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ABSTRACT In this article, we leverage in-memory computation for data-intensive applications to sur-
mount the bandwidth restrictions inherent in the Von-Neumann computing paradigm, while addressing
transistor technology scaling challenges facing Moore’s Law. We introduce the Spintronically Configura-
ble Analog Processing in-memory Environment (SCAPE) which incorporates top-down architectural
approaches along with bottom-up intrinsic device switching behaviors of spin-based post-CMOS devices.
SCAPE embeds analog arithmetic capabilities providing a selectable thresholding functionality to realize
generalized neuron activation functions that are integrated within the 2-dimensional memory array. Within
each module, circuit-switched connections allow in-field configuration of the partly reconfigurable neuron
activation function to suit the target application, and the intrinsic computation is performed using spin-
based devices. This hybrid-technology design advances in-memory computation beyond previous approaches
by integrating analog arithmetic, runtime reconfigurability, and non-volatile devices within a selectable 2-
dimensional topology. Simulation results of error rates, power consumption, power-error-product metric, are
examined for real-world applications including edge-of-network based Compressive Sensing and Machine
Learning use cases, along with process variation analysis. Results show up to 7% improvement in error rate
using proposed implementation of enhanced activation function versus baseline conventional sigmoidal activa-
tion, whereas realization of AMP signal processing algorithm shows ~95% reduction in energy consumption at
comparable accuracy.

INDEX TERMS Beyond-cmos devices, neuron activation function, non-von neumann architectures, spin-
hall effect mt;

Recent advances in technology continue significant shifts
towards data intensive applications such as image processing
utilizing machine learning techniques [1]-[3]. Simultaneously,
these are sought to operate under energy constraints imposed
by edge-of-network based embedded components. In particu-
lar, Artificial Neural Network (ANN) architectures and edge-
of-network applications make significant use of Vector-Matrix
Multiplication (VMM) operations which impose significant
memory transfer demands [4]. VMM operations are pervasive
within ANN processing, as well as Compressive Sensing tasks

targeted for emerging real-world applications at the edge of
the computing network.

Despite VMM operations becoming widely rehosted from a
general-purpose computing paradigm to GPUs, TPUs, and
FPGAs, they continue to face challenges including high
energy consumption and memory-wall obstacles. Due to the
high bandwidth demands of data transfer inherent in such
VMM-intensive applications, the Von-Neumann architectural
model of data transfer between discrete memory and process-
ing units, is being reconsidered as it suffers from large latency
and energy costs. In order to overcome the memory bottleneck,
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FIGURE 1.

devices and architectures that go beyond Von Neumann archi-
tectural principles are increasingly sought to offer processing
capability closer to where the data resides. This has given rise
to the study of memory-centric approaches to attain improved
throughput and energy efficiency, both with and without modi-
fication to the underlying storage/switching devices utilized in
the design of the Processing-in-Memory (PiM) component
itself. Most recently with the fabrication, demonstration, and
preliminary commercialization of post-CMOS devices such as
Spin Transfer Torque Magnetic Tunnel Junctions (STT-
MTIJs), and Spin Hall Effect Magnetic Tunnel Junctions
(SHE-MT]Js), such devices are investigated here towards
advancing PIM paradigm to enable emerging opportunities for
future edge-of-network computing platforms.

A. PROCESSING-IN-MEMORY ARCHITECTURAL
MILESTONES

Architectural advancements in pursuit of PiM computational
paradigms have targeted various gainful attributes for spe-
cial-purpose computing over the last five decades. Although
a comprehensive summary would be too extensive, Figure 1
delineates the progression of the noteworthy research mile-
stones that have laid the foundation for the research herein.
Specifically, application-specific PiM approaches have con-
tinued to evolve from distributed memory modules in con-
ventional array processors up through hybrid spin/CMOS-
based memory/processing cells capable of intrinsic execution
of selected computations. Starting with segmented memory
distributed physically across an ensemble of Processing Ele-
ments (PEs), Slotnick et al. fielded the Illinois Automatic
Computer (ILLIAC) by researching the concept of distributed
memory closely-coupled with localized parallel processing
operations via the association of segmented memory among
identical PEs [5]. Next, by drilling down to the bit-cell level
while focusing on the referencing capability of data when
resident inside the memory component, Foster advocated the
benefits and capabilities of a Content Addressable Parallel
Processor (CAPP) [6]. The CAPP provided an umbrella
term for hardware implementation of Boolean logic gates ele-
ments replicated within each SRAM bit cell, which tagged
contents as responders for further processing without involv-
ing off-chip processor/memory transactions. Leveraging the
concept of content addressability for PiM, DeMara devel-
oped the Semantic Network Array Processor parallel Al pro-
totype which used in-place computation initiated with SIMD

Timeline of foundational works towards hybrid spin/CMOS-based application-specific processing-in-memory.

broadcast mode [7]. The responder PEs storing the semantic
network then launched an MIMD model of spreading-activa-
tion to conduct reasoning tasks without bus transactions
using a multi-ported memory approach. Later on, when
microprocessors became ubiquitous in the computing land-
scape, including the MIPS chip he designed and helped to
commercialized, Patterson advocated the case for Intelligent
RAM (IRAM) to unify logic elements within a DRAM mem-
ory module, thereby bridging the memory-wall between the
processor and memory [8]. Next, while furthering the
IRAM-style PIM paradigm, Elliot et al. researched tightly-
coupled integrations of more complex logic networks to cap-
ture data parallelism via SIMD architectural implementations
of PiM. Elliot evaluated transistor count and area costs versus
throughput benefits of embedding PiM of various granular-
ities up through rudimentary ALUs consisting of a few hun-
dred transistors [9].

During the last decade, the aforementioned works pro-
moted considerable research interest to extend the PiM para-
digm beyond the use of transistors alone. These utilize
emerging logic devices, such as memristors and spintronic
devices as alternatives to CMOS-based memory designs. For
instance, Strukov et al. in [10] showed emerging memristive
devices could be used in a 2D-crossbar layout to conduct pat-
tern recognition tasks leveraging the intrinsic switching
behaviors of titanium-dioxide-based memristive devices
within a Computational RAM (CRAM) component. Zhang
et al. in [11] present a PiM platform called Spintronic Proc-
essing Unit (SPU), configurable at the individual cell level
for performing different logic functions using memory-like
read and write operations. Different logic functions are com-
puted by altering the final state of the memory cell based on
different input operands. The final state of an STT-MRAM
bit-cell is given by B;;; = AC+ A’B;; where, A and C are
the inputs to the WL and BL, respectively, and B; and B;,
are the initial data and final result stored in the MTJ device,
respectively. Different Boolean functions are achieved by
altering the input variables A, C, and B;. This work also
shows how the ISA can be modified with additional instruc-
tional support such as MOV and LOG, for moving data to
the target bit-cell and carrying out the logic operation based
on value of input operands, respectively. Although intrinsic
switching functionalities of memristors in this context were
shown to offer a viable new approach to PiM, the limited
endurance of their write cycles and substantial drift of ON/
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OFF resistances presented new challenges. Thus, Pourmei-
dani et al [12] advanced a crossbar of non-volatile tunable
stochastic elements based on MTJs by developing Probabi-
listic Interpolation Recoder (PIR) for Deep Belief Networks
(DBNs). The MTJ devices were used to realize near-zero
energy barrier switching supporting an unlimited endurance
approach to PiM, whereas PIR provided a stochastic based
energy and area efficient alternative to conventional interpo-
lation technique of using resistor-capacitance (RC) tanks and
analog-to-digital (ADC) convertors. The use of MTJ-based
Non-Volatile Memories (NVMs) like commercialized Mag-
netic Random-Access Memories (MRAMSs) allows feasibil-
ity for performing arithmetic and logic operations inside
memory word lines. This memory word line approach to
PiM led to energy-efficient hardware implementation of a
Restricted Boltzmann Machine (RBM) based Deep Belief
Network (DBN) using a conventional sigmoidal activation
function. Furthermore, it was found that MTJs can be
employed to realize area-efficient and wire-count efficient
realization of neurons and synapses, elevating them an
emerging device technology useful for accelerating neural
networks [13], [14]. Their properties of near-zero standby
power, compatibility with CMOS Back End of Line (BEOL)
fabrication process offering high integration density enables
the implementation of efficient hybrid MRAM/CMOS cir-
cuits to combine the benefits of both technologies.

Taking inspiration from various technical attributes of
these milestones in PIM approaches spanning the last five
decades, herein we consider new roles and approaches to
PiM for CS and ML applications. Specifically, we further the
efforts in Edge-of-Network PiM with hardware implementa-
tion of a Generalized Activation Function in a Spintronically
Configurable Analog Processing-in-Memory Environment
(SCAPE) architecture for selected applications.

