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Two-particle correlations are a widely used tool for studying relativistic nuclear collisions. Multi-
plicity uctuations comparing charge and particle species have been studied as a possible signal for
Quark-Gluon Plasma (QGP)  and the QC D  critical point. These uctuation studies all make use of
particle variances which can be shown to originate with a two-particle correlation function. Momen-
tum correlations and covariances of momentum uctuations, which arise from the same correlation
function, have also been used to extract properties of the nuclear collision medium such as the shear
viscosity to entropy density ratio, the shear relaxation time, and temperature uctuations. Searches for
critical uctuations are also done with these correlation observables. We derive a mathematical
relationship between several number and momentum density correlation observables and outline
the dierent physics mechanisms often ascribed to each. This set of observables also contains a new
multiplicity-momentum correlation. Our mathematical relation can be used as a validation tool for
measurements, as a method for interpreting the relative contributions of dierent physics mechanisms
on correlation observables, and as a test for theoretical and phenomenological models to
simultaneously explain all observables. We compare an independent source model to simulated
events from P Y T H I A  for all observables in the set.

I . I N T R O D U C T I O N

We present a set of two-particle number density and
transverse momentum correlation observables that each
separately test dierent aspects of relativistic heavy-ion
collisions, but are mathematically connected through a
parent correlation function. Several observables in the
set have previously been measured individually, but are
rarely measured simultaneously under the same collision
system, energy, and acceptance conditions. One observ-
able, multiplicity-momentum correlations, is new. The
mathematical connection between the observables allows
any one to be described as a combination of the others,
signaling the relative contributions of the physical mech-
anisms of each. This connection also poses a challenge
for models to address all observables simultaneously. In
this paper, we outline the construction and interpretation
of the individual observables, demonstrate their mathe-
matical connection, and compare a simple independent
source model to simulated data.

Two-particle correlation observables are widely used
to study aspects of relativistic heavy-ion collisions. Mul-
tiplicity uctuations have been linked to centrality or
volume uctuations and studied as a possible signal for
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Quark-Gluon Plasma (QGP)  [1{16]. Transverse momen-
tum correlations, in the form of a covariance of two dier-ent
particle’s traverse momentum uctuation away from the
global average, have also been examined as a signa-ture
of critical uctuations and linked to event-by-event
temperature uctuations [17{30]. In past work, we argue
that these correlations result from initial state correla-
tions modied by radial ow [31]. We also argue that
these correlations can signal the level of thermalization
reached by the collision medium [32{34]. In this work,
we distinguish correlation of transverse momentum uc-
tuations from other two-particle transverse momentum
correlations that were rst dened in Ref. [35] (see Sec. V I )
and used there to estimate the shear viscosity to en-tropy
density ratio and shear relaxation time [36{44].

Two-particle correlations are dened by a correlation
momentum density r(p1 ; p2 ) for two particles with three-
momenta p1 and p2. This correlation function is dis-
cussed in detail in Sec. I I.  A  major component of this
work is the denition of a new two-particle correlation
that emerges from r(p1 ; p2 ) and measures the covari-
ance of event-by-event total transverse momentum and
multiplicity. Analytically, we dene these multiplicity-
momentum correlations as

D  =  
RR 

r(p1 ; p2 ) (pt:1      hpti) d3p1d3p2 ; (1)

where pt  hpti is the uctuation of a particle’s transverse
momentum away from the global event ensemble average,
and hN i is the event averaged multiplicity. The rst men-
tion of (1) can be found in Ref. [45]. The experimentally
measurable from of (1) is discussed in Sec. IV.
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In Sec. I V  we discuss how D  will vanish if the only
source of multiplicity-momentum correlations is multi-

plicity uctuations. Additionally we show that in the
Grand Canonical Ensemble, D  is also zero in equilib-
rium. Non-zero values of D  could be a sign of incomplete
thermalization, and represent correlations born from the
particle production mechanism that survive to freeze-out.
Interestingly, in Sec. IX ,  we nd that D  is not zero in

PYTHIA/Angantyr simulations of proton-proton (pp)
and nucleus-nucleus ( A A )  collisions. Also, we nd D  is

comparable in magnitude to correlations of transverse
momentum uctuations, hpt1pt2i, which have been well

measured at both RHI C  and LHC.  Until this work, we
have previously assumed D  is zero and this is also as-
sumed in Ref. [37] where A L I C E  measures two-particle

transverse momentum correlations dierentially in rela-
tive pseudorapidity and relative azimuthal angle.

Correlations of transverse momentum uctuations,
RR 

r(p1; p2) pt1pt2 d3p1d3p2 
t1

t2 hN (N      1)i

probe the same correlations r(p1 ; p2 ) and inspired (1).
Here pt =  pt      hpti. This observable was rst measured by
S TA R  in Ref. [20], and we relate the analytic form (2) to
the experimentally measurable form (12) in Sec. I I I .

The similarities between the denitions (1) and (2) are
not supercial; they are part of a set of observ-ables
mathematically connected by the correlation func-tion
r(p1 ; p2 ) which is observable in the form

R  =  
RR 

r(p1; p2)d3p1d3p2 : (3)

Multiplicity uctuation observables like (3) have been
widely studied as a measure of volume or centrality uc-
tuations and as a potential signature for the onset of
QGP and QCD critical point uctuations. We outline
these aspects and the experimental measurement of (3)
in Sec. V.  The dependence of R  on volume uctuations is
also informed by its representation in an independent
source model which is discussed in Sec. VI I I .  Volume uc-
tuations are determined by the uctuation of sources of
particles from event to event.

Transverse momentum correlations,

C =  
RR 

r(p1; p2) pt;1pt;2 d3p1d3p2 ; (4)

functionally represent a transverse momentum weighted
version of (3) and are therefore generated from the same
initial state correlations and volume uctuations that
produce (3).     However, due to the momentum depen-
dence, (4) is also sensitive to system expansion and equi-
librium dynamics. This is discussed in Sec. V I  along with
discussion of the experimental measurements.

The main result of this work is that multiplicity-
momentum correlations, (1), correlations of transverse
momentum uctuations, (2), multiplicity uctuations,

(3), and transverse momentum correlations, (4), are
mathematically related by the equation

(1 +  R)hpt pt i      C +  2hptiD +  hpt i2 R =  0: (5)

We derive this result in Sec. VI I .  When each observ-
able is measured individually, (5) provides a previously
unknown validation. Additionally, theoretical and phe-
nomenological models that demonstrate good agreement
with one observable can now use that comparison as a
benchmark for simultaneously addressing the other ob-
servables. Importantly, each observable potentially rep-
resents a dierent physics eect, and with (5), one ob-
servable can be decomposed into the contributions from
each dierent eect.

In Sec. V I I I  we calculate Eqs. (1)-(4) in a general
independent source model (ISM) then choose wounded
nucleon sources as a test case. A  deviation of exper-
imental measurement from the ISM may signal novel
physics such as incomplete thermalization or the exis-
tence of critical uctuations. In Sec. IX ,  we compare the
ISM to simulated data generated with P Y T H I A  8.2 [46]
for several collision energies in pp collisions, as well as
in A A  collisions using the Angantyr model [47].     The
Angantyr model for heavy-ion collisions uses a super-
position of nucleon-nucleon sub-collision model, similar
to the wounded nucleon model, and allows for uctuat-ing
positions of nucleons in the target and projectile nu-clei.
Additionally, multi-patron interactions and uctu-ations
exist in individual nucleon-nucleon sub-collisions.
P Y T H I A  and Angantyr do not include any mechanism
for collective expansion in pp or A A  collisions, therefore
our calculations from simulated events provide a direct
comparison to ISM results. Furthermore, the lack of col-
lective eects makes the PYTHIA/Angantyr results an
important baseline for experimental measurement. Us-
ing PYTHIA/Angantyr, we demonstrate the relationship
(5), and calculate the rst estimate of D, which we nd to be
non-zero and positive.

I I . C O R R E L A T I O N S  A N D  F L U C T U A T I O N S

The construction of two-particle correlation observ-
ables begins by dening the two-particle momentum den-
sity

2(p1; p2) =  1 (p1 )1 (p2 ) +  r(p1 ; p2 ): (6)

Here p1;2 is the three-momentum of particle 1 or 2 in the
pair. Single particle and pair momentum densities, 1 (p)
and 2(p1; p2), are the momentum densities of particles
for an ensemble of events such that

1 (p) =  
d3p

; (7)

2(p1; p2) =  
d3p1d3p2 

; (8)
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and
Z

hN i = 1(p)d3p (9)
ZZ

hN (N      1)i  = 2(p1; p2)d3p1d3p2: (10)

The angled brackets represent an average over the events
in the ensemble. For any quantity X ,  the event average is
dened as hX i  =  N  1 N e v e n t s  X

k .  Then, hN i is the
average number of particles per event, and hN (N      1)i  is
the average number of particle pairs neglecting autocor-
relations.

Equation (6) indicates that particle pairs are generated
in two ways. First, if pairs are formed from independent
particles, i.e. no correlations, then the pair distribution is
simply the multiplication of two single particle densities
11. Second, correlated pairs are represented by

r(p1 ; p2 ) =  2(p1; p2)      1 (p1 )1(p2): (11)

By construction, correlations vanish in the case of uncor-
related particle emission, when only statistical uctua-
tions are present.

