the maximum relative contribution to the total score f(¢) of any single signature was
54.2% for the observational list and 54.3% for the model onset list. This means that even in the few cases
where one signature contributed a majority of the score, other signatures were essential to producing the
total score that was obtained.

3.4. Superposed Epoch Analysis

We now present superposed epoch analyses (SEAs) of parameters related to the solar wind driving during
substorms and to the geomagnetic signatures of the substorms. SEA consists of shifting a set of time series
data y(¢) to a set of epoch times f;, producing a group of time series y, = y(t — ;) from which properties
common to the epoch times can be estimated (e.g., Samson & Yeung, 1986). Common properties of the SEA
may be estimated and visualized in a variety of ways. For instance, Morley et al. (2010) plotted shaded regions
representing the 95% confidence interval for the median and interquartile range, and Katus and Liemohn
(2013) plotted 2-D histograms colored according to the number of SEA members passing through each cell
of the histogram, while Hendry et al. (2013) created images colored according to the total electron flux
observed by the Medium Energy Proton and Electron Detector among all SEA members, binned by epoch
time and L shell. Probably the most common approach to visualizing a SEA is to use a measure of central
tendency such as the mean or median to obtain a new time series $(¢) that estimates the typical behavior
of y(¢) in the vicinity of the epoch times f;. In the present work we will use the median of y, to accomplish
this. The epoch times ¢, will come from one of two lists of substorm onset times (one derived from the MHD
simulation and the other from the observations).

Computing a SEA using our substorm onset times serves as a diagnostic to determine whether the onset
times identified by our selection procedure are consistent with previously reported behavior for substorms,
in terms of both the solar wind driving and the geomagnetic response. With the model substorm onsets, the
SEAs also provide a means to test how closely the model's behavior during substorms follows the observed
behavior of the magnetosphere.

Figure 9 shows SEAs of the observational data and the model output, with the epoch times corresponding
to substorm onset times obtained using each of the methods described in section 2.5. SEAs obtained using
the combined onset list (produced as described in section 2.1 with the parameters given in section 3.1) are
shown as a thick blue curve, along with all the individual signatures: MPB onsets (orange), IMAGE/Far
Ultraviolet Imager (green), plasmoids (red), AL (purple), LANL (brown), and dipolarizations (pink). The
left column (Figures 9a-9d) shows observed results, while the right column (Figures 9e-9h) shows the MHD
results. The variables plotted on the y axes are IMF B, (Figures 9a and 9e), solar wind e (Figures 9b and 9f),
the AL index (Figures 9c and 9g), and the MPB index (Figures 9d and 9h). IMF B, is in GSM coordinates. e

HAIDUCEK ET AL.

18 of 33

9SUDIT suowwo)) danear) d[qedsrjdde ay) Aq pauraa0S e Sa[ONIR Y SN JO SI[NI 10] AIRIQIT UIUQ AI[IAY UO (SUONIPUOI-PUB-SULIA)/ WO’ A3[1m” K1eiqrauruo//:sdny) suonipuo) pue swia [, oyl 23S *[£Z07/Z[/81] U0 Areiqiy auruQ A3[IA ‘6SSLTOVI610T/6T0T 01/10p/wod Ka[im’ Kreiqiaurjuo sqndnge//:sdny woiy papeojumo( ‘v ‘0Z0T ‘2066912



~u
AGU

100

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Space Physics 10.1029/2019JA027559

Observations MHD

IMF B, (nT)

=
(5]

(b) ®

=
o

Solar wind € (uW/m?)
o

o

o

| |
N B
o o
o o

—-300

AL (nT)

-400

-500

= All H H

10001 wps (d) (h)
-- IMAGE/FUV i i

750 1. Plasmoids

— AL

500 -- LANL
Dipolarizations

MPB (nT?)