B. SENSING AND REASONING OPERATIONS
AMENABLE TO PROCESSING-IN-MEMORY

Advancing beyond the foundational works on PiM, the last
several years have witnessed interest in pursuing beyond
Von Neumann approaches for efficient processing of data in
edge-of-network applications such as compressive sensing
and automated reasoning. Research has spanned multiple
layers of the system stack, ranging from execution model
and architectural topology down to algorithmic formulation,
as well as the data representation and fundamental signal
encoding methods. At the signal encoding stage, emerging
spintronic devices enable new tradeoffs beyond the use of
digital computation exclusively. In addition to providing
computation ability to storage bit-cells in the memory, spin-
tronic devices, due to their vertical-integration capability on
MOS transistors, also offer potential area benefits at the cost
of incurring additional fabrication complexity. A single bit-
cell size comparison of different memory technologies found
in [15] shows that STT-MRAM technology has lower cell
size than SRAM, but may be comparable to cell size of
DRAM technologies. On the other hand, benefits of analog-

based computations include reduced wire counts and device
counts when compared to digital implementation of non-lin-
ear operations such as multiplication and exponentiation,
spanning computer vision, signal processing, and machine
learning applications. For instance, a traditional digital
implementation of multiplication and exponentiation func-
tions can incur significant area and delay overheads in the
digital domain, requiring 12 or more clock cycles to execute
and hundreds of Boolean logic gates [13]. Analog computa-
tion can be especially compatible in edge-of-network appli-
cation domain owing to the tolerance for approximate
computation. Analog circuits trade off computational accu-
racy for reduction in overheads such as power and area; this
is an attractive tradeoff for error-tolerant applications where
power and area are constrained, e.g., Internet of Things (IoT)
devices. The benefits offered by analog computation are
amplified when used with vector-valued data, since the out-
put data can be transferred to a memristive crossbar array for
further processing without the need for digital-to-analog con-
version. Multiplication and exponentiation operations are
critical for a variety of applications, including computer
vision, signal processing, and machine learning. Such appli-
cations rely extensively upon VMM, wherein its fundamental
operation of multiplication requires execution that is efficient
and co-located near the data being operated upon. Square
and square root, for example, are commonly used for normal-
izing vectors in signal processing applications, and square
root may serve as an activation function for neural networks
[13]. One example of a representative use case entailing
VMM is Compressive Sensing (CS) involving compression
and transmission of a spectrally-sparse signal, and then
reconstruction of the signal at the receiving end. Machine
learning via neural networks is another example. Herein we
propose a device to architecture level compound PiM imple-
mentation based on hybrid spin/CMOS, analog as well as
digital computational blocks, re-distributed within the mem-
ory fabric, inter-communicating via simple control logic
modifications to the peripheral circuitry. The major contribu-
tions of the paper include:

1) a novel crossbar topology for PiM which provides
in-field configurability of Hybrid Spin/CMOS-based
Analog/Digital Blocks. Various synapse and neuron
designs are evaluated including use of SHE-MTJs for
memristive-based computation and activation function
calculation.

2) a generalized activation function is developed to miti-
gate the gradient decay problem while increasing recog-
nition rate. Analog computation of the generalized
activation function demonstrates acceptable accuracy,
reduced area, and decreased energy consumption, as
evaluated on MNIST dataset.

3) the concept of Power Error Product is introduced as a
transportable performance metric and is evaluated for
various activation functions.

4) quantification of Process Variation (PV) effects when
using SHE-MTJ devices. Approach and results for PV
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FIGURE 2. (a) SHE-MTJ, (b) anti-parallel (AP) and (c) parallel
(P) configurations.

versus neuron activation function deviation are pro-
vided using Monte-Carlo method. Standard deviations
of 5% for MTJ Parameters such as length, width, thick-
ness are considered.

The manuscript is organized as follows: Section II provides a
background on key concepts of spintronics, emerging devices
used for memristive PiM and introduces the proposed SCAPE
approach. Section III presents hybrid spin/CMOS based syn-
apse design used in deep learning networks, Section IV
describes the proposed SCAPE topology with spin-based ana-
log/digital GAAF module. The application of the proposed
SCAPE components in compressive sensing techniques is
demonstrated in Section V. In Section VI, we focus on qualita-
tive and quantitative results with comparison of our approach
with similar works in literature in machine learning and com-
pressive sensing applications, along with the effects of process
variation on the output accuracy of the GAAF module. Finally,
Section VII concludes this paper with a discussion of future
challenges.

Il. EMERGING DEVICES FOR CROSSBAR-BASED PIM

A. SPINTRONIC MAGNETIC TUNNEL JUNCTIONS
Integrating memory devices into a PiM array should address var-
ious important metrics of both storage and computation. In this
manuscript, we focus on the use of spintronic devices for PiM,
as opposed to other alternatives such as titanium dioxide based
memristors, due to their virtually unlimited write endurance
documented as 10'® write cycles. Magnetic Tunnel Junctions
(MTlJs) are a class of spin-based emerging logic device which
have been recently researched due to numerous advantages,
including non-volatility, near-zero standby power dissipation,
high endurance [16] and vertical integration capabilities result-
ing in high density [17], thereby maximizing area efficiency and
simultaneously minimizing data transfer overheads [18]. As the
building block of MRAMs, MTJs have been proposed as a non-
volatile alternative to SRAM in cache memory. Further applica-
tions benefiting from a hybrid CMOS/MRAM approach include
full adders and analog-to-digital converters. An emerging
research thrust is to consider the use of various MTJs in both
storage and computation roles with a PiM array [19].

An MTJ consists of two ferromagnetic layers called pinned
layer and free layer separated by a thin oxide layer, such as
MgO. There are two stable states for the magnetization orien-
tations of the two ferromagnetic layers, parallel (P) and

antiparallel (AP). Thus, the MTJ can exhibit two different
resistance states due to the Tunneling MagnetoResistance
(TMR) effect quantified by the resistivity of the low resistance
state (Rp) and a high resistance state (Rap). Specifically,
the device resistance is given by Rp = Ryyy and Rup =
Ruzy (1 + TMR) whereby

t()X
R = 1.02 1
MI] FactorXArea,/¢ exp(1.0 Stox\/@ @
TMR,
TMR = —— " 2)
1+ (32)
Vi
1
Ep = 2 HyMs(n(d/2)’1y) 3)

in which t,, is the oxide layer thickness, Factor a material-
dependent parameter which depends on the resistance-area
product of the device, Area the surface area of the device, ¢
the oxide layer energy barrier height, V,, bias voltage, and V,
the bias voltage at which TMR drops to half of its initial
value. MTJs have been fabricated at varying resistance levels
ranging from the kilo-Ohm to mega-Ohm range [20]. Ej, is
the energy barrier of the MTJ, required to switch from P
(AP) to AP (P) states, Hk is the magnetic anisotropy field,
M saturation magnetization, where d and ¢#; are the diameter
and thickness of the MTJ’s free layer which may be tuned
based on fabrication dimensions.

Within this paper we focus on spintronic devices using
SHE-MT]J shown in Figure 2a. SHE-MT] is a three-terminal
device, with isolated write and read paths with lower switch-
ing energy compared with Spin Torque Transfer Magnetic
Tunnel Junctions (STT-MTJs). It consists of heavy metal
(HM) nanowire beneath an MTJ with two ferromagnetic
layers, called the pinned and free layers, separated by a thin
oxide barrier. In order to write into the MTJ, the spin Hall
effect is leveraged where an unpolarized current through the
heavy metal layer along +/- x axis results in a change in mag-
netization along +/-y axis and generation of spin-polarized
current along +/- z axis direction perpendicular to that of the
unpolarized current. The spin current so produced transfers
its angular momentum to the free layer resulting in switching
behavior as shown in Figure 2b.

B. SPINTRONICALLY CONFIGURABLE ADAPTIVE
IN-MEMORY PROCESSING ENVIRONMENT (SCAPE)
ARCHITECTURE

Recently SHE-MTJs have been explored as means to realize

in-memory computing architectures. Herein, we develop the

Spintronically Configurable Adaptive in-memory Processing

Environment (SCAPE) architecture which incorporates top-

down architectural approaches along with bottom-up intrin-

sic device switching behaviors of SHE-MTJs. Key technical
objectives of SCAPE are to provide explicit hardware sup-
port collocated with large amounts of data that the edge of
network devices must encounter, to process and send only
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FIGURE 3. Proposed spintronically configurable adaptive in-memory processing environment (SCAPE) architecture.

higher-level information up the network to the cloud. Such
applications have high data requirements, whereas they are
typically streaming data as well as large templates of matri-
ces, which can stress the memory bottleneck. Therefore, PiM
is desirable. Both applications also manipulate data elements
via dot product and rely on a large number of VMM opera-
tions at various precisions. In the context of machine learning
domain, both the synapse and neuron have mathematical
operations to perform. The synapse conducts a multiplication
operation, while the neuron must perform activation based
on thresholding using some type of activation function such
as a sigmoid limiter. As mentioned in the previous section, a
memristive crossbar conducts the synapse operation as an
analog multiplication using current based representation of
the values to be multiplied. For these operations, beyond-
CMOS devices can add capability to calculate them as intrin-
sic behaviors of the switching device itself without having
complex and area-consuming floating-point hardware units
distributed throughout the memory.

