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ARTICLE INFO ABSTRACT

Handling Editor: Xin Tong Marginal Emissions Factors (MEFs) quantify the time-dependent changes in CO, emissions resulting from
changes in electricity consumption. Accurate MEFs are critical for calculating the emissions impact of demand-
side management (DSM) activities and programs, but current methods of calculating MEFs are limited by their
temporal resolution, accuracy (particularly in grids with high penetrations of variable renewable energy), and
ability to predict MEFs ahead of time, reducing their utility for DSM. We improve upon existing techniques
by introducing a novel multi-layer perceptron to linear composite model that uses publicly available grid data
to calculate historical MEFs and predict day-ahead MEFs. We test our model on publicly-available data from
the California Independent System Operator over the period of 2019-2021, a grid with high daytime VRE
generation. Results indicate that our model produces more accurate and more granular demand-based MEF
estimations than comparable regression techniques and maintains high accuracy when use to forecast future
MEFs. Our MEF framework can be applied to other regional grids to evaluate and design DSM strategies that
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leverage CO, emissions-reductions as motivation for altering electricity consuming behaviors.

1. Introduction

As electric grids in the United States achieve increasingly high frac-
tions of wind and solar generation, the relationship between amount
of electricity demanded and the CO, emissions associated with pro-
ducing that electricity is decoupling and highly time-dependent. While
grids with primarily fossil-fuel-based generation typically exhibit a
close relationship between the amount of electricity demanded and the
associated emissions, grids with high fractions of wind and solar Pho-
tovoltaic power (referred to collectively as variable renewable energy
sources, or VRE) have an emissions-intensity that varies significantly
throughout the day and over the course of a year. For example, wind
and solar power accounted for 24.9% of total generation in 2021 in Cal-
ifornia (Commission, 2022), and as a result the California Independent
System Operator (CAISO, the organization responsible for managing
the majority of California’s bulk power system Operator, 2023c) ex-
periences diurnal patterns of solar generation and total demand for
electricity that often create a low net load (total load minus VRE
generation) in the middle of the day and a high net load in the evening.
As a result, the grid tends to be less emissions-intense in the middle of
the day when there is an abundance of solar power and more emissions-
intense in the afternoon and evening when CAISO relies heavily on
natural gas generators to meet demand (Operator, 2023b; Denholm
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et al.,, 2015). An implication of this phenomenon is that shifting an
electricity load from one time period to another can reduce the amount
of emissions associated with the load, even if the magnitude of demand
is unaffected. Quantifying the exact change in emissions associated with
modifying load at a specific time becomes a challenging but important
task.

One tool used to quantify the changes in emissions associated with
changes in demand are emissions factors (EFs). Researchers typically
draw a distinction between Marginal Emissions Factors (MEFs) and
Average Emissions Factors (AEFs) (Ryan et al., 2016; Hawkes, 2014).
AEFs describe the relationship between a region of interest’s total
generation for a period of time and the total emissions produced from
that generation, which is dependent on all of the generators supplying
electricity to that region’s grid. MEFs describe the relationship between
changes in generation (or demand) and changes in emissions and
depend only on the resource or resources that respond to changes
in demand at a specific time, making them useful for evaluating the
impact of adding, removing, or altering loads (Regett et al., 2018;
Samaras and Meisterling, 2008).

Several studies have used AEFs for evaluating the emissions changes
caused by demand-side management (DSM) strategies that change the
timing of electricity loads, including air-conditioning usage (Mayes
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and Sanders, 2022), EV charging (Noussan and Neirotti, 2020), and
electricity usage in the water industry (Zohrabian and Sanders, 2021).
However, using MEFs for DSM applications has become more com-
mon in recent years under the justification that additional loads or
changes in load impact electricity production by marginal generators
(as opposed to changing production across the whole generation fleet).
Recent studies have used MEFs to evaluate the impact of EV charg-
ing patterns (Gai et al.,, 2019; Holland et al., 2022; Huber et al.,,
2021; Kamiya et al., 2019), electricity storage policy (Li et al., 2017;
Pimm et al., 2021; McKenna et al., 2017; Braeuer et al., 2020), air-
conditioning timing (Stopps and Touchie, 2022), and societal damage
factors (Donti et al., 2019).

