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A B S T R A C T

The fleet of power plants supplying electricity to a power grid varies diurnally and seasonally, creating
large time-dependent differences in the emissions associated with consuming electricity, particularly in grids
with high penetrations of renewable electricity generators. In addition, modern grids are incorporating
more demand-side interventions that incentivize electricity end users to temporarily modify their electricity
consuming behavior in efforts to change the shape and magnitude of electricity consumption over a period of
time. Current methods for quantifying the emissions associated with marginal shifts in electricity consumption
are not sufficient given the changing dynamics of supply-side generation resources. This study introduces a
novel multiple linear regression model that utilizes historical demand, variable renewable generation, and CO2
emissions data to quantify hourly marginal emissions factors for the years of 2019 and 2020. The developed
consumption-based CO2 accounting method includes the emissions embedded in net electricity imports in
addition to emissions from in-region generators. The proposed framework is applied to the case study of
California Independent System Operator (CAISO), revealing a wide range of hourly-level marginal emissions
factors (89–503 kgCO2/MWh) during the period of study. The proposed method improves upon the existing
literature by proposing a consumption-based method that is well suited for estimating emissions avoided
through demand-side changes in load, particularly in electric grids, like CAISO, with high renewable energy
penetrations.
1. Introduction

Understanding the interactions between electricity demand and
electricity supply is an important first step in quantifying the emissions
impacts of load modifying interventions and leveraging demand-side
resources for deep decarbonization. In an electric grid, power supply
must be balanced with electricity demand at any given time of day.
This means that each time there is an increase in electricity demand,
there is a commensurate increase in the supply of electricity (and
conversely, electricity supply must be reduced if electricity demand
decreases). Marginal generators are the power generation units that
respond to these changes in demand; altering their output to match the
new level of demand. Tracking the operation of marginal generators
in the context of the electric grid operation provides key information
in greenhouse gas accounting and developing emissions mitigation
measures.

Traditionally, quantifying emissions of the electric grid focuses on
total grid emissions (i.e., the sum of all emissions associated with the
electricity supply over a given period of time) or the average emissions
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factor (i.e., the total grid emissions for a period of time divided by the
total demand over the same period). These quantities are often easy to
calculate, pending adequate data availability, but estimating marginal
emissions at a point in time is not as straightforward because it is
typically difficult to accurately identify marginal generators and isolate
their emissions. Theoretically, electricity generators are dispatched
according to the lowest marginal cost of electricity generation given
operational and transmission constraints (Jenn et al., 2020). When
compared to renewable electricity generators, fossil fuel-based gener-
ators have relatively high operational costs, and therefore, are often
dispatched after renewables. Several studies have used comprehen-
sive electric grid simulation models for assessing long-term (implying
that future capacity expansion changes the generation mix) marginal
emissions associated with electricity generation systems (Gagnon and
Cole, 2022) and short-term (implying that the generation capacity mix
does not change significantly), and have applied their estimates to
different cases such as electric vehicle charging (Huber et al., 2021;
Kamiya et al., 2019; Raichur et al., 2016) renewable energy integration
vailable online 8 February 2023
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(Buonocore et al., 2016; Li et al., 2020), energy efficiency (Buonocore
t al., 2016) and energy storage (Pimm et al., 2021). For instance,
ne study developed a reduced-order power plant dispatch model
or the North American Electric Reliability Corporation regions for
ears 2014 to 2017 and showed that clusters of low- or high-emitting
ower plants of similar production cost could create large changes in
arginal emissions factors (MEFs) as ascending the order of dispatching
enerators (Deetjen and Azevedo, 2019). Another study builds upon
ost-based dispatch by incorporating ramping limitations and applies
his methodology to Great Britain’s power system, finding significant
ariations in MEFs within a day and over the course of a year (Zheng
t al., 2015). One limitation of simulation modeling approaches is that
ctual grid operation is more complicated than most simulations can
apture. For example, more than one resource or generation unit can
ontribute to supply the last unit of electricity, or cheaper generators
ith limited generation capacity, such as hydropower, may choose to
roduce more electricity during more profitable times of the day. Khan
2018) found that oil was the only consistent marginal resource in
angladesh, but in New Zealand, a study found that peak demands
ere primarily met by hydropower (Khan et al., 2018). Li et al. (2017)
ound that for the Midcontinent Independent System Operator (MISO)
n the years spanning 2015 through 2018, fossil-fuel burning generators
ere generally the marginal resource, but it also found that at high
emand times, hydropower also contributed to marginal generation
n the MISO Central subregional grid, while wind energy contributed
o marginal generation in the MISO North subregional grid (which
ad about 27% of total electricity generation from wind). Electricity
mports and exports dynamics are among other factors that further
omplicate electric grid operation beyond what models can capture.
Alternatively, regression models are used to track short-term
arginal emissions (typically on the scale of hour-to-hour) and are
enerally more accurate than simulated values obtained from electricity
ystem models (Deetjen and Azevedo, 2019). Regression-based models
ely primarily on historical granular electricity generation, consump-
ion, and greenhouse gas emissions data to estimate marginal emissions.
ne advantage of using observed historical data to estimate marginal
missions is that the data capture grid operation constraints as they
ccurred, in contrast to some simplifying assumptions in electric grid
odels that might ignore generator outages or transmission congestion
onstraints. Different imports and electricity purchase structures and
oad serving obligations can also be hard to accurately simulate in elec-
ric grid models. Other constraints, such as maintaining grid stability
nd reliability, might result in deviations from loading orders and/or
ifting or enforcing certain environmental rules, which are hard to
redict and capture in electric grid simulations that are suited to mostly
apture the grid’s normal operations (Mccall et al., 2016). Another
dvantage is the low complexity of regression models (as compared
o electricity system models), which makes it easier to interpret and
alidate results. Different regression models have been previously used
o analyze marginal emissions of Great Britain’s electric grid by Hawkes
2010), India’s electric grid by Sengupta et al. (2022), Ontario’s elec-
tricity system in Canada by Gai et al. (2019), Pennsylvania, Jersey,
Maryland Power Pool (PJM) in the US by Donti et al. (2019), MISO
by Thind et al. (2017), and North Electric Reliability Council (NERC)
regions in the US by Siler-Evans et al. (2012). These studies utilize
various statistical models with a range of different independent vari-
ables. Some studies used a simple linear regression model with hourly
changes in generation as the only independent variable (Hawkes, 2010;
Huber et al., 2021; Siler-Evans et al., 2012). In one of the earliest MEF
quantifying studies, Siler-Evans et al. (2012) assumed that changes
in electricity demand are only balanced by changes in the output of
fossil fuel-based generators, ignoring the role of changes in production
from non-fossil fuel powered generators in meeting marginal demand.
Seckinger and Radgen (2021) similarly assume that all marginal de-
mand is met with fossil fuel technologies when calculating MEFs for
2

