2023 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW) | 979-8-3503-3335-0/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICSTW58534.2023.00032

2023 IEEE International Conference on Software Testing, Verification and Validation Workshops ICSTW)

Action-Based Test Carving for Android Apps

Alessio Gambi*, Hemant Gounif, Daniel Berreiter?, Vsevolod Tymofyeyev?, Mattia Fazzini'
*IMC University of Applied Science Krems, Austria; alessio.gambi@fh-krems.ac.at
T University of Minnesota, MN, USA; gouni008 @umn.edu, mfazzini @umn.edu
YUniversity of Passau, Germany; daniel.berreiter @gmail.com, timvseffolod @ gmail.com

Abstract—The test suites of an Android app should take
advantage of different types of tests including end-to-end tests,
which validate user flows, and unit tests, which provide focused
executions for debugging. App developers have two main options
when creating unit tests: create unit tests that run on a device
(either physical or emulated) or create unit tests that run on
a development machine’s Java Virtual Machine (JVM). Unit
tests that run on a device are not really focused, as they use
the full implementation of the Android framework. Moreover,
they are fairly slow to execute, requiring the Android system
as the runtime. Unit tests that run on the JVM, instead, are
more focused and run more efficiently but require developers
to suitably handle the coupling between the app under test
and the Android framework. To help developers in creating
focused unit tests that run on the JVM, we propose a novel
technique called ARTISAN based on the idea of fest carving.
The technique (i) traces the app execution during end-to-end
testing on Android devices, (ii) identifies focal methods to test,
(iii) carves the necessary preconditions for testing those methods,
(iv) creates suitable test doubles for the Android framework, and
(v) synthesizes executable unit tests that can run on the JVM. We
evaluated ARTISAN using 152 end-to-end tests from five apps
and observed that ARTISAN can generate unit tests that cover a
significant portion of the code exercised by the end-to-end tests
(i.e., 45% of the starting statement coverage on average) and
does so in a few minutes.

I. INTRODUCTION AND MOTIVATION

Testing is an essential aspect of the software development
life cycle and is crucial in improving software quality. For
Android applications (or apps in short), testing is critical to
avoid failures that can lead to the disruption of mission-critical
activities, loss of reputation, and customer loss.

A good testing strategy needs to find an appropriate balance
between the fidelity of the tests, testing speed, and testing
reliability [1]. To achieve this balance, app developers can
create tests at different granularity levels [1]. End-to-end tests
exercise large parts of an app through its Graphical User
Interface (GUI) and help developers check user flows. Unit
tests focus on a small portion of an app and help developers
debug and test regression. In the Android realm, developers
also need to decide on which platform tests shall run [1]. In-
strumented tests execute on an Android device, either physical
or emulated, whereas Local tests execute on a JVM.

Although it is possible to create tests by combining gran-
ularity levels and execution environments (e.g., unit tests that
run in the Android device), related work on app testing [2],
[3] observed that instrumented end-to-end GUI tests and local
unit tests are the most frequently used.

Researchers and practitioners proposed several automatic
and semi-automatic techniques to help app developers create
end-to-end instrumented tests (e.g., [4]-[8]). However, only
a few existing techniques for automatically creating local
unit tests have been proposed (see [9], [10]) even though
developers would benefit from having those tests, which run
fast and simplify debugging activities [2]. Existing techniques
have limited applicability as they require substantial manual
effort [9] or are not based on the tester’s intent [10] (i.e., they
are based on an input generation strategy).

Test carving [11] has been proposed for generating unit tests
from end-to-end tests by either checkpointing portions of an
application state and reloading it during unit testing to set the
test preconditions (state-based carving) or by extracting units
of execution from end-to-end executions and replaying them
as part of the generated unit tests (action-based carving). The
potential benefits of test carving include improving regression
testing effectiveness by enabling standard regression test selec-
tion techniques, reducing the sensitivity to interference bugs by
isolating tests better, and enabling developers to perform more
focused debugging activities. Consequently, various techniques
for performing test carving have been proposed (e.g., [11]-
[19]). However, none of the existing techniques carves unit
tests across different platforms, as it is needed in Android
for extracting focused and efficient unit tests that run on the
JVM from end-to-end tests that run on a device. Addition-
ally, carving unit tests in Android also necessitates handling
the challenges of testing typical Android apps that operate
through event-based and inversion-of-control paradigms (i.e.,
everything, including the instantiation of some components
required as a precondition by the unit tests, is orchestrated
by the Android framework), and are tightly coupled with
the Android framework, which requires replacing Android
components with test doubles [3], [20], [21] during testing.

To facilitate unit testing of Android apps, we propose
ARTISAN, an action-based test carving technique that takes
as input the app under test (AUT) and its end-to-end GUI
tests and automatically produces a set of locally executable
unit tests as output. As illustrated in Figure 2, ARTISAN (i)
instruments the AUT to enable tracing of method invocations
at runtime during the execution of end-to-end GUI tests, (ii) it
identifies focal methods to test, (iii) carves the relevant method
invocations for testing a unit based on the collected traces, (iv)
creates suitable test doubles for the Android framework needed
by the unit tests, and (v) synthesizes executable unit tests that
can run on the JVM.