At this point, we make no assumption about the phys-
ical mechanisms that produce the correlations charac-
terized by (11), though many possibilities have been

identied.     Correlations of particle emission (momen-
tum) angle with respect to an event plane is commonly
called \ow" and is characterized by the coecients vn of
a Fourier t to the particle azimuthal distribution: vn

cos(n   n n )  [48{50]. Since the event plane
angle n  is calculated for each order and is identied with a
geometrical shape {  n =  2 is elliptical, n =  3 is triangu-lar,
etc. {  ow correlations are often called geometrical
correlations. Much eort has gone into identifying so-
called \non-ow" correlations that include HBT-like fem-
toscopic correlations [51, 52], resonance decays and nal
state interactions [53], momentum conservation [54, 55],
and jets. In other works, [31, 56, 57], we have proposed
that particles created in close spatial proximity develop a
momentum correlation due to transverse expansion. We
have argued that this mechanism accounts for much of
the signal of two-particle correlations. Since this eect is
only indirectly tied to an event reaction plane, many
would label this eect as a non-ow eect.

Instead of trying to diagnose the relative contributions
from dierent correlation mechanisms in one observable,
we propose a collection of observables that originate with
(6), are sensitive to dierent physics, and are all mathe-
matically connected by (5).

It is common in modern studies [29, 36, 37] for exper-
iments to measure correlation and uctuation quantities
dierentially in relative azimuthal angle  =  1   2 and
relative pseudorapidity  =  1      2. It is also com-mon for
experiments to measure pairs that are separated by a gap
in pseudorapidity larger than jj  1.

Measuring observables as a function of  allows for the
diagnosis of contributions from anisotropic ow. Pro-
jections of dierential measurements of observables like

(2), (3), and (4) onto the  axis all show a similar pat-tern
of two peaks, one at  =  0 and one at  =   that is
characteristic of both momentum conservation and
anisotropic ow. These observables also show a broader
peak at  =   in comparison to the narrower peak at  =
0. This observation is often attributed to the existence
of triangular ow.

Pseudorapidity gaps between pairs are used to elimi-
nate \short-range", jj <  1, correlations such as res-
onance decays and jets. Separately, in dierential mea-
surements, H B T  and track pileup eects are often re-
moved by eliminating the  =  0 bin. Projections onto the
axis of the dierential measurements of (2), (3), and (4) all
show a \long-range", jj >  1   2, corre-lation in central
collisions. This long-range \near-side" ( =  0) correlation
appears to extend beyond detec-tor rapidity
acceptances.     Thus, the near-side peak is often
described as a peak sitting on a long and at pedestal,
commonly called \the ridge".     Experimental
measurements often t the ridge with a Fourier series
like an cos(n) that is at in  and then relate the an
coecients to the vn anisotropic ow harmonics [28, 29, 37,
41, 58]. The peak sitting on the pedestal rep-resents
correlations in excess of the ridge (in excess of ow
correlations) and still extends to long-range in  (and
possibly beyond the experimental acceptance) in central
collisions. The broadness in  of this excess decreases as
collisions become more peripheral. Peripheral peaks
have widths between 0:5   1, which are consistent with
jet and resonance decay correlations. The increasing
width of the near side peak from peripheral to central
collisions indicates that a correlation mechanism that is not
attributed to ow harmonics is at work. See, for
example, Ref. [42].

If the observables (2), (3), and (4) are not measured
dierentially in (; ), then all ow eects are elimi-nated. To
understand this, imagine the quantity R ( )  has been
measured and is well described by a Fourier series with
terms a cos(n). To  nd the integrated quantity, one
calculates R =      2 R()d.  When cal-culating the equivalent
integral of the Fourier series, the integral of all terms
cos(n) over a symmetric interval vanish term by term,
indicating R  =  0 if correlations are only described by
ow. Therefore, if the integrated quantity R  is not zero, it
is not fully explained by Fourier ow coecients. Although
these remaining correlations might be characterized as
non-ow, they are still inter-esting and potentially
provide useful information about the collisions dynamics
or initial state.     In particular, we highlight the near-side
correlations in excess of ow that are long-range in
nature.     Additionally, if jet ef-fects dominate the
integrated observables, the dierent observables (1)-(4)
analyzed together may be able to dis-tinguish classes of
events based on jet properties. Alter-natively, the
centrality and system energy dependence of these
correlations can indicate the level of thermalization of
events, which we leave to future work.

Correlations (11) also indicate the event-by-event uc-
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tuations in produced particles. Notice that integrat-
ing (11) over all momenta for both particles results in
hN (N   1)i    hN i2 =  V ar (N )   hN i. Here the vari-ance
of particles, V ar (N ) =  hN 2i   hN i2, characterizes the
uctuation in produced particles. If each event is in-
dependent of all other events, then this variance should
follow Poisson statistics {  where the variance is equal to
the mean {  resulting in a vanishing integral of (11).

Non-Poissionian uctuations indicate that a physical
mechanism {  in initial state production, the dynamical
expansion, or nal state interactions {  generates uctu-
ations in a correlated way in all of the events of the en-
semble; in this case r(p1 ; p2 ) =  0. Consequentially, since
these uctuations are tied to physical processes, they are
not completely random and can be identied with corre-
lation observables. Non-Poissionian behavior is seen in
experiments as well as simulations, and will be discussed
in the next sections.

The denition (12) diers slightly from denitions found
in experimental measurements. Experiments mea-sure

N e v e n t

hpt1pt2i = (14)
event      k= 1            k         k

with
N k N k

C k  = (pt; i       Mpt i)(pt ; i       Mpt ) (15)
i = 1  j = 1 ; j = i

and
N e v e n t

Mp     = hptik (16)
event      k= 1

where hptik is the average transverse momentum in event
k,

I I I .  C O R R E L A T I O N S  O F  T R A N S V E R S E
M O M E N T U M  F L U C T U A T I O N S

hptik =  
1 X

p t ; i : (17)
k  i = 1

Transverse momentum correlations in excess of mul-
tiplicity uctuations, dened by (2), have been widely
studied as a possible signal for the existence of QGP [17{
30]. QCD critical point searches look for non-monotonic
behaviors since uctuations are expected to diverge if the
system passes through a phase transition [6, 59]. Simi-
larly, the event-by-event variation in pt can be used as a
measure of event temperature uctuations [20, 60].

We focus on momentum correlations dened by (2),
which are experimentally measurable with

* +
N k N k

pt; i pt; j

hpt1pt2i =
i = 1  j = 1 ; j = i

     1)i
; (12)

where

pt;i  =  pt;i       hpti (13)

is the uctuation of the transverse momentum of particle i
in event k from the global average transverse momen-
tum per particle, hpti, for a given centrality class. Since
(13) is a uctuation, (12) is a covariance of uctuations. In
this work, we distinguish correlations of transverse
momentum uctuations (12) from transverse momentum
correlations in Sec. V I  to avoid confusion. We will discuss
the relationship between these two types of momentum
correlations in Sec. VI I .

hpt1pt2i measures the covariance of transverse mo-
mentum uctuations away from the global average.
When two particles both have larger or smaller pt than
the average, that pair contributes positively to hpt1pt2i.
When one particle of a pair has positive pt and the other
has negative pt, then that pair contributes negatively to
hpt1pt2i. In the case of purely independent particle
emission, hpt1 pt2 i= 0.

There are two dierences. First, the average transverse
momentum (16) is calculated event-by-event such that
the average transverse momentum per particle of each
event is found rst then averaged over all events in the
same centrality class. In (12) we dene the average trans-
verse momentum per particle as

hpti =  hPT i = hN i : (18)

where
*  N k

+ Z
hPT i  = pt;i = 1(p) pt d3p; (19)

i = 1

which is more representative of our theoretical descrip-
tion of the momentum density (7). The second dierence

between (12) and (14) is in the normalization. The de-
nominator of (12) is calculated independently, where the
ratio C k =N k (N k   1) is calculated event-by-event in (14).
We make this choice in (12) to maintain as much con-
sistency as possible between (2) and (1), (3), and (4).
In Fig. 1 we plot both (12) and (14) calculated with the
same P Y T H I A  events. Excellent agreement is observed.
Experiments report positive values of hpt1pt2i in pp

and A A  collisions at various energies. hpt1pt2i de-
creases with centrality, but not quite following 1=hN i

[20, 26, 30].       If hpt1pt2i falls with 1=hNi, then
the quantity (dN=d)hpt1pt2i should be approxi-

mately at.     However, experimental measurements of
(dN=d)hpt1pt2i rise from peripheral to mid-peripheral

collisions and plateau toward more central collisions.
This rise could signal the onset of critical uctuations

[20, 26] or the eects of incomplete thermalization [34]. It
is common for experimental measurements to report

hpt1pt2i as a relative dynamical correlation
p

hpt1 pt2 i=hpt i; (20)
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PYTHIA pp 200 GeV

ALICE pp 2.76 TeV

PYTHIA pp 2.76 TeV <Ck/pairs>

PYTHIA pp 200 GeV <Ck/pairs>
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F I G .  1. Comparison of Eq. (20) calculations from P Y T H I A
pp events (circles and squares) with measurement from A L -
I C E  (solid diamonds) [26, 27]. Solid circles and squares rep-
resent (12), while open circles and squares represent (14).