the German grid, citing the prioritizing of renewables as justification
for this structure. Although this might be an adequate assumption for
grids with low penetrations of renewable energy, or with strict resource
queuing rules, many regional grids incorporate significant levels of
alternative sources, and emissions free generators are increasingly on
the margin. In fact, specific loading orders can also facilitate the
marginal operation of renewables, regardless of their low production
cost advantages (e.g., California’s 2003 Energy Action Plan that pri-
oritizes renewables over fossil fuel generation Bender et al. (2005)).
Some studies have included electricity generation from variable energy
resources, as well as levels of electricity demand as predicting variables
that marginal emissions depend on Gai et al. (2019), Pimm et al.
(2021), Thomson et al. (2017). A number of these studies are summa-
rized in the supplementary data Table A.1. Growing shares of battery
storage deployments will also create new grid operation dynamics. It
has yet to be explored how different charging and discharging patterns
can impact marginal generators and emissions.

Regardless of the statistical model and predicting variables used, all
previous studies reported that MEF trends are distinct among seasons
and hours of the day, and can also be significantly different from the
concurrent average emissions factors (AEFs) due to factors such as
electricity demand patterns, electricity generation fleet, the legacy of
technology mix, fuel type, operational cost, dispatchability and grid
interconnectedness (Buonocore et al., 2016; Hawkes, 2010; Jenn et al.,
2020).

Geographic boundaries are critical for accurate emissions account-
ing (Ryan et al., 2016). Previous studies have typically taken a
generation-based approach for calculating changes in emissions and
generation by considering generators located within their region of
focus (Hawkes, 2010; Siler-Evans et al., 2012). This approach assumes
that changes in electricity demand are equal to changes in electric-
ity supply in that same geographic area, ignoring the influence of
electricity trades with external areas. Electricity trades were modeled
by Tranberg et al. (2019), who assessed real-time grid-wide average
emissions in European electricity markets, and by de Chalendar et al.
(2019), who analyzed annual and median daily emissions (not marginal
emissions) for 66 electricity balancing authorities across the US. The
latter study showed that exchanges between regions play an especially
large role in the Western Interconnection (where California Indepen-
dent System Operator or CAISO is located), since, as an example, 2016
net imports accounted for 29% of annual consumption by net importing
regions and 2016 net exports accounted for 37% of annual generation
in net exporting regions (de Chalendar et al., 2019). While electricity
trades have been modeled in a few average grid emissions studied, they
are widely absent in regression-based MEF assessment studies.

The large variation in these factors among different electric grids
highlight the need for evaluating regional specific MEFs. Moreover,
rapid shifts in electricity supply mix make it essential to frequently
re-assess MEF estimates. In this study, MEFs of CAISO, a grid that
generated 20% of its annual electricity consumption from solar PV and
wind turbines in 2019 (and 21% in 2020), are evaluated. The analysis
is done independently in each year and examine changes that occur
between the two years. This comparison provides insight as to the
impact of supply factors, such as the use of hydropower, as well as the
effect of changes in electricity demand patterns on MEFs.

2. Contributions of this study

Our framework refines three major aspects of the regression models
previously used in MEF assessment literature through its approach in
considering electricity trades and variable renewable energy genera-
tion. These improvements increase the ability to methodically quantify
the efficacy of demand-side management (DSM) strategies for reducing
emissions, since DSM affects the subset of generators at the margin as

opposed to the whole set of generators across the grid.
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1. This framework takes a consumption-based approach, rather
than a generation-based approach (i.e., emissions associated
with electricity consumption in CAISO are accounted for regard-
less of whether electricity is produced with in-region resources
or imported from out-of-region). In addition, electricity gener-
ated with in-region resources and exported out-of-region is not
considered for in-region electricity demand. The emissions asso-
ciated with these exports are removed from the total emissions
before emissions factor calculations.

2. The regression model used in this study mimics a net load curve
to explicitly account for generation from emissions-free non-
dispatchable solar PV and wind turbines, which is particularly
important for analyzing grids with high levels of renewable
energy penetration. Specifically, the model includes a designated
term for variable renewable energy in the regression model, an
inclusion lacking in previous US-based studies.