250

Time since Time since
onset (h) onset (h)

Figure 9. Superposed epoch analyses of IMF B,, €, AL, and MPB, comparing onsets identified from the model and
from the observations. (a-d) SEAs computed using epoch times from the observations. (e-h) SEAs computed using
epoch times from the simulation. The AL and MPB data come from the respective data sets used to create the onsets
(observations or model run), and the other values come from the solar wind data input to the model. The lines show
the median value for all epoch times as a function of the time offset. The thick blue line (labeled “All” in the legend)
shows the SEA computed with epoch times from the combined onset list using all signatures, while thinner colored
lines show SEAs obtained using epoch times from the individual signatures.

provides an estimation of the rate at which solar wind energy is entering the magnetosphere (Perreault &

Akasofu, 1978) and is given by
4
| > : eclock
BI” Zelock ) 9
€= u " sin 5 )

where u, is the sunward component of solar wind velocity, B is the IMF, and 6., is the IMF clock angle.

cloc

From the SEA of IMF B, (Figures 9a and 9¢), it is apparent that the observed substorms are typically preceded
by a decrease in IMF B, with the minimum B, occurring just before the onset time and a recovery back to
near-zero B, following the onset. Similar behavior is present in both the model and the observations, but
the decrease in B, is somewhat sharper for the model onsets (with the exception of the plasmoids, which
have a particularly weak decrease in B,). The decrease is evident for all of the onset lists. In addition to
the plasmoids, the AL onsets stand out significantly. When using AL onsets for the epoch times (both for
observations and model), the minimum B, occurs slightly later, which may be an indication that the AL
onsets precede the other signatures on average. The model AL onsets are preceded by a 1-2 nT increase
1-2 hr prior to onset and a particularly sharp decrease just prior to onset. The tendency of substorms to
occur near a local minimum in IMF B, has been previously reported, and our results for both observations
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and MHD are qualitatively similar to those obtained by SEA in previous studies (e.g., Caan et al., 1975, 1978;
Freeman & Morley, 2009; Newell et al., 2001; Newell & Liou, 2011; Walach & Milan, 2015).

Figures 9b and 9f show that all onset lists correspond with an increase in e prior to onset, with a maximum
occurring prior to onset, or in the case of AL, just after onset. A separate SEA of the solar wind velocity
component u, (not shown) showed no appreciable trend, which indicates that the trend in € is driven almost
entirely by variation in IMF B,. However, despite a lack of change in u, before and after onset, we found
that some classes of onsets seem to be associated with higher or lower u,; most notably, dipolarizations
were associated with higher u, than any other signature type, and this is responsible for the higher e values
associated with dipolarizations. As with B, e undergoes a sharp transition prior to the model AL onsets, and
the plasmoid release times are associated with only a very weak increase and decrease in e.

In the SEA of observed AL (Figure 9c), a sharp decrease occurs at onset. This occurs for the combined onset
list and for all of the individual signatures except for the dipolarizations. Dipolarizations are associated with
a downward trend in AL, but the decrease begins earlier and is more gradual. The behavior of the observed
AL index is qualitatively similar to what was obtained by previous authors. The approximately 2-hr recovery
time is similar to the results of, for example, Caan et al. (1978) and Forsyth et al. (2015), but the —500-nT
minimum is lower than their results. Both Caan et al. (1978) and Forsyth et al. (2015) analyzed multiyear
time periods, and the lower minimum AL obtained here may simply be due to the fact that the analysis
covers a much shorter time period which was chosen for its relatively large amount of substorm activity.
In the model output (Figure 9g), AL onsets are also associated with a sharp decrease at onset, but the MPB
onsets, dipolarizations, and plasmoids are associated with gradual decreases in AL. When AL onsets alone
are used for the onset list, an increase occurs in the hour prior to onset, followed by a decrease similar to that
obtained from the SEA of observed AL onsets. When all the model signatures are combined, the increase
1 hr prior to onset is absent (although a more gradual, possibly unrelated increase occurs 1-3 hr prior to
onset), and the associated decrease in AL is weaker than occurs in observations.

It is notable that while the combined signature list from the observations produces a robust decrease at onset
in the SEA of AL, the same cannot be said of the combined onset list obtained from the model. A possible
explanation is that combining signatures does not preferentially eliminate weak substorms but rather tends
to eliminate those that are too far from the average for a given input data set. The fact that the average
in the model involves a weaker onset reflects the fact that the model produces weaker variations in AL in
general, as was noted for the same simulation in Haiducek et al. (2017). The weak association between
dipolarizations and AL onsets in the observations may be due in part to the fact that only two satellites are
used to identify dipolarizations (versus three for the LANL energetic particle injections). The model output
uses dipolarizations identified from a third location (which is ideally positioned on the Sun-Earth line), and
in the model output the dipolarizations do not contrast as strongly from the other data sets in terms of their
associated AL response.

