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Handling Editor: Zhifu Mi The fleet of power plants supplying electricity to a power grid varies diurnally and seasonally, creating
large time-dependent differences in the emissions associated with consuming electricity, particularly in grids

Dataset link: http://data.mendeley.com/datase with high penetrations of renewable electricity generators. In addition, modern grids are incorporating

ts/7W87xy5pwj/2 more demand-side interventions that incentivize electricity end users to temporarily modify their electricity
Keywords: consuming behavior in efforts to change the shape and magnitude of electricity consumption over a period of
Marginal emissions factors time. Current methods for quantifying the emissions associated with marginal shifts in electricity consumption
Regression-based model are not sufficient given the changing dynamics of supply-side generation resources. This study introduces a
Renewable energy novel multiple linear regression model that utilizes historical demand, variable renewable generation, and CO,
CO, emissions emissions data to quantify hourly marginal emissions factors for the years of 2019 and 2020. The developed
Demand-side management consumption-based CO, accounting method includes the emissions embedded in net electricity imports in
CAISO addition to emissions from in-region generators. The proposed framework is applied to the case study of
California Independent System Operator (CAISO), revealing a wide range of hourly-level marginal emissions
factors (89-503 kgCO,/MWh) during the period of study. The proposed method improves upon the existing
literature by proposing a consumption-based method that is well suited for estimating emissions avoided
through demand-side changes in load, particularly in electric grids, like CAISO, with high renewable energy

penetrations.
1. Introduction factor (i.e., the total grid emissions for a period of time divided by the
total demand over the same period). These quantities are often easy to
Understanding the interactions between electricity demand and calculate, pending adequate data availability, but estimating marginal
electricity supply is an important first step in quantifying the emissions emissions at a point in time is not as straightforward because it is
impacts of load modifying interventions and leveraging demand-side typically difficult to accurately identify marginal generators and isolate
resources for deep decarbonization. In an electric grid, power supply their emissions. Theoretically, electricity generators are dispatched

must be balanced with electricity demand at any given time of day.
This means that each time there is an increase in electricity demand,
there is a commensurate increase in the supply of electricity (and
conversely, electricity supply must be reduced if electricity demand
decreases). Marginal generators are the power generation units that
respond to these changes in demand; altering their output to match the
new level of demand. Tracking the operation of marginal generators
in the context of the electric grid operation provides key information
in greenhouse gas accounting and developing emissions mitigation

according to the lowest marginal cost of electricity generation given
operational and transmission constraints (Jenn et al., 2020). When
compared to renewable electricity generators, fossil fuel-based gener-
ators have relatively high operational costs, and therefore, are often
dispatched after renewables. Several studies have used comprehen-
sive electric grid simulation models for assessing long-term (implying
that future capacity expansion changes the generation mix) marginal
emissions associated with electricity generation systems (Gagnon and
Cole, 2022) and short-term (implying that the generation capacity mix

measures.