One common method for estimating MEFs is through grid model-
ing. Grid models work by representing a fleet of power plants and
creating an order in which they respond to demand, with the order
often being cost- or merit-based and less frequently dependent on
factors such as the location of the demand and/or the individual power
plants (Hawkes, 2014; Deetjen and Azevedo, 2019; Gagnon and Cole,
2022; Sengupta et al., 2022; Zheng et al., 2015). A downside to the grid-
modeling approach is that these models often require simplifications
that prevent them from fully representing grid behavior. For example,
Gagnon and Cole (2022) point out that their model does not account
for maximum ramp rates, or minimum up or down times, which can
significantly impact MEF estimates (Zheng et al., 2015). Other models
ignore trades of electricity between regions, which can be a significant
portion of supply and demand (Deetjen and Azevedo, 2019). The accu-
racy of these models can also vary significantly depending on location
and data availability (Sengupta et al., 2022).

Alternatively, regression techniques that estimate MEFs based on
historical grid data may do a better job of incorporating grid con-
straints, although they are also limited by data availability and vary in
accuracy. Many regression-based analyses follow a methodology similar
to that established by Hawkes (2010), where changes in demand or
generation are regressed on changes in emissions (single-factor linear
regression) (Holland et al., 2022; Huber et al., 2021; Kamiya et al.,
2019; Li et al., 2017; Pimm et al., 2021; McKenna et al., 2017; Braeuer
et al.,, 2020; Donti et al., 2019; Seckinger and Radgen, 2021; Siler-
Evans et al., 2012; Thind et al., 2017). While this methodology works
well for primarily fossil-fuel-based grids, it is less appropriate for grids
that have both carbon and non-carbon emitting resources changing
generation throughout the day. For example, Siler-Evans et al. (2012)
regress changes in emissions on changes in fossil-fuel generation to
determine the MEF, but this assumes that renewable energy sources
are never the marginal resource, which is not the case for grids with
significant generation of hydropower or that experience VRE curtail-
ment (Zohrabian et al., 2023; Operator, 2023a). Li et al. (2017) expand
on this approach by regressing hourly changes in emissions on hourly
changes in generation from all sources. While this better incorporates
renewables as marginal generators, it fails to capture grid dynamics
during VRE ramping periods. Under this methodology, rapid increases
in VRE generation can artificially give the impression that additional
demand is emissions-free, or even create situations where hourly emis-
sions drop despite hourly demand increasing (due to the displacement
of fossil fuel generators). This could give the false conclusion that the
MEF is zero or even negative, when, in the absence of curtailment,
additional demand would actually increase emissions. This failure to
identify the true marginal emissions could lead to large inaccuracies
when estimating the emissions impacts of potential DSM strategies by
incorrectly encouraging shifting load to high-renewable hours when,
in reality, the marginal resource for some of those hours would be
fossil-fuels.

To improve upon these single-factor regression methodologies, more
recent studies have introduced models that incorporate both changes
in total demand and changes in generation from VRE sources. These
two variables can be thought of as having separate and opposite effects
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on changes in emissions and can be represented through a multiple-
linear regression model, which was first introduced by Thomson et al.
(2017) to capture the influence of wind generation in Great Britain.
This approach was also utilized by Zohrabian et al. (2023) for VRE gen-
eration in California, where the coefficient on the VRE term was called
the marginal displacement factor (MDF). These models better isolate
the impact of changes in demand (instead of changes in generation or
a subset of generation) on emissions, and thus are more appropriate
for DSM applications that seek to determine the impact that shifting,
shedding, or adding loads has on emissions. While this approach is an
improvement on single-factor regression techniques, the application of
the resulting MEFs to DSM is still limited by the temporal properties of
these models.