3. Lastly, this framework also makes methodological improvements
that account for MEF-demand dependency and enables the anal-
ysis of more granular emissions dynamics and careful quantifi-
cation of hourly and monthly MEFs.

3. Methods

This section describes the methodology developed to use historical
data for estimating hourly average emissions factors and marginal emis-
sions factors (defined in the next subsection) for CAISO independently
for two years of 2019 and 2020.

3.1. Definitions

Here, the following definitions are used for quantifying emissions:
Average Emissions Factor (AEF): This metric quantifies the emis-

sions associated with the average unit of electricity consumed by
accounting for emissions from all electricity generating units in the
CAISO region and net electricity imports. In this study, AEFs are
calculated using periods of length one-hour.

Marginal Emissions Factor (MEF): This metric shows the change
in emissions due to one unit change in electricity demand, as changes
in demand impact marginal generators rather than all generators. In
this study, MEFs are calculated using hour-to-hour changes in demand,
variable renewable generation, and CO2 emissions.

3.2. The system boundaries

This study is bounded around the CAISO region located within the
Western Electricity Coordinating Council. Based on CAISO data (CAISO,
2021b), in 2019, about 76% of total annual electricity (219.5 TWh)
was generated within the region (74% in 2020); the remainder was
imported from multiple balancing authorities (BAs) in the Southwest
and Northwest regions which are listed in Table 1. This electricity was
generated from a mix of technologies that use natural gas, nuclear,
hydro, and renewables, which included large fractions of solar PV and
wind technologies (20%–21% of total supply).

3.3. Data sources and data processing steps

The utilized data sources and their corresponding main processing
steps are as follows:

1. The list of power plants operating in each BA in each year were
identified based on the US Energy Information Administration
(EIA) Form EIA-860 reports (U.S. Energy Information Adminis-
tration, 2020) by filtering power plant identification numbers
for the two sectors of electric utility and independent power
producers (IPP) for both CHP (combined heat and power) and
3

non-CHP plants.
Table 1
Electricity supply sources in the CAISO region (total electricity supplied was 219.5 TWh
in 2019 and 218.5 TWh in 2020). Electricity supply data from CAISO (2021b), and the
breakdown of net imports from U.S. Energy Information Administration (2021).

2019 2020

Total Supply (Sum to 100%)
Fossil fuel (mostly natural gas) 29% 33%
Nuclear 7% 7%
Hydro 12% 6%
Solar PV and Wind turbines 20% 21%
Other Renewables 7% 7%
Net Imports 24% 26%

Breakdown of Net Imports from BAs to CAISO (Sum to 100%)
Los Angeles Dep. Water & Power (LDWP) 35% 31%
Bonneville Power Administration (BPAT) 13% 26%
Salt River Project (SRP) 25% 19%
Arizona Public Service Company (AZPS) 19% 11%
Balancing Authority of Northern California (BANC) 6% 6%
Nevada Power Company (NEVP) −1% 5%
Imperial Irrigation District (IID) 5% 4%
Western Area Power Administration -
Desert Southwest Region (WALC) 2% 2%
PacifiCorp West (PACW) <1% <1%
Turlock Irrigation District (TIDC) −2% −3%
Centro Nacional de Control de Energia (CEN), and
Comision Federal de Electricidad (CFE) (in Mexico) −1% −1%

2. Hourly emissions data were extracted from the US Environmen-
tal Protection Agency’s (EPA) Air Markets Program Data for each
state, and were rearranged for each BA based on the list of
power plants identified within each BA in the previous step (U.S.
Environmental Protection Agency, 2021). (Note: EPA’s Air Mar-
kets Program Data reports emissions associated for fossil-fueled
power plants with capacities greater than 25 MW.)

3. Hourly data for electricity generation at BA level as well as elec-
tricity exchanges between BAs were collected from EIA’s Electric
System Operating Data (U.S. Energy Information Administration,
2021). Note that because these data are bidirectional between
BAs, each electricity exchange is reported in two locations. Total
electricity generation data were collected from each correspond-
ing BA file (for example, total electricity generation of LDWP
was extracted from LDWP file). The only exception was BPAT
where historical data reported on the BPAT website (BPA, 2021)
were used instead of EIA’s data (U.S. Energy Information Admin-
istration, 2021) due to the large discrepancies in the reported
EIA values.

4. Data for CAISO’s electricity demand, total electricity generation
and solar PV and wind turbine generation, as well as total im-
ported electricity were sourced from the CAISO website (CAISO,
2021b). These data are reported in five-minute increments, but
this study uses averaged values to represent each hour.