Traditionally, quantifying emissions of the electric grid focuses on does not change significantly), and have applied their estimates to
total grid emissions (i.e., the sum of all emissions associated with the different cases such as electric vehicle charging (Huber et al., 2021;
electricity supply over a given period of time) or the average emissions Kamiya et al., 2019; Raichur et al., 2016) renewable energy integration
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(Buonocore et al., 2016; Li et al., 2020), energy efficiency (Buonocore
et al,, 2016) and energy storage (Pimm et al., 2021). For instance,
one study developed a reduced-order power plant dispatch model
for the North American Electric Reliability Corporation regions for
years 2014 to 2017 and showed that clusters of low- or high-emitting
power plants of similar production cost could create large changes in
marginal emissions factors (MEFs) as ascending the order of dispatching
generators (Deetjen and Azevedo, 2019). Another study builds upon
cost-based dispatch by incorporating ramping limitations and applies
this methodology to Great Britain’s power system, finding significant
variations in MEFs within a day and over the course of a year (Zheng
et al., 2015). One limitation of simulation modeling approaches is that
actual grid operation is more complicated than most simulations can
capture. For example, more than one resource or generation unit can
contribute to supply the last unit of electricity, or cheaper generators
with limited generation capacity, such as hydropower, may choose to
produce more electricity during more profitable times of the day. Khan
(2018) found that oil was the only consistent marginal resource in
Bangladesh, but in New Zealand, a study found that peak demands
were primarily met by hydropower (Khan et al., 2018). Li et al. (2017)
found that for the Midcontinent Independent System Operator (MISO)
in the years spanning 2015 through 2018, fossil-fuel burning generators
were generally the marginal resource, but it also found that at high
demand times, hydropower also contributed to marginal generation
in the MISO Central subregional grid, while wind energy contributed
to marginal generation in the MISO North subregional grid (which
had about 27% of total electricity generation from wind). Electricity
imports and exports dynamics are among other factors that further
complicate electric grid operation beyond what models can capture.
Alternatively, regression models are used to track short-term
marginal emissions (typically on the scale of hour-to-hour) and are
generally more accurate than simulated values obtained from electricity
system models (Deetjen and Azevedo, 2019). Regression-based models
rely primarily on historical granular electricity generation, consump-
tion, and greenhouse gas emissions data to estimate marginal emissions.
One advantage of using observed historical data to estimate marginal
emissions is that the data capture grid operation constraints as they
occurred, in contrast to some simplifying assumptions in electric grid
models that might ignore generator outages or transmission congestion
constraints. Different imports and electricity purchase structures and
load serving obligations can also be hard to accurately simulate in elec-
tric grid models. Other constraints, such as maintaining grid stability
and reliability, might result in deviations from loading orders and/or
lifting or enforcing certain environmental rules, which are hard to
predict and capture in electric grid simulations that are suited to mostly
capture the grid’s normal operations (Mccall et al., 2016). Another
advantage is the low complexity of regression models (as compared
to electricity system models), which makes it easier to interpret and
validate results. Different regression models have been previously used
to analyze marginal emissions of Great Britain’s electric grid by Hawkes
(2010), India’s electric grid by Sengupta et al. (2022), Ontario’s elec-
tricity system in Canada by Gai et al. (2019), Pennsylvania, Jersey,
Maryland Power Pool (PJM) in the US by Donti et al. (2019), MISO
by Thind et al. (2017), and North Electric Reliability Council (NERC)
regions in the US by Siler-Evans et al. (2012). These studies utilize
various statistical models with a range of different independent vari-
ables. Some studies used a simple linear regression model with hourly
changes in generation as the only independent variable (Hawkes, 2010;
Huber et al., 2021; Siler-Evans et al., 2012). In one of the earliest MEF
quantifying studies, Siler-Evans et al. (2012) assumed that changes
in electricity demand are only balanced by changes in the output of
fossil fuel-based generators, ignoring the role of changes in production
from non-fossil fuel powered generators in meeting marginal demand.
Seckinger and Radgen (2021) similarly assume that all marginal de-
mand is met with fossil fuel technologies when calculating MEFs for
the German grid, citing the prioritizing of renewables as justification
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for this structure. Although this might be an adequate assumption for
grids with low penetrations of renewable energy, or with strict resource
queuing rules, many regional grids incorporate significant levels of
alternative sources, and emissions free generators are increasingly on
the margin. In fact, specific loading orders can also facilitate the
marginal operation of renewables, regardless of their low production
cost advantages (e.g., California’s 2003 Energy Action Plan that pri-
oritizes renewables over fossil fuel generation Bender et al. (2005)).
Some studies have included electricity generation from variable energy
resources, as well as levels of electricity demand as predicting variables
that marginal emissions depend on Gai et al. (2019), Pimm et al.
(2021), Thomson et al. (2017). A number of these studies are summa-
rized in the supplementary data Table A.1. Growing shares of battery
storage deployments will also create new grid operation dynamics. It
has yet to be explored how different charging and discharging patterns
can impact marginal generators and emissions.

Regardless of the statistical model and predicting variables used, all
previous studies reported that MEF trends are distinct among seasons
and hours of the day, and can also be significantly different from the
concurrent average emissions factors (AEFs) due to factors such as
electricity demand patterns, electricity generation fleet, the legacy of
technology mix, fuel type, operational cost, dispatchability and grid
interconnectedness (Buonocore et al., 2016; Hawkes, 2010; Jenn et al.,
2020).

Geographic boundaries are critical for accurate emissions account-
ing (Ryan et al, 2016). Previous studies have typically taken a
generation-based approach for calculating changes in emissions and
generation by considering generators located within their region of
focus (Hawkes, 2010; Siler-Evans et al., 2012). This approach assumes
that changes in electricity demand are equal to changes in electric-
ity supply in that same geographic area, ignoring the influence of
electricity trades with external areas. Electricity trades were modeled
by Tranberg et al. (2019), who assessed real-time grid-wide average
emissions in European electricity markets, and by de Chalendar et al.
(2019), who analyzed annual and median daily emissions (not marginal
emissions) for 66 electricity balancing authorities across the US. The
latter study showed that exchanges between regions play an especially
large role in the Western Interconnection (where California Indepen-
dent System Operator or CAISO is located), since, as an example, 2016
net imports accounted for 29% of annual consumption by net importing
regions and 2016 net exports accounted for 37% of annual generation
in net exporting regions (de Chalendar et al., 2019). While electricity
trades have been modeled in a few average grid emissions studied, they
are widely absent in regression-based MEF assessment studies.

The large variation in these factors among different electric grids
highlight the need for evaluating regional specific MEFs. Moreover,
rapid shifts in electricity supply mix make it essential to frequently
re-assess MEF estimates. In this study, MEFs of CAISO, a grid that
generated 20% of its annual electricity consumption from solar PV and
wind turbines in 2019 (and 21% in 2020), are evaluated. The analysis
is done independently in each year and examine changes that occur
between the two years. This comparison provides insight as to the
impact of supply factors, such as the use of hydropower, as well as the
effect of changes in electricity demand patterns on MEFs.

2. Contributions of this study

Our framework refines three major aspects of the regression models
previously used in MEF assessment literature through its approach in
considering electricity trades and variable renewable energy genera-
tion. These improvements increase the ability to methodically quantify
the efficacy of demand-side management (DSM) strategies for reducing
emissions, since DSM affects the subset of generators at the margin as
opposed to the whole set of generators across the grid.
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1. This framework takes a consumption-based approach, rather
than a generation-based approach (i.e., emissions associated
with electricity consumption in CAISO are accounted for regard-
less of whether electricity is produced with in-region resources
or imported from out-of-region). In addition, electricity gener-
ated with in-region resources and exported out-of-region is not
considered for in-region electricity demand. The emissions asso-
ciated with these exports are removed from the total emissions
before emissions factor calculations.