Beyond being demand-based, MEFs that are intended for evaluating
DSM strategies like demand response and load-shifting should also be
highly temporally resolved and capable of being estimated in advance.
(We refer to these qualities as “granularity” and “forecastability”,
respectively, in this manuscript.) Accurate, ahead-of-time MEF estima-
tions would enable the creation of data-driven DSM programs that
encourage behavioral changes to reduce emissions. Traditional linear
regression calculates the model coefficients for groups of data points,
which results in assigning the same MEF to multiple points. This lack of
granularity is a concern because MEFs can vary significantly hour-to-
hour and day-to-day. Coarse-resolution MEFs, such as those calculated
at the annual level (Donti et al., 2019; Holland et al., 2022; Seckinger
and Radgen, 2021; Thomson et al., 2017; Siler-Evans et al., 2012;
Thind et al.,, 2017), can be useful for understanding the evolution
of the grid and high-level changes in the mix of marginal resources,
but are poorly-suited for evaluating the emissions implications of DSM
applications, which modify loads on sub-daily time intervals. Other
studies group their analyses by hour of the day, calculating MEFs at
the year-hour level (24 values for the whole year) (Thomson et al.,
2017; Kamiya et al., 2019; Siler-Evans et al., 2012; Thind et al., 2017;
Braeuer et al., 2020), or month-hour level (288 values for the whole
year) (Gai et al., 2019; Li et al., 2017; Donti et al., 2019; Zohrabian
et al., 2023). MEFs calculated with these methods are better suited
for demand-side applications that focus on time of day, but fail to
capture the significant changes in grid and consumer behavior that can
occur across months, or even days. Factors such as the demand level
and amount of renewable energy generation can depend strongly on
weather variables that change significantly day-to-day.

To increase granularity, Beltrami et al. (2020) developed a novel
methodology using an auto-regressive integrated moving average
model and found that it compared favorably to traditional linear-
regression approaches, achieving higher granularity and more accurate
predictions of changes in emissions for historical data, though they did
not explore using this method for forecasting. Other analyses group
their regressions by load-level (Pimm et al., 2021; Siler-Evans et al.,
2012; Thind et al., 2017; McKenna et al., 2017; Huber et al., 2021),
which could theoretically improve both granularity (i.e., any time at
which load is known can be assigned an MEF) and allow for MEF
forecasting by using projections of load that are commonly done for
electricity providers. Of the listed studies, this forecasting method
was explored only by Huber et al. (2021) who used MEF forecasts
to determine optimal EV charging times. The main limitation of this
approach is that binning by demand prior to regression forces all points
with a similar level of demand to have the same MEF; in reality, other
factors such as the time of day and amount of renewable generation
can strongly impact MEFs.

New methodologies are needed for calculating demand-based MEFs
given the growing importance of DSM strategies for managing the
challenges associated with grids with high penetrations of variable
renewable energy and the rapid adoption of new grid resources and grid
management strategies. The proposed method must be effective at (1)
isolating the impact of demand on emissions, (2) temporally resolving
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the emissions factors (“granularity”), and (3) predicting these emissions
factors ahead of time (“forecastability”).

We improve upon previous models by creating a composite model
composed of a multi-layer perceptron (MLP) and a linear model and
then apply it to the grid overseen by CAISO, a grid that has high frac-
tions of renewable generation, a variety of resources that contribute to
marginal generation, and good data availability. While (to the authors’
knowledge) MLP models have not previously been used to calculate
MEFs, there is precedent for using neural networks in the electric grid
research space to forecast electricity demand and prices that achieve
high degrees of accuracy and granularity (Park et al., 1991; Singhal and
Swarup, 2011; Cataldo et al., 2007; Chae et al., 2016). The advantages
offered by the composite model developed in this study, including
higher accuracy and granularity than traditional regression models, are
maintained through model forecasting, resulting in MEFs that are well
suited for DSM applications.

2. Material and methods
2.1. Preparation of dataset

We prepared a dataset of CAISO generation, demand, and emissions
for the 2019-2021 period with the following data collection and ma-
nipulation process. The key data used in this methodology and their
sources include:

1. data on CAISO’s demand, variable renewable energy generation,
and total imports from CAISO’s website (Operator, 2023b).

2. hourly emissions data for individual power plants from the U.S.
Environmental Protection Agency’s Clean Air Markets Program
Data (Agency, 2023) (it should be noted that the EPA Air Mar-
kets Program Data is only for power plants with capacity greater
than 25 MW, so the emissions calculated in this study do not
include fossil fuel generators under this size)

3. data identifying which power plants belong to which balancing
authorities from US Energy Information Administration (EIA)
860 data (U.S. Energy Information Administration (EIA), 2019)

4. hourly data for individual BA generation by source and hourly
trades between BAs from the EIA (trades are reported bidirec-
tionally) (EIA, 2022).