10 1

PYTHIA Pb-Pb 2.76 TeV

PYTHIA Au-Au 200 GeV

ALICE pp 2.76 TeV

2      ALICE Pb-Pb 2.76 TeV

STAR Au-Au 200 GeV

10 102 103

acc

F I G .  2. Comparison of Eq. (12) calculations from P Y T H I A
A A  events with measurement from A L I C E  pp and Pb-Pb col-
lisions [26, 27], and S TA R  Au-Au collisions [30]. Centrality
is determined by multiplicity.

10 1

PYTHIA Pb-Pb 2.76 TeV
Pb-Pb 2.76 TeV (ISM)
PYTHIA Au-Au 200 GeV

2      Au-Au 200 GeV (ISM)
ALICE Pb-Pb 2.76 TeV
STAR Au-Au 200 GeV

10 102

part

F I G .  3. Comparison of Eq. (12) calculations from P Y T H I A
A A  events with measurement from A L I C E  pp and Pb-Pb col-
lisions [26, 27], and S TA R  Au-Au collisions [30]. Centrality
is determined by the number of participating nucleons. Solid
lines represent the independent source model for wounded nu-
cleons, Eq. (57).

which is dimensionless. It also rescales the growth of
(12) to be dependent on the cumulative eect of corre-
lations rather than the size of hpti. This scaling nearly
removes the collision energy dependence of the measure-
ments [20, 26, 30]. Using PYTHIA/Angantyr simulated
events, we calculate (20) using (12) and (18), and com-
pare to experimental data in Figs. 1, 2, and 3. Details
are discussed in Sec. IX .

As with R  and C, experiments measure hpt1pt2i dif-
ferentially in relative rapidity and relative azimuthal an-
gle (; ). The A L I C E  collaboration measures the
quantity P2 (; ) =  hpt1pt2i(; )=hpti2 which shows the
characteristic ridge-like shape for charge inde-pendent
correlations [29]. The near-side ridge at  =  0 is not
completely explainable with Fourier decomposi-tion,
and excess correlations appear to be long-range in .
Short range eects like resonance decays and jets can
produce positive correlations in hpt1pt2i, but they cannot
fully explain the excess long range correlations seen in
P2(; ).

Several explanations for these correlations have been
proposed. They include the quark coalescence models
[61], string percolation models where clustered strings
produce colored sources [62], uctuations in event size
and entropy [63], and a boosted source model where
correlations originating in initial state hot-spots are en-
hanced by radial ow [31]. We propose that any explana-
tion of these correlations, should simultaneously address
other two-particle correlations that originate from (11)
such as (1), (3), and (4).

I V . M U L T I P L I C I T Y - M O M E N T U M
C O R R E L A T I O N S

A  new observable D, dened by (1), tests the cor-
relation of transverse momentum with particle pro-
duction event-by-event. In Sec. I X  we show that in
PYTHIA/Angantyr simulations D  is generally positive
and comparable in magnitude to hpt1pt2i.

In (1), pt is dened by (13), and hpti is the average
transverse momentum per particle for a given centrality
class of events (18). Experimentally, (1) can be measured
with the nal state particle pair sum

*
N k N k

+
N

i = 1  j = 1 ; j = i         
t ; i                      (N k       1)

i = 1  
pt;i

hN i2 hN i2

To  understand this observable, we expand pt;i  in the
middle term of (21) with (13) and substitute

* +
k k

pt;i =  hPT N i       hPT i (22)
i = 1  j = 1 ; j = i

and
N k N k

hpti =  hpt ihN (N      1)i: (23)
i = 1  j = 1 ; j = i
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Adding and subtracting hPT ihN i and making use of the
fact that (18) can be written as hPT i  =  hptihNi, we nd 0.6

C ov (PT  ; N )      hptiV ar (N )
hN i2

0.5

(24)
0.4

where C ov (PT  ; N ) =  hPT N i    hPT ihN i is the covari-
ance of total transverse momentum P T      and multiplic-
ity N  per event. The event multiplicity variance is
V ar (N ) =  hN 2i      hN i2.

Since every particle carries some transverse momen-
tum, adding any particle to an event will increase the
total transverse momentum in that event. Therefore, a
natural correlation between total pt and multiplicity ex-
ists that is dominated purely by multiplicity uctuations.
Notice this contribution is subtracted by the rightmost
term of (24). This indicates that D  should be zero if mul-
tiplicity uctuations are the only source of multiplicity-
momentum correlations.

In the Grand Canonical Ensemble, we can follow Ref.
[45] to show that D  should vanish in equilibrium. In equi-
librium, the Grand Partition Function with chemical po-

tential , volume V , and temperature T , is Z (; V ; T ) =
exp(Ni  E i ) .  Here the Gibbs factor - with number

of particles Ni  and energy E i  of state i  - is summed over all
states. We dene  =  =T and  =  1=T and take the
Boltzmann constant to be in natural units k B  =  1. The
average number of particles and average energy are found
in the usual way

N   E

hN i =  
i      

N
i Z

=  
Z  @ 

; (25)

N   E
hE i  =  

i      

E i Z
=   

Z  @ 
: (26)

Second derivatives in  yield
@hNi X N i e N i  E i e N i  E i  @Z 

 
@

i           
i                      Z                        Z 2 @

=  hN 2i      hN i2; (27)

@hEi X N i e N i  E i e N i  E i  @Z 
 
@

i           
i                      Z                        Z 2 @

=  hN E i       hN ihE i =  
@hNi @@

i
: (28)

Dening D E       =  (C ov (E ; N )       "V ar(N )) =hN i2     where "
=  hE i=hN i, we nd that D E  vanishes when the en-ergy
per particle satises " =  @hEi=@hNi.

To  relate energy and transverse momentum uctu-
ations, we take the transverse mass to be mt       =
m2 +  p2      pt     for particles with large momentum, pt

m. Near mid-rapidity y  0, the energy E i  =  mt;i
cosh yi  mt;i   pt;i  averaged over states is then

approximately the average total transverse momentum
hE i  hPT i .  Following that, we substitute @hEi=@hNi =

@hPT i=@hNi in the last term of (28). In the case where

0.3

0.2  PYTHIA pp 2.76 TeV

0.1 
PYTHIA pp 200 GeV

0 5 10 15 20 25
N acc

F I G .  4. Average transverse momentum per particle as a func-
tion of reference multiplicity for pp collisions at select ener-
gies. Error bars on the P Y T H I A  results represent statistical
uncertainty.
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F I G .  5. Average transverse momentum per particle as a func-
tion of reference multiplicity for select A A  collision systems.
Error bars on the P Y T H I A  results represent statistical uncer-
tainty. S TA R  data is from [64].

hpti is constant over a wide range of multiplicities, the
denition hPT i  =  hptihNi, Eq (18), yields @hPT i=@hNi  hpti.
Using this result in (28) with (27), we nd

hN PT i       hN ihPT i  =  hpti(hN 2i      hN i2): (29)

Finally, substituting (29) in (24), we nd that D =  0.
Several factors may generate a non-zero D. Hadroniza-

tion may violate the assumption that pt  m for all
particles. For example, in s =  200 GeV collision
systems, the average transverse momentum is approx-
imately hpti 0:5 GeV , which is arguably large com-
pared to the pion mass, but not the kaon or proton
masses.     Heavier particles may skew the momentum-
multiplicity covariance C ov (PT  ; N ). Particle rapidities
greater than jyj >  0:5 have increasingly larger devia-
tions from our y =  0 assumption.     If higher momen-
tum particles, say with pt >  2 GeV , come at the cost
of producing fewer particles near the average momen-
tum, then the covariance C ov (PT  ; N ) would become neg-
ative. If high momentum particles come in conjunction
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with excess particles near the average, then the covari-
ance C ov (PT  ; N ) will be positive. Lastly, the assumption
@hPT i=@hNi  hpti does not hold if transverse momen-tum
per particle increases with increasing event multi-plicity.

Examining hpti vs. multiplicity, Figs. 4 and 5, we no-
tice that the average transverse momentum per particle
increases with event multiplicity. This is seen across col-
lision systems and energies. See, for example, Ref. [65].
This is a positive transverse momentum and multiplicity
covariance, if only a slight one. Possible sources of this
covariance include jet particle production or an increased
radial ow velocity in central collisions in comparison to
peripheral collisions. This increase in hpti has been seen
in P Y T H I A  and is considered a consequence of the multi-
ple interaction model [66] and color reconnection [67]. In
all of these cases, non-zero D  indicates a correlation re-
lated to particle production and dynamics that is distinct
from R ,  C, and hpt1pt2i. We will show in Sec. VI I ,  how
correlations D  contribute to the other observables C and
hpt1pt2i.

V . M U L T I P L I C I T Y  F L U C T U A T I O N S

Multiplicity uctuations have been widely studied with
the goal of signaling the onset of QGP. Net charge uc-
tuations are used to distinguish QGP from hadron gas
[1{4]. Such studies rely on the idea of \volume uctua-
tions" to connect event selections based on multiplicity to a
geometric picture of the collision region [5]. Other net
charge uctuation studies look for large divergences that
could signal a QGP phase transition [6{8]. Inclusive mul-
tiplicity uctuations have been linked to the isothermal
compressibility of the system [9{11] assuming the mid-
rapidity region can be described by the Grand Canoni-
cal Ensemble. ( A  study intended to be used as a base-
line of statistical uctuations emerging from a hadron-
resonance gas in the Canonical, Micro Canonical, and
Grand Canonical Ensembles can be found here [12].) Net
baryon uctuations are used to identify small regions of
chiral condensates to classify events that signal QGP for-
mation [13, 14]. Al l  of these references use observables
constructed of moments of inclusive or identied particle
multiplicities [15, 16].