2. The regression model used in this study mimics a net load curve
to explicitly account for generation from emissions-free non-
dispatchable solar PV and wind turbines, which is particularly
important for analyzing grids with high levels of renewable
energy penetration. Specifically, the model includes a designated
term for variable renewable energy in the regression model, an
inclusion lacking in previous US-based studies.

3. Lastly, this framework also makes methodological improvements
that account for MEF-demand dependency and enables the anal-
ysis of more granular emissions dynamics and careful quantifi-
cation of hourly and monthly MEFs.

3. Methods

This section describes the methodology developed to use historical
data for estimating hourly average emissions factors and marginal emis-
sions factors (defined in the next subsection) for CAISO independently
for two years of 2019 and 2020.

3.1. Definitions

Here, the following definitions are used for quantifying emissions:

Average Emissions Factor (AEF): This metric quantifies the emis-
sions associated with the average unit of electricity consumed by
accounting for emissions from all electricity generating units in the
CAISO region and net electricity imports. In this study, AEFs are
calculated using periods of length one-hour.

Marginal Emissions Factor (MEF): This metric shows the change
in emissions due to one unit change in electricity demand, as changes
in demand impact marginal generators rather than all generators. In
this study, MEFs are calculated using hour-to-hour changes in demand,
variable renewable generation, and CO, emissions.

3.2. The system boundaries

This study is bounded around the CAISO region located within the
Western Electricity Coordinating Council. Based on CAISO data (CAISO,
2021b), in 2019, about 76% of total annual electricity (219.5 TWh)
was generated within the region (74% in 2020); the remainder was
imported from multiple balancing authorities (BAs) in the Southwest
and Northwest regions which are listed in Table 1. This electricity was
generated from a mix of technologies that use natural gas, nuclear,
hydro, and renewables, which included large fractions of solar PV and
wind technologies (20%-21% of total supply).

3.3. Data sources and data processing steps

The utilized data sources and their corresponding main processing
steps are as follows:

1. The list of power plants operating in each BA in each year were
identified based on the US Energy Information Administration
(EIA) Form EIA-860 reports (U.S. Energy Information Adminis-
tration, 2020) by filtering power plant identification numbers
for the two sectors of electric utility and independent power
producers (IPP) for both CHP (combined heat and power) and
non-CHP plants.
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Table 1

Electricity supply sources in the CAISO region (total electricity supplied was 219.5 TWh
in 2019 and 218.5 TWh in 2020). Electricity supply data from CAISO (2021b), and the
breakdown of net imports from U.S. Energy Information Administration (2021).

2019 2020
Total Supply (Sum to 100%)
Fossil fuel (mostly natural gas) 29% 33%
Nuclear 7% 7%
Hydro 12% 6%
Solar PV and Wind turbines 20% 21%
Other Renewables 7% 7%
Net Imports 24% 26%
Breakdown of Net Imports from BAs to CAISO (Sum to 100%)

Los Angeles Dep. Water & Power (LDWP) 35% 31%
Bonneville Power Administration (BPAT) 13% 26%
Salt River Project (SRP) 25% 19%
Arizona Public Service Company (AZPS) 19% 11%
Balancing Authority of Northern California (BANC) 6% 6%
Nevada Power Company (NEVP) -1% 5%
Imperial Irrigation District (IID) 5% 4%
Western Area Power Administration -
Desert Southwest Region (WALC) 2% 2%
PacifiCorp West (PACW) <1% <1%
Turlock Irrigation District (TIDC) -2% —-3%
Centro Nacional de Control de Energia (CEN), and
Comision Federal de Electricidad (CFE) (in Mexico) -1% -1%

2. Hourly emissions data were extracted from the US Environmen-
tal Protection Agency’s (EPA) Air Markets Program Data for each
state, and were rearranged for each BA based on the list of
power plants identified within each BA in the previous step (U.S.
Environmental Protection Agency, 2021). (Note: EPA’s Air Mar-
kets Program Data reports emissions associated for fossil-fueled
power plants with capacities greater than 25 MW.)

3. Hourly data for electricity generation at BA level as well as elec-
tricity exchanges between BAs were collected from EIA’s Electric
System Operating Data (U.S. Energy Information Administration,
2021). Note that because these data are bidirectional between
BAs, each electricity exchange is reported in two locations. Total
electricity generation data were collected from each correspond-
ing BA file (for example, total electricity generation of LDWP
was extracted from LDWP file). The only exception was BPAT
where historical data reported on the BPAT website (BPA, 2021)
were used instead of EIA’s data (U.S. Energy Information Admin-
istration, 2021) due to the large discrepancies in the reported
EIA values.

4. Data for CAISO’s electricity demand, total electricity generation
and solar PV and wind turbine generation, as well as total im-
ported electricity were sourced from the CAISO website (CAISO,
2021b). These data are reported in five-minute increments, but
this study uses averaged values to represent each hour.