From Figure 9d, it can be seen that all of the observed signatures are associated with an increase in MPB
beginning at onset. Dipolarizations are associated with an additional gradual increase prior to onset, with
the rate of increase becoming greater at the onset time. When all signatures are combined, the associated
increase in MPB is noticeably stronger than for any single signature alone. For all curves except the one
produced using dipolarizations as the signature, the shape is qualitatively similar to the SEA shown in Chu
et al. (2015) for MPB onsets, which similar to our results showed peaks between 50 and 250 nT and recovery
times on the order of 1 hr. With the model output (Figure 9h), all of the signatures are also associated with an
increase in MPB. However, the magnitude of this increase varies substantially from one signature to another.
Plasmoid releases are associated with the weakest increase in MPB, while AL onsets are associated with the
strongest increase. Combining all signatures together does not intensify the associated MPB response as it
does for the observations: The combined MPB curve falls in between those of the AL, dipolarization, and
MPB onsets.

It is worth noting that plasmoid releases are only very weakly associated with changes in driving conditions
(IMF and ¢) or in response indicators (AL and MPB). This is related to the fact that many more plasmoid
releases were identified than any other signature (see Table 3), which means that many plasmoid releases
may have no associated auroral or geosynchronous response or the response might be below the thresh-
old for selection. Such plasmoids may be too weak or too far downtail to have a substantial effect close to
the Earth. The state of the fields and plasmas in the inner magnetosphere may also influence how much
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energy from the plasmoid release is transported Earthward. Similarly, dipolarizations are also only weakly
associated with changes in driving conditions and magnetospheric response, though they are more strongly
associated than plasmoids are. Like the plasmoids, dipolarizations are observed in the magnetosphere and
most likely some of them occur without a strong coupling to the ionosphere that would produce a typical
substorm response.

4. Discussion

In the present paper we have demonstrated a procedure to combine multiple substorm onset lists into a
single list. We applied this procedure to observational data and to MHD output from the same 1-month
period. By performing SEA, we demonstrated that the resulting onset list is consistent with previous results
in terms of the solar wind driving and the geomagnetic response as measured by ground-based magnetome-
ters. We showed that the total number of substorms and the waiting time distributions are also consistent
with previous results. Finally, we showed preliminary evidence that our MHD model has statistically signif-
icant predictive skill and is able to reproduce the observed waiting time distribution, as well as some of the
observed features in terms of driving and response.

4.1. Effectiveness of Combining Signatures

The method appears to be effective in identifying substorm onsets that are identifiable by multiple meth-
ods. The thresholds used were high enough to ensure that each substorm could be identified by at least two
signatures, and a majority of onsets in both of the combined lists were identifiable by three or more signa-
tures. For a majority of observed substorms the largest contributing score of any single signature was less
than 36.6% of the total score for the onset (37.3% for the model substorms), with no signature contributing
more than 54.2% of the total score (54.3% for the model substorms). We found no indication that any one
signature plays a dominant role in determining the contents of the combined onset list. The approach of
combining onset lists obtained using different techniques into a single combined list appears to at least par-
tially address the problems of false identifications and data gaps. More than twice as many plasmoid releases
were identified from the model output than were obtained by analyzing any single observational signature,
yet the total number of substorms identified in the model output is far smaller than the number of plasmoid
releases, indicating that the vast majority of plasmoid releases were rejected for lack of an associated AL,
MPB, or dipolarization signature. At the same time, data gaps in the observations account for significant
undercounting of dipolarization signatures, but the total number of observed substorms in the combined
list is significantly higher than the total number of dipolarizations. This suggests that the combined inputs
from other observed signatures were able to compensate for the lack of continuous nightside magnetic field
observations in geosynchronous orbit.

In addition to differing in terms of their total numbers, both dipolarizations and plasmoids exhibited notice-
ably different statistics compared with other signatures in terms of waiting time distributions and in terms
of SEA behavior when both were used as epoch times. In both the model and the observations, the wait-
ing time distribution for the dipolarizations is noticeably different from MPB, AL, or combined onset lists.
Similarly, SEAs using dipolarizations and plasmoid releases to determine epoch times produced results that
differed substantially both from epoch times obtained using other signatures and from behavior expected
based on previous research. This suggests that dipolarizations and plasmoid releases may be relatively poor
indicators of substorm onset, perhaps because both regularly occur independently of substorms. Nonethe-
less, the waiting time distributions and SEAs obtained from the combined onset appear not to be overly
influenced by the statistics of the dipolarization and plasmoid timings.