In this section we outline aspects of the multiplicity
uctuation observable (3) that is measurable as

hN (N      1)i       hN i2 V ar (N )      hN i
hN i2                                            hN i2

[16]. We discuss how R  sets an overall scale for any two-
particle correlation that can be derived from the correla-
tion function (11). Due to this connection, we examine
how the construction of R  yields a characteristic 1=hN i
behavior that inuences the interpretation of every two-
particle correlation observable included in this paper.

In Ref. [16], Pruneau et al. show that, for inclusive dis-
tributions, the observable R  is robust against detection

eciency eects and acceptance limitations.     To  show this,
we start by constructing (30) from the single parti-cle
distribution, 1, and pair distribution, 2, using (9) and
(10) and follow arguments from both Refs. [16] and [31].
If (9) and (10) are given arbitrary normalizations a and b
such that we have 2 !  a2 and 

11 !  b11, then (30)
becomes

R a c c  =  
b

R  +  
a      b

: (31)

If a =  b, then R  will receive a scale and oset that could be
detector and collision system and energy dependent.
However, if a and b are equal, such as the case for detector
tracking eciency, then R  =  R a c c .  This motivates the
choice to normalize R  by hN i .

Consequentially, examining the rightmost denition of R
in (30), notice that if both terms in the numerator have a
scale of hN i, then R  will follow a 1=hN i behavior. This is
the case if the multiplicity distribution follows a bino-
mial or negative binomial distribution. For independent
particle production, the multiplicity distribution follows
Poisson statistics and the variance equals the mean and
R  =  0. In Sec. VI I I ,  we show that in an independent
source model, all of the observables constructed similar
to (3) trend like h K i  1 where K  is the number of sources
in an event. This 1=hN i or 1=hK i behavior is a dening
characteristic of these correlations and therefore we look
for deviations from this trend.

In the search for critical uctuations, the PHENI X  col-
laboration measured the scaled variance of the charged
multiplicity

!  =  
hN 2i      hN i2 

=  (32)

where hN i =   is the average charged particle multi-
plicity and 2 =  hN 2i   hN i2 is the variance [10]. The
multiplicity distribution of heavy ion collisions follow a
Negative Binomial Distribution (NBD) with mean  and
scaled variance !  =  1 +  =k N B D ,  where k N B D  is a pa-
rameter. The NBD parameter is related to (30) by

R  =  
 
2 

 
=  

!       1 
=  

k 
1 

D  
: (33)

Subsets of a NBD, randomly sampled with constant prob-
ability, will have the same k N B D .  Let  and !  be the
mean multiplicity and scaled variance from an unlim-
ited acceptance. Also let acc  and ! a c c  be the mean and
scaled variance from a fractional acceptance. By Deni-
tion, the scaled variance for fractional acceptance is then
! a c c  =  1 +  a c c =kN B D .  Using R  =  k 1 and the rela-
tion (33) for acc  and ! a c c,  we nd R  =  ( ! a c c  1)=acc =  R a c c ,
since k N B D  is identical for the full acceptance and
fractional acceptance regions. This result is consistent
with (31) for a =  b, and makes R  an ideal measure of the
strength of correlations.
Importantly, multiplicity uctuations R  set the scale for

all two-particle correlation observables that depend
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on r(p1 ; p2 ), Eq. (11), since correlations are related to
(30) by (3). These correlations come from many sources
beginning with initial state energy deposition. Thermal
\hot spots" emit particles in a fundamentally dierent
way from perturbative QCD processes like jets. Partic-
ularly, the dierent energy scale constrains the yields of
more massive mesons and baryons. However, uctuating
temperatures of dierent hot spots or uctuating num-bers
of hard scatterings both add a contribution from source
uctuations to (3). See Sec. VI I I .  Final state ef-fects, like
resonance decays and hadronization also yield multi-
particle correlations.

Dierential studies of (30) led to the discovery of the
ridge, which shows that correlations extend to large sep-
arations in rapidity [29, 68{71] and the strength of these
long range correlations is dictated by (11) [57, 72, 73].
Various explanations attribute the appearance of the
ridge to ow or other correlations modied by ow [56,
74], but this kind of bulk correlation of particle mo-menta
due to the transverse collision geometry shifts the location
of particles in phase space but does not change the yields
of particles. As discussed in Sec. I I,  a geomet-rical
correlation alone would yield a value of R  =  0 when
integrated.

When investigating the centrality dependence of multi-
plicity uctuations (30), biases are introduced if the same
particles are used to measure correlations and measure
centrality. This will be discussed in detail in Sec. IX ,
however, it is informative to briey discuss one aspect
here. Imagine (30) was calculated from events with ex-
actly the same number of particles. Then, hN 2i =  hN i2
and

R  !   
hN i

: (34)

This shows a limiting behavior that is a response to multi-
plicity binning. To  avoid this eect, the multiplicity used to
measure centrality must be dierent from the multi-
plicity used to calculate (30). Additionally, to have a
positive R ,  the multiplicity variance must be larger than
hN i. To  deviate from a 1=hN i behavior, the multiplicity
variance must also change faster or slower than hN i with
increasing centrality.

V I . T R A N S V E R S E  M O M E N T U M
C O R R E L A T I O N S

Two-particle transverse momentum correlations, (4),
are measurable as

* +
N       N

pt; i pt; j      hPT i

C =
i = 1  j = i       

hN i2
; (35)

where the rightmost term is (19), the event averaged total
transverse momentum per event.

The momentum correlation observable (35) was rst
dened in Ref.     [35] as part of a method for extract-ing
the shear viscosity to entropy density ratio, =s, in-
dependently from ow harmonic measurements. S TA R
measured C, for the rst time, dierentially in relative
pseudorapidity and relative azimuhtal angle C(; ) [36].
This measurement constrained =s to a range of 0:06 <
=s <  0:21 which is in agreement with hy-drodynamic
ow estimates and the predicted A d S / C F T  lower limit of
=s =  1=4 [75]. The measured range is due mostly to
experimental systematic uncertainty which may be
reducible by measuring the integrated form of the rapidity
width of (35) like 2 = C()2d without using any
t functions. A L I C E  measures a slightly mod-ied form of
(35) dened as G2 =  C=hpti2 [37{40]. The dierential form
of G2 was recently used in [41] to extract harmonic Fourier
coecients in  from simulated data and compare them to
harmonic ow coecients vn mea-sured with the cumulant
method and a pseudorapidty gap of jj =  0:7.

Momentum correlations (35) are sensitive to both num-
ber density uctuations as well as transverse momentum
uctuations; both are necessary to address the diusion of
transverse momentum uctuations due to shear vis-
cosity. Reference [35] predicts that the simultaneous dif-
fusion and dampening of initial state momentum uctua-
tions due to shear viscous forces results in the broadening
of correlations C in relative rapidity over the collision life-
time. Since central collisions have longer lifetimes than
peripheral ones, a centrality dependent measurement of
the relative rapidity width of C should show a monotonic
increase. This behavior was rst seen by S TA R  when
they measured (35) dierentially in relative pseudorapid-
ity and relative aziumuthal angle C(; ) [36].

S TA R  found a dierential correlation structure similar to
the ridge, R(; ) ,  with a near-side peak at  =  0 that is broad
in  and an away-side peak at  =   that is at in . The double
peaks in  are commonly seen as an indication of
hydrodynamic ow because they can be (mostly)
characterized by a Fourier cosine series. However, on the
near-side, correlations in excess of the Fourier t exist and
are peaked at  =   =  0. In pe-ripheral collisions these
excess correlations have a narrow prole in  that is
consistent with resonance decay or jet correlations. As
collisions become more central, the rapidity width of
excess correlations increases in agree-ment with [35].

Unexpectedly, Ref. [36] found that the rapidity broad-
ening of the near side of C(; ) was not Gaussian in
nature. Instead, central collisions had two peaks in
with a local minimum at  =  0. In Refs. [42{44] we argue
that the non-Gaussian broadening is a signal of causal
diusion that depends on both the shear viscosity and the
shear relaxation time.

We can see how (35) incorporates number density uc-
tuations by writing it in terms of the correlation function
(11) to nd (4). Comparing (4) to (3), notice that all mul-
tiplicity uctuations in (35) are the same as those in (30),
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except they are weighted by transverse momentum. This
is important because every particle carries some momen-
tum, and therefore correlations and diusion of particles
necessarily implies correlations and diusion of momen-
tum. In larger multiplicity events, more momentum pairs
are possible. Higher multiplicity events also have longer
lifetimes which allow for correlations to develop due to
dynamic processes like geometric ow, but longer life-
times also allow more time for equilibration which de-
stroys correlations.

We discuss transverse momentum correlations with
number density uctuations removed in Sec.     I I I ,  but C
was designed to probe the transfer of transverse mo-
mentum correlations between two points in the QGP {
from small rapidity separation to larger separations {  and
number density uctuations are a part of that process.
For example, imagine an event with a uctuating initial
state. In a hydrodynamic or kinetic theory picture, hot
and cold spots are deposited throughout the collision vol-
ume each with a dierent local temperature and energy
density. Movement toward equilibrium is driven, in part,
by viscous forces transferring energy density or momen-
tum density or particle number density from higher tem-
perature spots to lower ones. Interestingly, shear viscos-
ity transports momentum perpendicular to the direction
of ow, therefore shear viscosity spreads transverse mo-
mentum uctuations in the longitudinal direction. That
momentum can be spread by microscopic parton colli-
sions as well as by transmission of number density.