979-8-3503-3335-0/23/$31.00 ©2023 IEEE 107
DOI 10.1109/ICSTW58534.2023.00032
Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

Type Text: Hide Press Button:

1+1 Keyboard Calculate
MainActivity MainActivity ‘ ‘ MainActivity ‘ ResultActivity

Intent

>

1+1 1+1

qwertyuiop
asdfghjkl

zxcvbaom

Fig. 1: Main user flow of BASICCALCULATOR.

To assess the usefulness of ARTISAN, we performed an
empirical evaluation based on 152 end-to-end GUI tests from
five apps and assessed the effectiveness and efficiency of our
technique. As far as effectiveness is concerned, ARTISAN
can generate unit tests that cover a significant portion of
the code exercised by the end-to-end tests (i.e., 45% of the
starting statement coverage on average). As for efficiency,
ARTISAN can generate unit tests in just a few minutes.
Overall, we believe that our results are promising and provide
initial evidence of the usefulness of our technique.

In summary, this paper makes the following contributions:

o An automated technique that performs action-based test
carving for Android apps.

« A publicly available implementation of the technique (see
replication package [22]).

¢ An empirical evaluation that provides initial evidence of
the effectiveness and efficiency of our technique.

II. BACKGROUND

In this section, we report background information that aims
to facilitate the understanding of our technique. Android apps
are composed of different types of components. Activities are
one of the main types of components and are one of the
primary ways to interface with app users. Only one activity can
be active at any time and activities communicate via message
passing. The messages used by activities are called intents
and can contain an arbitrary, serializable payload. Under the
hood, Android delivers intents by serializing and deserializing
their content. Activities are also event-based: their logic is
encapsulated into listeners and callbacks, and the dispatch
of predefined events by the Android framework triggers their
execution. Typical examples of such event listeners are life-
cycle events and events generated by GUI elements.

We further illustrate background concepts using an exam-
ple Android app called BASICCALCULATOR, which solves
user-provided mathematical expressions through two activ-
ities: MainActivity (which solves the expressions) and
ResultActivity (which displays the results of the expres-
sions). Figure 1 displays the main user flow of BASICCAL-
CULATOR.

108

MainActivity sets up the app GUI, i.e., the text input field
and the “CALCULATE” button shown in Figure 1, and regis-
ters the various callbacks to handle user interactions (e.g., the
pressing of the “CALCULATE” button). The MainActivity
has a method called sendResult and this method is invoked
when the user presses the “CALCULATE” button, which
fetches the content of the text input field on the GUI, computes
the result of the expression provided by the user, and sends the
result to the ResultActivity (which displays the result).

In this process, sendResult retrieves the expression
of the text input field using the Android findviewById
method [23], which takes as input the ID of the text input
field. Starting another activity requires calling the Android
startActivity method [24] and passing an intent that con-
tains a reference to the activity to start and an optional payload.
In the case of our example, the activity is ResultActivity
and the optional payload is the result of the expression.

I QRunWith (AndroidJdUnit4.class) @LargeTest
> public class MainActivityTest {

@Test
4 public void testCalculate() {
5 onView (withId(R.id.input)) .perform(typeText ("1+1"));
6 Espresso.closeSoftKeyboard() ;

onView (withId(R.id.calculateButton)) .perform(click());

8 onView (withId(R.id.resultView))
9 .check (matches (withText ("2")));

1}
Listing 1: A GUI test stressing BASICCALCULATOR.

Testing BASICCALCULATOR main user flow can be done
using the GUI test in Listing 1; doing so requires developers
to (i) build the app, (ii) install it inside an Android device or
emulator, and (iii) execute the test interacting with the app’s
GUI on that device.

An alternative for testing BASICCALCULATOR is to use
unit tests focusing on specific code units that can run on any
standard JVM. Listing 2 reports a local unit test that checks
the behavior of the sendResult method under the same
conditions observed while running the GUI test in Listing 1.

The test_MainActivity_sendResult unit test imple-
ments a complex setup to ensure that objects such as the
“CALCULATE® button and the text input field, which are
normally provided by the Android framework, are also avail-
able during unit testing. Since the Android runtime does not
manage those objects during local unit testing, it is necessary
to replace them with mocks and stubs. To that end, the
example uses Mockito [25] and Robolectric [26] Mockito is
a framework for creating mocks and stubs and Robolectric
provides basic stubbing capabilities by (partially) simulating
the Android framework on the JVM.

In the example, the test creates a simple mock for the “CAL-
CULATE” button (Lines 8-11), nested mocks that simulate
accessing the text input field (Lines 18-25), and injects these
mocks into Robolectric to enable their execution (Lines 29—
30).