We chose tuning parameters so that the resulting onset list has a mean and mode waiting time that is on
par with previously published results for the same time period. The resulting waiting time distribution is
qualitatively similar to previously published results (by e.g., Borovsky et al., 1993; Borovsky & Yakymenko,
2017; Chu et al., 2015; Kauristie et al., 2017). The modal waiting time of around 1-1.5 hr is consistent with
previously published results covering January 2005, and the distribution shape is very close to that of the
Borovsky and Yakymenko (2017) results for that time period, reproducing not only the mean and mode for
which we optimized but also the shape of the distribution. We also find that SEAs of our combined onset lists
reproduce many of the expected behaviors for substorms, such as a local maximum in IMF B, (e.g., Caan
etal., 1975, 1978; Freeman & Morley, 2009; Newell & Liou, 2011; Newell et al., 2001; Walach & Milan, 2015)
and a negative bay in AL(e.g., Caan et al., 1978; Forsyth et al., 2015; Kamide et al., 1974) that occur around
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the substorm onset time. This indicates that, on average, the magnetosphere exhibited dynamics previously
reported for substorms around the times included in the combined onset lists.

4.2. Paths for Improving the Substorm Identifications

We have demonstrated that the mean and mode waiting time of substorms identified by our method can
be controlled by adjusting its tuning parameters: the detection threshold T and the kernel width . While
we chose to optimize these parameters to reproduce the waiting time distribution of a previously published
substorm onset list, this may not be the best approach in all situations. In general, it is possible to determine a
range of values for each parameter beyond which reasonable results are no longer expected. For instance, we
showed in section 2.1 that values of T < erf(1) will all produce identical results, while values of T exceeding
the number of underlying onset lists will produce an empty onset list. Similarly, setting the kernel width too
low can greatly reduce the number of events selected by reducing the kernel overlap for nearby signatures
and in extreme cases can result in no events being selected at all. An overly large kernel width could cause
unrelated signatures to be merged together, potentially causing spurious onsets to appear in the combined
list between the contributing signatures while removing correct onset times. We selected kernel widths ¢ of
13.8 and 20 min, respectively, for the observational and model data sets, but kernel widths as small as 5 min
and as large as 25 min might be considered reasonable. Similarly, the threshold T can have a substantial
effect on the total number of events selected, as was illustrated in Figures 6 and 7 in which the total number
of observed events varies from 47 to 250 as the detection threshold is varied.

The relationship between the threshold T, kernel width ¢, and what events are selected depends on the
number of signatures used as well as the statistical characteristics of each signature, such as their waiting
time distributions. As a result, the threshold needs to be adjusted whenever signatures are added or removed.
In the present work we optimized T and o to produce a waiting time distribution that is comparable with
previously published results. However, this approach is only possible for time periods that have existing
published lists to which to compare. An alternative approach might be to construct a heuristic based on the
number of onset lists that are combined. A simple way to do this would be to scale the threshold according
to the number of onset lists used. The threshold might be adjusted down for time periods in which one or
more signatures is known to contain a data gap.

While we used all available signatures, there might be merit in excluding one or more signatures from con-
sideration in future efforts. We found indications that dipolarizations and plasmoids exhibited substantially
different statistics compared to other substorm signatures, possibly indicating that many of these signatures
are not substorm associated. The relative importance of a signature might be tested by selectively removing
signatures from the list to determine its relative importance to the combined onset list. Or, as an alterna-
tive to removing a signature entirely from the list, we could instead apply weight factors to the signatures
prior to adding them together. Lacking an objective means to determine appropriate weight factors, we have
decided not to apply weights to the individual signatures in the present work, and instead, all signatures
were weighted equally. However, in the future it might be appropriate to introduce such weight factors. One
way to do this is to compute weighting factors based on the average waiting time in each onset list. This
would weight signatures such as plasmoids that occur very frequently (and probably are not always associ-
ated with substorms) less heavily than those that occur infrequently. Another approach might be to develop
a reliability measure of some sort, which could be applied to each signature and used to compute its weight
factor. For some signatures, it might be appropriate to weight individual onsets according to a measure of
event strength associated with that signature. For instance, the amount of change in AL within a specified
time after onset could be used as a measure of AL onset strength, and AL onsets with large changes could
be weighted more strongly than those with small changes.