For all of the above sources, the data used are publicly available and
free to download. These datasets required several processing steps to
fill in missing values and ensure temporal agreement between sources.
First all data from time zones other than PST were shifted to the PST
time zone. Second, the CAISO load data (reported in MW) reported
at 5-min intervals were aggregated to the hourly demand level (in
MWh) via averaging. Third, for hours where CAISO’s electricity trade
with another BA was not reported in the EIA data, we first checked
to see if these values were present in the dataset from the other BA’s
perspective. If values were missing in both directions we filled in the
missing values with the average of the values on the 5 closest days at
the same hour of the day. Then, the sum of all hourly electricity trades
between CAISO and other regions reported in the EIA exchange data
was scaled to match CAISO’s hourly total reported net imports (essen-
tially treating CAISO’s total reported value as the ground truth). This
scaling was done by taking the difference between CAISO’s reported
value and the summed value and distributing this difference to each
BA in proportion to the magnitude of their reported electricity trade.
Finally EIA 860 data was used to aggregate the hourly powerplant
emissions data to the balancing authority level, creating an estimate
of total hourly emissions associated with CAISO generation and the
total hourly emissions associated with the generation of each balancing
authority with whom CAISO trades electricity.

These datasets were then combined to create a final dataset de-
scribing the hourly demand, VRE, and CO, emissions in the CAISO

Journal of Cleaner Production 434 (2024) 139895

region (specifically, the hourly emissions are those associated with
demand that occurs within the CAISO region). Calculating these hourly,
demand-based emissions for CAISO requires accounting for trades of
electricity between CAISO and neighboring BAs and the emissions as-
sociated with these trades. This emissions accounting process generally
follows the procedure outlined by de Chalendar et al. (2019), which
was also utilized by Zohrabian et al. (2023) from which we adapt
Eq. (1).

E€ R EM o
Bu= BBl = B (5 G X (5 G 1 @)
M M

In Eq. (1), the total emissions for CAISO at a specific hour (E,)
are calculated as the total emissions from power plants within the
CAISO region (Ef) plus the emissions associated with imports from
neighboring BAs (E,{) minus the emissions associated with exports
to neighboring BAs (EZ‘ ). The emissions associated with exports are
calculated as the sum over all neighboring BAs of the average emissions
for CAISO (C) at a specific hour (E—C) times the amount of exports
(X€~M) to each BA (M) during that hour. The emissions associated
with imports are calculated as the sum over all BAs of the average
emissions for each BA (M) at a specific hour (Ié—ﬁg) times the amount of
imports from that BA (IM~C) during that hour. This method assumes
that the electricity traded between BAs is reflective of the overall
grid mix of the BA in question at a that specific time. After aligning
these calculated CAISO hourly emissions values with hourly demand
and hourly VRE generation, we then differentiate the demand, VRE,
and emissions at the hourly level to create three additional features
representing the hourly changes in these variables.

2.2. Composite model design

The model developed to calculate MEFs and predict the hourly
changes in CAISO emissions is depicted in Fig. 1. The composite model
consists of a MLP network followed by a multi-variable linear model.
The MLP takes input features for a given hour and predicts the coeffi-
cients of the linear model. The linear model has a term for changes
in demand (4D) with corresponding coefficient M EF, changes in
VRE generation (4V RE) with corresponding coefficient M DF, and an
intercept term c. These predicted terms are then plugged in to the linear
model to calculate a predicted change in hourly emissions. Comparing
this value to the ground truth change in emissions data, a loss term
is calculated and used to train the MLP model. This structure provides
a way to learn MEF, MDF, and intercept coefficients despite the lack
of ground-truth values for these variables by using the error from the
predicted change in emissions to inform the predictions of the latent
coefficient space.