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

I @RunWith (RobolectricTestRunner.class)
> @Config(shadows = { EditTextShadowForSendResult.class })
3 public class Test028 {

5 @Test (timeout 4000)
6 public void test_MainActivity_sendResult () {
// Mock the

Calculate button

8 Button button2 = Mockito.mock (Button.class);
9 Stubber stubber3 = Mockito.doReturn (R.id.
calculateButton) ;

Button button3 = stubber3.when (button2);
button3.getId();
//

Instantiate MainActivity using Robolectric

13 ActivityController controller Robolectric.
buildActivity (MainActivity.class);
MainActivity mainactivity = controller.get();

event

// Simulate triggering "create"

controller.create();

1 // Mock the

SpannableStringBuilder stringbuilder3 = Mockito.mock (
SpannableStringBuilder.class);

Stubber stubber4 Mockito.doReturn ("1+1");

20 SpannableStringBuilder stringbuilder4 stubber4.when
(spannablestringbuilder3);

spannablestringbuilderd4.toString();

EditText edittext3 Mockito.mock (EditText.class);

Stubber stubber5 Mockito.doReturn (
spannablestringbuilder3);

text input field

24 EditText edittext4 = stubber5.when (edittext3);

25 edittext4.getText ();

26 // Inject the mocks in Robolectric

27 EditText edittext2 = mainactivity.findViewById(R.id.
input);

28 EditTextShadowForSendResult edittextshadow = Shadow.

extract (edittext2);

29 edittextshadow.setMockFor ("android.widget .EditText:
android.text.Editable getText ()", edittext3);

30 edittextshadow.setStrictShadow() ;

31 // Method Under Test

32 mainactivity.sendResult (button3);

Invoke the

34}
Listing 2: A unit test

BASICCALCULATOR

carved by ARTISAN for

In summary, this motivating example shows how complex
Android apps’ unit tests can be and illustrates some technical
challenges in their automated generation.

III. TECHNIQUE

ARTISAN is an end-to-end approach composed of several
steps (Figure 2). It starts by instrumenting the (non-obfuscated)
original AUT to enable tracing method invocations. Next,
it executes the Instrumented AUT on an Android device
against GUI Tests to collect Execution Traces. Then, it parses
the traces into a form amenable to automatic analysis (i.e.,
graphs) and carves the original executions. Finally, it augments
the Carved Executions with code that mocks dependencies
provided by the Android framework and synthesizes the source
code of the Carved Unit Tests from the Extended Carved
Executions.

Notably, ARTISAN generates carved unit tests in the static
single-assignment (SSA) form [27]. Although programs writ-
ten in SSA form are generally longer than programs written in
other forms, which might affect their readability, we decided

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

109

AUT GUI Tests
= P g
APK
== Instrumented Execution
AUT Traces
Instrument. % Tracing
Parsed Carved
Traces Executions
(parsng |0ty canng | -¥x 4
Extended Carved Carved
Executions Unit Tests

Mock Test

Fig. 2: An overview of ARTISAN’s end-to-end approach to
carving local unit tests from instrumented GUI tests.

to generate test code in SSA form for two main reasons: on
the one hand, it is easy to translate the carved executions in
this form; on the other hand, SSA enables the application of
standard program analyses (e.g., live variable analysis) and
optimization techniques (e.g., test minimization [28]) that can
improve the generated tests’ quality.

A. Instrumentation and Tracing

Action-based test carving is a dynamic analysis technique
that requires execution traces to identify the units of execution,
i.e., method invocations, that are relevant for testing code units.
ARTISAN instruments the original AUT using the byte-code
modification library Soot [29].

ARTISAN adopts a light-weighted approach to trace An-
droid apps and generates traces in plain text, making it possible
for developers to easily inspect them. Specifically, ARTISAN
injects code that logs for each method invocation, the method
signature, the actual parameters, and any returned values
or thrown exceptions. Tracing focuses only on the AUT’s
operations, as we want unit tests that focus on the AUT. To
this end, ARTISAN instruments only the method bodies of
the methods that belong to the AUT and not other components
such as third-party libraries, standard language libraries, and
the Android runtime. In the instrumentation, ARTISAN dif-
ferentiates between calls to instance and static methods, traces
method calls at different visibility levels and distinguishes
whether methods return normally or exceptionally. In the latter
case, the trace contains also whether the exceptional behavior
was caused by a checked or an unchecked exception.

Differently than state-based carving, ARTISAN does not
check-point the application state nor serialize the objects
used as parameters or return values. Instead, it manages
all the object instances, including exceptions, by-reference
and stores in the trace only their object id. ARTISAN
obtains the object id of non-null instances by calling
System.getObjectIdentity () to capture the actual object
types along with their hash codes. To avoid cluttering the
execution traces, ARTISAN manages primitive types, boxed
primitive types, and “string” types (e.g., St ring) by-value and
saves only their string representation.

Action-based carving implicitly assumes that all interactions
between objects happen exclusively via method invocations;
unfortunately, units of executions like array stores, array
accesses, and field assignments are not implemented as method
calls in Java and would be missed if not properly handled. To
avoid missing such fundamental units of execution, ARTI-
SAN implements a custom instrumentation code that traces
them as synthetic methods. For example, it traces an array
store like array[0] 10 as the generic method invocation
abc.ArrayOperation.set (array, 0, 10).

As discussed in Section II, activities communicate by pass-
ing Intent objects that the Android framework serializes in
a stream of bytes and deserializes into actual objects. Thus,
the object ids of serialized and deserialized objects differ,
which effectively breaks the (logical) connection between
them. To avoid losing this connection, ARTISAN leverages
application level taint tracking [30], [31]. Instead of modifying
the Intent’s bytecode to accommodate the tainting value, i.e.,
the object id of the intents to be sent, ARTISAN stores the
tainting values directly in the intents as a regular payload using
a special key before Android sends them. To read the tainting
value, instead, ARTISAN injects custom code that is invoked
before the receiving activity accesses the payload. This custom
code extracts from the payload the tainted value by invoking a
standard Intent method using the special key as a parameter.
Doing so, ARTISAN is able to trace the logical connection
between sent and received intents.

