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ABSTRACT: The co-occurrence of uranyl and arsenate in contaminated water
caused by natural processes and mining is a concern for impacted communities,
including in Native American lands in the U.S. Southwest. We investigated the
simultaneous removal of aqueous uranyl and arsenate after the reaction with
limestone and precipitated hydroxyapatite (HAp, Ca10(PO4)6(OH)2). In
benchtop experiments with an initial pH of 3.0 and initial concentrations of 1
mM U and As, uranyl and arsenate coprecipitated in the presence of 1 g L−1

limestone. However, related experiments initiated under circumneutral pH
conditions showed that uranyl and arsenate remained soluble. Upon addition of
1 mM PO4

3− and 3 mM Ca2+ in solution (initial concentration of 0.05 mM U
and As) resulted in the rapid removal of over 97% of U via Ca−U−P
precipitation. In experiments with 2 mM PO4

3− and 10 mM Ca2+ at pH rising from 7.0 to 11.0, aqueous concentrations of As
decreased (between 30 and 98%) circa pH 9. HAp precipitation in solids was confirmed by powder X-ray diffraction and scanning
electron microscopy/energy dispersive X-ray. Electron microprobe analysis indicated U was coprecipitated with Ca and P, while As
was mainly immobilized through HAp adsorption. The results indicate that natural materials, such as HAp and limestone, can
effectively remove uranyl and arsenate mixtures.
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■ INTRODUCTION
Co-occurrence of U (uranyl) and As (arsenate) mixtures in
contaminated waters has been reported in several sites affected
by mining legacy in the Southwestern U.S.1−3 Much of the
mining activity occurred on Native American lands and has left
a lasting legacy of contamination.4 In the Navajo Nation alone,
there are more than 500 abandoned uranium mine sites,
remediation of which will cost billions of dollars.5−12 Previous
studies have shown that waters on Southwest Native American
lands were impacted by associated anthropogenic activities and
natural processes.13−18 Incidents of uranium contamination
were detected at levels 20 times higher than the maximum
concentration limit (MCL) of 30 μg L−1 U set by the U.S.
Environmental Protection Agency (EPA) for drinking water,
while As concentrations were more than 3 times that of the
EPA MCL (10 μg L−1 As).
The mobility of both uranyl, (UO2)2+, and arsenate, AsO4

3−,
in oxic conditions is a function of environmental factors
including pH,19−22 complexation chemistry,23−27 and soil/
mineral interactions.28−31 The uranyl (UO2)2+ ion is the
dominant aqueous species under acidic conditions (pH < 5),
and their co-occurrence with arsenates has been reported as
the meta-autunite group (An+[(UO2)(TO4)] (H2O), where
An+ is a mono-, di-, or trivalent cation and T = P or As).32 At
circumneutral and alkaline conditions, anionic aqueous

complexes can form after the reaction of uranyl with carbonate,
hydroxide, or phosphate, among other ligands.33−36 Critical
complexation reactions with cations also control the
precipitation and dissolution of U contaminants. Our previous
study reported that dissolution of uranyl arsenate solids is
enhanced by complexing with Ca2+ and (bi)carbonate at pH 7
via the formation of Ca−U(VI)-CO3 ternary complexes.18

Precipitates of NaUAs(s) and KUAs(s) were found to have 3
orders of magnitude faster dissolution rate constants than
uranyl phosphate analogues minerals at pH 2.37 In natural
conditions, Ca−U−As bearing solids occurs as uranospinite-
like secondary uranium minerals, for example, zeunerite
[Cu(UO2)2(AsO4)2·H2O], walpurgite [(BiO)4(UO2)(AsO4)2·
2H2O], and trögerite [(H3O)(UO2)(AsO4)·3H2O].38,39 The
surface charges on natural minerals also affect the adsorption of
(UO2)2+ ions. For example, quartz, albite, and calcite exhibit
positive surface charges at acidic conditions.40−42 Applying a
PO4

3− supplement along with Ca2+ to immobilize uranyl in
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water has been studied based on mechanisms of uranyl
adsorption onto Ca−P solids, Ca−U−P coprecipitation, and
uranyl incorporation depending on the pH and orders of
reactant addition.43−45 However, the presence of PO4

3− can
result in the dissolution of arsenate,46,47 for the competitive ion
displacement between AsO4