The input features used for the MLP model are hourly demand in
the CAISO region, hourly variable renewable generation in CAISO, hour
of the day, day of the year, and time since 2018 in number of hours.
These features were selected to capture as many of the dynamics of the
electric grid as possible (without introducing unnecessary noise) and
because they can be known or estimated ahead of time for forecasting.
The level of demand and amount of VRE generation provide informa-
tion on the type of marginal generator at a given point in time because
many resources are used for specific levels of net load. Hour of the
day can also be a good predictor of which resource or powerplant is
next in the generation queue, and additionally may capture scheduled
grid behaviors such as electricity trade commitments or hydropower
operation. The day of the year was included to capture seasonal effects,
such as hydropower generation, and time since 2018 was incorporated
to capture general trends MEFs and MDFs, such as changes caused by
the mix of grid resources getting cleaner over time (California’s in-state
generation increased from 21% in 2019 to 23% in 2020 and 25% in
2021 Commission, 2023).
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Fig. 1. Conceptualization of the data sources used, the MLP-linear composite model, and the learning process. The model predicts hourly changes in the emissions associated with

demand in the CAISO region.

2.3. Model implementation

The three years of hourly data was first randomly split into train,
validation, and test sets with a 60/20/20 split. All of the data was
then standardized based on the mean and variance of the train set.
During training, R-squared was computed on the validation set after
each epoch and the model with the highest R-squared seen during this
process was chosen as the final model. This model was then evaluated
on the test set.

The structure and key parameters of the MLP model were deter-
mined via a standard grid search and manual tuning. The MLP has
two hidden layers, the first of size 512 followed by 256. After each
hidden layer there is a batch normalization layer, a Rectified Linear
Unit activation, and a dropout layer with a dropout probability of
.5. The model was trained for 40,000 epochs using a full batch size
and the AdamW optimizer with a learning rate of .01 and a weight
decay of .003. The loss function used was mean squared error with
a regularization term that penalized MEF and MDF values that fell
outside of a reasonable range.

In the process of developing this model, we explored additional
features (such as weather variables) as well as more complex neural
networks (long short-term memory models and attention-based models)
but found that these alternatives did not significantly increase the
accuracy of our model, and often decreased ease-of-use, especially for
forecasting. The final version of the model used in this analysis, as well
as the data used for model training, testing, and validation, is available
in an online data repository (https://github.com/S3researchUSC/MEF-
Regression), with further data available upon request.

2.4. Model outputs for historical data

Using the final trained model, we determined historical MEFs,
MDFs, and intercepts at the hourly level for CAISO for 2019-2021. We
assess the accuracy of our model by calculating the R-squared values
and mean absolute error (MAE) between our model’s predicted change
in emissions and historical actual change in emissions, and compare
these results to predictions made with a multi-variable (MV) regression
model. The MV regression model used for comparison is based on the
work of Zohrabian, Mayes, and Sanders and provides a reference point
for the accuracy level of these more granular MEFs. After the prediction
step, we perform correlation analyses and a feature importance analysis
using Shapley Values calculated by Shap.DeepExplainer (Lundberg,

2023) and discuss the significance of the results. (Shapley Values
have been used for feature importance of neural networks in power
systems in previous research Zhang et al., 2020.) Shapley Values are
a way of measuring the relative importance of each feature and are
calculated by removing a specific feature, finding all permutations of
the remaining features (including the null set), and then evaluating the
marginal contribution of the feature to the estimate (i.e., how much
does including this feature increase the accuracy of the model across
all combinations of features). This process is repeated for each feature
and the results are used to assign a value that represents the importance
of each feature (Lundberg and Lee, 2017).

To assess the accuracy of our model for forecasting tasks, we use
historical day-ahead forecasts of demand and VRE available on CAISO’s
website (CAISO, 2023) to create hypothetical demand and VRE fore-
casts for our test set. First, we split historical demand and VRE data
by quintile and calculate the distribution of forecast errors in that
quintile for the concurrent forecasts of demand and VRE. Then, we use
the historical demand and VRE data from our test set and randomly
sample the error distributions to derive hypothetical forecasts of VRE
and demand for the test set hours. By using this sampling method, we
can assess the sensitivity of our model to the typical level of inaccuracy
present in CAISO’s demand and VRE forecasting data, determining how
accurate our model would be if it relied on forecasted data for these
features (the remaining features — day of the year, hour of the day, and
time since 2018 — are exactly defined for all future times and dates).
We apply this method to the test set so that the model is being tested on
forecasts of data that were not included in the training phase, though
we note that true forecasting would expand beyond the range of trained
values for the time since 2018 feature. We use the constructed day-
ahead forecasts of demand and VRE to predict the hourly change in
emissions and compare the accuracy of these predictions to those made
using actual demand and VRE generation data.