B. Trace Parsing

After tracing the execution of the GUI tests, ARTISAN
parses the generated execution traces into graph data structures
that capture chronological, data, and call dependencies of
method invocations and object instances. For each trace, the
technique creates three graph data structures.

Execution Flow Graph (EFG). This graph captures the
chronological dependencies of the method invocations ap-
pearing in the trace; hence, EFGs are useful to identify
(past) method invocations that may set test preconditions. The
graph is a (doubly) linked list whose nodes represent method
invocations and edges the (strict) precedence/follow relations.
Data Dependency Graph (DDG). This graph is a directed
graph that links method invocations to data nodes and data
nodes to method invocations. Data nodes can be either object
instances or primitive values. Object instances can be linked
to multiple method invocations, whereas primitive values are

110

always linked to one and only one method invocation. In this
graph, two nodes are linked when (i) an object instance OWNS
a method invocation; (ii) a data node is used as a PARAMETER
of a method invocation; (iii) a STATIC data node is used inside
a method invocation; (iv-a) a method invocation RETURNS a
data node or (iv-b) THROWS an exception. DDG is useful to
identify test preconditions.
Call Dependency Graph (CDG). This graph captures the
nesting relations among the method invocations; hence, it is
useful to ensure that carved method invocations are executed
the right amount of times (e.g., no duplicate executions). The
graph is a directed and acyclic graph whose nodes represent
method invocations and edges the INVOKE relation. The graph
is a forest because apps can have multiple entry points.
After parsing is completed, ARTISAN decorates the graphs
by including additional information that will be used later dur-
ing carving and test synthesis. This step includes (i) identifying
method invocation nodes that are owned by Android com-
ponents, like Activities, and tagging the nodes corresponding
to life cycle events callbacks (e.g., onCreate); (ii) aliasing
data nodes that correspond to sources and sinks of tainted
intents (i.e., logically related intents) and their payload; and,
(iii) injecting static dependencies.

C. Action-based Carving

The carving process begins after parsing the execution traces
and considers only one trace at a time. At first, ARTISAN
selects “carvable” targets, i.e., the method invocations for
which to generate unit tests. In general, there are no restric-
tions on which method invocations can be carved; however,
carving some method invocations, such as private methods
and methods that do not belong to the AUT might produce
non-compilable or irrelevant unit tests. Therefore, ARTISAN
automatically filters out invocations of private methods and
invocations whose owner type does not match the AUT’s
package name (i.e., they do not belong to the AUT). In case an
end-to-end test makes multiple calls to the same target method
ARTISAN provides a special option to either select one (i.e.,
the first) or all the invocations of that method as “carvable”
targets (i.e., ARTISAN offers different carving strategies to
developers). By default, ARTISAN selects the first invocation
of a method to be in the set of “carvable” targets. The idea
behind using this default strategy is that it allows for covering
the behavior of multiple methods while limiting the cost of
running the technique. This strategy might carve the same
method multiple times across different traces. Still, we think
that this is reasonable as traces originating from different GUI
tests likely have different objectives.

After selecting the target method invocations, ARTISAN
finds all the method invocations that are relevant to them,
either directly or indirectly, using a backward slicing algo-
rithm: Starting from a target method invocation, this algorithm
identifies the past method invocations that match one of the
following three conditions: (1) the method invocation shares
the same owner with the target method invocation; (2) the
method invocation is owned by a parameter used by the target

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

method invocation; or, (3) the method invocation belongs to a
static class used within the target method body.

Since the selected method invocations might introduce addi-
tional dependencies (e.g., parameters to be set), this algorithm
iteratively carves each of them. The algorithm converges
because, at every iteration, it considers a smaller set of de-
pendencies. Moreover, as the “carvable” targets are considered
sequentially and might share dependencies, ARTISAN caches
intermediate results and speeds up the algorithm.

Once the algorithm selects all the method invocations rel-
evant to a “carvable” target, ARTISAN uses the CDG to
retrieve all the additional method invocations that would be
executed because the relevant method invocations are (e.g.,
a method invocation triggered by an already selected method
invocation). Given this “extended” set of invocations, ARTI-
SAN creates carved executions by extrapolating the connected
components they form in the EFG, the DDG, and the CDG.

Finally, ARTISAN “cleans” the carved executions by re-
moving those units of computation, such as lambdas, which
occur in Android apps but cannot be directly instantiated in
the unit tests, and re-carves the target invocations within the
carved trace executions to ensure they remain consistent.

D. Mock Generation

Carved executions contain a list of executed method invo-
cations and their data dependencies. However, they might not
be executable yet as they might contain method invocations
on objects belonging to the Android framework. To be able to
execute those invocations, ARTISAN uses the Roboletric [26]
framework, which offers simplified implementations for the
classes in the Android framework (which the framework
calls shadow classes). These simplified implementations are
designed for testing purposes. However, Roboletric is not
comprehensive [26], and some of the method invocations in the
carved executions might not be executable as the framework
does not offer an implementation for them. Additionally, there
might be objects that, during end-to-end test execution, are
created within the Android framework (e.g., GUI elements)
or by third-party libraries. Consequentially, ARTISAN does
not know how to either define them or should not use their
implementation (as ARTISAN wants to minimize the use of
external dependencies such as third-party libraries). ARTI-
SAN deals with these cases by means of mocking, a standard
technique that improves the reliability of unit tests by replacing
complex dependencies with pre-programmed test doubles.