Momentum correlations emerge form the initial state
because pairs of particles are emitted from the same
source and are generally subject to local enforcement of
conservation laws. Since particles originate at the same
spatial location, they experience roughly the same dy-
namics and can develop new correlations with each other
and with the global event plane due to transverse expan-
sion [31, 56, 57, 76]. Additionally, if correlations exist
over rapidity ranges of jj >  1   2 units then causal-ity
requires that they develop at the early stages of the
collisions [77]. If momentum correlations originate be-
cause pairs of particles are emitted from the same source,
then the number of correlated pairs is roughly propor-
tional to the temperature of the source. The more pairs,
the stronger the correlation. In equilibrium, the distinc-
tion between dierent sources is destroyed, reducing the
strength of the correlation.

V I I . C O M P L I M E N T A R Y  F L U C T U A T I O N  A N D
C O R R E L A T I O N  O B S E R V A B L E S

The observables hpt1pt2i, (12), D, (21), R ,  (30), and C,
(35), are mathematically related based on their com-mon
origin (11) and the denition of a transverse mo-mentum
uctuation pt, (13). We nd the relation (5).

Starting from the denition (12) we expand the argu-

ment pt;i pt;j, to nd

hpt1pt2i =
N k  N k   

pt; i pt; j       pt;ihpt i      pt;j hpt i +  hpti2
i = 1  j = i

hN (N      1)i
: 

(
36

)

Applying the sums over pairs, we nd

hN (N      1)ihpt1pt2i =

=  hN i2C +  hPT i2 (37a)
     2(hPT N i       hPT i)hpt i         (37b)

+  hpt i2hN (N      1)i:                 (37c)

Using (35), the rst term of (36), becomes (37a). The
middle two terms in (36) both become (hPT N i  hPT i)hpt i
after using (22), resulting in (37b).     The last term of
(36) yields (37c), similarly to (23). After adding and
subtracting 2hptihPT i h N i +  2hpti2hN 2i to (37), we make
use of denitions (24) and (30) to construct

h
pt1pt2i =  

C      2hptiD      hpt i2 R
; (38)

where (1 +  R )  =  hN (N      1)i=hN i2.
The denominator of (38) is a result of the dierent nor-

malization of (12) compared to (21), (30), and (35). To
facilitate direct comparison to measured data, we choose
not to alter the normalization of hpt1pt2i. However, (38)
requires the denition of hpt1pt2i to be (12) rather than
(14). We show that this change has small eect on
measurement in Fig. 1.

Equation (38) is equivalent to (5) and is a primary
result of this paper. From (38), we see that correlations
of transverse momentum uctuations can be interpreted as
transverse momentum correlations with multiplicity
uctuations removed (C   hpt i2 R) only if multiplicity-
momentum correlations, D, are zero.

Assuming D  is small, the dierence C   hpt i2 R high-
lights the construction of hpt1pt2i. Notably, C is at least an
order of magnitude larger than hpt1pt2i, which indi-cates
multiplicity uctuations, R ,  dominate momentum
correlations, C.     Nonetheless, hpt1pt2i measurements are
positive and non-zero, which indicates that momen-tum
correlations are generated by some physics mecha-nism
that is not explainable by multiplicity uctuations. Any
theoretical or phenomenological explanation of that
mechanism must address both the cause of correlations
and why they are not subtracted by D  or R .

In Sec. IX ,  we calculate values of D  in simulated
P Y T H I A  events. We nd that it is on the same order of
magnitude as hpt1pt2i, and possibly even larger. There-
fore, D  should not be assumed negligible when measuring
hpt1pt2i or C.

The 1=hN i (or deviation from 1=hN i) behavior of
hpt1pt2i can also be studied with (38). Notably, R  ex-
hibits the most obvious expression of the 1=hN i trend {
see discussion around Eq. (34) {  and, by construction,
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C and D  are expected to have similar behavior. This is
more obvious in an independent source model, which we
discuss in Sec. VI I I .  We test this behavior with simulated
events in Sec. IX .

The inuence of hpti also appears in (5) and (38). Since
hpti is seen to rise with multiplicity, it is a potential
source of deviation from 1=hN i scaling for hpt1pt2i that is
not due to critical phenomena.     Since hpti also in-
creases with increasing collision energy, experiments
tested a scaling (20) for hpt1pt2i that shows approxi-
mate agreement over a wide range of systems and energies
[20, 26, 30]. The quality of the agreement relies some-
what on the choice of centrality measure. In (38), we can
see how constituent correlation observables contribute to
this scaling and how centrality determination aects this
agreement. To  avoid interpreting the square root in (20),
we instead consider hpt1pt2i=hpti2 and write (5) as

(1 +  R)hpt1 pt2 i C 2D
hpti2                            hpti2          hpti

Using (39) we can see that scaling with collision energy
requires consistent handling of multiplicity uctuation R .
Fortunately, if R  and C are measured with the same
methods, centrality biases in C are subtracted by R .  This
is what makes hpt1pt2i robust against dierent central-ity
denitions.

Alternatively, we can study two-particle transverse mo-
mentum correlations by rewriting (5), or (38), as

C =  (1 +  R)hpt pt i +  2hptiD +  hpt i2 R: (40)

Equation (40) distinguishes the dierent physical inu-
ences on momentum correlations. The rightmost term
represents the contribution just from multiplicity uctu-
ations (including volume uctuations). This is the largest
contribution to C. In this context the quantitative dif-
ference between R  and its momentum weighted coun-
terpart C can be measured. C is aected by forces like
viscosity that impact temperature uctuations which are
represented by the presence of hpt1pt2i. Similarly, the
presence of D  signals how C is inuenced by the mech-
anism that correlates total transverse momentum with
multiplicity event-by-event.

The A L I C E  collaboration measures the dierential
quantity G2 (; ) =  C(; )=hpti2 [37{40]. Using (39) we nd
the integrated version

C (1 +  R)hpt1 pt2 i 2D
2 hpti2                            hpti2                           hpti

but each of the terms on the right hand side can also be
measured dierentially. For example, the quantities P2 =
hpt1pt2i(; )=hpti and R ( ; )  are measured in Ref. [29].
With the measurement of D(; )=hpt i, G2 (; ) can be
checked experimentally, using (41).

To  summarize, multiplicity uctuations, R ,  set an un-
derlying scale of correlations, (11), that is determined
by particle production mechanisms, volume uctuations,

and possibly phase change uctuations. Momentum cor-
relations, C, indicates both how initial state correlations
survive to nal state particle pt, and how transverse mo-
mentum can be transferred throughout the collision vol-
ume by forces like shear viscosity. D  represents correla-
tions of event-by-event total transverse momentum and
multiplicity. Equation (24) demonstrates that these cor-
relations are in excess of those from random multiplicity
uctuations, so D  is therefore tied to particle produc-
tion. Furthermore, lack of correlations, D, can signal
equilibration while enhancement of D  could exist around
the QGP critical point. Correlations of uctuations of
transverse momentum, hpt1pt2i, have several theoreti-cal
explanations like temperature uctuations or boosted hot
spots. Importantly, the results (5), or (38), or (39), or
(40), or (41) suggest that a theoretical or phenomeno-
logical explanation of one of the observables R ,  C, D, or
hpt1pt2i can be tested by separately addressing each of
the others. Similarly, with simultaneous experimen-tal
measurement of all four observables (12), (21) (30), and
(35), Eq. (5) acts both as a validation tool for each
measurement and as a way to explicitly distinguish mul-
tiplicity uctuations from other correlations mechanisms
when looking for critical phenomenon.

V I I I . I N D E P E N D E N T  S O U R C E  M O D E L

The independent source model assumes that nuclear
collision events are comprised of a superposition of in-
dependent sources of particles and ignores any interac-

tions between particles emitted from dierent sources.
Each event has a uctuating number of sources and each
source has a uctuating multiplicity and momentum dis-

tribution of particles. In this section we detail how the
observables discussed in sections I I I,  IV,  V,  and V I  de-

pend on both of these types of uctuation. A  similar
discussion for only R  and hpt1pt2i appears in Ref. [31].

Our independent source model assumes that a sin-gle
collision event is the sum of K  independent parti-

cle sources. Each source is represented by a momentum
distribution ^1(p) normalized such that ^1(p)d3p =   is
the mean multiplicity per source. To  understand the
average particle distribution of sources, imagine a large
number of sources running from k =  1; :::; Nsrc , where
each emits nk particles. The average number of particles
per source is then

N s r c      n k Z
n = 1 ! ^1(p)d3p =  ; (42)

s r c  k = 1  i = 1             
s r c

where the overbar indicates an average over sources, and
^1(p) is the particle momentum distribution per source
in the limit of a continuum of all possible sources. In
that limit, each source multiplicity has mean  =  n and
variance 2 =  n2   n2. Similarly, the distribution of
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particle pairs emitted from one source is

N s r c      n k        n k

n(n      1) = 1 (43)

Z 
s r c  k = 1  i = 1  j = i

! ^2(p1; p2)d3p1d3p2 =  2 +  2      ; s r c

where ^2(p1; p2) is the particle pair momentum distribu-
tion for an individual source.