Several considerations and adjustments were made when cleaning
and processing data. First, the timestamps for the data associated with
the three BAs located within the Arizona time zone (i.e., AZPS, SRP and
WALC) were shifted for one hour for the affected data points between
November and March of each year, so that the all timestamps are
aligned with the Pacific Time zone. Second, electricity trades between
CAISO and the two BAs located in Mexico (CEN and CFE) were ignored
in this analysis due to lack of associated emissions data. Instead, the
magnitude of these electricity trades were distributed among the other
BAs within the US in proportion to their concurrent electricity trades
with CAISO. (The electricity traded between CAISO and the two BAs in
Mexico was only about 57 GWh, or 1%, of total net imports to CAISO in
2020, as shown in Table 1.) Third, CAISO’s reported total net imports
were cross-checked with the sum of electricity trades between all of the
individual BAs and CAISO to ensure that the two values were equal.
When the sum of hourly electricity trades between CAISO and other
BAs did not match CAISO’s reported total net electricity imports in a
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given hour, CAISO’s total net import value was used to normalize the
interchange electricity amounts with each BA (scaling the magnitude
of the exchanges with each BA to ensure that the two totals matched).
Fourth, for the bidirectional exchanges reported by the EIA, the values
reported from CAISO’s perspective were primarily used, and data from
other BAs were only used to verify or fill in missing or misreported
electricity interchanges. If hourly data were missing from both sources,
five-day averaged values for the same hour were used. Fifth, it was
ensured that total electricity demand for CAISO was balanced with the
sum of total electricity generation and total net imports in each hour.
Finally, before beginning the regression process, an outlier analysis was
performed to identify data points that were likely the result of incor-
rectly reported emissions values by BAs, or exacerbated by limitations
in the data processing methodology (e.g., a small error in emissions
reporting could be magnified by the scaling process that matches BA-
reported imports with CAISO-reported imports). More details on the
analysis can be found in the supplementary data.

3.4. Consumption-based hourly CO2 emissions estimates

Hourly emissions associated with CAISO’s electricity demand were
tracked using Eq. (1), which explicitly accounts for the emissions
associated with electricity imports and exports. In this equation, 𝐸𝐶

𝑖,𝑗 ,
𝐸𝑋
𝑖,𝑗 , and 𝐸𝐼

𝑖,𝑗 are emissions associated with in-CAISO power generation,
exports (from CAISO, 𝐶, to other BAs,𝑀) and imports (from other BAs,
𝑀 , to CAISO, 𝐶), and 𝑖 and 𝑗 are indexes for the month and the hour
of day, respectively. Additionally, in this equation, 𝑋𝐶→𝑀

𝐺𝐶 calculates the
fraction of emissions associated with the electricity produced in CAISO
(𝐺𝐶 ) but consumed in other BAs; while 𝐼𝑀→𝐶

𝐺𝑀 calculates the fraction of
emissions associated with the electricity produced outside CAISO (𝐺𝑀 )
but consumed in the CAISO region. It is notable that this accounting
method for CO2 emissions is an improvement over the methodol-
ogy used in reporting CO2 emissions in five-minute increments on
the CAISO Today’s Outlook website (CAISO, 2021a) where emissions
are approximated using resource-specific CO2 emissions rate for in-
CAISO generators and a fixed unspecified emissions rate (i.e., 0.428
mTCO2/MWh as established by California Air Resources Board) for
imported electricity (Hundiwale, 2016).

𝐸𝑖,𝑗 = 𝐸𝐶
𝑖,𝑗−𝐸

𝑋
𝑖,𝑗+𝐸

𝐼
𝑖,𝑗 = 𝐸𝐶

𝑖,𝑗−(
∑

𝑀
𝐸𝐶 ⋅

𝑋𝐶→𝑀

𝐺𝐶 )𝑖,𝑗+(
∑

𝑀
𝐸𝑀 ⋅

𝐼𝑀→𝐶

𝐺𝑀 )𝑖,𝑗 (1)

.5. The averaging method for estimating AEFs

For AEF calculations, the emissions data were first grouped by
onth 𝑖 and hour 𝑗 of the day (e.g., ‘‘January, hour 1’’ has 31 data
oints), and then derived a regression model based on Eq. (2) to
alculate an average CO2 emissions factor (AEF𝑖,𝑗) using electricity
emand (D𝑖,𝑗) as a predicting variable for each hour (𝑗) and month (𝑖)
airing. Twenty-four hourly AEFs were calculated in kg CO2/MWh for
ach month (e.g., 24 AEFs in January and 288 AEFs in 2019), which
epresent an average day in that month.

𝑖,𝑗 = 𝐴𝐸𝐹𝑖,𝑗 ⋅𝐷𝑖,𝑗 (2)

.6. The regression model for estimating MEFs

Following the steps illustrated in Fig. 1, the CAISO data were first
e-ordered from lowest to highest hourly electricity demand to form
he load duration curve for each year for both years of analysis. Then,
lectricity demand was partitioned into 10 equal bins, where each
in represented 10% of the range between the lowest and the highest
emand (shown in the load duration subplot in Fig. 1). This binning
ethod allowed quantifying MEFs for hours with similar demand level
in contrast to AEFs, where binning was done by time of day, so
imilar hours of different days in a month were grouped together). This
4

inning method results in a variable number of data points in each of
hese 10 bins. For instance, Bins 7–10 contained a smaller number of
ours compared to Bin 2–4, as these bins covered the highest demand
ours that occur infrequently throughout the year (see the steep slope
rea in the load duration curve in Fig. 1), but they might have more
ignificance to the regression slope due to larger supply needs during
hese hours. Considering the very small number of hours in Bin 10,
e.g., only 33 h in year 2020), Bins 9 and 10 were combined prior to
he regression step of the analysis. Further combination of bins was
erformed ad hoc during the regression process to ensure a minimum
umber of data points for each regression (described in more details
ater in this section). It is notable that because the bins are defined at
he annual level, some months might not have certain demand levels;
or example, demand levels that fall in Bin 9 and Bin 10 only occur
uring summer months.
Secondly, after assigning bins to each hour, the differences between

onsecutive hours were calculated for emissions (𝛥𝐸𝑘,𝑖) in kg, electricity
demand (𝛥𝐷𝑘,𝑖) in MWh, and the sum of solar PV and wind generation
values (𝛥𝑅𝑘,𝑖) in MWh. These variables describe the changes between
the hour 𝑗 and 𝑗 − 1 and have a label of 𝑘 that specifies the bin their
demand level falls in. This step is illustrated in the table presented in
the center of Fig. 1.