Several considerations and adjustments were made when cleaning
and processing data. First, the timestamps for the data associated with
the three BAs located within the Arizona time zone (i.e., AZPS, SRP and
WALC) were shifted for one hour for the affected data points between
November and March of each year, so that the all timestamps are
aligned with the Pacific Time zone. Second, electricity trades between
CAISO and the two BAs located in Mexico (CEN and CFE) were ignored
in this analysis due to lack of associated emissions data. Instead, the
magnitude of these electricity trades were distributed among the other
BAs within the US in proportion to their concurrent electricity trades
with CAISO. (The electricity traded between CAISO and the two BAs in
Mexico was only about 57 GWh, or 1%, of total net imports to CAISO in
2020, as shown in Table 1.) Third, CAISO’s reported total net imports
were cross-checked with the sum of electricity trades between all of the
individual BAs and CAISO to ensure that the two values were equal.
When the sum of hourly electricity trades between CAISO and other
BAs did not match CAISO’s reported total net electricity imports in a
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given hour, CAISO’s total net import value was used to normalize the
interchange electricity amounts with each BA (scaling the magnitude
of the exchanges with each BA to ensure that the two totals matched).
Fourth, for the bidirectional exchanges reported by the EIA, the values
reported from CAISO’s perspective were primarily used, and data from
other BAs were only used to verify or fill in missing or misreported
electricity interchanges. If hourly data were missing from both sources,
five-day averaged values for the same hour were used. Fifth, it was
ensured that total electricity demand for CAISO was balanced with the
sum of total electricity generation and total net imports in each hour.
Finally, before beginning the regression process, an outlier analysis was
performed to identify data points that were likely the result of incor-
rectly reported emissions values by BAs, or exacerbated by limitations
in the data processing methodology (e.g., a small error in emissions
reporting could be magnified by the scaling process that matches BA-
reported imports with CAISO-reported imports). More details on the
analysis can be found in the supplementary data.

3.4. Consumption-based hourly CO, emissions estimates

Hourly emissions associated with CAISO’s electricity demand were
tracked using Eq. (1), which explicitly accounts for the emissions
associated with electricity imports and exports. In this equation, E,,’
E’i ,and E; . I are emissions associated with in-CAISO power generation,
exports (from CAISO, C, to other BAs, M) and imports (from other BAs,
M, to CAISO, C), and i and ; are indexes for the month and the hour
of day, respectively. Additionally, in this equation, X CZ calculates the
fraction of emissions associated with the electricity produced in CAISO
(G€) but consumed in other BAs; while MC calculates the fraction of
emissions associated with the electricity produced outside CAISO (GM)
but consumed in the CAISO region. It is notable that this accounting
method for CO, emissions is an improvement over the methodol-
ogy used in reporting CO, emissions in five-minute increments on
the CAISO Today’s Outlook website (CAISO, 2021a) where emissions
are approximated using resource-specific CO, emissions rate for in-
CAISO generators and a fixed unspecified emissions rate (i.e., 0.428
mTCO,/MWh as established by California Air Resources Board) for
imported electricity (Hundiwale, 2016).

M—C
_(Z EC. XGC )”+(Z EM. IGM )iy (D)

_pC_pX_ gl _
E ;= Ei’j—Ei’j+E,.,j

3.5. The averaging method for estimating AEFs

For AEF calculations, the emissions data were first grouped by
month i and hour j of the day (e.g., “January, hour 1” has 31 data
points), and then derived a regression model based on Eq. (2) to
calculate an average CO, emissions factor (AEF, ;) using electricity
demand (D; J)asa predicting variable for each hour () and month (i)
pairing. Twenty-four hourly AEFs were calculated in kg CO,/MWh for
each month (e.g., 24 AEFs in January and 288 AEFs in 2019), which
represent an average day in that month.

E,; = AEF,;-D,;; 2

3.6. The regression model for estimating MEFs

Following the steps illustrated in Fig. 1, the CAISO data were first
re-ordered from lowest to highest hourly electricity demand to form
the load duration curve for each year for both years of analysis. Then,
electricity demand was partitioned into 10 equal bins, where each
bin represented 10% of the range between the lowest and the highest
demand (shown in the load duration subplot in Fig. 1). This binning
method allowed quantifying MEFs for hours with similar demand level
(in contrast to AEFs, where binning was done by time of day, so
similar hours of different days in a month were grouped together). This
binning method results in a variable number of data points in each of
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these 10 bins. For instance, Bins 7-10 contained a smaller number of
hours compared to Bin 2-4, as these bins covered the highest demand
hours that occur infrequently throughout the year (see the steep slope
area in the load duration curve in Fig. 1), but they might have more
significance to the regression slope due to larger supply needs during
these hours. Considering the very small number of hours in Bin 10,
(e.g., only 33 h in year 2020), Bins 9 and 10 were combined prior to
the regression step of the analysis. Further combination of bins was
performed ad hoc during the regression process to ensure a minimum
number of data points for each regression (described in more details
later in this section). It is notable that because the bins are defined at
the annual level, some months might not have certain demand levels;
for example, demand levels that fall in Bin 9 and Bin 10 only occur
during summer months.