The event averaged singles and pair momentum distri-
butions become

1 =  h ^1 (p)K i (44)
and

2 =  h ^2(p1 ; p2)K +  ^1 (p1 )^1 (p2 )K (K      1) i ; (45)

where the angled brackets indicate the average over
events and each event has K  independent sources. Equa-
tion (44) species that the event multiplicity is a super-
position of K  sources, yielding

hN i =  hK i: (46)

Equation (45) indicates particle pairs are made up of the
sum of pairs from the K  individual sources, each with 2̂
pairs, plus the sum of pairs where one particle of the pair
is from one source and the other particle comes from a
dierent source. For one pair of sources the particle pair
distribution is 1̂ 1̂, and there are K ( K    1) pairs of
sources. The event average number of particle pairs then
becomes

hN (N      1)i  =  hK i(2       )  +  hK 2 i2 : (47)

Beginning with R  as dened in (3) with (11), then
using (44) and (45), we nd

R s hK 2 i       hK i2

h K i               hK i2

where R s  =  (2   )=2 is the equivalent of (30) for sources
when averaging is done over the ensemble of all possible
independent sources.     Event-by-event uctua-tions in the
number of sources are characterized by the variance of K
in the rightmost term. Since the sources are taken to be
independent, this variance follows Poisson statistics, so
hK 2 i    hK i2  =  hK i,  and therefore uctua-tions (48) are
diminished by h K i  1.

Two-particle correlations of transverse momentum, C,
are dened by Eq. (4). Using Eq. (11) with (44) and (45)
we nd

C =  
h K i  

+  
hK 2 i       hK i2  

hpti2; (49)

where Cs =  (2      hpti)=2 is the equivalent of Eq. (35) for
sources. Here the average total transverse momentum per
source is dened as P T  = ^1(p) pt dp and, using
(44), the average total transverse momentum for events

is hPT i  =  h K i P T  . Following (18) and substituting (46),
the event averaged transverse momentum per particle is
equivalently written as

hpti =  P T  =: (50)

Finally,       the      variance      of      total      transverse      mo-
menta     per     source     is     P             =       P 2       P T  ,     where

^2(p1; p2) pt;1pt;2 dp1dp2 =  P T  
+   hpti      hpti.

Notice that both Eqs. (48) and (49) have similar con-
tribution from the uctuation in the number of sources.
Given that the sources are independent, (49) decreases
with the inverse of the number of sources in the same
way as (48). However, momentum correlations (49) are
sensitive to the transverse expansion due to the correla-
tion function weighting by pt. We reiterate that when
C is measured as dened in (4) and not dierentially in
relative azimuthal angle or pseudorapidity, then eects
form anisotropic ow are eliminated. C then represents
the magnitude of transverse momentum correlations gen-
erated in the reball. A  measured deviation from predic-
tions of the independent source model might suggest that
sources of correlations are not independent, as would be
the case for a partially or fully equilibrated system.

Multiplicity-momentum correlations, D, are dened by
(1). Following the same procedure we use for R  and C,
we obtain

D  =  
h K i

(51)

where D s  =  
 

C ov (PT  ; n)      hpti2=2 is the equivalent of
Eq. (21) for sources rather than events.

Notice that since (21) is constructed to remove the ef-
fects of multiplicity uctuations, (51) does not have the
same dependence on source uctuations as R  or C. How-
ever, all three observables R ,  C, and D  still are reduced by
the inverse of the number of sources.

Lastly, correlations of transverse momentum uctua-
tions are dened by (2). Again, using Eq. (11) with (44)
and (45) we nd

h K i
 

Cs      2hpt iDs      hpt i2 Rs
t1 t2 h K i R s +  hK 2 i

hpt1pt2is (1 +  R s )
h K i (1 +  R )

Here (1 +  Rs )hpt1 pt2 is =  Cs   2hpt iDs   hpt i2 Rs fol-
lowing the same reasoning leading to Eq. (5) except that
averaging is done over the ensemble of all possible inde-
pendent sources rather than events. The denominator of
(2) is dierent from the other observables in this work,
but since hpt1pt2i is well studied in literature, this form
better suits direct comparison to measured data. The
consequence is that the eects from uctuating indepen-
dent sources are not as obvious as the other observables.
By examining (52) we see that hpt1pt2i approximately
decreases like h K i in the limit of large K  where R  is
small.
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If we take the origin of the sources to be participant nu-
cleons, then the minimum number of sources in any col-
lision is two. Calculations of R s ,  Cs, Ds ,  and hpt1pt2is in
proton-proton collisions can serve as a possible rep-
resentation of independent source correlations. In this
scenario, pp collisions always have K  =  2 and never have
a variance in the number of sources. Therefore we must
have hK 2 i    hK i2  =  0 in (48) and (49). Taking (48) as
an example for pp collisions, we have Rp p  =  R s=2 for K
=  2 participants. Consequentially for A A  collisions
using K  =  Np a r t  and R s  =  2Rpp , we nd Eq. (54).
Similarly, Eqs. (48), (49), (51), and (53) become

2 Rpp hNpar t i      hNpar t i2

hNpar t i                 hNpar t i2

C =
2 Cpp      +

hNpar t i      hNpar t i2

hpti2      (55)
par t                                        par t

D  =
2 Dpp (56)

par t

h
pt1pt2i =  

2h 
hN 

pt

i
ipp (

(1 +  R )
)

:
(
57

)

where R  in the denominator of (57) must come from (54).

In this work we attribute all volume uctuations to
source uctuations. To  see how multiplicity uctuations
are inuenced by volume (source) uctuations, imagine

that the variance of the number of participants in the
numerator of the rightmost term of (54) follows Poisson
statistics. Then V ar(Npa r t )  =  hNpar t i and (54) becomes
R  =  (2Rpp +  1)=hNpart i. Note that the contribution
from genuine source correlations is represented by 2Rpp .

If 2Rpp =  1, then half of multiplicity uctuations come
from genuine correlations and half come from source uc-
tuations.     If 2Rpp <  1, then source uctuations con-

tribute more to R  than genuine correlations. If 2Rpp >  1,
then source uctuations contribute less to R  than gen-

uine correlations We estimate Rp p  using P Y T H I A  simu-
lations and list values in Table I  for      s =  200 GeV and
s =  2:76 T eV collision energies. At      s =  200 GeV , a bit

less than two thirds of R  comes from source uctu-
ations. At      s =  2:76 T eV , about half of R  comes from

source uctuations.

Transverse momentum correlations, (55), have simi-
lar dependence on source uctuations. For a Poissonian
distribution of participant sources we have C =  (2Cpp +
hpti )=hNpar t i. Genuine correlations and source uctua-
tions have equal contributions to C when 2Cpp =  hpti .
Using values from Table I  we nd that at the contri-
butions to C from genuine correlations and source uc-
tuations are roughly equal but source uctuations are
slightly larger at s =  200 GeV and genuine correla-
tions are slightly larger at s =  2:76 T eV . We leave an
analysis of collision energy dependence to future work.

I X . R E S U L T S  F R O M  S I M U L A T I O N

In this section, our primary goal is to make the rst
estimates of D  and test relationship (5) with simulated
collision events. We do not attempt to preform a compre-
hensive study using dierent simulation routines to com-
pare dierent collision dynamics mechanisms; we leave
this for future work. For simplicity, we chose P Y T H I A
8.2 [46] since its description of pp collisions is well es-
tablished and it includes the Angantyr model for nuclear
collisions [47] which provides a baseline estimation based
on wounded nucleons.

We look for non-zero values of the new observable
D, dened by equations (1) or (24). D  indicates a
multiplicity-momentum correlation and possibly a devia-
tion from thermal equilibrium, see Sec. IV.  Moreover, we
also test the 1=hN i dependence of (1), (2), (3), and (4)
when using multiplicity as a centrality measure. Devia-
tion from this trend is an indication of non-Poissonian
particle production, meaning correlations develop be-
tween particles emerging from dierent sources, or other
correlation mechanisms.

When measuring correlations based on moments of a
multiplicity distribution, centrality biases can be signif-
icant, especially when the same particles used to calcu-
late the correlations are also used to determine centrality
[78]. To  eliminate centrality biases due to volume uc-
tuations, we follow the centrality method of Ref. [30]
when calculating observable dependencies on multiplic-
ity. This method allows for one-particle-wide multiplic-
ity bins without encountering the biases described at the
end of Sec. V.

In this method, observables are calculated using all
charged particles in the mid-rapidity region jj <  0:5
while centrality is determined using all charged particles
in the remaining region of experimental rapidity accep-
tance. We label these accepted centrality determining
particles Nacc . For comparison to STAR,  charged par-
ticles in the region 0:5 <  jj <  1:0 are used for Nacc . For
comparison to A L I C E ,  charged particles in the re-gion
0:5 <  jj <  0:8 are used for Nacc . In Figs. 6 and 7 we plot
the average mid-rapidity multiplicity vs Na c c  in
P Y T H I A  events. The acceptance dierence between
S TA R  and A L I C E  accounts for the dierent slopes in the
mid-rapidity multiplicities. This centrality measure also
has the consequence of transforming the two-particle cor-
relation observables into three-particle correlations since
two particles are used to calculate the correlation and dif-
ferent particles are used to determine Nacc . If the pseu-
dorapidity distribution of charged particles is approxi-
mately at in the rapidity acceptance, then the corre-
lation between the number of particles in the centrality
determining and mid-rapidity regions is eectively 1, and
multiplicity trends can be taken at face value.