3− and PO4
3− in complexation

reactions with U.17,48,49 Designing a process that can remove
uranyl and arsenate simultaneously in contaminated waters is
challenging, given that the attenuation of uranium would have
to be accomplished without triggering the release of arsenic
and vice versa. This challenge of enabling the removal of uranyl
and arsenate with reactants that could be accessible to under-
served communities serves as the motivation for this study.
Limestone is an abundant sedimentary rock in the vicinity of

sandstone-hosted uranium deposits in geologic formations,
such as the Jackpile Mine in New Mexico where U and As co-
occur.34 Limestone mainly consists of calcite (CaCO3) and
various trace metal impurities, such as iron, aluminum, sodium,
and potassium, as well as detrital minerals, including
quartz.50,51 Natural limestone has been utilized for the removal
of heavy metals like Pb(II), Cd(II), Cu(II), and Zn(II) from
solutions through sorption reactions, owing to its economic
feasibility.52−54 Previous studies reported that calcite can
uptake arsenate anions via surface complexation.55,56 The
sorption behavior is considered to be influenced by
competition for sorption sites with (bi)carbonate, protona-
tion/deprotonation of the arsenate ion, and ionic strength of
the solution. Nevertheless, the effectiveness of removal may be
diminished by characteristics of natural limestone, including
mineral components, particle size, surface charge, and trace
elements incorporated at grain boundaries.54,57

Hydroxyapatite (HAp, Ca10(PO4)6(OH)2) is a well-studied
mineral adsorbent for removing metal contaminants from
water.58 Apatite minerals are found in igneous rocks such as
pegmatites,59 and the natural formation of HAp is more
commonly observed through biological pathways.60 Chemical
precipitation can also be used to synthesize HAp, but the
structural Ca and P stoichiometry and byproducts such as
dicalcium phosphate dihydrate (brushite, CaHPO4·2H2O) and
octacalcium phosphate (Ca8H2(PO4)6·5H2O) are influenced
by solution pH, temperature, and reaction rates.61,62 HAp has
been applied in the removal of both U and As through
mechanisms such as electrostatic attraction and dissolution−
precipitation.63−65 Other studies have reported HAp coatings
were utilized to enhance the reactivity of activated carbon,66,67

minerals,68−70 polymeric materials,71 and biotic materials72−74

for removal reactions. However, further investigations are
necessary to identify the key adsorption and precipitation
removal mechanisms under both acidic and neutral pH

conditions for U and As mixtures using natural limestone
with additions of Ca2+ and PO4

3.
In the present study, we investigated the removal of uranyl

and arsenate mixtures from solutions by reaction with natural
limestone as well as added Ca2+ and PO4

3−. Bench experiments
were performed at low and neutral initial pH (3.0 and 7.0,
respectively) with 3 mM Ca2+ and 1 mM PO4

3− to remove
uranyl and arsenate mixtures in the presence and absence of
limestone. Additional experiments were conducted with higher
concentrations of Ca (10 mM Ca2+) and P (2 mM PO4

3−) to
promote HAp precipitation with a pH increase from 7.0 to
11.0, which could improve arsenate removal. The novelty of
this study is the use of natural materials, such as Ca2+, PO4

3−
,

hydroxyapatite, and limestone, for the removal of uranyl and
arsenate mixtures from contaminated waters through adsorp-
tion and coprecipitation mechanisms. The experimental data
and approach presented in this research provide a potential on-
site remediation strategy to reduce environmental risks for
communities exposed to U and As contamination in the
Western U.S. and other parts of the world.

■ MATERIALS AND METHODS
Limestone Characterization. Limestone used in this

study was collected from the Sandia Formation, Sandia
Mountains, near Albuquerque, New Mexico. The specimen
was crushed and sieved to obtain a surface area of ∼2 m2 g−1

that has been measured by nitrogen (N2) absorptiometry
(Micromeritics Gemini 2360 Brunauer, Emmett, and Teller
Surface Area Analyzer)75 after degasification [see sample
preparation in the Supporting Information (SI), Text S1].
Zeta-potential data were acquired with a Malvern Zetasizer
Nano-ZS equipped with a He−Ne laser (633 nm) and
noninvasive backscatter optics. All samples were suspended at
a 0.1 mg mL−1 concentration. Measurements were acquired at
25 °C. The zeta potentials for all the samples were measured in
triplicate according to the Smoluchowski theory. All reported
values correspond to the average of three measurements of the
collected sample. Moreover, single-step acid digestion with
inductively coupled plasma optical emission spectroscopy
(ICP-OES) and electron microprobe analysis (EMA) were
applied to identify elemental concentrations in the limestone
(see more details in the Supporting Information, Text S1).