Secondly, after assigning bins to each hour, the differences between
consecutive hours were calculated for emissions (4E, ;) in kg, electricity
demand (4D, ;) in MWh, and the sum of solar PV and wind generation
values (4R, ;) in MWh. These variables describe the changes between
the hour j and j — 1 and have a label of k that specifies the bin their
demand level falls in. This step is illustrated in the table presented in
the center of Fig. 1.

Thirdly, the multiple linear regression model shown in Eq. (3) was
applied for each demand level and month combination to estimate MEF
values. In the event that a demand level and month combination only
occurred in a small number of hours, demand level bins were combined
with an adjacent bin until a minimum threshold of 25 datapoints was
reached. In this regression model, a, ; estimates MEF and b, ; estimates
the impact of solar PV and wind generation (both in kgCO,/MWh) for
each bin k and month i.

AE; =a;-AD;; + by ;- ARy + ¢y, 3)

Detailed regression results for each month and demand level combina-
tion can be found in the data repository also mentioned at the end of
this document (https://data.mendeley.com/datasets/7w87xy5pwj/2).

Finally, MEF values were converted from a specific month/bin
pairing to month/hour pairing by multiplying the month and bin-
specific MEF values by weight factors w;, that are associated with
the histogram of bins in each hour of each month (see Eq. (4)). In
other words, hourly MEFs are found with a weighted sum, where the
weight is dependent on the bin distribution for a specific hour in a
specific month, and these weights are multiplied by the MEFs for those
month/bin pairings. The resulting hourly MEFs are obtained in the
format of “month-hour” in which 24 MEFs represent an average day in
each month. For illustration, weight factors that had hourly electricity
demand in Bins 2-4 are displayed at the bottom-right of Fig. 1 for
January 2020. As the plot suggests, the majority of hours had demand
levels concentrated within a single demand bin (e.g., 48% of electricity
demand in hour 5 of January 2020 was within the demand range of
Bin 2 and 52% within Bin 3; whereas, electricity demands in hours 2-4
were entirely within the demand range of Bin 2).

MEF, Z(W/k “a,) “

4. Results

In this section, the regression results for MEF values are presented
for each month and demand level in 2019 and 2020, as well as
the estimated month and hour level MEF and AEF values. Additional
evidence from the operation of the electric grid are provided to support
the responsiveness of different grid resources to changes in electricity
demand which help validating the estimated MEF trends.

In general, the results are consistent with the range of AEFs and
MEFs estimated in other studies for CAISO. The coefficient of determi-
nation (R?) for the regression results lies between 0.40 and 0.98 for the
distinct regressions, with better predictability in higher demand levels.
From a practical standpoint, having higher accuracy of MEF estimation
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Fig. 1. Visual representation of the proposed framework to evaluate MEF values.

in higher demand levels is most important since periods with high MEFs
(normally coincident with high demands) have the greatest implica-
tions for emissions reductions and increases due to changes in demand
(see the supplementary data for more details). It is worth noting that
the model shows a better performance in 2019 as compared to 2020,
likely due to data quality issues and the larger spread of the data that
occurred in 2020. As other studies reported, electricity demand patterns
were impacted by COVID-19 pandemic-related lockdowns, such as
lower consumption levels than previous years especially in March and
April months (Krarti and Aldubyan, 2021), and sector-specific changes
in loads, such as increased residential sector consumption in the middle
of the day (Kawka and Cetin, 2021).

4.1. Correlation between emissions and demand

The hourly data distribution in both 2019 and 2020 suggests a
strong linear correlation between hourly demand and hourly CO, emis-
sions, as shown in Fig. 2 subplots A and B. As demand goes up,
less spread is seen in the magnitude of hourly emissions and data
points than for lower demand, implying a tighter correlation between
emissions and demand for higher demand values. At higher levels of
demand, the emissions produced also tend to lie above the line of best
fit, which suggests that as demand increases, the emissions per unit of
demand also increase. This is consistent with the common operational
practice of bringing fast-reacting and dirty electricity natural gas com-
bustion units online to meet the highest levels of demand when the
range of the typical resources used to meet demand is exceeded. In
2019, there was an average of 266 kgCO, generated per MWh, and in
2020 this number rose to 310 kgCO, per MWh, with these values equal
to the slopes of the lines of best fit for the top two graphs of Fig. 2.

Fig. 2 also examines the correlation between changes in emissions
and changes in demand calculated as the difference between two con-
secutive hours for each variable (subplots C and D). In 2019 there was

an average emission of 322 kgCO, per MWh of marginal electricity
generated and in 2020 this number fell to 308 kgCO,, with these
values equal to the slopes of the lines of best fit for subplots C and
D. The magnitude of changes in demand in 2019 cover a wider range
compared to 2020, highlighting higher hour to hour variations in load,
while changes in emissions remained approximately in the same range
in both years. Overall, there is a wider variation in the range of changes
in emissions when the magnitude of demand changes are positive and
large (Q1) than when the magnitude of demand changes are large
but negative (Q3) for subplots C and D. Additionally, a significant
number of hours in Q4 of subplots C and D have an increase in
demand on the scale of GWh and decrease in emissions on the scale
of thousands of metric tons. These events, and more generally, the
large deviations from the lines of best fit, emphasize that changes in
demand alone cannot accurately predict changes in emissions and that
a multiple linear regression model capable of capturing the influence
of the varying supply of renewable energy is necessary.