An innovation in this paper has been to provide a PiM ele-
ment that can perform generalized analog multiplication and a
Generalizable Analog Activation Function (GAAF). Figure 3
shows the high-level topology of the proposed SCAPE archi-
tecture. The memory component is laid out as a 2D crossbar
array implementation to realize memristance at crossbar
nodes. The SCAPE topology can embed an ANN within the
memory as visible layers at the input/output interface of the
memory component, and internal cascaded hidden layers,
connected as per the machine learning network specification.
Each of these layers can be abstracted into three distinct
phases/stages: (1) a Vector Matrix Multiplication Stage
(VMMS) depicting the synaptic connections between the mul-
tiple nodes in each layer and computing the weighted dot-
product of the input signals via the crossbar implementation,
(2) an Analog Activation Stage (AAS) consisting of proposed
GAAF blocks, composed of hybrid spin-analog components
realizing various activations of the neuron in response to

inputs, and (3) an Analog to Digital Conversion Stage, con-
sisting of a spin-based Probabilistic Interpolation Recoder
(PIR) [12] which converts the analog outputs of the AAS stage
to digital at a low energy and area footprint.

For illustration, we show the process flow for an edge-
of-the-network system, where an image from a benchmark
dataset such as MNIST may be acquired from an input
image acquisition block, and then via the on-board sensing
and signal reconstruction stored into the input buffer of
the memory unit. In the case of compressive sensing dot-
product also needs to be performed which can be con-
ducted intrinsically by the SHE-MT]J, as elaborated in Sec-
tion V. The training weights of the dataset are stored on
the on-chip block RAM for efficient and quick access. The
input buffer data and weights are then fed into the crossbar
implementation of the ANN to produce dot products via
analog computation. The weighted sums of inputs then
propagate through the hidden layers of the neural network,
and the corresponding activation layers comprised of the
proposed GAAF blocks. A GAAF block consists of an
analog hybrid-spin based three stage op-amp, with runtime
configurable resistance providing the user with an in-field
selectable range of more expressive activation functions,
which can be configured at runtime to achieve high accu-
racy as per the data set to be inferred, as elaborated in Sec-
tion IV D. Finally, the outputs of the last visible layer are
fed to the PIR [12] to achieve the digital outputs to be
interfaced with other embedded digital system for further
processing. Within this paper we describe the design and
tradeoffs using various approaches to embed these proc-
essing steps within the memory element. We also evaluate
its performance for real world applications of handwritten
digit recognition for the MNIST dataset.

lll. HYBRID SPIN-CMOS SYNAPSE DESIGN
One way to realize machine learning at the edge of the net-
work is to apply a Short Term Memory-Long Term memory
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(STM-LTM) approach. A crossbar-based synapse intercon-
nect can be efficient, as delimited in [21]. There are a variety
of hybrid arrangements of device technologies that can
exploit alternative mechanisms, such as capacitive synapses
used in place of resistive coupling, which feature an ultra-
small static power dissipation [22]. In [23], a capacitive neu-
ral network has been proposed that utilizes a charge-based
capacitor crossbar to perform VMM operation. Such designs
realize the weighted summation of inputs through capacitive
coupling and voltage division to generate the output in a
read-like operation performed by memory devices.

A. BIOLOGICALLY-INSPIRED STM-LTM ARCHITECTURE
A biologically-inspired binary STM-LTM memory architec-
ture, as shown in Figure 4, consists of a 2-D array of memory
components leveraging a pair of volatile memory (VM) and
NVM as the memory bit cell to realize STM and LTM, respec-
tively. The VM utilizes a capacitor, controlled by an access
transistor, in a fashion analogous to a DRAM structure. The
NVM is designed with a SHE-MTJ. Each memory bit cell is
connected to a bit-line (BL), word line (WL), and source line
(SL) managed by the control unit’s voltage driver, commensu-
rate with conventional memory array designs. The BL and
WL are shared amongst the cells within the same row, and the
SL is shared between cells within the same column, as shown
in Figure 4, to allow the architecture to operate in three distinct
modes of computing, LTM-to-STM data transfer, and STM-
to-LTM data transfer [21].

B. MEMORY UNIT DESIGN

1) CAPACITOR AS STM

Recently, several works have explored the potentials of such
capacitor-based memories in neural network applications
[22], [23]. Training neural networks to high degrees of accu-
racy requires consecutive, small changes in weights, for which
NVMs are not ideal due to limited speed and endurance. Thus,
DRAM offers a suitable mechanism for online (in situ) train-
ing due to its relatively high speed and symmetrical read/write
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FIGURE 5. (a) Structure of an SHE-MTJ as NVM. (b) Resistive
equivalent read circuit of SHE-MTJ. (c) VM structure program-
ming path [21].

with infinite endurance, which is a critical aspect for networks
that necessitate constant training in an extended period, such
as the IoT edge devices [24]. In digital capacitor-based accel-
erators [25], every memory BL can perform bitwise digital
Boolean logic operations, where each capacitor stores a binary
synaptic weight, and so, a low-bit-width and parallel computa-
tion has been realized, without requirement of ADC/DAC
peripherals as in Re-RAM based accelerators [43].

In [21], Shiekhfaal et al. aim to implement a capacitive
crossbar enhanced with an NVM in a new fashion based on
the STM-LTM features inspired by biology. Each memory
bit-cell’s capacitor represents a binary synaptic weight (“1”
or “0”) stored as the “charged” or “discharged” capacitor
states. The STM’s access transistor [T1 in Figure 5c] is con-
trolled by WL enabling selective write/read operation on the
cells located within one row. Storing the network weights in
the STM (through a write operation) and strengthening the
memory (through STM-to-LTM transfer) are two crucial
tasks that need to be carried out. For both operations, the
capacitor is initially in the pre-charged state (P.S.), i.e., the
BL voltage is preset to (VDD/2) by the voltage driver. To
save weight on a capacitor the memory decoder first activates
the corresponding WL, and the BL is set to high (VDD) or
low voltage (GND). This will provide enough bias voltage to
change the capacitor data in a DRAM fashion. The synaptic
weight representing STM will be then used to perform the
computation or STM-to-LTM transfer.

2) SHE-MTJASLTM

The NVM element in the STM-LTM memory architecture is
a spintronic device named SHE-MT]J that uses a stable nano-
magnet (Ep >> 40kT), with two CMOS inverters to amplify
the output, as shown in Figure 5a. In order to store the data
in the SHE-MT]J, the free-layer magnetization is manipulated
by injecting a charge current (I.) to HM in the +x(/-x)-direc-
tion, as shown in Figure 5a. Figure 5b shows an equivalent
read circuit of an SHE-MT]J. To read out data from the SHE-
MT]J, a read voltage is applied to sense the resistance of the
device through realizing a resistive voltage divider. We have
considered three access transistors to control the SHE-MT]J
with respect to our volatile element, as shown in Figure 4.
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FIGURE 6. Realization of the capacitive network [24] within the
proposed LTM-STM memory architecture [21].

The T3 and T4 transistors are devised to activate the read path,
and T2 is devised to control NVM and VM data transfer.

C. COMPUTING MODE OPERATION VIA NVM
CROSSBAR

In this mode, by activating multiple WLs simultaneously (T1
is ON in Figure 4) and applying input voltages on BLs, VMs
can modulate the input and realize the weighted summation of
inputs using a capacitive voltage divider circuit and send it to
the output neuron via SL, while NVM is deactivated (T2-T4
are OFF in Figure 4). The realization of an n x m capacitive
network inspired by [23] and [24] is shown in Figure 6. The
memory decoder outputs are enhanced by the inverter chain
(blue shaded area) to activate multiple WLs simultaneously.
The controller governs the timing of the signal going through
the crossbar by controlling the memory address and assigning
suitable input voltages through the voltage driver. The input
signals are encoded as voltage pulse and simultaneously
charge the array in each capacitive node. In order to perform
VMM operation, by applying the V;, as an input signal to each
row, the charges in capacitors will be redistributed and aver-
aged by a reference capacitance, and finally, the output volt-
age can be written as Vo, = (307" CijVini/Crer))through
voltage division between the cells located in the same column
[26]. Table 1 compares the STM-LTM platform in [21] with
existing designs in terms of technology, applicability, and
potentials of a single synapse unit. The MTJ-based and mem-
ristor-based synaptic designs presented in [27], [29] imitates
long-term potentiation based on the magnitude, frequency,
and duration of input stimulus, with the STM state acting as a
transition to LTM state, without any other practical function-
ality. Also, no circuit implementation to support the utilization
of STM during computation was presented. [28] presents a
fully functional binary synapse utilizing two SHE-MT]Js oper-
ated by relatively distinct read voltages to enhance synaptic
learning efficiency. To the best of our knowledge, [28] is the

TABLE 1. Performance analysis of STM-LTM architectures [21].