Batch Experiments. The initial conditions used for batch
experiments in this study are listed in Table 1. Briefly,
experiments used the following initial conditions. (1) 1 mM
aqueous arsenate and uranyl in solutions with 1 g L−1

limestone at initial pH 3.0 and 7.0; (2) 0.05 mM arsenate
and uranyl in solutions with 1 mM PO4

3−, 3 mM Ca2+, and 1 g
L−1 limestone [(Table 1, sets (1) and (2)]). The concentration

Table 1. Initial Conditions for Different Experiments Conducted in This Study

experimental sets arsenate and uranyl source initial pH
limestone
(g L−1)

PO4
3−

(mM)
Ca2+
(mM)

As(V)
(arsenate)
(mM)

U(VI)
(uranyl)
(mM)

(1) U−As-L (with limestone) [Na2HAsO4·7H2O],
[UO2(CH3CO2)2·2H2O]

3.0 and 7.0 1 0 0 1 1

(2) U−As−Ca-PO4-L (As2O5), [UO2(NO3)2·6H2O] 3.0 and 7.0 1 1 3 0.05 0.05
(3) U−As (no limestone) [Na2HAsO4·7H2O],

[UO2(CH3CO2)2·2H2O]
3.0 and 7.0 0 0 0 1 1

(4) U−As−Ca-PO4 (As2O5), [UO2(NO3)2·6H2O] 3.0 and 7.0 0 1 3 0.05 0.05
(5) U−As−Ca-PO4 (HAp) (As2O5), [UO2(NO3)2·6H2O] between 5.0

and 7.0
0 2 10 0.05 0.05

(6)
U−As−Ca-PO4-L (limestone + HAp)

(As2O5), [UO2(NO3)2·6H2O] between 5.0
and 7.0

1 2 10 0.05 0.05

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.3c03809
Environ. Sci. Technol. 2023, 57, 20881−20892

20882

https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03809/suppl_file/es3c03809_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.3c03809/suppl_file/es3c03809_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.3c03809?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


of 3 mM Ca2+ is based on the range measured from 0.2 to 7
mM reported in Rio Paguate, New Mexico in a previous
publication of our research group.34 The concentration of 1
mM PO4

3− was chosen based on other studies which report
that at this level Ca−P can react to precipitate, and uranyl
phosphate precipitation can occur. The solution’s initial pH is
set to 3.0 and 7.0 according to the acidic pH reported in
groundwater16,76,77 and at circumneutral pH reported in
surface water in the proximity of sites affected by mining
legacy.34 Hydrochloric acid (HCl) and ammonium hydroxide
(NH4OH) are used for pH adjustment. For comparison
purposes, parallel experiments were conducted without
limestone [Table 1, sets (3) and (4)]. Mixed solutions were
contained in triplicate 50 mL centrifuge tubes loaded on a tube
rotator. A volume of 2.0 mL was taken for liquid samples at 0,
15, 1440, and 2880 min for sets (1) and (3), and 0, 15, 30, 60,
120, 480, 720, and 1440 min for sets (2) and (4). The elevated
concentrations of 1.0 mM of aqueous arsenate and uranyl were
chosen for these experiments to represent water contamination
at ranges reported in the literature from hundreds to thousands
of mg/L for environments impacted by natural and
anthropogenic activities.78−81 The concentrations of 0.05
mM uranyl and arsenate were chosen for these experiments
to represent concentration ranges that have been reported in
waters affected by mining legacy.2,16,34,82

In tripilicate experiments with increasing pH from 7.0 to
11.0 [Table 1, sets (5) and (6)], 200 mL of solutions included
initially 10 mM Ca2+, 2 mM PO4

3−, 0.05 mM uranyl and
arsenate with and without 1 g L−1 limestone in glass beakers.
Solution pH was continuously monitored throughout the
experiments, as ammonium hydroxide was added drop by
drop. A volume of 2.0 mL of liquid sample was taken after

shaking for 1 h (with an orbital shaker at 120 rpm), which was
conducted when it reached pH 7.0, 8.0, 9.0, 10.0, and 11.0.
The whole process took approximately 7 h.
Dissolved uranyl was supplied by uranyl acetate

[UO2(CH3CO2)2·2H2O] or uranyl nitrate [UO2(NO3)2·
6H2O], while arsenate was from sodium arsenate
[Na2HAsO4·7H2O] or arsenic pentoxide [As2O5]. Supple-
ments of Ca2+ and PO4

3− in solutions were provided by CaCl2·
2H2O and NH6PO4. Adjustment of solution pH was
performed using HNO3 and NH4OH. More experimental
information is detailed in the Supporting Information (Table
S1). Water used in all experiments was from Ultrapure Water
(18.2 MΩ) Systems. pH measurements were provided by
benchtop Thermo Fisher pH meters, which were calibrated
with standard buffer solutions at pH values of 5.0, 7.0, and 10.0
prior to the experiments. All experiments were conducted in an
open atmosphere with a CO2 partial pressure of 1 × 10−3.5 bar.
It was assumed that equilibrium between the solution and air
CO2 would be reached through a shaking process lasting at
least 1 h.