A  nonlinear correlation between Na c c  and the mid-
rapidity multiplicity could induce some modulation in
correlation measurements away from the expected 1=hN i
trend. However, the average mid-rapidity multiplicity
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Te V.

hN i tracks very linearly with Na c c  for P Y T H I A  events
in Figs. 6 and 7 for pp and A A  collisions respectively.

Similarly to Ref. [30], we employ the so-called "sub-
group" method for estimating the uncertainty of corre-
lation observables. In our analysis, the full set of events
for a given centrality class is divided up into 30 sub-
groups and all observables are calculated for each sub-
group. Each observable is then averaged over all sub-
groups and the standard deviation is used to estimate the
uncertainty. For A A  collisions, when multiplicity is used
for centrality and after taking the sub-group average, we
average observable values over several multiplicity bins
and the set the error band to represent the standard de-
viation of those values.

In Figs. 4 and 5 we report the average transverse
momentum per particle from P Y T H I A  events in select
pp and A A  systems and energies. For all P Y T H I A  sim-
ulation results we show in this work, we have used both
the centrality and sub-group methods described above.
Notice the increase in pt per particle as multiplicity in-
creases in both gures.     We will later argue that this

is important for understanding multiplicity-momentum
correlations D.     The smaller increase in A A  collisions
compared to pp collisions is likely a factor in the dier-ent
magnitudes of D  estimates from dierent collision
systems.

We now turn to estimating observables R ,      C,
hpt1pt2i, and D, and their mathematical relationship
(5) with P Y T H I A  simulations of pp and A A  collision
systems at select energies. For the four observables we
analyze events following (30), (35), (12), and (21) respec-
tively. We use the kinematic ranges 0:15 <  pt <  2 GeV
and jj <  1 for Au-Au collisions at s =  200 GeV and
jj <  0:8 for Pb-Pb collisions at s =  2:76 T eV . To  iden-
tify deviation from 1=hN i behavior we plot the product of
each observable with the multiplicity hN i. If there is no
deviation from 1=hNi, then results will be constant
with multiplicity, though with dierent magnitudes.

Multiplicity uctuations, attributed to volume uc-
tuations, R ,  are dened by (3) or (30).     Results for

h N i R  from P Y T H I A  simulation of pp collisions at
200 GeV and 2:76 T eV are shown in Fig. 8(a). At lower
multiplicities, deviation from 1=hN i behavior is likely the
result of a small variance of total multiplicity produced
in these events. Similarly in the very low multiplicity re-
gion, values become negative. Consider that events with
very few particles in the centrality dening rapidity re-

gion also have correspondingly very few particles in the
mid-rapidity region. In this case the variance of mid-
rapidity particles is nearly zero. Following the argument
surrounding Eq. (34), negative values of R  can be ex-
pected. At larger multiplicities h N i R  becomes more at

and the error band increases with the scarcity of events.
It is interesting to note that h N i R  in pp collisions at
s =  2:76 T eV indicates a slightly faster than 1=hN i

decrease with increasing multiplicity when compared to
s =  200 GeV collisions. It will be interesting to dis-

cover if this change persists to higher or lower collision
energies in both simulation and experiment. Moreover,

it is also signicant to point out that h N i R  is non-zero,
which indicates that particle production {  averaged over
events {  is not Poissonian and therefore not independent.

This reinforces the fact that R  measures a fundamental
particle production mechanism. Deviation of experimen-
tal measurements from P Y T H I A  estimates could signal

the contribution form dierent particle sources. A  com-
parison covering dierent collision systems and energies

may be a useful tool to characterize the onset of QGP or
jet inuences on particle production.

Results for h N i R  from PYTHIA/Angantyr simulation
of Au-Au and Pb-Pb collisions at      s =  200 GeV and

s =  2:76 T eV are shown in Fig. 9(a), plotted versus
multiplicity. When centrality is determined by multiplic-
ity, h N i R  is seemingly constant until the most central
points. The deviation in high multiplicity events is likely
due to low statistics. The drop of the lowest multiplicity

point is the result of averaging the rst few lowest mul-
tiplicity bins where values may be small or negative for
the same reasons small or negative values appeared in low
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F I G .  9. Calculation of
 

observables (1), (2), (3),
and (4),

 
scaled by mid-rapidity multiplicity hN i using

PYTHIA/Angantyr A A  collisions.
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lisions. Solid lines represent the wounded nucleon model.

multiplicity pp collisions. In general, the approximately
constant value of h N i R  with multiplicity is consistent
with a superposition of pp sub-collision model.

To  test the Independent Source Model, the same quan-
tity, hN iR,  is plotted with respect to the number of par-
ticipating nucleons (Np a r t )  and is shown in Fig. 10(a).
Taking participating nucleons as the sources of particles,

we plot (54) as the solid and dashed lines on the gure.
We assume that the variance of Np a r t  in (54) is Poisso-
nian and reduces the rightmost term to 1=hNpart i. Also
using P Y T H I A ,  we calculate the \integrated" value Rp p
including all pp events without centrality constraints.
Values for pp collisions at      s =  200 GeV and      s =

2:76 T eV are listed in Table I. When dening centrality
with Npar t , we use the full experimental rapidity accep-
tance to calculate all observables and the same is done
for integrated values. Notice that when Np a r t  =  2 on
Fig.     10(a), Eq.     (54) matches closely with the data,
but deviates at larger Npar t . This may indicate that the
source value R s  =  2Rpp is dominated by lower multiplic-
ity pp events, or simply that participating nucleons, on
their own, are not a good indicator of all particle sources.
Momentum correlations, C, are dened by equations (4)

or (35). Due to its similar construction, it shares
many of the same centrality trends as R .  C scales both
with R  and hpti2; the latter scaling is visible by exam-
ining (49). hN iC is reported on Figs. 8(b), 9(b), and
10(b). Centrality behaviors mostly follow those of hN iR,
except in Fig. 10(b).     In comparison to our ISM for
wounded nucleons in Pb-Pb collisions at     s =  2:76 T eV ,
hN iC increases from peripheral collisions peaking around

Np a r t   100. This increase is not seen in h N i R  for the
same collision system. Additionally this peak is not seen
for hN iC in Au-Au collisions at s =  200 GeV .

The centrality dependence of C can be analyzed in the
context of (40). Notice in Fig. 10(b) that hN iD and
hN i(1 +  R)hpt1 pt2 i both exceed the wounded nucleon
model expectation in the same region where hN iC peaks.
Care should be taken when assigning meaning to the peak
in Fig. 10(b): when hN iC is plotted with respect to multi-
plicity in Fig. 9(b), the peak behavior is not seen. There-
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fore, we use these observations only as a tool to demon-
strate the usefulness of measuring correlation observables
as a complementary set with a mathematical connection
like (5).

Correlations of transverse momentum uctuations,
hpt1pt2i, are dened by equations (2) or (12). S TA R

and A L I C E  have measured the similar form (14), usually
reporting it as (20). In Fig. 1 we compare (20), calcu-
lated from both (12) and (14), with experimental data
for pp collisions. The two methods (12) and (14) are in
generally good agreement. Similar results are obtained
for A A  collisions but are omitted from Fig. 2 for clarity.

P Y T H I A  comparisons to experimental A A  data are
shown in Fig. 2. Agreement with S TA R  data is good but

signicant dierence from A L I C E  data is seen. This is
likely due to dierences in the multiplicity centrality de-

termination between S TA R  and A L I C E ;  our calculation
technique reproduces that of STA R .

To  test the 1=hN i dependence of hpt1pt2i, we plot
hN i(1 +  R)hpt1 pt2 i in Figs. 8(d), 9(d), and 10(d). As we
discover in Secs. V I I  and VI I I ,  the factor (1 +  R )  is
required to re-scale the normalization of (12) so that it
follows the same 1=hN i trend as the other observables.

P Y T H I A  results for hN i(1 +  R)hpt1 pt2 i in pp colli-
sions, shown in Fig. 8(d), are mostly at except in pe-
ripheral collisions where uctuations become small. In
A A  collisions, shown in Fig. 9(d), the trend is again con-
sistent, inside the error band, with a 1=hN i except in
the most central collisions that are statistically limited.
hpt1pt2i has reduced eect from small uctuations at low
multiplicity in comparison to R  or C. By construc-tion,
hpt1pt2i removes multiplicity uctuations (see the
discussion following Eq. (38) in Sec. VI I ) .  Therefore,
hpt1pt2i appears insensitive to choice of centrality via
multiplicity or participating nucleons.     Results in Fig.
10(d) for hN i(1 +R)hpt1 pt2 i with respect to participat-ing
nucleons are also constant and in strong agreement with
the wounded nucleon model, Eq. (57).

The deviation of the wounded nucleon model in Fig.
3 in comparison to Fig. 10(d) is likely due to multiple
factors. First, the integrated value of hptipp is used with
(57). In the independent source model, hpti is the same
for individual sources as it is for the whole event. hptipp
does not change value in our simple wounded nucleon
model, but hpti does change in the centrality dependent
measurement. Last, the factor of (1 +  R )  in the denom-
inator of (57) also induces a dierence from P Y T H I A
values. As we see in Fig. 10(a), R  for our wounded nu-
cleon model is larger than P Y T H I A  values, particularly in
more central collisions.