[27] [28] [29] [21]
Synapse STT-MTJ SHE-MTJ Memristor SHE-MTJ
Memory Implementation No Yes No Yes
Separate LTM/STM No Yes No Yes
STM computation No Yes No Yes
Refresh Needed No No No Yes
Synapse programming 110 pJ 23.7pJ 92.4pJ 65 pJ
Delay 30 ns N/A 80 ns 30ns

only SHE-MTJ based design that offers a practical STM
achieving the least synapse programming energy consump-
tion (23.7 pJ) among all designs. The design proposed in [21]
enhances the synapse programming energy consumption by
29.6% and 41% compared with memristor and MTJ designs.
It should be noted that the STM state in [21] still incurs the
capacitive network refresh power. From the STM-to-LTM
transition delay standpoint, the design in [21] requires 30 ns,
while memristor and MTJ designs require 80 and 30 ns,
respectively, on constant stimulation.

IV. HYBRID SPIN-ANALOG NEURON DESIGN

A. PREVIOUS NEURON DESIGNS

CMOS-based neuron implementations in prior works on Re-
RAM crossbar based PiM have shown to require large built-
in truth tables with extra clock cycles leading to higher area
and energy [30], [31]. Recently efficient hardware implemen-
tations of brain inspired neurons utilizing emerging NVM
devices is being widely explored, to implement VMM opera-
tions via the intrinsic weighted summation capability of
crossbar designs based on PiM architecture. The SHE-MT]J
device shown in Figure 5a is considered to be low-barrier
under the condition energy barrier Ep << 40kT, in which
case thermal fluctuations at room temperature are sufficient
to change the state of the device.

B. BINARY AND NON-BINARY NEURONS

The Long Short Term Memory (LSTM) networks requires
sigmoid and tanh-based neurons for multiple gating pur-
poses. Figure 5a shows circuit implementation of a sigmoidal
behavior achieved by connecting an inverter to VDD and
GND, provided the SHE-MTJ used in the circuit has Ep <<
40kT. The time-averaged output of the device can provide
both sigmoid and tanh function behaviors via slightly differ-
ent circuit designs [14]. These output voltages are stored and
mapped to a low- overhead Look-Up Table (LUT) which
contains the voltage values. The hardware implementation of
p-bit based stochastic neuron has been improved as delin-
eated in [14] by adding two components, as shown in
Figure 7b, along with a NN implementation shown in
Figure 7a. To latch the output, a 4-bit buffer is inserted first
corresponding to the four times of applying the crossbar out-
put. Second, the neuron output is formed using a LUT. As
shown in Figure 7, two complementary signals for wr and rd
are considered. The wr signal goes high for each sample and
based on the crossbar output current the p-bit device is
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FIGURE 7. The proposed spin-based LSTM network with non-
binary neurons [14].

programmed. To read out the device resistance and produce
the output bit, the wr signal goes low and the rd signal goes
high. The 4-bit buffered data is then given to the converter
LUT which is prestored with the sampled floating-point acti-
vation values corresponding to output combinations in the
buffer. For example, if the buffer content is 001, the LUT
selects -0.4 as the output. This value can be triggered by any
of 0001/0010/0100/1000 output bitstreams. Such non-binary
neuron design is applicable in a variety of ANN applications
needing non-linear and deterministic tanh and sigmoid acti-
vation functions.

C. CONFIGURABLE ANALOG MULTIPLIER FOR
GENERALIZABLE ACTIVATION FUNCTION

The reconfigurable analog multiplier in [13] is based on the
op-amp design presented in Figure 8a. The op-amp con-
sists of two cascaded stages: an input stage consisting of a
differential amplifier, followed by a gain stage. A simple
op-amp design consisting of only 10 CMOS transistors as
show in Figure 8b is chosen to optimize for power con-
sumption as well as area and simulated using models from
the PTM 14nm LSTP library, at VDD = 0.8V. The trans-
linear principle is applied to attain exponentiation of the
input signal [32]. As shown in Figure 8b, we introduce a
three-stage design whose output is a power function of the
input. The design accepts a single input for performing
exponentiation operations; the design can also be reconfig-
ured to accept two inputs for performing analog multiplica-
tion. The first stage, outlined in red in Figure 8b, is a
logarithmic amplifier:

FIGURE 8. (a) Three stage Analog Multiplier, (b) Op-amp imple-
mentation comprised of 10 MOSFETSs [13].

Vi= —AoLVo “4)

V() — V,'n VO - Vin
% Tm_yg — 7 -1 5
R, s1 {GXP( Vs ) } )

where Ao, is open loop gain and [ is the saturation current
of diode D;. Eq. (4) is from general op-amp theory and Eq.
(5) follows from KCL. Thus, solving Egs. (4) and (5) simul-
taneously yields:

v
1 Vin +A_]
Vill+— )= —Viln| —2% 41 6)
! < AOL) ! ( Rils

In the limit of infinite open loop gain and sufficiently high
input voltage, Eq. (6) is approximated as:

Vi v, 1n< Vin ) %

RiIg

The second stage is an analog adder, whereby a similar
analysis yields V, = 2%’?3 Finally, the third stage is an anti-
log amplifier with output approximately given by:

Vs

Vour = —Ruls2e"r ®)

where [ represents the saturation current of diode D,. Over-
all, the output of this circuit is given by:

Vs Rulsy p
Vour = —€'r a Vin (9)
' (Rils1) (Vin)
where a = 2Rj3/R,,realizing any positive power function of

the input as shown in Figure 8b. In addition, a dual-input
stage consisting of two logarithmic amplifiers can be inserted
to attain an analog multiplier. Finally, an inverting amplifier
can also be inserted between the second and third stages to
realize inverse power functions [13].

D. PROPOSED SELECTIVELY-RECONFIGURABLE
ACTIVATION FUNCTION NEURON FUNCTIONALITY
AND DESIGN

As mentioned, the sigmoid and tanh activation functions are

the most commonly employed activation functions for infer-

encing tasks on neural networks. Herein, we go beyond
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FIGURE 9. Proposed Generalizable Analog Activation Function
based on customizable Hybrid Spin-CMOS devices.

previous work by realizing hardware for more expressive acti-
vation functions which can be runtime configured within the
memory to achieve different variations in activation functions
as per the target dataset/application. The hardware implementa-
tion of the proposed GAAF is demonstrated in Figure 9, based
on the op-amp design presented in Figure 8. As delimited in
[13], it can be seen that various exponential functions may
result from this analog multiplier by varying a = 2R3/R;.
Hence by varying resistances either R,, or R3 or both, more
expressive activation functions can be generated. SHE-MT]Js
offer runtime configurable variable resistances based on paral-
lel (P) and anti-parallel (AP) magnetization states (R, Rap)
determined by intrinsic device parameters. Herein we have
only replaced R in the feedback path of the op-amp with the
hardware implementation depicted in Figure 9 and providing a
control mechanism to demonstrate the various activation func-
tions generated. Error rates, performance metrics and effects of
process variation of GAAF are evaluated on network sizes
784200710 and 784*500" 10 for MNIST dataset in Section V1.
The input V;, to the GAAF is a sigmoid function output of the
device shown in Figure 7b.

E. APPLICATION MAPPING AND EXECUTION MODEL

Herein we have implemented a series connection of two SHE-
MTIJs in the feedback path of the op-amp to analyze the feasi-
bility of our design approach and the different activations
achievable. Identical SHE-MTJs having design parameters
listed in Table 2 are employed. The P and AP resistance values
as obtained via SPICE simulations show the Rp and R 5p resis-
tances of 2.8 K and 5.6 K() respectively. Table 3 lists the

TABLE 2. SHE-MTJ simulation parameters.

Symbol Parameter Value

Rp Parallel MTJ Resistance 2.8 KQ

Rap Anti-Parallel MTJ Resistance 5.6 KQ
TMR Tunnel Magnetic Ratio 100%

o Damping Coefficient 0.007

T Temperature 300K

P Polarization 0.52
Vin_pmos Threshold Voltage (PMOS) 460mV
Womos Width (PMOS) 44nm
Vih_nmos Threshold Voltage (NMOS) 500mV
Wamos Width (NMOS) 22nm

MT]J Area MT]J Length x MTJ Width x w/4 60nm x30nmx /4
HM Volume LxWxT 100 nmx 60 nmx3 nm

KQ = kilo-ohm, K = Kelvin, mV = milli-volt, nm = nanometer.

control signals required for configuration of the two SHE-
MT]Is during write phase, i.e., MTJ1 and MTJ2 in Figure 9 in
P-OFF, AP-OFF, P-P, P-AP, AP-AP states respectively,
where P is the parallel, AP anti-parallel, and OFF is the turned
off state of MTJs, Vpp = 0.8 V. Since, in this phase the MTJs
are being written their resistances, hence all the read signals
are set to low (GND). Table 4 lists the corresponding resultant
resistance values and activation functions generated from the
GAAF unit upon reading the MTJs with a read voltage of
0.8V, and all the write and reset signals are set to low in this
phase. Initially, MTJ1 is configured in parallel magnetization
state and MTJ2 cutoff from the circuit by Rol signal set to
VDD via the pass transistor. In this case, the equivalent MTJ
resistance evaluates to 2.8 K() and the output of GAAF evalu-
ates the sigmoidal square root activation function. To switch
the device to AP state, Wrtl is set to VDD = 0.8 V, and read
signal Rd], reset signal Rs/ are kept low, such that write cur-
rent passes along the heavy metal layer and the free layer mag-
netization switches to AP state. In this stage, with MTJ1 in AP
state and MTJ2 OFF, the resultant equivalent MTJ series
resistance evaluates to 5.8 K(), and inverted sigmoidal activa-
tion is evaluated by the GAAF. In a similar fashion, sigmoidal
power of 3/2 activation function can also be produced by the
GAAF unit, by suitably setting the control signals to their cor-
responding values in Table 3. A control unit takes care of the
timing and setting of different control signals to appropriate
voltages. Figure 10 shows the corresponding timing diagram
of the various control signals and corresponding switching
behavior of the two SHE-MT]Js, evaluated on SPICE.