ARTISAN analyzes how each of those objects without
an “accessible” implementation is used within the carved
executions and automatically programs a mock object that
can replicate the (observed) behavior within the unit tests
through stubbed methods (i.e., methods that return canned
data). If a stubbed method invocation on a mocked object
returns another object without an accessible implementation,
ARTISAN reproduces its behavior utilizing another automati-
cally configured mock object; the process continues until there
are no more objects without an accessible implementation
left. ARTISAN takes advantage of forward slicing to identify

111

which mock objects are needed. Since the number of data
dependencies to consider is finite and shrinks at every iteration
of the algorithm, synthesizing mocks is guaranteed to always
terminate. After the mock generation phase, we call carved
executions as extended carved executions.

E. Synthesis of Carved Unit Tests

At this point, all the test preconditions are either instantiated
or mocked, and ARTISAN can finally synthesize the code
implementing the unit tests by transforming the extended
carved execution’s CDG root-level nodes, i.e., the directly
“visible” method invocations, into their corresponding source-
code method invocations. While doing so, ARTISAN relies
on the DDG to generate all the variables needed to host
the references or values that correspond to methods’ owners,
parameters, and return values. Notably, the extended carved
executions do not contain complex control flows; thus, the
generated tests consist of a number of variable declarations
and a sequence of method invocations, as one would expect
from unit tests.

To generate the mocking code which stubs the methods of
objects without an accessible implementation and contained in
the extended carved executions, ARTISAN uses a predefined
template. For each object o, ARTISAN (i) declares o as a
mock object using Mockito [25], (ii) it specifies which object
(if any) the mock should return using a stub, and (iii) it invokes
the stubbed method sm on o based on the carved execution.

The GUI elements of an app require special treatment. To
inject the pre-programmed mock objects inside GUI elements
(which are handled by Robolectric), ARTISAN (i) retrieves
the GUI elements from the activity using their known unique
ID, (ii) it extracts the shadow objects simulating them, and
(iii) passes the mock objects to the shadows.

IV. EMPIRICAL EVALUATION

We performed a preliminary evaluation of ARTISAN’s
effectiveness and efficiency by targeting the following research
questions (RQs):

RQ1: Can ARTISAN carve unit tests from GUI tests?
RQ2: What is the cost of running ARTISAN?
RQ3: What are the characteristics of carved tests?

A. Experimental Benchmarks

In the evaluation, we used five open-source Android apps
(Table I) with existing tests. We used open-source apps be-
cause through their public repositories they make available
both their source code and the existing GUI tests, required by
the evaluation of our technique. To identify relevant apps, we
used a dataset of 1,002 apps with tests from related work [2].
The apps in the dataset are publicly available on GitHub and,
to the best of our knowledge, the dataset was the largest set of
apps with tests at the time we started evaluating ARTISAN.

We selected the five apps from the dataset as follows:
First, we identified apps that contain GUI tests written in
Espresso [32]; this step identified 245 relevant apps. Second,
we filtered out apps that use programming languages other

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Benchmark apps used in the empirical evaluation.

[ID] Name [Category [Version[LOC (K)[GUI Tests]
AT ||BLABBERTABBER Tools 1.0.10 2.4 9
A2 || FIFTHELEMENT Music 2.2.5 69.8 17
A3 ||OWL FLASH CARDs |Education| 1.1 6.4 12
A4 || PRISMACALLBLOCKER | Tools 1.2.3 12.0 67
AS5||UK-GM Education| 1.2.1 5.3 47

than Java (e.g., Kotlin), as ARTISAN does not currently
support them; this step left us with 180 apps. Third, we sorted
the 180 apps in descending order based on the number of
GUI tests associated with the apps and processed the list of
apps starting from the one having the highest number of tests.
We discarded any app that we could not build and for which
the available GUI tests did not pass or showed flakiness. We
determined whether all tests were passing and were not flaky
by checking whether all tests passed in ten runs of the tests.
We stopped as soon as we identified five apps. We could not
build or run some of the top-ranked apps as those had outdated
dependencies, required an API key for a third-party service of
the app, or interacted with servers not reachable anymore.

Table I summarizes the main elements of the apps we
considered in the evaluation. For each app, the table reports
an identifier for the app (ID), its name (Name), the category of
the app (Category), its version (Version), the number of source
and test code lines (in thousands) (LOC (K)), and the number
of existing GUI tests (GUI).

B. Experimental Settings

To answer the RQs, we ran ARTISAN on the five apps
considered on a dedicated workstation with 128GB of memory,
an Intel 19-9900K 3.60GHz processor, and running Ubuntu
18.04. To execute the GUI tests, we used an Android Nexus 5X
emulator running API 28. We used API 28 as it was compatible
with all the selected apps according to their supported Android
API versions. In the RQs, we evaluated ARTISAN using the
default carving strategy (i.e., the strategy that selects as carving
targets only the first occurrence of method invocations with the
same fully qualified method signature within a trace).