4.2. MEFs by demand level in each month

Our data binning and regression model resulted in a total of 67,
for 2019, and 61, for 2020, independent MEF values (one for each
distinct demand bin and month pairing in that year). These values
are shown in Fig. 3, and the plotted trend lines show a positive
correlation between MEF and demand level. The higher MEFs for high
demand levels are caused by emissions-intensive marginal generators.
The relationship between demand level and marginal generation also
results in seasonal variations in MEFs. Summer months, which typically
have higher demand levels due to increased electricity usage for air
conditioning show relatively high MEFs when compared with cooler
months. While high demand levels are centralized around summer
months, lower demand levels occur across many months and have a
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Subplot B (2020)
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Fig. 2. Scatter plots of hourly CO, emissions and hourly demand for electricity in 2019 (Subplot A) and 2020 (Subplot B), as well scatter plots of changes between consecutive
hours in hourly emissions and hourly demand between in 2019 (Subplot C) and 2020 (Subplot D). The line for best fit is shown in yellow, with R> = 0.35 (Subplot A) and 0.50
(Subplot B) for hourly emissions and demand, and R = 0.40 (Subplot C) and 0.39 (Subplot D) for hourly changes in emissions and demand.
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Fig. 3. MEFs for each demand level and month combination in 2019 and 2020 with line of best fit.

wider range of corresponding MEFs than higher demand levels. The
slope of the line of best fit was steeper in 2020 than in 2019, meaning
that MEFs were more responsive to demand level in 2020. The causes
of this shift are explored further in the discussion section. Figures
displaying MEFs organized by month instead of demand level can be
found in the supplementary data.

4.3. Month-hour MEFs

Demand-level based MEFs, like those shown in Fig. 3, can be
directly applied in situations in which demand level can be estimated;
however, they do not provide information about diurnal MEF patterns,
which are important for predicting the changes in emissions associated
with changes in electricity consumption that occur at specific times
of the day. To address this need, month-hourly MEFs were derived

using the relationship between time-of-day and demand. The results
are shown in the form of heat maps in Fig. 4. The MEF values in 2019
and 2020 are consistent and similar in terms of hours when the highest
and lowest MEF values are concentrated (i.e., highest in the evening
of summer months and lowest in the morning of spring months).
However, there are two significant differences between the MEFs in
2019 and 2020 that are worth highlighting. First, the highest MEF
values reached in 2020 are substantially higher than those in 2019;
i.e., nearly 500 kg CO,/MWh in evening hours in July 2020 compared
to roughly 370 kgCO,/MWh in August 2019. Second, lower MEFs
during the evening hours of spring months in 2020 (dropping as low
as 100 kgCO,/MWh in the evening in March) show a contrast to 2019,
where MEFs are around 330 kgCO,/MWh at similar periods. In fact, the
MEFs calculated for the evening of March 2020 are significantly lower
than the lowest MEFs at any point in 2019. These differences in MEFs
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Fig. 4. Month-hour distribution of AEFs (top) and MEFs (bottom) in 2019 and 2020. Colors represent the magnitude of emissions factor in kgCO,/MWh.

imply that different resources were operating at the margin in the two
studied years. These differences were investigated in further detail in
the discussion section by examining the electricity generation fleet in
March and July of each respective year. (See Fig. 5.)

4.4. Month-hour AEFs

The temporally based AEFs show strong diurnal and seasonal trends
in Fig. 4. From a seasonal perspective, the AEFs, which are represen-
tative of the average grid mix, reach their lowest values in the spring
when there is a high availability of clean power sources like solar, wind,
and hydropower, as well as moderate demand levels across CAISO.
The AFEFs are significantly higher in the late summer/fall months when
electricity consumption is much higher, as well as in winter months
when supplies from solar resources are limited. AEFs tend to be lower
in the middle of the day due to the availability of solar power and
the relatively low level of demand. In most months, AEFs increase in
evening hours as demand increases and solar PV comes offline causing
a larger fraction of the load to be met with natural gas generators and
imports.

5. Discussion

In this section, some important aspects of the observed trends in
MEFs and AEFs are discussed.

5.1. Consumption-based versus generation-based MEFs

Regression-based hourly-level MEF estimates are rare in litera-
ture; however, hourly MEF values have been periodically reported
by the Center for Climate, Energy, and Environmental Decision Mak-
ing (Azevedo et al., 2020) for various regional aggregations using a
generation-based method. The consumption-based month-hour MEFs in
2019 were compared to MEF estimates reported by CEDM for CAISO
in year 2018, the most recent year that MEFs were reported (Azevedo

et al., 2020). (Note that CEDM used a methodology similar to Siler-
Evans et al. (2012) for estimating MEFs that, as discussed earlier, relied
on hourly changes in fossil fuel generation as the single variable for pre-
dicting changes in emissions.) The comparison shows that differences
between the estimated MEFs and CEDM’s estimated MEFs in the same
month and hour ranged from —15% to 126% (42% average difference
and 39% median difference), and the estimates were lower in value in
99% of hours. While some year-to-year variation could explain these
differences, lower MEF estimates across the majority of hours in the
study are expected given the differences in methodology. As shown
in Fig. 6, the hourly changes in demand were typically larger than
the hourly changes in natural gas generation, requiring other supply
resources such as hydropower, imports, and, in some cases, renewables
to respond to changes in demand (CEDM’s MEF methodology assumes
all marginal generation is met by in-region fossil fuel plants). While
many renewable sources are first-to-take, Fig. 5 shows that emissions-
free hydropower generation can exhibit strong load-following behavior
in evening hours. Additional demand in the evening is met by a mix
of imports, natural gas, and hydropower, resulting in MEFs that can
be significantly different and often lower than those calculated using
in-region fossil fuel generation changes alone.