For software applications to utilize the SCAPE architec-
ture, the execution mechanism needs additional software sup-
port. This is done congruent with the concept of Gather/
Scatter techniques as illustrated in [33]. Although the prem-
ise of [33] and our work is distinct, the concept is expanded
to support our architecture in the scenario of activation and
access/write to multiple target cells located in a crossbar
memory layout. This requires additional circuitry including
modification to the control logic and memory decoder struc-
ture. Communication between the CPU and SCAPE is estab-
lished via a 64-bit data bus and an address bus serving each
crossbar layer. Our approach to utilize SCAPE capabilities is
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TABLE 3. GAAF configuration phase control logic.

Switching transitions Control Signals

MIJ1:ON MTJ2: OFF

MIJ1: ONMIJ2 ON

MTJ1 MTJ2  Rdl Rd2 Rol Wrtl Rstl W2  Rs2
P AP OFF 0 0 0 Voo 0 0 0
AP - P OFF 0 0 0 0 Voo 0 0
P>AP PoAP 0 0 0 Vo 0 Vob 0
AP—P PoAP 0 0 0 0 Voo Vob 0
P>AP AP—P 0 0 0 Voo 0 0 Vob
AP—P AP—P 0 0 0 0 Voo 0 Voo

via particular additions to the ISA including a SET operation
for writing data to the array, SCATTER for activating word
lines, and GATHER for reading output data. Besides the
dynamic activation of multiple word lines for synaptic
weight calculation as exhibited in Figure 4 of our manuscript,
SCAPE provides infield configurability of Hybrid Spin/
CMOS-based Analog/Digital Blocks to enable hardware for
more expressive neural network activation functions. Thus,
the GAAF units can be runtime configured within the mem-
ory array to achieve various activation functions as per the
target dataset/application. A generalized activation function
is developed in the manuscript, which is shown to achieve
better recognition rate for MNIST dataset. The activation of
target GAAF neurons is achievable by introducing two new
instructions into the ISA, i.e., ACTIVATE and EVALUATE.
The following is an overview of the ISA modifications
required for functionality of SCAPE:

1: SET (REGID, addr) which is used to write the data
from CPU register specified by REGID to a specific SCAPE
memory cell specified by addr. In this context, addr can
be broken down to {layerID, rowID, columnID} to
identify a specific crossbar memory cell. SET is used to load
matrix data, and input data, into SCAPE; a columnID of 0
is used to denote input vector data.

2: SCATTER (REGID, layerID, WL1, WL2) which is
used to set all of the word lines between WL1 and WL2 in a spec-
ified layer of SCAPE, using the configuration data initially
stored in REGID. This is achieved at the hardware level through
a latch/reset mechanism similar to that described in [34].

3: GATHER (REGID, layerID, BL1, BL2) which is

7

FIGURE 10. Control signal mapping for GAAF configuration and
evaluation stages.

4: ACTIVATE (layerID, configID) that configures the
GAAF units by setting internal MTJ values to their required ‘P’
or ‘AP’ or ‘OFF’ (disconnected from circuit) orientations based
on the desired neuron activation functions. The parameter
layerID identifies the particular GAAF enhanced neuron
layer in the SCAPE to be activated. The configID in SCAPE
is a 3-bit identifier corresponding to each of the six unique com-
binations of MTJ1 and MTJ2 resistance states in the GAAF
neuron, as listed in Table 4, which achieves a specific activation
function, by generating the corresponding control signals
through the control logic circuitry. For instance, in order to gen-
erate an inverted sigmoidal activation function, MTJ1 and
MT]J?2 are configured be in ‘AP’ and ‘OFF states in the circuit,
respectively. As such, a configID of ‘000’ generates the
required control signal values as listed in row one of Table 3, to
set the MTJs to their required states.

5: EVALUATE (layerID, funcID) that generates the
desired neuron activation function at the GAAF output. The
funcID denotes the type of activation function that we
want the GAAF neuron to output. The funcID is encoded
as a 2-bit identifier generating the control signals correspond-
ing to evaluating one of the four unique functions: inverted

used to load output data from a range of bit lines in a specific sigmoid, (sigmoid)?, (sigmoid)*?, and (sigmoid)"* at the
layer of SCAPE into the CPU register labeled REGID. GAAF output, as listed in Table 4.
TABLE 4. GAAF evaluation/read phase operation and control logic.

; Control Signals
Resistance State Total Series Resistance i Activation function
MTIJ1 MTI2 Rdl Rd2 Rol Wrtl Rstl Wre2 Rst2
P OFF Rpl =2.8K() VDD 0 VDD 0 0 0 0 Slg Sq root \/Vin
AP OFF RAP] = 56KQ VDD 0 VDD 0 0 0 0 InV.Sig. - Vin
P P Rp]+ Rp2 = 5.6KQ VDD VDD 0 0 0 0 0 InV.Sig. - Vin N
AP P Rap1+ Rp, = 8.4KQ Voo Vop 0 0 0 0 0 Sig. Pow(3/2) Vyy %
P AP Rpi+ Rapr = 8.4KQ Voo Vop 0 0 0 0 0 Sig. Pow(3/2) V,,,
AP AP RAP1+ RAp2 = 11.2kQ) VDD VDD 0 0 0 0 0 Slg Sq sz
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Algorithm 1. Approximate Message Passing

Inputs: Measurement matrix ®, Measurement vector y, # of
measurements m
Output: Approximate signal vector, X
Procedure: 1) Initialize residual ry = y, Signal approximation
X0 = 0, counteri = 1

whilei < kdo

2) 0= [[ri1]l/v/m

Ha=%+dr

4) %; = sign(a)max(|a| — 6, 0)

5) b; = ||X]|0/m
6) 1, =y — OX; + biri_y
end while

V. INTRINSIC VMM ON SCAPE: CS APPLICATIONS
Compressive Sensing (CS) allows for reduction in transmis-
sion and storage overheads of spectrally-sparse and wideband
data by sampling at the information rate rather than the
Nyquist rate [13]. As such, by limiting the number of samples
taken per frame, CS provides a solution to unprecedented
challenges associated with 5G communication, including
complexity and power consumption associated with increased
bandwidths. Implementing CS sampling and reconstruction in
hardware presents unique challenges. Sampling requires the
use of a random number generator, which is traditionally
implemented using a Linear Feedback Shift Register (LFSR)
that can present significant power and area overheads. Qian
et al. [35] introduced memristive crossbar arrays for VMM
operations during CS sampling, observing that signal recon-
struction using #1-minimization yields similar Signal to Noise
Ratios (SNRs) to that of using a Gaussian matrix. CS entails
sampling a signal of length n using m measurements, with
m << n. Sampling is achieved through the linear transforma-
tiony = Ax, where x € R" is the signal vector , y € R™ is
the measurement vector, and A € R™*" is the measurement
matrix. Reconstruction of the original signal can be accom-
plished at the receiving end by solving the basis pursuit
problem:

X = argmin|jx||, s.t.y = A% 13)

where ||x||, represents the ¢; norm of x. It can be shown that
the signal vector can be reconstructed if the signal is suffi-
ciently sparse, and A satisfies the Restricted Isometry Prop-
erty, i.e., if for any k-sparse vector x,

lell3(1 = 8) < [[@x]3 < [laf3(1+8), 0 < 8 < 1
(14)

A variety of algorithms have been developed as alternatives to
basis pursuit for the purpose of CS reconstruction. For instance,
Approximate Message Passing (AMP) serves as a soft threshold-
ing algorithm optimized for fast convergence [36]. The design is
shown as Algorithm 1. In Line 1, the AMP algorithm initializes
the residual vector, r, to the measurement vector y, as well as ini-
tializing the estimate of the signal vector X to zero. Line 2

sign(Vin) sign1(Vin) sign2(Vin)

FIGURE 11. An analog design for thresholding operations.

computes the threshold, @, as the root mean square error of the
residual. Next, Lines 3 — 4 follow the Iterative Soft Thresholding
technique [37] to generate an estimate of the reconstructed signal
vector. The notation in Line 4 refers to elementwise operations on
the components of vector a, with the function sign(x) defined as
-1 when x < 0 and as 1 when x > 0. Finally, Lines 5 — 6 update
the residual, ||X;|,, based on the current estimate of the signal as
well as the residual of the previous iteration, rj ;.