C. Results

RQI: Can ARTISAN carve tests from GUI tests?: Table I
reports the results of running ARTISAN on the benchmark
apps. For each app, the table reports the identifier of the app
(ID), the number of traces collected from running the GUI
tests associated with the app (Traces), the number of method
invocations in the traces (Method Invocations), the number of
traces that ARTISAN could parse while carving tests (Parsed
Traces), the number of method invocations selected by the
carving strategy (Zargets), the number of tests carved (Carved
Tests), and the statement and branch coverage achieved by
GUI and carved tests (GUI Tests and Carved Tests columns
under the Statement Coverage and Branch Coverage headers).
Additionally, the table relates the coverage of carved tests with
the one of GUI tests (columns labeled with Included under

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

112

the Statement Coverage and Branch Coverage headers) by
reporting the percentage of coverage from carved tests that
also appears in GUI tests.

Overall, ARTISAN carved 2,087 tests from 152 GUI tests.
The carved tests cover 45.28% and 41.33% of the statements
and branches that are covered by the GUI tests. The overall
number of targets is 3,609, and the number of method invo-
cations in the traces is 311,661. The difference between the
number of method invocations in the traces and the number
of targets is due to the fact that the traces contain a large
number of method invocations whose definition is not inside
the AUT (i.e., the methods are defined in the Java standard
library, third-party libraries, or the Android framework) and
due to the default carving strategy we adopted.

The difference between the number of targets and the
number of carved tests is caused by some limitations in
the implementation of the technique (see Section IV-F) and
our design choice to reject unit tests in which the method
under tests are not directly called. Additionally, some targets
cannot be carved by ARTISAN as those are methods in
anonymous classes (e.g., callback handler definitions for GUI
elements) that cannot be directly invoked in Java. To carve
those targets, ARTISAN could use a preprocessing step that
refactors the code of the app such that those methods are not
part of anonymous classes. However, we did not implement
such a solution as it could lead to unwanted changes by the
developers. There is a need for studies and interviews with
developers to investigate this aspect, and we leave those studies
as a possible direction for future work.

The design choices, limitations in the implementation of
the technique (Section IV-F), the focus on ARTISAN on
executions originating in the main thread [33], and the focus on
Android activities are the reasons why the coverage of carved
tests is not 100%. Nevertheless, ARTISAN still provides unit
tests that offer a considerable coverage of the GUI tests.

Table II also compares (columns Included under the State-
ment Coverage and Branch Coverage headers) the statement
and branch coverage achieved by GUI and carved tests.
Specifically, we look at how much of the coverage in carved
tests also appears in the GUI tests used for generating them.
In other words, these columns reveal whether the carved tests
cover portions of the apps that are not covered by the GUI tests
(i.e., lead to spurious coverage). We computed this information
by extending JaCoCo [34], the coverage tool we used in the
experiments. All the branches covered in the carved tests are
also covered by the GUI tests. In terms of statement coverage,
instead, there are a few statements (in two of the five apps) that
are covered by the carved tests but not by the GUI tests. We
analyzed the tests leading to the discrepancies and identified
that the cause behind the discrepancy is a different behavior
of some of the Android API methods when they execute
on an Android device and the JVM (via Robolectric). This
situation can appear because Robolectric is a partial model of
the Android framework.

TABLE II: Results of running ARTISAN on the benchmark apps.

Carved Tests ‘

Statement Coverage (%) Branch Coverage (%) ‘
| GUI Tests [Carved Tests|Included | GUI Tests| Carved Tests [Included |

Traces | Method Invocations | Parsed Traces | Targets

Al 9 1,654 9 55 48
A2l| 17 35,495 17 1,559 1,004
A3 12 13,306 12 221 126
Adl| 67 31,151 67 1,479 821
AS|| 47 230,055 3 295 88

45 12 100 35 11 100
49 18 100 35 15 100
64 30 98 36 14 100
64 29 99 52 23 100
90 50 100 65 16 100

RQ1 answer: Yes, ARTISAN can carve tests from GUI
tests. Additionally, carved tests cover 45.28% and 41.33%
of the statements and branches that are covered by the GUI
tests and rarely have spurious coverage.

RQ2: What is the cost of running ARTISAN?: Table III
provides details on the execution time for running ARTISAN
on the benchmark apps. For each app, the table provides
the identifier for the app (ID), the time to execute the GUI
tests before instrumenting the app (GUI Tests Execution Time
Before Instrumentation), the time needed to instrument the
app (Instrumentation Time), the time to execute the GUI tests
after instrumenting the app (GUI Tests Execution Time After
Instrumentation), and the time to carve the tests (Carving
Time). The time values reported in Table III are averages across
10 runs of ARTISAN.