Liquid Analyses. Liquid samples were passed through 0.2
μm membranes, acidified by the addition of 2% HNO3 to pH
around 2, and refrigerated at 4 °C prior to subsequent analyses.
Concentrations of As, U, Ca, and P in solutions were
quantified by ICP-OES and/or mass spectrometry (ICP-MS)
(for metal concentrations lower than 1 mg/L). Concentrations
of PO4

3− were measured using an ion chromatography (IC)
system. Supporting Information contains more details (Text
S1).

Solid Analyses. Limestone and precipitates were collected
after the experiments by centrifuging and air-drying in a
laboratory hood. A set of analyses was applied to characterize

Figure 1. Concentrations of aqueous U(VI) and As(V) as a function of time: (A) experiments supplied with 1 mM of U and As with and without 1
g L−1 of limestone at initial pH 3.0; (B) experiments supplied with 1 mM of U and As with and without 1 g L−1 of limestone at initial pH 7.0; (C)
experiments supplied with 0.05 mM of U and As, 1 mM of PO4

3− and 3 mM of Ca2+ with and without 1 g L−1 of limestone at initial pH 3.0; and
(D) experiments supplied with 0.05 mM of U and As, 1 mM of PO4

3− and 3 mM of Ca2+ with and without 1 g L−1 of limestone at initial pH 7.0.
Error bars represent the standard deviation of triplicate treatments.
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mineralogy, morphology, and surface elemental composition of
limestone and precipitates, including using powder X-ray
diffraction (pXRD), scanning electron microscopy (SEM) with
energy dispersive X-ray (EDX) spectroscopy, and EMA with
wavelength dispersive X-ray spectroscopy. See more details in
Supporting Information (Text S1).
Chemical Speciation Calculations. Chemical speciation

modeling was carried out using the open-source computer
code PFLOTRAN that runs on MacOSX, linux and
Windows.83 Speciation calculations were based on chemical
equilibrium modeling using inputs from experimental con-
ditions used in this study as a tool to gain insight into aqueous
complexation and the solid saturation state. PFLOTRAN can
perform speciation calculations with options to input total and
free ion concentrations, mineral and gas equilibrium
constraints, pH, and charge balance. The extended Debye−
Hückel algorithm is used to compute activity coefficients. The

PFLOTRAN thermodynamic database was expanded to
include equilibrium constants at 25 °C for becquerelite taken
from Gorman-Lewis et al.,84 and for uranyl arsenates from
Nipruk et al.84,85 and includes the most recent update to U
complexes.35,86−88 We used the unpublished constant for
uranospinite [Ca(UO2)2(AsO4)2] log Ksp = −42.499. The
geochemical system was described with the following primary
species: UO2

2+, AsO4
3−, Ca2+, Na+, H+, CO3

2−, NO3
−, NH4

+,
PO4

3−, and Cl−. In the experiments, we assumed a partial
pressure of CO2 in equilibrium with the atmosphere of 10−3.5

bar (pCO2 = 3.5).

■ RESULTS AND DISCUSSION
Limestone Characterization. Collected natural limestone

mainly contains Ca (23.4 wt %), Mg (0.7 wt %), and Al (0.5 wt
%) based on triplicate single-step acid digestion with ICP-OES
analysis. Results are generally consistent with backscatter

Figure 2. Concentrations of aqueous Ca, P, U(VI), and As(V) in solutions are plotted as a function of pH. Figures from (A) to (D) represent the
experiment with initial concentrations of 10 mM Ca (400.8 mg/L), 2 mM P (61.9 mg/L), 0.05 mM As (3,746 μg/L), and 0.05 mM U (11,901 μg/
L). Figures from (E) to (H) represent data of parallel sets with additional limestone of 1 g L−1. Error bars represent the minimum and maximum
values of triplicate treatments.
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electron image by EMA on natural limestone (Supporting
Information, Table S2). Identification and Rietveld quantita-
tive analyses with pXRD reveal that the limestone used in this
study consists of calcite (CaCO3, ∼69 wt %) and quartz (SiO2,
∼26 wt %) (Supporting Information, Figure S1). Zeta-
potential analysis indicated that net charges of limestone
surfaces were negative at pH ranging from 2 to 9 (Supporting
Information, Figure S2). Although reported points of zero
charge (PZC) for synthesized calcite were between pH 8 and
9,89,90 inconsistent PZC values have been reported in other
studies on natural calcite and/or limestone.42 The incon-
sistency could be attributed to various elements and trace
minerals in the limestone, and ion groups adsorbed on surfaces
at natural conditions.91 Another potential factor affecting the
particle surface charges could be full oxidation during the
limestone grinding process.
Aqueous Uranyl and Arsenate Removal Impacted by