The AMP algorithm is implemented using the SCAPE
hardware architecture presented in Figure 3. AMP requires
vector-matrix multiplication operations, which are executed
using the VMMS. Furthermore, a three-stage analog circuit
based on the design shown in Figure 8 is used for basic arith-
metic operations, including multiplication (by use of a dual
first-input stage), addition (using the second computational
stage) and exponentiation operations such as square, square
root and inverse square root. Besides the operations listed
above, AMP requires thresholding operations which are also
achievable with the AAS using the simple analog design
shown in Figure 11. In this design, an analog comparator cir-
cuit computes the function y = sign(x) when Vs = 0. A
three-stage design based on a chain of inverters is used for the
computation of two-additional functions: y = signl(x,ref),
defined as 1 when x<ref and as 0 when x>ref, and y = sign2
(x,ref), defined as 1 when x>ref and as O when x<ref. Based
on this hardware, the remaining three functions necessary for

AMP may be computed. First, y = |x| is rewritten as
y = xsign(x). Next, y = max(x,0) is equivalent to y = xsign2
(x,0). Finally, y = |||, is roughly equivalent to

y = > (signl(x,0.05) + sign2(x, —0.05)) , assuming any input
with an absolute value greater than 0.05 is considered as “non-
zero.” Figure 12 demonstrates a hardware implementation of
one loop of the AMP algorithm, based on the architecture pre-
sented herein. Reconstruction based on a signal size n = 256
and m = 64 requires a 256 x 64 VMMS array to execute the
VMM operations in Line 4 and Line 6, and 256 AAS func-
tional units for scalar operations. Performance analysis of the
AMP algorithm using the proposed SCAPE topology is dem-
onstrated in Section VI B.

VI. RESULTS AND ANALYSIS

A. BENCHMARK VALIDATION ON MNIST DATASET
FOR ML

For evaluating our SCAPE topology, MNIST data set con-

taining 70000 images has been utilized, out of which 3000

VOLNMRGiZNE. IR rRd-UshEiAfiR8d to: University of Central Florida. Downloaded on December 18,2023 at 23:31:02 UTC from IEEE Xplore. Restrictions apply. 353



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

SCALABLE REASONING AND SENSING USING PROCESSING-IN-MEMORY WITH HYBRID SPIN/CMOS-BASED ANALOG/DIGITAL

o AAS X 64 0
m —
AAS x 256
2!—1
pi-1—— 256x64 oTri-1 AAS X256 |— @ —f
® — VMMS
e it | Aasxes [T b' | AAsx2s6
it
ri—] AASx64
DF —o 256x64
VMMS '

FIGURE 12. Hardware implementation of AMP algorithm.

images are employed for training the ANN. The trained
weights and biases obtained for the network are accordingly
assigned to the crossbar array, and testing is done for the
hardware network using the 100 test images and PIN-Sim
framework [12]. Figure 13 shows the error rate obtained at
the final layer of the SCAPE topology in Figure 3, and the
overall power consumption of the ANN for the four activa-
tion functions namely, (sigmoid)?, sigmoid, (sigmoid)** and
(sigmoid)"?. Figure 13a shows that accuracy achieved by the
sigmoidal square-root activation function is best with lowest
error rate, sigmoidal power (3/2) performs worst, whereas
baseline sigmoidal and square achieve similar error rates for
all the topologies for MNIST dataset evaluated using PIN-
Sim [12]. Figure 13b shows that the overall power consump-
tion for the sigmoid square root activation is comparable to
the power consumption of plain sigmoidal activation func-
tion. Switching from one activation function to other is
achieved by GAAF configuration as mentioned previously.
Appropriate control signals are given to the block so that the
MTJ’s switch between P and AP states to get the desired acti-
vation function. Table 5 represents the comparison of GAAF
performance for different activation functions with other dig-
ital/analog activation function generators. It can be observed
that the number of components used in GAAF block is less
with comparable power consumption and delay, as with other
circuits in literature. Table 6 lists the error rate, average DBN
power consumption, and power-error-product of proposed
SCAPE topology for various sized ANNs and activation
functions evaluated on MNIST dataset. The Power Error
Product (PEP) metric is also calculated as a product of power
consumption and error rate to better establish the error effi-
ciency of the SCAPE topology compared to plain sigmoidal

TABLE 5. Performance comparison of GAAF.

(a) Error rate vs Activation Functions (b)  Power Consumption vs Activation Functions

HSIGMOID_ . SIGN I0 MOID '

FIGURE 13. (a) Error rates, and (b) Overall Power (milli-Watts)
consumption of four GAAF activations for 2 ANNs (784x200x10;
784x500x10).

activation function. PEP for sigmoidal square root activation
function for 784x200x10 topology was observed to be the
lowest i.e., most efficient. For datasets larger than MNIST,
SCAPE limits accuracy loss and accumulated current associ-
ated with larger arrays by matrix partitioning using a similar
method described in [41].

B. COMPARATIVE ANALYSIS OF CS AMP ALGORITHM

To determine the total energy cost of AMP, SPICE simulations
are performed to determine the per-cell energy cost of the
VMMS, as well as the energy cost per operation of the scalar
functions performed by the AAS; the results are aggregated to
determine the total computational energy cost of running one
cycle of AMP. The VMMS consumes a total of 3.15nJ while
total energy consumption by the AAS is 2.02nJ, for a total
computational energy consumption of 5.17nJ. For 50 itera-
tions, this gives an energy overhead equal to 258nJ for running
AMP. Analysis of signal reconstruction error associated with
approximations in the AAS units was performed for a signal of
size n = 1000, and sparsity k = 100, where 7 is the total number
of elements in each frame of the signal, and k is the total num-
ber of elements per frame that are non-zero. The average accu-
racy degradation resulting from computational error was found
to be 1.1dB, which is negligible. Table 7 lists the breakdown of
energy per computation in execution of a single AMP cycle
using the proposed design. A total energy cost of 5.17nJ per
cycle yields a total energy consumption of 1.0nJ per sample,
assuming 50 iteration cycles and a reconstructed signal consist-
ing of 256 samples. Table 8 displays an energy comparison to
two recent ASIC implementations for AMP; hardware running

[32] [38] [39] [40] Herein Herein
Mode Analog Digital Digital Analog Analog Analog
Operation Square Multiplier Square root Square Square root Square
Tech node 180nm 28nm 45nm 500nm 14nm 14nm
Vb 1.3V v v 1.5V 0.8V 0.8V
#Components 100 ~1000 >1000 12 55+2 SHE-MTlJs 55+2 SHE-MTlJs
Power 149mW 126mW 21.02mW 600mW 121mW 126mW
Delay N/A 0.8ns 3.61ns N/A 6.4ns 3.5ns
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TABLE 6. Power error product of sigmoid activation vs. SCAPE
topology for various network sizes.

Activation function

Attributes Lo GAAF enhanced
Sigmoid Sigmoid + square root
ANN 784x200  784x500  784x200  784x500
x10 x10 x10 x10
Error rate 0.1239 0.1124 0.1152 0.1046
Power(mW) 72.4 160.1 76.1 159.5
PEP 8.97 18 8.77 16.68

TABLE 7. Breakdown of AMP circuit energy consumption.

Operation Hardware Units Energy Cost
I AAS 47.6pJ
0=|rt/v/m AAS 1.1pJ
a =" + o1 VMMS + AAS 1.654 nJ
= sign(a) max(abs(a) — 9, 0) AAS 1.24 nJ
b= ||&,/m AAS 0.58 nJ
=y —®i +pr! VMMS + AAS 1.65nJ
Total 5.17n]

the Enhanced AMP algorithm (EAMP) [42] over 50 iterations
under the same CS parameters of (n,m) = (256,64) consumes
315mW of power and executes in 8900 clock cycles on a
400MHz system. Thus, the energy consumption is roughly
7uJ, and roughly 27n] per sample. EAMP is roughly in line
with the standard AMP algorithm in terms of mean square
error, up to 100 iterations. Thus, the full-analog approach to
AMP presented herein provides significant benefits in energy
while having a minimal impact on reconstruction accuracy.