In section 3.2 we noted that some of the data in Figure 9 suggest a tendency for the AL onsets to precede
the other signatures by a few minutes. Such a tendency could result in onset times that are slightly too early
in the combined list and could also result in some onsets not being counted (due to falling below threshold
with signatures being poorly aligned in time). A severe temporal bias could result in some substorm events
being double counted. The temporal bias we noted in Figure 9 appears to be smaller than ¢ so the effects
resulting from it are likely to have a fairly small affect on the results. However, in the future it might be
possible to adapt the method to remove or reduce such effects. This could be done by replacing the Gaussian
kernel function with a non-Gaussian shape. This would remove the temporal symmetry imposed by the
Gaussian kernel. A non-Gaussian kernel shape could be developed individually for each signature based on
its tendency to lead or follow other signatures.
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The tunability of our procedure, along with the possible modifications described in this section, gives it a
significant amount of flexibility. This enables it to be optimized to produce desired characteristics in terms
of what events are identified. An obvious approach to optimization is to adjust the tuning parameters to best
fit established criteria for identifying substorms. However, the lack of a community consensus on precise
procedures, benchmarks, or tests for correct substorm identification precludes this approach. This lack of
such a consensus has been an issue in the community for a while and has been noted by a number of authors
(e.g., McPherron & Chu, 2017, 2018; Rostoker et al., 1980). While we can readily compare our list against
existing ones, as has been done by a number of researchers (e.g., Chu et al., 2015; Boakes et al., 2009; Forsyth
et al., 2015; Kauristie et al., 2017; Liou, 2010; Moldwin & Hughes, 1993), fundamentally, such comparisons
tell us about the similarities and differences between the lists and not which list is most correct. In the
meantime, optimizing for known characteristics of substorms, rather than a specific list, is probably the best
approach.

If our identification procedure is used applied for operational purposes, it will also be important to consider
the needs of forecast customers. This includes factors such as the costs and risks associated with false positive
and false negative detections. Is the cost of responding to a false positive prediction greater or less than the
cost incurred when a substorm arrives unannounced? Of course, this probably depends on the strength of
an event, and ideally, the procedure should be tuned in a manner that makes stronger events more likely to
be identified.

4.3. Substorm Prediction With MHD

One of the possible operational applications for our identification procedure is the development of a sub-
storm forecast product. This could be done using an MHD model as we demonstrated in the present work,
although the technique of combining multiple types of signatures can certainly be applied to other types
of models. The ability to simulate a substorm with an MHD model has been demonstrated previously (e.g.,
Lyon et al., 1981; Raeder et al., 2001; Slinker et al., 1995; Wang et al., 2010). However, previous efforts simu-
lating substorms with MHD have covered time periods lasting no more than a few days and at most several
substorms, preventing a rigorous analysis of the model's predictive skill. In the present paper we used a
1-month simulation including over 100 substorms, which is sufficient to enable computation of forecast
accuracy metrics such as POD, POFD, and HSS. To our knowledge, this is the first attempt to rigorously
evaluate an MHD model for its ability to predict substorms.

In our test, the MHD model demonstrated consistently positive predictive skill, with 0 or negative skill
scores occurring only in extreme cases of high or low detection thresholds. The skill scores achieved are
significantly greater than 0, but they are closer to 0 (no skill) than they are to 1 (perfect skill). This certainly
leaves room for improvement and also begs the question of whether scores on this level are sufficiently high
to be of practical use. Looking at evaluations of existing operational models, one can find some examples
of tropospheric models that deliver performance on this level, particularly for long lead time forecasts of
difficult-to-predict phenomena such as precipitation (e.g., Barnston et al., 1999). However, such comparisons
are of limited utility not only because of the differences in the system being modeled but also because of the
difference in the lead time and the temporal and spatial granularity of the forecast. Ultimately, an assessment
of operational usefulness depends on the manner in which the forecast is used by customers, including the
operational impact and mitigation strategies available.