Thirdly, the multiple linear regression model shown in Eq. (3) was
pplied for each demand level and month combination to estimate MEF
alues. In the event that a demand level and month combination only
ccurred in a small number of hours, demand level bins were combined
ith an adjacent bin until a minimum threshold of 25 datapoints was
eached. In this regression model, 𝑎𝑘,𝑖 estimates MEF and 𝑏𝑘,𝑖 estimates
he impact of solar PV and wind generation (both in kgCO2∕MWh) for
ach bin 𝑘 and month 𝑖.

𝐸𝑘,𝑖 = 𝑎𝑘,𝑖 ⋅ 𝛥𝐷𝑘,𝑖 + 𝑏𝑘,𝑖 ⋅ 𝛥𝑅𝑘,𝑖 + 𝑐𝑘,𝑖 (3)

etailed regression results for each month and demand level combina-
ion can be found in the data repository also mentioned at the end of
his document (https://data.mendeley.com/datasets/7w87xy5pwj/2).
Finally, MEF values were converted from a specific month/bin

airing to month/hour pairing by multiplying the month and bin-
pecific MEF values by weight factors 𝑤𝑗,𝑘 that are associated with
he histogram of bins in each hour of each month (see Eq. (4)). In
ther words, hourly MEFs are found with a weighted sum, where the
eight is dependent on the bin distribution for a specific hour in a
pecific month, and these weights are multiplied by the MEFs for those
onth/bin pairings. The resulting hourly MEFs are obtained in the
ormat of ‘‘month-hour’’ in which 24 MEFs represent an average day in
ach month. For illustration, weight factors that had hourly electricity
emand in Bins 2–4 are displayed at the bottom-right of Fig. 1 for
anuary 2020. As the plot suggests, the majority of hours had demand
evels concentrated within a single demand bin (e.g., 48% of electricity
emand in hour 5 of January 2020 was within the demand range of
in 2 and 52% within Bin 3; whereas, electricity demands in hours 2–4
ere entirely within the demand range of Bin 2).

𝐸𝐹 𝑖,𝑗 =
∑

𝑘
(𝑤𝑗,𝑘 ⋅ 𝑎𝑘,𝑖) (4)

. Results

In this section, the regression results for MEF values are presented
or each month and demand level in 2019 and 2020, as well as
he estimated month and hour level MEF and AEF values. Additional
vidence from the operation of the electric grid are provided to support
he responsiveness of different grid resources to changes in electricity
emand which help validating the estimated MEF trends.
In general, the results are consistent with the range of AEFs and
EFs estimated in other studies for CAISO. The coefficient of determi-
ation (𝑅2) for the regression results lies between 0.40 and 0.98 for the
istinct regressions, with better predictability in higher demand levels.
rom a practical standpoint, having higher accuracy of MEF estimation

https://data.mendeley.com/datasets/7w87xy5pwj/2
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Fig. 1. Visual representation of the proposed framework to evaluate MEF values.
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in higher demand levels is most important since periods with high MEFs
(normally coincident with high demands) have the greatest implica-
tions for emissions reductions and increases due to changes in demand
(see the supplementary data for more details). It is worth noting that
the model shows a better performance in 2019 as compared to 2020,
likely due to data quality issues and the larger spread of the data that
occurred in 2020. As other studies reported, electricity demand patterns
were impacted by COVID-19 pandemic-related lockdowns, such as
lower consumption levels than previous years especially in March and
April months (Krarti and Aldubyan, 2021), and sector-specific changes
in loads, such as increased residential sector consumption in the middle
of the day (Kawka and Cetin, 2021).

4.1. Correlation between emissions and demand

The hourly data distribution in both 2019 and 2020 suggests a
strong linear correlation between hourly demand and hourly CO2 emis-
sions, as shown in Fig. 2 subplots A and B. As demand goes up,
ess spread is seen in the magnitude of hourly emissions and data
oints than for lower demand, implying a tighter correlation between
missions and demand for higher demand values. At higher levels of
emand, the emissions produced also tend to lie above the line of best
it, which suggests that as demand increases, the emissions per unit of
emand also increase. This is consistent with the common operational
ractice of bringing fast-reacting and dirty electricity natural gas com-
ustion units online to meet the highest levels of demand when the
ange of the typical resources used to meet demand is exceeded. In
019, there was an average of 266 kgCO2 generated per MWh, and in
020 this number rose to 310 kgCO2 per MWh, with these values equal
o the slopes of the lines of best fit for the top two graphs of Fig. 2.
Fig. 2 also examines the correlation between changes in emissions

nd changes in demand calculated as the difference between two con-
ecutive hours for each variable (subplots C and D). In 2019 there was
5

n average emission of 322 kgCO2 per MWh of marginal electricity
enerated and in 2020 this number fell to 308 kgCO2, with these
alues equal to the slopes of the lines of best fit for subplots C and
. The magnitude of changes in demand in 2019 cover a wider range
ompared to 2020, highlighting higher hour to hour variations in load,
hile changes in emissions remained approximately in the same range
n both years. Overall, there is a wider variation in the range of changes
n emissions when the magnitude of demand changes are positive and
arge (Q1) than when the magnitude of demand changes are large
ut negative (Q3) for subplots C and D. Additionally, a significant
umber of hours in Q4 of subplots C and D have an increase in
emand on the scale of GWh and decrease in emissions on the scale
f thousands of metric tons. These events, and more generally, the
arge deviations from the lines of best fit, emphasize that changes in
emand alone cannot accurately predict changes in emissions and that
multiple linear regression model capable of capturing the influence
f the varying supply of renewable energy is necessary.