3. Results and discussion
3.1. Hourly MEFs

The hourly MEFs estimated by our composite model using historical
data for 2019, 2020, and 2021 are shown in Fig. 2. In all three years,
MEFs vary significantly both throughout the day and over the course of
the year. Higher MEFs are consistently seen in the late afternoon/early
evening hours, but MEFs can also be high during the middle of the day,
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Fig. 2. Hourly marginal emissions factors calculated with the composite model for CAISO for 2019-2021.
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Accuracy of different MEF models when using actual historical data and historical
forecasted data as inputs. Only the MLP composite model is structured to use forecasted
data.

Metric 2019-2021 historical data Day-ahead forecast
of test set
Binned MV Composite model Composite model
regression
R-squared .85 91 .88
MAE 156,000 122,000 133,000

especially during fall months. MEFs tend to be low in the early morning
throughout the year and during the middle of the day in spring and
summer months. In the early morning (6-8 am), there is typically a
rapid increase in VRE generation and a small or no increase in demand;
this may lead to an underestimation of MEFs as it is difficult to attribute
changes in emissions to changes in demand. Low MEFs in the middle
of the day in spring and summer months are expected when daytime
solar generation is high, and particularly low during the times when
hydropower, wind output and solar generation are simultaneously high
(typically in spring months) (CAISO, 2023). These hours of very high
daytime solar often experience curtailment, and at times, marginal
generation may be effectively emissions free (Operator, 2023a).

The MEFs calculated with this proposed methodology are notably
more accurate for historical data than those calculated with the multi-
variable (MV) linear regression model as shown in Table 1. Table 1
includes the accuracy of the forecasting portion of this analysis, which
is discussed in Section 3.2. Our composite model outperforms the
multi-variable regression model at predicting changes in emissions as
measured by both R-squared and mean absolute error. Considering the
significant increase in granularity achieved with our model, this result
suggests that MEFs calculated with this methodology are preferable for
DSM applications.

The 22% reduction in MAE is significant for DSM applications,
where the specific strategies depend on accurate estimates on the
emissions impacts. This effect is magnified by the increased granularity,

with a year being represented by 8760 distinct MEFs as opposed to the
288 MEFs created when binning by month and hour. With this level of
information, DSM strategies can take advantage of MEF variations that
occur on specific days but do not present themselves as diurnal patterns
over longer time periods.

A number of factors may contribute to uncertainty in MEFs and
explain the remaining inaccuracy in the predictions of changes in
emissions. For example, limitations in the quality of the data, which
was combined and merged across multiple sources, and data pre-
processing, which relied on a hierarchy of data sources and a degree of
temporal aggregation, may create inaccuracies when estimating MEFs.
Additionally, events such as powerplant maintenance or planned in-
operation may impact the queue of generation resources in a way that
is difficult for the MLP model to predict or recognize.

3.2. Forecasting results

The results of the forecasting analysis show that day-ahead forecasts
of demand and VRE generated from our composite model produce reli-
able estimates of MEFs. The percent difference between MEFs predicted
with actual versus forecasted data are shown at the hourly level for
2021 in Fig. 3, with a mean absolute difference of 9% for the entire
year.

The difference between the MEFs based on forecasted data and those
based on actual data is a function of inaccuracies in CAISO’s forecasts
of electricity demand and VRE generation. While CAISO’s forecast of
demand is highly accurate (mean absolute error of less than 1%), its
forecast of VRE is more uncertain (mean error of approximately 15%).
Fig. 3 shows that an underestimation of the MEF is more common
in the middle hours of the day when using forecasted data. While
there are occasionally large differences in forecasted MEFs versus those
calculated with actual data, the difference is less than 10% for 72% of
the hours of the year, providing large utility to DSM planning.

3.3. Drivers of MEFs and feature importance

The MEFs predicted by the MLP model show many non-linear
behaviors, with the correlations between MEFs and variables such as
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demand, net demand, change in demand, and change in net demand
being weak for all portions of the studied period (see Table 2). This
non-linear behavior emphasizes the need for sophisticated models that
can capture multiple contributing factors and the complex relationship
between marginal emissions and grid behavior. Additionally, demand-
related variables show reducing correlation with MEFs from 2019 to
2021, while hour of the day exhibits a stronger relationship.