Ca2+, PO4
3+, and Limestone with Initial pH of 3.0 and

7.0. In solutions with initial concentrations of 1 mM uranyl
and arsenate and an initial pH of 3.0 (Table1), ∼80% of the
aqueous uranyl and ∼60% of the aqueous arsenate were
removed without reaction with limestone, Ca2+, and PO4

3+

(Figure 1A). After the addition of 1 g L−1 limestone, the
solution pH was neutralized to between 5 and 7 (Supporting
Information, Figures S3 and S4), and removals of ∼96% of
aqueous U, and ∼100% As were observed (Figure 1A). In
contrast, more than 86% of U and more than 74% of As
remained soluble at circumneutral pH after 48 h (2880 min) in
experiments without limestone at initial pH of 7.0 (Figure 1B).
The precipitation and stability of uranyl arsenate solids at

acidic pH have been reported in other studies. For example, a
previous study identified a solid similar to uranospinite
[Ca(UO2)2(AsO4)2·10H2O] after the reaction of U, As, and
Ca in water at pH 3.18 Other researchers reported the stability
of uranyl arsenate solids at acidic pH after reaction with
cations, such as Na+ and K+.85,92 In contrast, the dissolution of
U and As has been reported in experiments conducted at
circumneutral pH due to the influence of uranyl carbonate
aqueous complexes that contribute to the mobility of U and
As.18 These findings from previous investigations are
consistent with the observation of this study and the chemical
speciation calculation by using PFLOTRAN (Supporting
Information, Table S3 and Figure S5).
With the addition of 3 mM Ca2+ and 1 mM PO4

3− [Table 1
sets (2) and (4)], more than 90% U removal was observed at
both initial pH 3.0 and 7.0 (Figure 1C,D, respectively).
Arsenate remained soluble due to the competitive replacement
between (PO4)3− and (AsO4)3−.49 As illustrated in Table S3,
the percentages of abundance of the chemical species of
AsO4

3− and PO4
3− are similar due to their analogue oxyanion

behavior and deprotonation. White Ca−P precipitates formed
in solutions with Ca2+ and PO4

3− supplements but did not
result in improved arsenate removal after 24 h (1440 min).
The potential enhancement from the presence of limestone
was not distinguishable in solutions with the PO4

3− supple-
ments. A similar phenomenon was observed in experiments
conducted at both initial pH 3.0 and 7.0.
Other studies have immobilized aqueous uranyl by adding

Ca2+ and PO4
3− mainly through three key reactions:43,93,94 (a)

the coprecipitation of Ca−U−P phases (e.g., autunite
[Ca(UO2)2(PO4)2·11H2O)]) at relatively higher uranyl
concentrations (10−100 μM); (b) surface adsorption between
sediment/precipitate and uranyl phosphates; and (c) incorpo-

ration into Ca−P precipitates when uranyl concentrations are
low (∼1 μM).44 In our studies, most of the 0.05 mM U was
rapidly removed when stock solutions were mixed with Ca2+
and PO4

3− supplements at both acid and neutral conditions.
However, the competing effect of PO4

3− enhanced the mobility
of soluble As species, which has been explained by the
chemical similarity between PO4

3− and AsO4
3− as oxy-

anions.49,95−97

Aqueous Uranyl and Arsenate Removal with Ca−P
Bearing Precipitates and Limestone at pH from 7.0 to
11.0. The concentrations of Ca (10 mM Ca2+) and P (2 mM
PO4

3−) used here were higher than those used in the
experiments presented in the previous subsection to promote
HAp precipitation with an increasing pH from 7.0 to 11.0.
Therefore, an abundance of white Ca−P precipitates was
observed upon increasing pH. HAp precipitation was expected
along with other Ca−P phases such as amorphous calcium
phosphate and octacalcium phosphate from saturated solutions
above pH 7.0.98 The initial pH of the system was between 5.0
and 7.0; NH4OH was added to gradually increase the pH to
the target range 7.0 to 11.0. At the beginning of the
experiments (with an initial pH between 5 and 7, Figure
S5), the concentration of uranyl decreased from 11,901 to 1.6
μg/L in solutions without limestone (Figure 2C). In solutions
with limestone, the uranyl concentration was decreased to 6.2
μg/L (Figure 2 G). The minimum U concentrations measured
in these experiments are below the EPA MCL of 30 ppb. Less
than 3% of U was redissolved into the liquid phase at pH
values higher than 9.0. More than 99% of aqueous As was
removed in all solutions at the end point of pH 11.0. The
lowest average concentration of As was measured to be 18 and
10.5 μg/L in solutions with and without limestone,
respectively, which is close to the EPA MCL of 10 ppb
(Figure 2D,H). Under mild alkaline conditions (pH 9.0),
arsenate removal ranged from 30 to 98%. The average removal
was 55% for solutions with limestone and 95% for solutions
without limestone. The presence of limestone resulted in a
slight increase in Ca2+ concentration in solutions (Figure 2E),
and the observed negative surface charge of limestone had a
limited impact on the removal of aqueous U and As in this
study.
The removal of uranyl was primarily attributed to the