Additionally, in terms of applications, the use of demand change
as a marginal emissions estimator is advantageous over fossil-fuel
generation change for a couple of reasons. First, having knowledge of
the changes at a specific time in the electric grid’s fossil fuel generation
is much more data-intensive and complicated than knowing about the
changes in electricity demand for a region or balancing authority. Sec-
ondly, the MEF values that simply represent CO, emissions change per
unit of demand change are more ideal to quantify marginal emissions
changes associated with end-use demand changes than MEFs derived
from fossil fuel generation change. (Fossil fuel generation change would
be indirectly correlated with end-use demand changes, which may
be highly uncertain in many hours of the year.) Practically, MEFs
developed in this analysis can directly be multiplied by measured
changes in electricity consumption for any end-use, allowing for more
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Fig. 5. Average hourly generation for each resource serving CAISO’s electricity demand in March and July of 2019 and 2020.

precise and simple monitoring of emissions displacement by demand-
side management measures such as load shifting or load shedding.
While the MEF estimation exercise relied on historical annual data,
applying this methodology with real-time emissions and demand data
would enable a close-to-real-time MEF estimation that could be a
useful tool to quantify the emissions associated with end-use electricity
consumption patterns.

5.2. Year-to-year variation in MEFs

Since regression-derived MEFs rely on historical data, the pre-
dictability of MEFs for future years may be limited by how sensitive
MEF values are to resource dispatch and fuel mix changes that occur
from year to year. Comparing MEF values in 2019 and 2020 helps us
answer this question. In fact, a wide range of differences were found in
hourly MEFs between 2019 and 2020. (Note: The relative differences
between month-hour MEFs in 2019 and 2020 are plotted in Fig. A.5
of the supplementary data.) While summer and winter months in 2020
typically show smaller differences in MEF values between the two years
for the same month-hour combination, greater differences are observed
in spring months. Despite the fact that both years had similar fossil-
fuel and renewable generation shares (shown in Table 1), the role of
hydropower seems to be significant in explaining these differences, as
hydropower’s share of generation decreased from 12% of total supplies
in 2019 to only 6% in 2020 (more discussion of this change is provided
in Section 5.3. The wide range of differences in hourly MEF values
suggests that hourly-level MEF values should be evaluated often and
that historical-based MEFs require a great caution if used for future
years.

It is important to understand whether a less granular temporal
MEF value would sufficiently represent changes in marginal emissions.
To test this, the regression equation was applied to all hour-to-hour
changes, regardless of demand level, to calculate a single annual MEF.
The result was an annual MEF of 302 kgCO,/MWh in 2019 and 285 kg
CO,/MWh in 2020. However, the month-hour MEFs calculated in this
study ranged from 169 to 372 kgCO,/MWh in 2019 and from 89 to
503 kgCO,/MWh in 2020. The large range of MEFs that occurred in

both years indicate that analyses that use an annual MEF (for example
in Holland et al., 2022) for emissions calculations could significantly
misrepresent emissions for activities with dynamic temporal patterns,
and that being able to capture the diurnal and seasonal trends in
METF values is essential. Regarding average emissions, month-hour AEFs
fall in a narrower range of values closer to the annual AEF. For an
application in which AEFs are appropriate, using an annual AEF in
place of month-hour AEFs for emissions calculations would be less
erroneous than making the same simplification for MEFs.

5.3. The influence of hydropower and imports on AEFs and MEFs

In Fig. 6, the changes in generation were compared between consec-
utive hours for each fuel serving the electricity demand in the months
of March and July of 2019 and 2020. This figure identifies which fuels
respond more to changes in electricity load as well as diurnal trends
in solar and wind availability. It appears that hydropower was more
responsive to increases in demand in evening hours of March 2020
than in March 2019 (MEFs of 300-400 kgCO,/MWh in evening hours
of 2019 compared to 100-200 kgCO,/MWh in 2020) and was able to
reduce CAISO’s reliance on imports and natural gas for marginal gener-
ation, despite demand changes being similar on an average day across
the two years. As a result, hydropower effectively reduced marginal
emissions and MEFs during the evening hours of 2020 when compared
to 2019 (Fig. 4). Despite the limitation of hydropower generation in the
year 2020 compared to 2019 (see Table 1), the hydropower dispatch
ramp-up in 2020 was complimentary with renewable energy availabil-
ity and successfully replaced fossil-fuel based marginal generation. This
example provides further evidence that energy-limited resources like
hydro, if dispatched strategically to offset the need for the dirtiest
marginal generators, can help reduce emissions, even in a dry year.