To examine the relative importance of each input feature to our
MLP model, we calculated Shapley values and show them by month
for 2021 in Fig. 4. Hour of the day was generally the most valuable
feature for reducing model error (difference between predicted and
actual changes in emissions plus regularization term). Day of the year,
which was included to capture seasonal variations, was an important
feature, especially in months with relatively flat MEF and MDF levels,
where simply knowing the time of year is enough to make an accurate
estimate. This suggests that DSM planners could make use of just these
variables to plan load-shifting and DR strategies that reduce emissions,
though our results show this would be less effective than using the
granular, forecasted MEFs developed in this study. VRE was most
important in April and May, months with significant solar and wind
production that frequently reached curtailment levels in the middle of

Table 2

Correlation between MEFs and measures of grid load (i.e., hourly demand and net
load), hourly changes in measures of grid load, and hour of the day. Correlations are
shown for each year of the study period as well as for the entire period. Correlation
is measured by Pearson’s rho for continuous variables, and pseudo-rho (square root of
goodness-of-fit R-squared) for categorical variables.

Hourly  Hourly Hourly change Hourly change Hour

demand net load in demand in net load of day
2019 MEFs 0.19 0.25 0.23 0.33 0.38
2020 MEFs 0.20 0.11 0.30 0.31 0.47
2021 MEFs 0.05 —-0.04 0.18 0.18 0.50
2019-2021 MEFs  0.15 0.10 0.24 0.27 0.41

the day (over 500 GWh of VRE production was curtailed throughout
April and May of 2021) (Operator, 2023a). The amount of demand was
of medium importance throughout the year, though generally lower
in winter months with flatter levels of demand. The least important
feature was found to be the total time elapsed since 2018, which
was included to capture small general trends, such as a grid mix that
is becoming higher percentage renewable energy over the three-year
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Fig. 5. Difference in MEFs between an initial hour and a new hour on April 17th, 2021 that an activity could occur in. Shades of blue represent switches in the timing of an

activity that would reduce emissions.

period. It should be noted that these Shapley values pertain to the
importance of each feature in reducing prediction error, and therefore
are relevant to MEF, MDF and intercept; the MEFs themselves may have
a different relative feature importance.

3.4. Application to DSM

MEFs that can be forecasted 24 h in advance offer a range of
possibilities for using DSM to reduce CO, emissions, helping to meet
decarbonization goals without relying on new technologies or conserva-
tion. The large variations in these granular MEFs for all timescales, and
the lack of direct correlation with variables such as demand or hour of
the day, make it difficult to devise general strategies for DSM. Instead,
forecasted MEFs can be made available to the public and used to create
short-term advice for load shifting. For example, flexible loads could
be shifted from higher MEF to lower MEF hours, reducing emissions
without reducing demand. Fig. 5 illustrates the difference in MEF
caused by changing the timing of an electricity consuming behavior
from one hour to another, using April 17th, 2021 as an example. On
this day, it would be particularly valuable to shift demand away from 5
pm, and generally valuable to shift demand from the 4 to 6 pm window
(i.e., peak demand hours) towards the 9 am to 1 pm window, when
solar resources are highest.

Beyond load-shifting, researchers, policy-makers, and industry
members could use forecasted MEFs to devise lower emissions solutions
for adding a flexible load to the grid (e.g., EV charging). Hourly MEFs
can be used to minimize the amount of emissions associated with a
flexible load, subject to constraints such as a window of time during
which it is desirable for the task to be completed. This concept could
be implemented by a variety of electricity providers and consumers.
Time-of-use plans, where the price per unit of electricity varies by time
of day (Wang and Li, 2015), or real-time pricing, where consumers
experience a rate based on the price of electricity in the whole-sale
market (Allcott, 2009), are utility rate structure options designed to
inform the timing of electricity usage to save utilities money, re-
duce peak demand, and increase grid stability. Similarly, electricity
providers could incentivize consumption patterns that reduce the total
amount of emissions associated with electricity consumption. While
these reliability and climate mitigation goals may align during certain
times of the year, Fig. 2 shows that MEFs can also be high outside of

typical grid peak hours. Further, Table 2 shows that MEFs are only
slightly correlated with demand, so new plans or incentives could
be designed to encourage emissions-reducing consumption patterns in
addition to patterns that improve grid reliability. Emphasis could be put
on the periods when these benefits align, or there may be situations
where prioritizing reducing peak demand is a priority (e.g., during
hot summer months) and others where grid reliability is a smaller
concern and the focus should be on reducing emissions. Utilities could
also create plans that weight both emissions and grid benefits or
give customers the opportunity to choose their priority. On the end-
user side, smart home technologies (Marikyan et al., 2019) could be
designed so that consumers have the ability to choose flexible appliance
and EV charging schedules that prioritize CO, emissions reductions, in
addition to cost savings.