coprecipitation with Ca2+ and PO4
3− ions,43 while the removal

of arsenate was facilitated by the precipitation of HAp.63,64,99

The adsorption of As by HAp is potentially enhanced at high
pH levels until it reaches around pH 8.0, which is close to the
point of zero charge. However, the adverse effect of PO4

3−

addition on the removal of aqueous arsenate64 was not
observed in our study, as dissolved Ca promoted saturation
with respect to Ca−P precipitates.
In the experiments of this subsection (pH ranging from 7.0

to 11.0), we observed a slight decrease in the solution’s pH
(less than 0.7 pH units) after 1 h of shaking, regardless of the
presence of limestone (Supporting Information, Figure S6).
The smallest average decrease in pH (less than 0.1 unit) was
observed at pH values of 8.0 and 9.0. Aqueous Ca2+ and PO4

3−

decreased due to precipitation reactions when the pH rose
from 7.0 to 8.0, and P concentrations were as low as the
detection limit for ICP-OES at pH 9.0 (Figure 2A,B,E,F). The
buffer effect of H2PO43−/HPO4

2− (pKa2 = 7.21) and
H2AsO43−/HAsO4

2− (pKa2 = 6.69) may have impacted the
solution’s pH between 7.0 and 8.0. However, under more
alkaline conditions, the equilibrium of the solution with
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atmospheric CO2 could influence the decrease in pH. Another
possibility is that the precipitation of HAp precursors and
further transformation to HAp could affect solid hydration
(incorporation of water into the solid structure), leading to the
release or incorporation of H+ and OH− in solutions. Further
research is required to elucidate the mechanisms affecting pH
changes in this system.
Analyses for Solid Samples. Albite ((Na,Ca)(Si,Al)4O8),

calcite (CaCO3), quartz (SiO2), and dolomite [MgCa(CO3)2]
were identified by pXRD analyses for limestone solids
collected before and after experiments presented in the
previous subsections (Figure 3, separated diffractograms in

Figures S7−S9). Two Ca−P minerals were identified as HAp
[Ca10(PO4)6(OH)2] in precipitates at pH 11.0 and brushite
[CaHPO4·2H2O] in samples of initial pH values of 3.0 and 7.0.
Brushite has been reported as a precursor of HAp in another
study,100 and the transformation was observed under alkaline
conditions. Since the precipitated HAp has poor crystallinity,
HAp is indicated by a broad peak between 31 and 34° 2θ in
the diffractogram for solids collected at pH 11. Analyses of
pXRD data indicate that HAp is the dominant Ca−P phase at
pH 11.0 with 10 mM Ca2+ and 2 mM PO4

3−. The peaks in the
pXRD pattern corresponding to HAp are near the detection
limit for samples with an initial pH of 7.0 with 3 mM Ca2+ and
1 mM PO4

3−. Instead, brushite is a minor contributor in the
diffractogram. The uranyl phosphate, uramphite (NH4)(UO2)-
(PO4)·3H2O, was identified in solids collected from an initial
pH of 3.0.
Various solid morphologies were observed using SEM where

Ca and P were located, indicating the heterogeneous
crystallinity of the calcium phosphate solid phases. Agglom-
erated nano- to microparticles in this study are consistent with

SEM images of HAp from previous studies.62,101 The built-in
backscattered electron detector (BSD) differentiates elements
with brightness gradients based on their elemental weight,
which also correlates with their atomic number. Brighter
surfaces of Ca−P precipitates (Figure 4B) detected by SEM
with BSD may indicate a higher concentration of U or As
adsorbed onto the Ca−P solids than on the limestone. This
observation supports the high affinity of HAp to aqueous
uranyl and/or arsenate species reported in previous studies.102