Multiplicity-momentum correlations, D, are dened by
equations (1) or (21). An objective of this work is to
stimulate experimental measurement of D. The rst es-
timates of hN iD from P Y T H I A  pp and A A  collisions are
shown in Figs. 8(c), 9(c), and 10(c). Immediate obser-
vations include that D  =  0 and is positive. The positive
nonzero value of D  is consistent with hpti calculations.
For example, notice in Fig. 4 that the average transverse

momentum per particle increases with the number of par-
ticles. This is a multiplicity-momentum correlation. The
dierence of magnitudes of hN iD in pp and A A  colli-
sions may be due to the fact that the rate of increase of
hpti with multiplicity is greater in pp collisions that in
A A  for P Y T H I A  simulations.

The atness of hN iD with respect to centrality indi-
cates agreement with the 1=hN i dependence. Interest-
ingly, pp collisions show a small negative slope with in-
creasing multiplicity, indicating a faster than 1=hN i drop
with increasing multiplicity. This slope seems to increase
from s =  200 GeV to s =  2:76 T eV collision energies.
We look for experimental measurements in a larger range
of collision energies to examine this behavior.

Figure 10(c) shows that when centrality is deter-
mined by participating nucleons, peripheral collisions
have higher D  values than determined by our wounded
nucleon model. This may simply signal a dierence
between our choice to use only participant nucleons
as sources in our independent source model and the
PYTHIA/Angantyr model. However, if that is true, then
D  is the most sensitive of the observables to this dier-
ence.

D  may also be sensitive to the thermalization of
the medium. Similarly, we show in Ref. [34] that
hpt1pt2i can be used to measure incomplete thermal-
ization, then D  as well as C may provide additional con-
straints on that model. We leave this to future work.

X . S U M M A R Y

In this work, we show that a set of four two-particle
correlation observables R ,  C, hpt1pt2i, and D  are math-
ematically related by Eq. (5). When these observables
are measured or calculated simultaneously with the same
method, (5) can act as a validation tool or as a test for
theoretical models. Importantly, since each observable
signals a dierent aspect of the collision system, (5) can be
used to estimate the relative eects of dierent physics on an
individual observable.

In Sec. I I,  we briey discuss the construction of a gen-
eral two-particle momentum density correlation function,
Eq. (11). The four connected two-particle correlation ob-
servables (1), (2), (3), and (4) are all derived from this
same common origin.

Multiplicity uctuations, R ,  dened by (30) in Sec. V,
test particle production mechanisms. They are sig-
nicantly inuenced by centrality or volume uctuations
implying a connection between the overlap of the colli-
sion region (this distribution of particle sources) and the
number of produced particles. R  is constructed such that
if event multiplicity is completely independent event-to-
event {  where the produced particle distribution is Pois-
sonian and the particle variance is equal to the mean
{  then R  =  0. Non-zero R  indicates that events in the
same ensemble produce particles following a common un-
derlying physics of particle production that induces an
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event-by-event correlation. It is tempting to attribute
this correlation to the geometrical initial state distribu-
tion of collision energy in nuclear collisions, but R  is also
non-zero in pp collisions. This might suggest that the
initial state is more accurately described by sub-nucleon
scale physics.

Multiplicity uctuations set the overall scale of the par-
ent correlation function (11) for all observables discussed
in this work. In the absence of correlation, R  depends on
multiplicity following  1=hNi. Positive values of R  in-
dicate a correlation such that the multiplicity variance is
larger than hN i. Additionally, if the multiplicity variance
does not increase proportionally with hN i, then R  will
deviate from a 1=hN i trend, which may signal QCD crit-
ical point uctuations or other novel physics. Al l  two-
particle correlations represented by (11) and normalized
similarly to R  should vary with centrality following these
general properties. Therefore, we look for deviation from
1=hN i in all correlation observables.

Diculty in measuring R  emerges when the same par-
ticles are used to calculate R  and simultaneously dene
centrality; this induces centrality bias eects that can be
large. In our P Y T H I A  estimates in Sec. IX ,  we chose
to follow centrality denitions used by S TA R  [30]. We
calculate observables with charged particles in the region
jj <  0:5 and determine centrality with charged particles
in the region 0:5 <  jj <  m a x  where m a x  is the maxi-mum
rapidity acceptance of either the S TA R  or A L I C E
detectors.     Forward detector centrality determinations
would provide an opportunity to measure correlations us-
ing particles in a larger central rapidity acceptance range.
However, our goal in this work was to demonstrate the
relationship (5) rather than explore all possible measure-
ment techniques.

Dierential studies of R  in relative rapidity and az-
imuthal angle led to the discovery of the ridge, which
shows that correlations extend to large separations in ra-
pidity. Various explanations attribute the appearance of
the ridge to ow or other correlations modied by ow, but
geometrical correlations alone would yield a value of R  =
0 when integrated. We nd the integrated vale of R  to be
non-zero in P Y T H I A  pp and A A  events. This fact
shapes the interpretation of all two-particle correla-tions
in this work. In particular, a \non-ow" correlation is
sensitive to the particle production mechanism as well as
the thermalization process.

Momentum correlations, C, dened by (35) in Sec. VI ,
are the transverse momentum weighted equivalent of R .
Because of the momentum weighting, these correlations
are sensitive to dynamical forces during the evolution of
the collision system, like viscosity, in addition to the ini-
tial state eects that generate R .

Correlations of transverse momentum uctuations,
hpt1pt2i, dened by (12) in Sec. I I I  have been widely
studied as a measure of collision system dynamics, tem-
perature uctuations, and critical point phase change
phenomenon. New in this work, through (5), or equiva-
lently (38), we show how momentum correlations, mul-

tiplicity uctuations, and momentum-multiplicity corre-
lations all separately contribute to hpt1pt2i. Equa-
tion (38) also highlights how hpt1pt2i is stable against
changes in centrality denition in comparison to other
correlation observables. Since C contains the same num-
ber density uctuations as R ,  the dierence C      hpt iR in (38)
essentially removes the number density uctuations
corresponding to their common centrality denition.

Also new in this work is the denition of a measure of
multiplicity-momentum correlations, D, dened by (21). In
Sec. IV,  we estimate that, in the Grand Canonical
Ensemble, D  =  0. Conversely in Sec. IX ,  we calculate a
positive value from P Y T H I A  simulations that is compa-
rable in magnitude to hpt1pt2i. P Y T H I A  simulations do
not contain bulk correlation dynamics, and we argue that
a positive multiplicity-momentum correlation is sup-
ported by the increasing value of the average transverse
momentum per particle with increasing multiplicity in
both pp and A A  collision systems. Taken together, these
observations suggest that D  is sensitive to both parti-
cle production and equilibration mechanisms. We plan
to address the issue of equilibration in future work that
extends on our results in Ref. [34].

In Sec. I X  we calculate estimates of the observables
with PTYHIA/Angantyr which contains no bulk collec-
tivity or QGP phase. Our purpose is to demonstrate
the usefulness of (5) and make rst estimates of D. We
leave a more expansive study of dierent event simula-
tion routines and their dierent physics for future work. To
examine 1=hN i scaling, we plot hN iR,  hN iC, hN iD, and
hN i(1 +  R)hpt1 pt2 i. As discussed in Sec. VI I ,  we note
that the factor of (1 +  R )  is needed to re-scale the
normalization of hpt1pt2i to have the expected 1=hN i
dependence on multiplicity. We nd that, within errors, all
observables basically follow a 1=hN i trend with mul-
tiplicity in P Y T H I A  events. Deviations are seen in low
multiplicity pp systems where uctuations are small. We
also nd that the relationship (5) is satised to a preci-sion of
10 16 or better.

In Sec. V I I I  we calculate the observables (1), (2), (3),
and (4) in an independent source model. Equations (48),
(49), (51), and (52) support the 1=hN i dependence of
the observables if total multiplicity results form the sum
of individual source multiplicities. Equations (48) and
(49) also show that R  and C are can be dominated by
source uctuations. This suggests that these observables
can be used to distinguish systems with dierent initial
states that have fundamentally dierent particle produc-
tion mechanisms.

Particle sources can come from many dierent phys-ical
mechanisms, but for simplicity we choose to test only
the wounded nucleon model.     Dierence between
PYTHIA/Angantyr results for A A  collisions and our
wounded nucleon calculation are likely due to the dier-
ences in the Angantyr nucleon-nucleon sub-collision su-
perposition model and our choice of simple participant
nucleon sources. Interestingly, D  seems to be the most
sensitive of the observables to this dierence.



p p

p

18

We also demonstrate that (5) can be used to distin-
guish dierences in centrality trends between C and R .
Though R  is always constant or decreasing with Npar t ,
C has a small non-monotonic rise at lower participants.
We note that this rise is due to hpt1pt2i and D  con-
tributions to momentum correlations and advocate for
similar measurements in real experimental systems.

In conclusion, we show that two-particle multiplic-
ity uctuations, transverse momentum correlations, cor-
relations of transverse momentum uctuations, and
multiplicity-momentum correlations are all derived from
the same parent correlation function and mathematically
connected by (5). We have estimated these observables
and their connection with PYTHIA/Angantyr simulated
collisions events at s =  200 GeV and s =  2:76 T eV
collision energies.     Multiplicity-momentum correlations
are a new observable estimated here for the rst time.
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