C. PROCESS VARIATION (PV) ANALYSIS

Two justified concerns facing analog computation are sensi-
tivity to noise, and the ability to deliver sufficient accuracy in
the computation. Approaches to mitigating variation and
adapting operational tolerances span design margin, redun-
dancy, and reconfiguration [44], [45]. Device parameters such
as Anisotropy field (Hy), Diameter (d) and Thickness (t) for
the MTJ’s may vary due to the process variation (PV) in MTJ
fabrication, resulting in changes in Rp and R 4p resistance val-
ues. Inconsistencies in Rp and R zp result in variations in acti-
vation function, thereby affecting the inference accuracy of
the NN hardware. Figure 14 depicts the deviation in square
and square root activation functions due to PV in the GAAF
MT]Js, using 100-trial Monte-Carlo (MC) simulation runs in
SPICE with standard deviation (SD) of 5% for MTJ length,
width, thickness, V;, represents the input to the GAAF and
V,u: represents the output obtained by using (9), where L, L,
are the diode saturation currents. R, R,, R, are the resistance
values in the multiplier circuit. R3 (2.8 K/5.6 K()/8.4 K/
11.2 KQ) is decided by the state of MTJ’s, thereby determin-
ing the neuron activation function in the network. A deviation
of 5% in Rj resistance value of 2.8 K() of the GAAF with a
sigmoidal square root activation function was found to result

TABLE 8. Comparison of AMP energy consumption.

Herein Herein [37] [42]
Tech. node 14nm 14nm 65nm 65nm
Vbbp 0.8V 0.8V 1.2V N/A
Array size 256x64  1024x512  1024x512  256x64
Array precision 8 bits 8 bits 26 bits 1 bit
#lterations 50 20 20 50
Energy/sample 1.0nJ 2.1nJ 61nJ 27n]
;:? ‘”‘”“‘"‘““““”"”""Mwuwuuwmwmmmmw
0.2
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204 SQUARE ACTIVATION FUNCTION
05
06
07
oof
M. T
S0 —
'-0.6
08 SQUARE ROOT ACTIVATION FUNCTION
10

T T T T T T T T T T T T T T
00 500m o1 0.15 02 025 03 0.35 04 045 0.5 0.55 0.6 0.65 07 075 08
1(s)

FIGURE 14. Effect of PV on two activation functions applying 5%
SD on MTJ Length, width, and thickness.

in a maximum 5% increase in ANN inference error rates using
PIN-Sim framework [12] on the MNIST dataset.

VIl CONCLUSION

In this article, we explored a 2D array-based approach to PiM
by developing the SCAPE topology targeting efficient analog
activation. Namely, an innovative GAAF based on spin-con-
figurable activation function computes more expressive acti-
vation functions intrinsically in analog. Realization of AMP
signal processing algorithm show ~95% reduction in energy
consumption at comparable accuracy. Simulation results of
power consumption and error rate for MNIST dataset using
sigmoidal square root activation of GAAF shows up to 7%
accuracy improvement versus baseline conventional sigmoi-
dal activation. Future work includes adding enhanced func-
tionality to GAAF and evaluating effects on more varied
datasets for additional real-world applications.

REFERENCES

[1] W. Wang and M. Zhang, “Tensor deep learning model for heterogeneous
data fusion in Internet of Things,” IEEE Trans. Emer. Topics Comp. Intell.,
vol. 4, no. 1, pp. 32-41, Feb. 2018.

[2] S. Wen, H. Wei, Z. Zeng, and T. Huang, “Memiristive fully convolutional
network: An accurate hardware image-segmentor in deep learning,” IEEE
Trans. Emer. Topics Comp. Intell., vol. 2, no. 5, pp. 324-334, Oct. 2018.

[3] Y. Kunpeng et al., “Reinforcement learning-based mobile edge computing
and transmission scheduling for video surveillance,” IEEE Trans. Emerg.
Topics Comp., vol. 10, no. 2, pp. 1142-1156, Second Quarter 2022,
doi: 10.1109/TETC.2021.3073744.

[4] M. Taghavi and M. Shoaran, “Hardware complexity analysis of deep neu-
ral networks and decision tree ensembles for real-time neural data classifi-
cation,” in Proc. IEEE Int. Conf. Neural Eng., 2019, pp. 407-410.

[5] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A.
Stokes, “The ILLIAC IV computer,” IEEE Trans. Comput., vol. 100,
no. 8, pp. 746757, Aug. 1968.

VOLAMRGiZNE. IR érRd-UshBiAfiR8d to: University of Central Florida. Downloaded on December 18,2023 at 23:31:02 UTC from IEEE Xplore. Restrictions apply. 355



IEEE TRANSACTIONS ON

EMERGING TOPICS

IN COMPUTING

SCALABLE REASONING AND SENSING USING PROCESSING-IN-MEMORY WITH HYBRID SPIN/CMOS-BASED ANALOG/DIGITAL

[6]
[71
[8]
[9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

[17]

(18]

(19]

[20]

[21]

(22]

(23]

(24]

[25]

[26]

[27]

[28]

C. C. Foster, Content Addressable Parallel Processors, Hoboken, NIJ,
USA: Wiley, 1976.

R. F. DeMara and D. 1. Moldovan, “The SNAP-1 parallel Al prototype,”
IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 8, pp. 841-854, Aug. 1993.
D. Patterson et al., “A case for intelligent RAM,” IEEE Micro, vol. 17,
no. 2, pp. 34—44, Mar./Apr. 1997.

D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKen-
zie, “Computational RAM: Implementing processors in memory,” IEEE
Des. Test Comput., vol. 16, no. 1, pp. 32—41, Second Quater 1999.

F. Alibart, E. Zamanidoost, and D. Strukov, “Pattern classification by
memristive crossbar circuits using Ex situ and in situ training,” Nature
Commun., vol. 4, 2013, Art. no. 2073, doi: 10.1038/ncomms3072.

H. Zhang, W. Kang, K. Cao, B. Wu, Y. Zhang, and W. Zhao, “Spintronic
processing unit in spin transfer torque magnetic random access memory,”
IEEE Trans. Electron Devices, vol. 66, no. 4, pp. 2017-2022, Apr. 2019.
H. Pourmeidani, S. Sheikhfaal, R. Zand, and R. F. DeMara, “Probabilis-
tic interpolation recoder for energy-error-product efficient DBNs with P-
Bit devices,” IEEE Trans. Emerg. Topics Comput., vol. 9, no. 4,
pp- 21462157, Fourth Quarter 2021.

A. Tatulian and R. F. DeMara, “Generalized exponentiation using STT
magnetic tunnel junctions: Circuit design, performance, and application to
neural network gradient decay,” SN Comput. Sci., vol. 3, no. 2, 2022,
Art. no. 148.

S. Sheikhfaal, M. R. Vangala, A. Adepegba, and R. F. DeMara, “Long
short-term memory with spin-based binary and non-binary neurons,” in
Proc. IEEE Int. Midwest Symp. Circuits Syst., 2021, pp. 317-320,
doi: 10.1109/MWSCAS47672.2021.9531773.

P. Chi, S. Li, Y. Cheng, Y. Lu, S. H. Kang, and Y. Xie, “Architecture
design with STT-RAM: Opportunities and challenges,” in Proc. Asia
South Pacific Des. Automat. Conf., 2016, pp. 109-114, doi: 10.1109/
ASPDAC.2016.7427997.

S. Miura et al., “Scalability of quad interface p-MTJ for 1X nm STT-
MRAM With 10-ns low power write operation, 10 years retention and
endurance> 10'',” IEEE Trans. Electron Devices, vol. 67, no. 12,
pp. 5368-5373, Dec. 2020.

S. Verma and B. K. Kaushik, “Low-power high-density STT MRAMSs on a
3-D vertical silicon nanowire platform,” IEEE Trans. Very Large-Scale
Integration (VLSI) Syst., vol. 24, no. 4, pp. 1371-1376, Apr. 2016,
doi: 10.1109/TVLSIL.2015.245 4859.

V.K.Joshi, P. Barla, S. Bhat, and B. K. Kaushik, “From MTJ device to hybrid
CMOS/MT] circuits: A review,” IEEE Access, vol. 8, pp. 194105-194146,
2020.

S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory
with spin-transfer torque magnetic RAM,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 3, pp. 470-483, Mar. 2018, doi: 10.1109/
TVLSI.2017.2776954.

S. S. P. Parkin, R. E. Fontana, and A. C. Marley, “Low-field magnetoresis-
tance in magnetic tunnel junctions prepared by contact masks and lithogra-
phy: 25% magnetoresistance at 295 K in mega-ohm micron-sized junctions,”
J. Appl. Phys., vol. 81, no. 8, 1997, Art. no. 5521, doi: /10.1063/1.364588.

S. Sheikhfaal and R. F. Demara, “Short-term long-term compute-in-mem-
ory architecture: A hybrid spin/CMOS approach supporting intrinsic con-
solidation,” IEEE J. Explor. Solid-State Comput. Devices Circuits, vol. 6,
no. 1, pp. 62-70, Jun. 2020, doi: 10.1109/JXCDC.2020.2983450.
Cilingiroglu, “A purely capacitive synaptic matrix for fixed-weight neural net-
works,” IEEE Trans. Circuits Syst., vol. 38, no. 2, pp. 210-217, Feb. 1991.

D. Kwon and I. Y. Chung, “Capacitive neural network using charge-stored
memory cells for pattern recognition applications,” IEEE Electron Device
Lett., vol. 41, no. 3, pp. 493-496, Mar. 2020.