Analysis of EDX spectra detected the elements P, Ca, O, and Si
that can be attributed to the precipitation of Ca−P, quartz, and
calcite, along with other trace metals in limestone (Figure 4).
Phosphorus EDX mappings were useful to distinguish Ca−P
coatings (Figure 4A) and Ca−P particles (Figure 4B) from
limestone. Low concentrations (less than 3 wt %) of U and As
were observed on solid surfaces of limestone and Ca−P
precipitates collected at pH 11.0 (Figure 4), as well as other
samples collected with initial pH 3.0 and 7.0 (Supporting
Information, Figures S10 and S11). A similar elemental
distribution pattern was revealed by EDX maps between U
and P, indicating their potential coprecipitation on the mineral
surfaces. However, coexisting Al and K can interfere with the
EDX quantification of U and As at low concentrations.16,103

Thus, we also used EMA analyses as a complementary
approach with a higher resolution to detect lower concen-
trations of U and As.
Elemental distributions of Ca, P, Cl, As, and U in HAp were

further investigated by EMA analyses on a cross-section of a
HAp-coated limestone grain from samples with 10 mM Ca2+
and 2 mM PO4

3− at pH 11.0 (Figure 5). The HAp coating in
mappings is observed with lower Ca and Cl concentrations but
greater P compared to limestone. A consistent trend between
elemental distributions of P and U is observed in cross-
sectional mappings, which is similar to the EDX observation on
surfaces of Ca−P precipitates described in this section.
Moreover, more co-occurrence of P and U was observed in
samples of initial pH 3.0 and 7.0 with 3 mM Ca2+ and 1 mM
PO4

3− (Supporting Information, Figures S12 and S13). The
uranium mapping indicates elevated U concentrations in the
areas of the HAp coatings near the limestone−HAp interface.
This suggests that U coprecipitated with P (and/or Ca)
occurred during the initial stages of Ca−P precipitation, which
agrees with the removal of U, Ca, and P detected by ICP-OES/
MS (Figure 2). In contrast, evenly distributed As is shown in
the mapping of the cross-section, indicating a different removal
mechanism compared to U.

Mechanisms of Uranyl and Arsenate Removal with
Limestone, HAp, and Chemical Supplements. Different
mechanisms influence the removal of aqueous uranyl and
arsenate through reactions with limestone, HAp, PO4

3−, and
Ca2+, depending on the concentration and pH conditions
tested. For solutions with initial 1 mM U and As at pH 3.0, a
portion of the U and As are removed by coprecipitation
(Figure 1A). Uranyl arsenate minerals such as trögerite
[(UO2)(H2AsO4)2(H2O)] are expected under acidic con-
ditions.104,105 The presence of limestone neutralized acid
solutions with an initial pH of 3.0 to approximately 7 at the
end point and released soluble Ca2+ simultaneously. The
addition of soluble Ca2+ ions provided by the acidic dissolution
of calcite in limestone improved uranyl and arsenate removal
by forming uranospinite [Ca(UO2)2(AsO4)2·10H2O] precip-
itates that have been found to be relatively stable at acidic
conditions in a previous study.18 Water chemistry modeling

Figure 3. Diffractograms from powder X-ray diffraction (pXRD) are
compared for solids collected from different conditions: 0.05 mM of
U and As, 1 mM of PO4

3− and 3 mM of Ca2+ with 1 g L−1 of
limestone at initial pH 3.0 and 7.0; 0.05 mM of U and As, 2 mM of
PO4

3−, and 10 mM of Ca2+ with 1 g L−1 of limestone at pH 11.0. The
limestone diffractogram is measured from grinded natural samples.
Standard patterns of quartz, calcite, and hydroxyapatite are provided
at bottom for reference.
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a l s o i n d i c a t e s t h e po s s i b l e p r e c i p i t a t i o n o f
Na0.5(H3O)0.5[(UO2)(AsO4)](H2O)2.5(s) when sodium arsen-
ate was applied as reported in another study.92

Limestone has a greater influence on the removal of uranyl
and arsenate in acidic environments than under circumneutral
conditions (Figure 1A). In solutions with an initial pH of 3.0,
limestone helped improve the removal from 80 to 96% for
aqueous uranyl and from 60 to 100% for arsenate mainly
through forming Ca−U−As precipitates with lesser contribu-

tion from surface adsorption. However, limestone is not an
effective enhancer for the uranyl and arsenate removal in
solutions with initial pH of 7.0 (Figure 1B) because fewer Ca
ions are released into the solution by calcite dissolution and
bicarbonate diffused from CO2(g) may primarily complex with
U to form highly soluble U−Ca−CO3 aqueous complexes.18

When 3 mM Ca2+ and 1 mM PO4
3− are added, dominant

uranyl coprecipitates become U−P solids such as chernikovite
[H3O(UO2)(PO4)·3H2O],106 autunite [Ca(UO2)2(PO4)2·

Figure 4. Scanning electron microscopy (SEM) images show the HAp-coated calcite grain (A) and a Ca−P particle (B) collected from 0.05 mM of
U and As, 2 mM of PO4

3−, and 10 mM of Ca2+ with 1 g L−1 of limestone at pH 11.0. Backscattered electron detector (BSD) was applied with
energy dispersive X-ray (EDX) spectroscopy elemental mappings of P, Ca, As, and U, as well as spectra at selected locations.