4.4. Paths for Improved MHD Modeling of Substorms

An obvious path forward with the MHD model is to explore whether this initial demonstration of predictive
skill can be improved upon. The first step would be to conduct tests of different configurations of the model to
determine the sensitivity of results to parameters such as grid resolution and boundary conditions. Another
possible path for improvement is the incorporation of nonideal MHD and other physical processes that were
not incorporated in the simulation shown here. A likely candidate for this is the inclusion of additional
resistive terms. It has long been recognized that resistivity plays an important role in controlling magnetotail
dynamics such those associated with substorms. Birn and Hones Jr. (1981), for instance, demonstrated that
an X-line formation and plasmoid release could be induced in an MHD simulation by abruptly increasing the
amount of resistivity. In the present work, as with many efforts involving MHD simulation, we rely entirely
on numerical resistivity to enable reconnection to occur. Our results show that numerical resistivity can
produce substorms at a realistic rate, as evidenced by the fact that the total number of substorms is in line
with other lists from the same time period, and the waiting time distribution produced by the model is close
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to that produced by the observations. This means that our numerical resistivity is realistic enough that the
model can capture important aspects of the system dynamics. However, improved prediction of substorms
may require a more realistic resistivity model. One approach is to introduce Hall resistivity, which has been
shown by observations to play a role in magnetotail reconnection (Qieroset et al., 2001). Hall MHD has been
implemented in SWMF (To6th et al., 2008), but has not been tested in the context of substorm prediction.
Another approach that may improve substorm-related reconnection physics is the use of a particle-in-cell
model in place of MHD in and near the reconnection region. This has been demonstrated by Téth et al.
(2016) and Chen et al. (2017) for magnetospheric simulations but again has not been tested for substorm
prediction. On the other hand, the particle-in-cell approach, while promising for its ability to capture aspects
of reconnection physics that are not incorporated in ideal MHD, is likely too computationally expensive for
operational use in the near term.

Besides nightside reconnection, coupling between the magnetosphere and ionosphere plays an important
role in the substorm process. For instance, ionospheric conductivity influences the strength and spatial dis-
tribution of field-aligned currents within the magnetosphere (e.g., Ridley et al., 2004). However, there is
considerable room for improvement in the models of this conductance, particularly in the auroral zone.
SWMF currently estimates auroral zone conductance using an empirical relationship based on the strength
of field-aligned currents, since MHD does not directly estimate the precipitating fluxes that determine the
conductivity in reality (Ridley et al., 2004). Welling et al. (2017) showed that SWMF is frequently used to
simulate conditions that fall outside the range of validity for the existing conductance model. Efforts are
currently ongoing to develop an improved empirical model for this purpose (Mukhopadhyay et al., 2018).
However, this approach has limitations because the conductance depends on other factors besides the
field-aligned current, including particle precipitation, that are not modeled by MHD. An alternative might be
to estimate the conductivity using the particle distributions in an inner magnetosphere model such as RCM,
but this would likely require the development of new empirical relationships between precipitating fluxes
and conductivity. Other improvements to the MHD model that could influence magnetosphere-ionosphere
coupling include the use of anisotropic pressure (Meng et al., 2012, 2013), polar outflow (Glocer et al., 2009),
and multifluid MHD (Glocer et al., 2009), all of which have been implemented in BATS-R-US and demon-
strated in magnetospheric simulations but none of which have been tested for their effect on substorm
prediction. The initial tests of anisotropic pressure and polar outflow in SWMF (Meng et al., 2012 and Glocer
et al., 2009, respectively) both showed that simulations using those models have increased tail stretching
compared with BATS-R-US simulations that do not use them, and increased tail stretching could have a sig-
nificant influence on substorm dynamics since the substorm growth stage is associated with magnetotail
stretching (e.g., Kaufmann, 1987; Sergeev et al., 1990).

Of the enhancements mentioned above, ionospheric outflow may be particularly important because it has
been shown to be associated with substorms. For instance, @ieroset et al. (1999) and Wilson et al. (2004)
both found that ionospheric outflow increases by a factor of 2 on average from quiet time to substorm
onset and that stronger substorms are associated with higher rates of ionospheric outflow. Modeling results
have shown that ionospheric outflow can influence magnetospheric dynamics in general (e.g., Winglee
et al., 2002; Wiltberger et al., 2010) and substorm strength and onset times in particular (e.g., Welling et al.,
2016). Such results suggest that exploration of ionospheric outflow may be a fruitful path toward improved
substorm prediction.