.2. MEFs by demand level in each month

Our data binning and regression model resulted in a total of 67,
or 2019, and 61, for 2020, independent MEF values (one for each
istinct demand bin and month pairing in that year). These values
re shown in Fig. 3, and the plotted trend lines show a positive
orrelation between MEF and demand level. The higher MEFs for high
emand levels are caused by emissions-intensive marginal generators.
he relationship between demand level and marginal generation also
esults in seasonal variations in MEFs. Summer months, which typically
ave higher demand levels due to increased electricity usage for air
onditioning show relatively high MEFs when compared with cooler
onths. While high demand levels are centralized around summer
onths, lower demand levels occur across many months and have a
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Fig. 2. Scatter plots of hourly CO2 emissions and hourly demand for electricity in 2019 (Subplot A) and 2020 (Subplot B), as well scatter plots of changes between consecutive
hours in hourly emissions and hourly demand between in 2019 (Subplot C) and 2020 (Subplot D). The line for best fit is shown in yellow, with 𝑅2 = 0.35 (Subplot A) and 0.50
Subplot B) for hourly emissions and demand, and 𝑅2 = 0.40 (Subplot C) and 0.39 (Subplot D) for hourly changes in emissions and demand.
Fig. 3. MEFs for each demand level and month combination in 2019 and 2020 with line of best fit.
ider range of corresponding MEFs than higher demand levels. The
lope of the line of best fit was steeper in 2020 than in 2019, meaning
hat MEFs were more responsive to demand level in 2020. The causes
f this shift are explored further in the discussion section. Figures
isplaying MEFs organized by month instead of demand level can be
ound in the supplementary data.

.3. Month-hour MEFs

Demand-level based MEFs, like those shown in Fig. 3, can be
directly applied in situations in which demand level can be estimated;
however, they do not provide information about diurnal MEF patterns,
which are important for predicting the changes in emissions associated
with changes in electricity consumption that occur at specific times
of the day. To address this need, month-hourly MEFs were derived
6

using the relationship between time-of-day and demand. The results
are shown in the form of heat maps in Fig. 4. The MEF values in 2019
and 2020 are consistent and similar in terms of hours when the highest
and lowest MEF values are concentrated (i.e., highest in the evening
of summer months and lowest in the morning of spring months).
However, there are two significant differences between the MEFs in
2019 and 2020 that are worth highlighting. First, the highest MEF
values reached in 2020 are substantially higher than those in 2019;
i.e., nearly 500 kg CO2/MWh in evening hours in July 2020 compared
to roughly 370 kgCO2/MWh in August 2019. Second, lower MEFs
during the evening hours of spring months in 2020 (dropping as low
as 100 kgCO2/MWh in the evening in March) show a contrast to 2019,
where MEFs are around 330 kgCO2/MWh at similar periods. In fact, the
MEFs calculated for the evening of March 2020 are significantly lower
than the lowest MEFs at any point in 2019. These differences in MEFs
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Fig. 4. Month-hour distribution of AEFs (top) and MEFs (bottom) in 2019 and 2020. Colors represent the magnitude of emissions factor in kgCO2/MWh.
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imply that different resources were operating at the margin in the two
studied years. These differences were investigated in further detail in
the discussion section by examining the electricity generation fleet in
March and July of each respective year. (See Fig. 5.)

.4. Month-hour AEFs

The temporally based AEFs show strong diurnal and seasonal trends
n Fig. 4. From a seasonal perspective, the AEFs, which are represen-
ative of the average grid mix, reach their lowest values in the spring
hen there is a high availability of clean power sources like solar, wind,
nd hydropower, as well as moderate demand levels across CAISO.
he AEFs are significantly higher in the late summer/fall months when
lectricity consumption is much higher, as well as in winter months
hen supplies from solar resources are limited. AEFs tend to be lower
n the middle of the day due to the availability of solar power and
he relatively low level of demand. In most months, AEFs increase in
vening hours as demand increases and solar PV comes offline causing
larger fraction of the load to be met with natural gas generators and
mports.

. Discussion

In this section, some important aspects of the observed trends in
EFs and AEFs are discussed.