Figure 5. Electron microprobe analyzer (EMA) elemental mappings show the elemental distributions of Ca, P, Cl, As, and U at a cross-section of a
HAp-coated calcite grain collected from 0.05 mM of U and As, 2 mM of PO4

3−, and 10 mM of Ca2+ with 1 g L−1 of limestone at pH 11.0.
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11H2O], and uramphite [(NH4)UO2PO4·3H2O] in acidic
conditions.107−109 In our study, signals from uramphite are
identified in the pXRD analysis for solid samples with an initial
pH 3.0 (Figure 3). Given the high consistency between U and
P elemental mappings in both EDX and EMA analyses
(Figures 4 and 5), the rapid coprecipitation of uranyl
phosphate is the main mechanism for uranyl removal. As a
counteranion of AsO4

3−, PO4
3− inhibits As from coprecipita-

tion with U and Ca. Based on the pXRD results (Figure 3), the
concentrations of 3 mM Ca2+ and 1 mM PO4

3− with initial pH
3.0 and 7.0 were not enough to achieve supersaturation with
respect to HAp and, therefore, resulted in the limited removal
of As (Figure 2C,D).
The addition of higher concentrations of Ca2+ (10 mM) and

PO4
3− (2 mM) reached supersaturation with respect to HAp at

pH values ranging from 7.0 to 11.0. The gradual removal of
aqueous arsenate in solutions (Figure 2F,H) was observed after
white Ca−P precipitates started to form. Compared with the
rapid removal of uranyl from solutions (Figure 2C,G), the
removal of arsenate was mainly achieved by the adsorption of
arsenate species to HAp. Moreover, the mechanism of ion
exchange between AsO4

3− anions and lattice PO4
3− in HAp has

been reported by related studies.64,110 Evidence for the
removal pathways of aqueous arsenate and uranyl can be
found with EMA analyses in elemental distributions (Figure
5). A high consistency between Ca, P, and U in the cross-
section of the HAp coating indicates possible coprecipitation.
However, arsenic is scattered in the coating indicating a
constant removal during the development of the HAp coating.
Most of the PO4

3− was precipitated with Ca2+ at pH values
rising from 7 to 9 to form HAp as well as other Ca−P
precipitation that removed between 62.7 and 98.4% aqueous
arsenate at pH 9.
Although effective removal of aqueous uranyl and arsenate

was achieved at pH 9.0 through reactions with limestone and
HAp, slight dissolution of uranyl was observed as the solution
pH increased beyond 9.0 (Figure 2C,G). Given that
redissolved U (less than 600 μg L−1) was much lower than
its total concentration of 0.05 mM uranyl (11,901 μg L−1),
carbonate can enhance the mobilization of uranyl by
complexing the surface fraction associated with HAp or
limestone, which increased lability at pH higher than 8.111

Additionally, the adsorption of arsenate to HAp can be limited
by the negative net surface charge at pH higher than 8.63 To
increase the reactivity of HAp and limestone for the
immobilization of uranyl and arsenate mixtures through
identified mechanisms, it is important to maintain a solution
pH between 8 and 9 and supersaturated Ca2+ and PO4

3−

concentrations for HAp precipitation.
Environmental Implications. This study presents a

method for removing aqueous uranyl arsenate mixtures by
reacting them with natural limestone supplemented with Ca2+
and PO4

3− to promote supersaturation with respect to HAp at
optimal pH ranging from 8.0 to 9.0. Aqueous uranyl was
predominantly removed through coprecipitation with addi-
tional Ca2+ and PO4

3− in solutions, while arsenate was
immobilized through adsorption reactions with precipitated
HAp. This approach shows promise for treating sites affected
by a mining legacy. For example, co-occurrence of uranyl and
arsenate at pH ranging from 6.8 to 8.6 has been found in sites
located in tribal land in New Mexico and Arizona.2,16,34 The
widespread occurrence of limestone in mine sites is advanta-
geous for the reactions evaluated in this study. The reaction of

uranyl and arsenate with naturally occurring materials, such as
limestone and HAp could be considered as a potential
remediation strategy. Future studies should investigate the
performance of naturally occurring minerals under flow
conditions and environmentally relevant conditions for the
development of remediation methods that can be accessible to
under-served communities.
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