ARTISAN was able to generate carved tests in less than one
hour for each app considered. The technique was the fastest
when analyzing A1l and, in this case, ARTISAN took only
53 seconds. The technique took the longest when analyzing
A2, roughly 42 minutes. The time to instrument the apps is
negligible for the selected apps, especially considering that
instrumentation is a one-time activity. The overhead intro-
duced by the instrumentation when running the GUI tests
is 16.34%. We believe that the overhead is reasonable as it
is low and did not affect the test execution behavior (i.e.,
the tests passed before and after the instrumentation). The
time to carve tests, instead, varies significantly between apps.
We analyzed the causes behind the variance and identified
that the main contributing factors are the presence of static
method invocations in the traces and the size of the carved
executions. Static method invocations affect the carving time
as all the invocations to the same static classes need to be
(conservatively) taken into account when analyzing the targets
those invocations precede. Larger sets of required method
invocations also affect carving time as it takes longer to
extrapolate connected components from the graphs to generate
the corresponding carved executions.

RQ2 answer: Based on the results of our evaluation, we
believe that the time cost of running ARTISAN is low. For
the apps considered, the technique always terminated within
an hour, and, in some cases, within a few minutes.

RQ3: What are the characteristics of carved tests?: To
characterize carved tests, we consider the size of the unit tests

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Time cost of running ARTISAN.

GUI Tests ARTISAN
. § GUI Tests
Execution Time
ID Bef: Instrumentation | Execution Time | Carving
efore . ; .
I . Time After Time
nstrumentation ,
Instrumentation
[AT] 34s 10s 36s 7s
A2 2m56s 28s 3m26s | 38m07s
A3 1m49s 18s Im4ls 31s
A4 6m10s 15s 6m24s| 3ml2s
AS 4m51s 19s 6m53s| 6ml6s

and the number of mocks contained in them. We focus on test
size as larger tests can be harder to maintain and can lead
to test smells [35]. We also focus on the number of mocks
as they are not always straightforward to set up [3]; hence,
having tests with them can potentially help app developers.

For each app considered, Figure 3 reports the size of the
carved tests. The chart reports the size of the tests on the y-
axis and uses the log scale. We computed the size of each test
by counting the number of statements in the tests. The results
reported in Figure 3 are promising. For four out of the five apps
considered, the median number of statements in the tests is less
than 10. A2 is the app with the largest number of statements
per test. We observed that this app requires setting some values
in its database for a larger number of tests which, in turn, led to
an increase in the size of the tests. Considering that most tests
have a reasonable size, we believe that ARTISAN can provide
developers with tests that might be useful for debugging.

The total number of mocks in the carved tests is 241. The
ratio between the number of tests and the number of mocks
follows the ratio of developer-written tests in some of the apps
analyzed by related work on test doubles in Android [3].

Based on our experimental results, we argue that the tests
generated by ARTISAN, both in terms of test size and the
mocks they provided, could be actionable for developers.
However, to confirm this hypothesis, studies and interviews
with developers are necessary; hence, we suggest and envision
them as possible future work.

RQ3 answer: The tests carved by ARTISAN tend to be
concise and provide mocks that are required for testing cer-
tain parts of the apps. Considering the tests’ characteristics,
we believe that the tests could be actionable for developers.

113

10?

A2 A3 A4 A5

Fig. 3: Test size (y-axis) for carved tests generated by ARTI-
SAN. The graph uses a logarithmic scale.

Al

D. Discussion

ARTISAN is an end-to-end technique to perform tests
carving for Android apps. Implementing such a technique
required a significant technical effort, the mastery of several
technologies, and knowledge from different domains besides
Android. For instance, we employed byte code modification
for instrumenting and tracing the execution, automated build
systems for setting up the evaluation benchmarks, graph theory
and program analysis to carve the execution traces, and Java
code generation to synthesize the unit tests.

There are parts of ARTISAN that provide a solid base for
future work and others that can be further refined. For instance,
instrumentation and tracing of apps, as well as experiment
automation, worked smoothly. Similarly, the carving algorithm
and the generation of mocks produced excellent results. How-
ever, the carving algorithm also has some cost when carving
apps that heavily employ loops or implement overly complex
methods. In these cases, carving might take too long and
produce excessively long unit tests that can quickly become
hard to inspect and manage. We postulate that in these cases,
it might be beneficial to combine action-based and state-based
carving so that unit tests can directly load large objects created
with long method sequences, or loops, from memory. Another
way to reduce the size of the carved unit tests might be using
other dynamic techniques, such as delta debugging [36], or
employing purity analysis to identify and filter out method
invocations that do not introduce any relevant dependency.
Additionally, different carving strategies could be explored to
make action-based carving more efficient and effective.

E. Threats to Validity

As it is the case for most empirical evaluations, there are
both external and construct threats to validity associated with
the results we presented. In terms of external validity, our
results might not generalize to other apps. In particular, we

114

only considered five apps. This limitation is an artifact of the
complexity involved in setting up the infrastructure to run the
apps, which might require customized build configurations and
manually inspecting the results of our analysis. We selected
apps of different sizes that belong to different app categories
and are already considered in related work to mitigate this
threat. In terms of construct validity, there might be errors in
the implementation of our technique. To mitigate this threat,
we extensively inspected the evaluation results manually.

F. Limitations

In its current implementation, ARTISAN only supports
Android apps written in Java. Additionally, ARTISAN syn-
thesizes executable unit tests that lack test oracles, do not
involve any Android components besides activities (e.g., does
not handle Android services) and GUI elements, and consider
only traces generated by the main Android thread. We argue
that automatically generating test oracles, which is currently
an open research problem, is outside the scope of this first
work on carving unit tests for Android apps. Additionally,
we believe that extending ARTISAN’s implementation to
handle apps written in Kotlin, more Android components, and
multiple threads is mostly an engineering effort.