.1. Consumption-based versus generation-based MEFs

Regression-based hourly-level MEF estimates are rare in litera-
ure; however, hourly MEF values have been periodically reported
y the Center for Climate, Energy, and Environmental Decision Mak-
ng (Azevedo et al., 2020) for various regional aggregations using a
eneration-based method. The consumption-based month-hour MEFs in
019 were compared to MEF estimates reported by CEDM for CAISO
7

n year 2018, the most recent year that MEFs were reported (Azevedo
t al., 2020). (Note that CEDM used a methodology similar to Siler-
vans et al. (2012) for estimating MEFs that, as discussed earlier, relied
n hourly changes in fossil fuel generation as the single variable for pre-
icting changes in emissions.) The comparison shows that differences
etween the estimated MEFs and CEDM’s estimated MEFs in the same
onth and hour ranged from −15% to 126% (42% average difference
nd 39% median difference), and the estimates were lower in value in
9% of hours. While some year-to-year variation could explain these
ifferences, lower MEF estimates across the majority of hours in the
tudy are expected given the differences in methodology. As shown
n Fig. 6, the hourly changes in demand were typically larger than
he hourly changes in natural gas generation, requiring other supply
esources such as hydropower, imports, and, in some cases, renewables
o respond to changes in demand (CEDM’s MEF methodology assumes
ll marginal generation is met by in-region fossil fuel plants). While
any renewable sources are first-to-take, Fig. 5 shows that emissions-
ree hydropower generation can exhibit strong load-following behavior
n evening hours. Additional demand in the evening is met by a mix
f imports, natural gas, and hydropower, resulting in MEFs that can
e significantly different and often lower than those calculated using
n-region fossil fuel generation changes alone.
Additionally, in terms of applications, the use of demand change

s a marginal emissions estimator is advantageous over fossil-fuel
eneration change for a couple of reasons. First, having knowledge of
he changes at a specific time in the electric grid’s fossil fuel generation
s much more data-intensive and complicated than knowing about the
hanges in electricity demand for a region or balancing authority. Sec-
ndly, the MEF values that simply represent CO2 emissions change per
nit of demand change are more ideal to quantify marginal emissions
hanges associated with end-use demand changes than MEFs derived
rom fossil fuel generation change. (Fossil fuel generation change would
e indirectly correlated with end-use demand changes, which may
e highly uncertain in many hours of the year.) Practically, MEFs
eveloped in this analysis can directly be multiplied by measured
hanges in electricity consumption for any end-use, allowing for more
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Fig. 5. Average hourly generation for each resource serving CAISO’s electricity demand in March and July of 2019 and 2020.
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precise and simple monitoring of emissions displacement by demand-
side management measures such as load shifting or load shedding.
While the MEF estimation exercise relied on historical annual data,
applying this methodology with real-time emissions and demand data
would enable a close-to-real-time MEF estimation that could be a
useful tool to quantify the emissions associated with end-use electricity
consumption patterns.

5.2. Year-to-year variation in MEFs

Since regression-derived MEFs rely on historical data, the pre-
dictability of MEFs for future years may be limited by how sensitive
MEF values are to resource dispatch and fuel mix changes that occur
from year to year. Comparing MEF values in 2019 and 2020 helps us
answer this question. In fact, a wide range of differences were found in
hourly MEFs between 2019 and 2020. (Note: The relative differences
between month-hour MEFs in 2019 and 2020 are plotted in Fig. A.5
of the supplementary data.) While summer and winter months in 2020
typically show smaller differences in MEF values between the two years
for the same month-hour combination, greater differences are observed
in spring months. Despite the fact that both years had similar fossil-
fuel and renewable generation shares (shown in Table 1), the role of
hydropower seems to be significant in explaining these differences, as
hydropower’s share of generation decreased from 12% of total supplies
in 2019 to only 6% in 2020 (more discussion of this change is provided
in Section 5.3. The wide range of differences in hourly MEF values
suggests that hourly-level MEF values should be evaluated often and
that historical-based MEFs require a great caution if used for future
years.

It is important to understand whether a less granular temporal
MEF value would sufficiently represent changes in marginal emissions.
To test this, the regression equation was applied to all hour-to-hour
changes, regardless of demand level, to calculate a single annual MEF.
The result was an annual MEF of 302 kgCO2/MWh in 2019 and 285 kg
CO2/MWh in 2020. However, the month-hour MEFs calculated in this
study ranged from 169 to 372 kgCO2/MWh in 2019 and from 89 to
8

503 kgCO2/MWh in 2020. The large range of MEFs that occurred in
both years indicate that analyses that use an annual MEF (for example
in Holland et al., 2022) for emissions calculations could significantly
misrepresent emissions for activities with dynamic temporal patterns,
and that being able to capture the diurnal and seasonal trends in
MEF values is essential. Regarding average emissions, month-hour AEFs
fall in a narrower range of values closer to the annual AEF. For an
application in which AEFs are appropriate, using an annual AEF in
place of month-hour AEFs for emissions calculations would be less
erroneous than making the same simplification for MEFs.

5.3. The influence of hydropower and imports on AEFs and MEFs

In Fig. 6, the changes in generation were compared between consec-
tive hours for each fuel serving the electricity demand in the months
f March and July of 2019 and 2020. This figure identifies which fuels
espond more to changes in electricity load as well as diurnal trends
n solar and wind availability. It appears that hydropower was more
esponsive to increases in demand in evening hours of March 2020
han in March 2019 (MEFs of 300–400 kgCO2∕MWh in evening hours
f 2019 compared to 100–200 kgCO2∕MWh in 2020) and was able to
reduce CAISO’s reliance on imports and natural gas for marginal gener-
ation, despite demand changes being similar on an average day across
the two years. As a result, hydropower effectively reduced marginal
emissions and MEFs during the evening hours of 2020 when compared
to 2019 (Fig. 4). Despite the limitation of hydropower generation in the
year 2020 compared to 2019 (see Table 1), the hydropower dispatch
ramp-up in 2020 was complimentary with renewable energy availabil-
ity and successfully replaced fossil-fuel based marginal generation. This
example provides further evidence that energy-limited resources like
hydro, if dispatched strategically to offset the need for the dirtiest
marginal generators, can help reduce emissions, even in a dry year.