3.5. Limitations and future improvements

Through this methodology we were able to increase the accuracy
and granularity of historical estimates of MEFs as well as accurately
forecast day-ahead MEFs. Though these MEFs are well suited for DSM
tasks, several potential improvements remain. The temporal resolution
of MEFs is limited by the least granular dataset used in the emissions
calculation, which is reported at the hourly level. More granular MEFs
may be able to better describe the behavior of CAISO’s dynamic grid.
This model may also benefit from additional inputs such as spatial in-
formation about the location of demand and generation that allows the
model to better capture transmission constraints, which are expected to
have a significant impact on grid-decarbonization (Brown and Botterud,
2021).

The emissions accounting methodology used in this study does not
account for the emissions associated with grid-level storage. Although
storage was used minimally in the years covered by this project, CAISO
has rapidly expanded battery capacity in recent years from less than
1 GW in mid 2021 to over 6 GW in 2023 (CAISO, 2023). The use
of storage should be addressed via shifting the emissions associated
with charging a battery to the time that the battery is discharging
(when the demand “actually” occurs), as was done in Thomson et al.
(2017). Shifting emissions in this manner would likely increase MEFs
for hours during which batteries are discharged and decrease MEFs for
hours during which batteries are being charged. However, co-located
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renewable energy and storage plants may need to be treated differently,
as this storage would be emissions-free.

A remaining question is how to use MEFs for DSM given the in-
fluence of flexible, emissions-free resources. These resources are some-
times strategically reserved for high-demand periods (for example, the
use of hydropower on CAISO’s grid Zohrabian et al., 2023) leading to a
low MEF during a period of high net demand. Under these conditions,
shifting demand to this period may not actually decrease emissions and
could increase grid stress.

As mentioned in the methodology, we replicated the MEF forecast-
ing task via historical forecasts of demand and VRE for our model test
set, but future forecasting would feature predictions for hours outside
of the temporal range of the training data. We believe this would have
minimal impact on the accuracy of the model as this would only impact
the “time since 2018” feature, and the testing range of this feature
would only be slightly beyond the training range (24 h ahead).

Lastly, applying this methodology to other regions depends on the
amount and quality of data made available by other Independent
System Operators (ISOs). This project used data from CAISO for de-
mand, VRE generation, forecasted demand, forecasted VRE generation,
and imports. Some ISOs share sufficient information on generation,
demand, and trades to replicate this methodology exactly, but others
might require modifications, such as using EIA data alone to calculate
electricity trades or requiring the researcher to develop their own
method of forecasting demand and VRE generation. While this method
was designed for grids with high fractions of renewable energy, this
method should maintain high accuracy for primarily fossil-fuel grids
due to the isolation of the demand impact and renewable energy impact
achieved in the multivariate model.

4. Conclusions

The novel methodology introduced in this study produces accurate
and high-granularity estimates of both historical and day-ahead MEFs,
filling a gap in the existing literature on statistical MEFs. Accurately
forecasted MEFs can be utilized for a variety of DSM applications
that aim to quantify the CO, emissions associated with changing the
demand for electricity. Hence, they can be leveraged to reduce CO,
emissions in addition to the traditional aims of DSM such as reducing
costs for electricity producers and consumers. This study found signif-
icant variations in hourly MEFs both between days, and throughout
the hours of the day, suggesting that shifting the timing of a flexible
load can significantly change the CO, emissions associated with that
consumption. Our results also show that MEFs are not highly corre-
lated with grid-level demand or net demand, underscoring the need
for a flexible, non-linear MEF model, such as a neural network. This
methodology will become increasingly applicable as grids across the
US integrate more renewables and rely more heavily on DSM.
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