Comparing the hourly generation changes between July 2019 and
July 2020, it appears that the increased reliance on natural gas genera-
tion (in place of imports) in the early evening hours of 2020 compared
to 2019 could have driven higher MEF values in 2020. When high
temperatures in July spur increases in electricity consumption, it is
often the case that neighboring BAs’ electric energy consumption values
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Fig. 6.

are high as well. As a result, imports from neighboring BAs might
often be limited when CAISO’s demand reaches its highest levels. While
the breakdown of hourly electricity generated by technology (namely,
natural gas combined cycles, gas turbines, steam turbines, and internal
combustion engines) is not available for generation within CAISO or
imports, the observed MEF values of roughly 500 kgCO,/MWh in the
early evening hours of July 2020 suggest that generators at the margin
could have been natural gas combustion turbines (known as “peaker”
plants), which on average emit about 550 kgCO,/MWh (Steen, 2000).
Considering the additional natural gas generation in July 2020 as
compared to 2019 and the higher MEFs in 2020, it is likely that natural
gas combustion units were more active during the peak hours of July
2020. In terms of the magnitude of the demand changes, electricity
consumption increased more aggressively during the afternoon hours
in 2020 (an increase of about 1800 MW in 2020 versus 1400 MW in
2019 between 3 and 4 p.m.).

5.4. Comparing MEFs versus AEFs

Consistent with other studies, the results show that MEFs are sig-
nificantly different from AEFs in most hours of the year (see Figs. 4
and A.6). In fact, in late spring and early summer months, the MEF
can be nearly three times the magnitude of the AEF. This occurs when
there is a high fraction of renewable energy on the grid, which results in
lower AEFs, while the last unit of demand is still often met by fossil-fuel
generation. While the MEF for a given hour in CAISO is typically higher
than the AEF, this is not always the case given the complex dynamics
of hourly changes in the fleet mix, which can be met in part by clean
resources such as hydropower and or clean imports. For example, as
it was explained in the previous section, operational changes such
as hydropower generation timing could result in lower MEFs (100-
200 kgCO,/MWh) compared to AEFs (200-300 kgCO,/MWh) during
evening hours of March in 2020. However, hourly AEFs in general were
lower in March 2019, in part due to the abundance of hydropower
resources thanks to the wet conditions in the state in that year (CDWR,
2020).
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5.5. The influence of other interactions

Relying on historical data provides holistic context and evidence
to understand various trends and driving factors in marginal emis-
sions. However, some interactions can still be refined to provide better
representation of regional complexities and dynamics. Although the
presented method captures the electricity trades and emissions asso-
ciated with imports and exports, it is limited in answering questions
related to inter-regional influences on MEFs values (e.g., how long-
distance renewable exports from CAISO to other regions can effectively
reduce CO, emissions elsewhere. A larger scale regional regression
model (for example, WECC-wide) with sub-regional representation is
needed to be able to answer these types of questions. Additionally, with
rising penetration of grid-scale battery storage technologies, the role of
storage for displacing fossil-fuel-based marginal generators should be
investigated in future studies.

It is worth noting that although the proposed method is well suited
to capture historical dynamics of the electric grid, it is less insightful
to provide information about future dynamics. Given the fast pace of
structural and operational changes in electric grids due to renewable
energy adoption, electric power grid modeling may be a more effective
option if long-term MEFs are of interest (such as in Gagnon and
Cole, 2022). However, historical data and regression-based MEFs are
useful to validate the MEFs calculated through modeling exercises. Over
the short-term analysis, although the use of AEFs for DSM emissions
quantification is still widespread (Mayes and Sanders, 2022; Onat
et al., 2015; Samaras and Meisterling, 2008), developing regression-
based MEFs is much insightful and necessary, especially for grids with
growing penetration of renewables.

6. Conclusion

In this paper, a proposed multiple linear regression model is used
to quantify MEFs at the hourly level, relying on historical hourly
emissions, electricity generation and consumption data. This model
was applied for CAISO using historical data for 2019 and 2020. This
paper’s methodology improves previous MEF estimates by taking a
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consumption-based approach that accounts for electricity trades with
neighboring regions, as well as including a specific term to account for
generation from variable renewable sources (i.e., solar PV and wind).
This study shows that capturing these factors is important in grids like
CAISO that have high levels of renewable energy penetration and meet
considerable fractions of their demand with imports.

The proposed method will become increasingly applicable as elec-
tric grids across the country incorporate more renewable technologies
and aim for around the clock net-zero emissions targets. These method-
ological changes allow for better isolation of the impact of electricity
demand on CO, emissions and explore the temporal variations in the
emissions intensity of marginal demand. The MEFs calculated through
the proposed methodology can also be used for evaluating the effec-
tiveness of energy management measures and different grid-connected
technologies for reducing emissions. For example, policymakers could
use these granular MEFs to facilitate programs that can strategically
utilize flexible loads (e.g., electric vehicle charging, heating and cool-
ing, etc.) to reduce demand during the most emissions-intensive hours
of the day. Accurate, up-to-date MEFs are an essential step in monitor-
ing emissions and leveraging the timing of electricity consumption to
effectively manage and reduce emissions.
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