5. Conclusions
The conclusions of the paper can be summarized as follows:

1. We have demonstrated a new technique for substorm identification that combines multiple substorm
signatures to reduce false positive identifications as well as reduce missed identifications.

2. The technique can be tuned to produce a mean and mode waiting time that are comparable to previously
published results.

3. The magnetospheric driving and response at the substorm onset times identified using our technique are
consistent with expected behavior during substorms.

4. When our substorm identification technique is applied to output from an MHD simulation, we obtain
a distribution of waiting times that is comparable to the observational data, driving conditions that are
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similar to those at the observed epoch times, and a magnetospheric response that is qualitatively similar
to (though quantitatively different from) the observed response.
5. The MHD simulation has weak, but statistically significant, skill in predicting substorms.

Appendix A: Procedure for Identifying Dipolarizations
Our procedure aims to find points that satisfy the following criteria:

« Local minimum of 6
+ Onset of a rapid increase in B, and
» Near a local maximum of |B,|

The procedure consists of first finding local minima in @ by searching for points that are less than both of
their immediate neighbors (endpoints in the data are not considered). Neighboring points around each of
these local minima are checked against a set of thresholds to determine whether they satisfy the criteria
given above. Given a minimum in 6, denoted by the subscript i, we specify a set of ranges m : n relative to
i, and a threshold B, or |B,| must satisfy within that range in order for i to be considered a dipolarization
candidate. The thresholds are defined as follows:

max(BZi:i+10) > Bzi +2.
max(B, ) > B, +10,
m?x(BZi:i+6o) > BZi +16, (Al)
min(|B,|i_10:i2) < |B,l; = 0.25,
min(|B,|i2:1420) < |B,l; = 0.5,
Min(|B, |is10:1440) < |Byl; = 2.
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Figure Al. (a—c) Superposed epoch analysis of B, B,, and inclination angle 6 for all dipolarization onset times.
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The thresholds for B, require an immediate increase in B, (2 nT in 10 min), which proceeds to at least 10 nT
within 30 min and 16 nT within 60 min. This is not a particularly fast increase; the thresholds are designed
to identify all dipolarizations and not only the strong ones.

The thresholds for |B,| require an increase of at least 0.25 nT within the 10 min preceding the candidate
onset, a decrease of 0.5 nT within the following 20 min, and a decrease of 2 nT within the following 40 min.
These are fairly weak criteria and are designed to select candidate onsets occurring near a local maximum,
without requiring the maximum be particularly strong nor that the onset candidate occur exactly at the local
maximum in |B,|.

An additional procedure aims to prevent counting multiple onset times for a single dipolarization event. If
an onset j is followed by an onset k within the preceding 60 min, then we require

max(BZ/:k) > 0.25max(BZk:k+6O);

(A2)

that is, the maximum B, between j and k must exceed 25% of the maximum B, reached following onset k.
If this threshold is not satisfied, the onset having the lowest value of @ is kept and the other is discarded.
Finally, for a candidate dipolarization to be included in the final list, the satellite providing the observations
must be located on the nightside; that is, MLT < 6 or MLT > 18.

The chosen thresholds are not particularly stringent individually but in combination produce a set of dipolar-
izations that resemble what has been previously reported for ensembles of dipolarizations. To demonstrate
this, we performed a SEA of the magnetic fields for the two GOES satellites in the observations. This is shown
in Figure A1, which shows SEAs of | B,|, B,, and 6 for dipolarization onsets identified from the observational
data and each of the three model runs. In this figure, and throughout the paper, plots comparing the model
runs to each other and to observations use a common color scheme: Observations are shown in light blue,
the Hi-res w/ RCM simulation in medium blue, the Hi-res w/o RCM simulation in orange, and the SWPC
simulation in green. The lines in Figure A1l represent the median of the SEA. The number of dipolarizations
identified for each data set is shown in parentheses in the legend. Although the thresholds specified allow
for as little as a 16 nT increase in 60 min, the median increase is much faster, closer to 20 nT in 20 min. This
is similar to what has been reported in previous studies such as Liou et al. (2002). The peaks in |B,| are less
pronounced than what occurs in Liou et al. (2002). This could probably be addressed with more stringent
criteria for |B,|, at the cost of possibly missing some dipolarizations.