Z. Wang et al., “Capacitive neural network with neuro-transistors,” Nature
Commun., vol. 9, no. 1, pp. 1-10, Dec. 2018.

S. Angizi and D. Fan, “ReDRAM: A reconfigurable processing-in-DRAM
platform for accelerating bulk bit-wise operations,” in Proc. IEEE/ACM
Int. Conf. Comput. Aided Des., 2019, pp. 1-8.

X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level perfor-
mance, energy, and area model for emerging nonvolatile memory,” I[EEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 31, no. 7, pp. 994-1007,
Jul. 2012.

A. Sengupta and K. Roy, “Short-term plasticity and long-term potentiation
in magnetic tunnel junctions: Towards volatile synapses,” Phys. Rev. A
Gen. Phys. Appl., vol. 5, no. 2, Feb. 2016, Art. no. 024012.

G. Srinivasan, A. Sengupta, and K. Roy, “Magnetic tunnel junction based
long-term short-term stochastic synapse for a spiking neural network with
on-chip STDP learning,” Sci. Rep., vol. 6, no. 1, Sep. 2016, Art. no. 29545.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

T. Chang, S. H. Jo, and W. Lu, “Short-term memory to long-term mem-
ory transition in a nanoscale memristor,” ACS Nano, vol. 5, no. 9,
pp. 7669-7676, Sep. 2011.

Y. Long, E. M. Jung, J. Kung, and S. Mukhopadhyay, “ReRAM crossbar
based recurrent neural network for human activity detection,” in Proc.
IEEE Int. Joint Conf. Neural Netw., 2016, pp. 939-946.

Y. Long, T. Na, and S. Mukhopadhyay, “ReRAM-based processing-in-
memory architecture for recurrent neural network acceleration,” IEEE
Trans. Very Large Scale Int.(VLSI) Syst., vol. 26, no. 12, pp. 2781-2794,
Dec. 2018.

R. J. D’Angelo and S. R. Sonkusale, “A time-mode translinear princi-
ple for nonlinear analog computation,” IEEE Trans. Circuits Syst. I:
Regular Papers, vol. 62, no. 9, pp. 2187-2195, Sep. 2015, doi: 10.1109/
TCSI.2015.2451912.

V. Seshadri et al., “Gather-scatter DRAM: In-DRAM address transla-
tion to improve the spatial locality of non-unit strided accesses,” in
Proc. Int. Symp. Microarchitecture, 2015, pp. 267-280, doi: 10.1145/
2830772.2830820.

S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A processing-
in-memory architecture for bulk bitwise operations in emerging non-vola-
tile memories,” in Proc. Des. Automat. Conf., 2016, Art. no. 173,
doi: 10.1145/2897937.2898064.

F. Qian, Y. Gong, G. Huang, M. Anwar, and L. Wang, “Exploiting mem-
ristors for compressive sampling of sensory signals,” I[EEE Trans. Very
Large Scale Integration (VLSI) Syst., vol. 26, no. 12, pp. 2737-2748,
Dec. 2018.

L. Bai, P. Maechler, M. Muehlberghuber, and H. Kaeslin, “High-speed
compressed sensing reconstruction on FPGA using OMP and AMP,” in
Proc. IEEE Int. Conf. Electron. Circuits Syst., 2012, pp. 53-56.

P. Maechler et al., “VLSI design of approximate message passing for sig-
nal restoration and compressive sensing,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 2, no. 2, pp. 569-590, Sep. 2012.

H. Jiang, C. Liu, F. Lombardi, and J. Han, “Low-power approximate
unsigned multipliers with configurable error recovery,” IEEE Trans. Cir-
cuits Syst. I: Regular Papers, vol. 66, no. 1, pp. 189-202, Jan. 2018,
doi: 10.1109/TCSI1.2018.2856245.

N. Arya, T. Soni, M. Pattanaik, and G. K. Sharma, “Area and energy effi-
cient approximate square rooters for error resilient applications,” in Proc.
IEEE 33rd Int. Conf. VLSI Des., 19th Int. Conf. Embedded Syst., 2020,
pp. 90-95, doi: 10.1109/VLSID49098.2020.00033.

M. T. Abuelma’Atti and A. M. Abuelmaatti, “A new current-mode
CMOS analog programmable arbitrary nonlinear function synthesizer,”
Microelectronics J., vol. 43, no. 11, pp. 802-808, 2012, doi: 10.1016/
j-mejo.2012.07.003.

B. R. Fernando, Y. Qi, C. Yakopcic, and T. M. Taha, “3D memiristor crossbar
architecture for a multicore neuromorphic system,” in Proc. IEEE Int. Joint
Conf. Neural Netw., 2020, pp. 1-8, doi: 10.1109/IICNN48605.2020.9206929.
K. N. S. Batta and I. Chakrabarti, “VLSI architecture for enhanced approx-
imate message passing algorithm,” IEEE Trans. Circuits Syst. Video Tech-
nol., vol. 30, no. 9, pp. 3253-3267, Sep. 2020.

P. Chi et al., “Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” ACM SIG ARCH
Comput. Archit. News, vol. 44, no. 3, pp. 27-39, 2016.

N. D. P. Avirneni and A. Somani, “Low overhead soft error mitigation
techniques for high-performance and aggressive designs,” IEEE Tran.
Comput., vol. 61, no. 4, pp. 488-501, Apr. 2012.

W. Zhao et al., ““A radiation hardened hybrid spintronic/CMOS nonvolatile
unit using magnetic tunnel junctions,” J. Phys. D: Appl. Phys., vol. 47,
no. 40, Art. no. 405003.

MOUSAM HOSSAIN (Student Member, IEEE)
received the MS degree in computer engineering
from the Department of Electrical and Computer
Engineering, North Dakota State University, Fargo,
ND, in 2019, on Formal Verification of Asynchro-
nous designs. She is currently working toward the
doctoral degree in computer engineering with the
Computer Architecture Laboratory (CAL), Univer-
sity of Central Florida (UCF). Her research interests
include computer architecture, post-CMOS devi-
ces, non-volatile memories, asynchronous designs.
She is a member of [EEE-HKN.

356Authorized licensed use limited to: University of Central Florida. Downloaded on December 18,2023 at 23:31:02 UTC from |IEEYOXBIFe! 1 RE3tichidRE-dpplly 2023



IEEE TRANSACTIONS ON

EMERGING TOPICS

SCALABLE REASONING AND SENSING USING PROCESSING-IN-MEMORY WITH HYBRID SPIN/CMOS-BASED ANALOG/DIGITAL IN COMPUTING

ADRIAN TATULIAN (Student Member, IEE)
received the BSc degree in physics from the Uni-
versity of Central Florida, Orlando, FL, in 2013.
He is currently working toward the PhD degree in
computer engineering with the University of Cen-
tral Florida, Orlando, FL. His research interests
include analog arithmetic, reconfigurable comput-
ing, and spin-based hardware for machine learning
and compressive sensing applications.

SHADI SHEIKHFAAL (Student Member, IEEE)
received the BSc degree in computer engineering
from Azad University, Ardebil, Iran, in 2012, the
MSc degree in computer engineering and computer
systems architecture from the Science and Research
Branch, Azad University, Tehran, Iran, in 2014,
and the PhD degree in computer engineering from
the University of Central Florida, Orlando, FL. Her
current research interests include biologically
inspired computing, neuromorphic computing, and
spin-based computing.

HARSHAVARDHAN R. THUMMALA (Student
Member, IEEE) received the BS degree in electron-
ics and communication engineering from Jawahar-
lal Nehru Technological University, Telangana, in
2019. He is currently working toward the MS
degree in electrical engineering with the University
of Central Florida, His current research interests
include reconfigurable computer architecture, field
programmable gate arrays, neuromorphic comput-
ing, and Spin-based computing.

RONALD F. DEMARA (Senior Member, IEEE) is
currently pegasus professor with the Department of
Electrical and Computer Engineering, University of
Central Florida, Orlando, FL, where he has been a
full-time faculty member, since 1993. His research
interests include computer architecture, post-CMOS
devices, and reconfigurable fabrics with applications
to intelligent and neuromorphic systems, on which he
has published more than 320 articles and holds one
patent. He received the Joseph M. Biedenbach Out-
standing Engineering Educator Award from the
IEEE. He has served seven terms as a Topical Editor and/or associate editor for
the IEEE Transactions on Computers, the IEEE Transactions on Emerging
Topics in Computing, the IEEE Transactions on Very Large Scale Integration
(VLSI), the IEEE Spectrum, and Technical Program Committees of various
IEEE conferences. He has been a Keynote Speaker of the IEEE Reconfigurable
Architectures Workshop, IEEE ReConFig, and IEEE IEMtronics conferences.
He has been a guest editor of the IEEE Transactions on Computers 2017 Spe-
cial Section on Innovation in Reconfigurable Fabrics and 2019 Special Section
on Non-Volatile Memories.

VOLNMRGiZNE. IR Rd-UshBiAfiR8d to: University of Central Florida. Downloaded on December 18,2023 at 23:31:02 UTC from IEEE Xplore. Restrictions apply. 357