Comparing the hourly generation changes between July 2019 and
July 2020, it appears that the increased reliance on natural gas genera-
tion (in place of imports) in the early evening hours of 2020 compared
to 2019 could have driven higher MEF values in 2020. When high
temperatures in July spur increases in electricity consumption, it is

often the case that neighboring BAs’ electric energy consumption values
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Fig. 6. Average changes in hourly generation between two consecutive hours for each resource serving CAISO’s electricity demand in March and July of 2019 and 2020.
are high as well. As a result, imports from neighboring BAs might
often be limited when CAISO’s demand reaches its highest levels. While
the breakdown of hourly electricity generated by technology (namely,
natural gas combined cycles, gas turbines, steam turbines, and internal
combustion engines) is not available for generation within CAISO or
imports, the observed MEF values of roughly 500 kgCO2/MWh in the
early evening hours of July 2020 suggest that generators at the margin
could have been natural gas combustion turbines (known as ‘‘peaker’’
plants), which on average emit about 550 kgCO2/MWh (Steen, 2000).
Considering the additional natural gas generation in July 2020 as
compared to 2019 and the higher MEFs in 2020, it is likely that natural
gas combustion units were more active during the peak hours of July
2020. In terms of the magnitude of the demand changes, electricity
consumption increased more aggressively during the afternoon hours
in 2020 (an increase of about 1800 MW in 2020 versus 1400 MW in
2019 between 3 and 4 p.m.).

5.4. Comparing MEFs versus AEFs

Consistent with other studies, the results show that MEFs are sig-
nificantly different from AEFs in most hours of the year (see Figs. 4
nd A.6). In fact, in late spring and early summer months, the MEF
an be nearly three times the magnitude of the AEF. This occurs when
here is a high fraction of renewable energy on the grid, which results in
ower AEFs, while the last unit of demand is still often met by fossil-fuel
eneration. While the MEF for a given hour in CAISO is typically higher
han the AEF, this is not always the case given the complex dynamics
f hourly changes in the fleet mix, which can be met in part by clean
esources such as hydropower and or clean imports. For example, as
t was explained in the previous section, operational changes such
s hydropower generation timing could result in lower MEFs (100–
00 kgCO2∕MWh) compared to AEFs (200–300 kgCO2∕MWh) during
evening hours of March in 2020. However, hourly AEFs in general were
lower in March 2019, in part due to the abundance of hydropower
resources thanks to the wet conditions in the state in that year (CDWR,
2020).
9

5.5. The influence of other interactions

Relying on historical data provides holistic context and evidence
to understand various trends and driving factors in marginal emis-
sions. However, some interactions can still be refined to provide better
representation of regional complexities and dynamics. Although the
presented method captures the electricity trades and emissions asso-
ciated with imports and exports, it is limited in answering questions
related to inter-regional influences on MEFs values (e.g., how long-
distance renewable exports from CAISO to other regions can effectively
reduce CO2 emissions elsewhere. A larger scale regional regression
model (for example, WECC-wide) with sub-regional representation is
needed to be able to answer these types of questions. Additionally, with
rising penetration of grid-scale battery storage technologies, the role of
storage for displacing fossil-fuel-based marginal generators should be
investigated in future studies.

It is worth noting that although the proposed method is well suited
to capture historical dynamics of the electric grid, it is less insightful
to provide information about future dynamics. Given the fast pace of
structural and operational changes in electric grids due to renewable
energy adoption, electric power grid modeling may be a more effective
option if long-term MEFs are of interest (such as in Gagnon and
Cole, 2022). However, historical data and regression-based MEFs are
useful to validate the MEFs calculated through modeling exercises. Over
the short-term analysis, although the use of AEFs for DSM emissions
quantification is still widespread (Mayes and Sanders, 2022; Onat
et al., 2015; Samaras and Meisterling, 2008), developing regression-
based MEFs is much insightful and necessary, especially for grids with
growing penetration of renewables.

6. Conclusion

In this paper, a proposed multiple linear regression model is used
to quantify MEFs at the hourly level, relying on historical hourly
emissions, electricity generation and consumption data. This model
was applied for CAISO using historical data for 2019 and 2020. This

paper’s methodology improves previous MEF estimates by taking a
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consumption-based approach that accounts for electricity trades with
neighboring regions, as well as including a specific term to account for
generation from variable renewable sources (i.e., solar PV and wind).
This study shows that capturing these factors is important in grids like
CAISO that have high levels of renewable energy penetration and meet
considerable fractions of their demand with imports.

The proposed method will become increasingly applicable as elec-
tric grids across the country incorporate more renewable technologies
and aim for around the clock net-zero emissions targets. These method-
ological changes allow for better isolation of the impact of electricity
demand on CO2 emissions and explore the temporal variations in the
emissions intensity of marginal demand. The MEFs calculated through
the proposed methodology can also be used for evaluating the effec-
tiveness of energy management measures and different grid-connected
technologies for reducing emissions. For example, policymakers could
use these granular MEFs to facilitate programs that can strategically
utilize flexible loads (e.g., electric vehicle charging, heating and cool-
ing, etc.) to reduce demand during the most emissions-intensive hours
of the day. Accurate, up-to-date MEFs are an essential step in monitor-
ing emissions and leveraging the timing of electricity consumption to
effectively manage and reduce emissions.
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