Appendix B: Comparison of Intersubstorm Intervals Obtained Using the
Borovsky and Newell Algorithm

Figure Bl shows distributions of waiting times for AL onsets identified using the Borovsky and
Yakymenko (2017) algorithm (blue curve), for AL onsets identified using the Supermag algorithm (Newell
& Gjerloev, 2011) (orange curve), and for energetic particle injections identified from LANL satellite data by

0.8
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0.7 Supermag
—— LANL

0.6

o
U
f

Probability density
o o
w >

o
[N}
)

o
=
L

0.0 A
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Figure B1. Substorm waiting times for onsets obtained using the Borovsky (blue curve) and Supermag (orange curve).
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Borovsky and Yakymenko (2017) (green curve). The Supermag algorithm stands out with a modal 1-hr wait-
ing time, while both the AL onsets and the LANL particle injections from Borovsky and Yakymenko (2017)
produce a modal 3-hr waiting time. The fact that the Borovsky and Yakymenko (2017) algorithm produces a
waiting time distribution that resembles that obtained using particle injections contributed to the decision
to use the Borovsky and Yakymenko (2017) algorithm for substorm identification in the present work.

Appendix C: Log-Space Computation of KDE

In section 3.1 we visualize distributions of substorm waiting times using KDE. A KDE estimates a PDF by
convolving samples of the PDF with a kernel function. For a set of n samples X; and a kernel function K(x),
the KDE is given by

f 1 = x-X,
f(x)_%;K< - ) (C1)

We evaluate this using the Scipy python library, which computes h as
h=— (C2)

where X is the covariance of X; and b is a scaling factor.

In this paper we take K(x) to be a Gaussian. However, this introduces a difficulty because the waiting times
can take only positive values (meaning that the underlying PDF is nonzero only for positive x), while K(x)
takes nonzero values everywhere (including negative x). To correct for this, we compute the KDE of log X;
and evaluate this KDE for log x. Since this log-space transform alters the spacing (and in turn the estimated
densities), we must correct this by multiplying the resulting KDE by }C (the derivative of log x):

ﬁm=§M%m. (€3)

Appendix D: Bootstrapping Procedure to Estimate Confidence Intervals for
Forecast Metrics and Probability Densities

The sampling distribution for the HSS is not known (Stephenson, 2000), and this means that no analyti-
cal formula is available to estimate the confidence interval. We instead employ a bootstrapping procedure
(e.g., Conover, 1999), which involves randomly sampling the binary event sequence in order to obtain an
estimated distribution for the skill score. This is done as follows: Given a sequence of n observed bins o;
and n predicted bins p;, we take a sequence of n random samples, with the same indices taken from both
sequences. For instance, if n = 9, we might have

0=10,0,1,1,0,0,1,0,1] (D1)
and

p=10,1,0,1,0,0,0,1,1]. (D2)

We then generate a sequence of n random integers representing indices to be sampled from o and p; for
instance, we might randomly obtain the indices [8,1,4,4,2,6,5,0,3], which would result in

0'=[1,1,1,1,1,0,0,1,0] (D3)
and

p'=11,0,0,1,0,1,0,1,1], (D4)

from which we can compute a new HSS. We repeat this process N times (typically we use N = 4,000). The
95% confidence interval for HSS is the 2.5th and 97.5th percentiles of the N skill scores obtained from the N
sampled distributions. The same procedure is applied to estimate confidence intervals for POD and POFD.
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To obtain a confidence interval for a KDE, a similar procedure is applied: Given a sequence of n values x;
for which a KDE is to be computed, n we generate a sequence of n random integers to be used as indices
for x; to produce a new sequence x;.. A KDE fi(y) is computed from each sequence x}, and these points are
evaluated at a series of points y,. This process is repeated N = 2,000 times, producing n X N probability
density estimates p;. = f;(y,). For each y,, the 95% confidence interval of the KDE is estimated as the 2.5th
and 97.5th percentiles of the p; values obtained for that evaluation point y.
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