Regarding our evaluation, we did not involve developers
to evaluate the quality of carved tests. We plan to perform
such an evaluation in future work. Specifically, we plan to
perform studies with developers to understand which carved
tests best help developers and explore alternative carving
strategies based on the results of the studies.

V. RELATED WORK

The idea of test carving was originally proposed by Elbaum
etal. [11] as a means to generate unit tests, dubbed Differential
Unit Tests, to spot regression errors in Java programs. Elbaum
and co-authors identified three main test carving paradigms:
state-based carving, in which carving takes place on the
system under test’s state recorded during execution; action-
based carving, in which carving takes place on the sequence
of method invocations recorded during execution; and hybrid
carving, which combines the previous two. However, they
implemented only state-based carving. In this area, remarkable
results have been achieved by Krikava and Vitek [12], who
proposed GENTHAT for generating unit tests from execution
traces of R libraries, Kampmann and Zeller [13], who pro-
posed BASILISK for state-based carving of parameterized
unit tests targeting C programs, and, Juvekar et al. [15], who
created a program executing all public methods on a given
object the same way as in a given program trace. Compared
to those works, ARTISAN implements a different form of
test carving, works on Android apps, generates unit tests
across different platforms, and augments carved tests with
automatically synthesized mocks.

ARTISAN generates focused unit tests from execution
traces. Pasternak et al. [19], Saff et al. [17], and Thum-
malapenta et al. [18] achieved the same goal but with dif-
ferent techniques that, respectively, selected the interactions

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

to recreate the state of objects until a certain point in time,
automatically created focused unit tests by test factoring and
environmental mocks generation, and mined an extensive col-
lection of execution traces to generate generic parameterized
tests using dynamic symbolic execution to cover paths not
contained in the traces. Unlike these techniques, ARTISAN is
not limited to inter-object interactions implemented as method
calls, considers method invocations invoked by frameworks,
and generates focused unit tests.

Action-based carving sets unit tests’ preconditions, i.e.,
objects’ state, by re-executing specific sequences of method
calls that have been observed during end-to-end testing. There-
fore, action-based carving is a sensible solution to the object
creation problem defined by Bach et al. [37]. The main
differences between ARTISAN and the work done by Bach
et al. lies in the fact that they first identified feasible method-
call sequences for object creation statically and then selected
the most desirable sequence using a search algorithm. Another
difference is that Bach et al.’s approach is for C++ programs.

Alternative approaches make use of selective capture
and replay techniques. For instance, Orso et al. proposed
SCARPE [16] and JINSI [14] to capture parts of program
execution for replay and isolate the instructions that lead to
the failure to produce a minimal example that reliably replays
it. Compared to those works, ARTISAN has a broader scope
as it does not consider interactions involving a single com-
ponent, can generate tests from both normal and exceptional
executions, and can carve unit tests for Android apps.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented ARTISAN, a technique to perform
test carving for Android apps. ARTISAN carves unit tests
that run on the JVM from GUI tests that run on a device. We
evaluated ARTISAN based on 152 GUI tests and five apps
and identified that the technique carves tests that achieve 45%
of the original GUI tests’ coverage and does so in an amount
of time compatible with standard development practices.

In future work, we plan to perform studies and interviews
with developers to understand which carved tests best help
developers and explore alternative carving strategies based on
the gathered insights. We also plan to investigate test suite
reduction techniques to identify duplicate tests among carved
tests. Finally, we plan to investigate techniques to carve oracles
from end-to-end tests into oracles suitable for unit tests.

REFERENCES

[1] Google, “Fundamentals of testing android apps.” [Online]. Available:
https://developer.android.com/training/testing/fundamentals

J.-W. Lin, N. Salehnamadi, and S. Malek, “Test automation in open-
source android apps: A large-scale empirical study,” in 2020 35th
IEEE/ACM International Conference on Automated Software Engineer-
ing. New York, NY, USA: Association for Computing Machinery, 2020,
pp. 1078-1089.

M. Fazzini, C. Choi, J. M. Copia, G. Lee, Y. Kakehi, A. Gorla,
and A. Orso, “Use of test doubles in android testing: An in-depth
investigation,” in Proceedings of the 44th International Conference on
Software Engineering, 2022.

[2]

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

115

[4]

(6]

[71

[8

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis. New York, NY, USA:
Association for Computing Machinery, 2016, pp. 94-105.

T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu,
and Z. Su, “Guided, stochastic model-based gui testing of android
apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2017, pp. 245-256.

Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-based
approach to automated black-box android app testing,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). Piscataway, NJ, USA: Institute of Electrical and Electronics
Engineers, 2019, pp. 1070-1073.

J. Wang, Y. Jiang, C. Xu, C. Cao, X. Ma, and J. Lu, “Combodroid:
generating high-quality test inputs for android apps via use case
combinations,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 469-480.

M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso, “Barista:
A technique for recording, encoding, and running platform independent
android tests,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation. — Piscataway, NJ, USA: Institute
of Electrical and Electronics Engineers, 2017, pp. 149-160.

Y. Liu, Y. Lu, and Y. Li, “An android-based approach for automatic
unit test,” in International Conference on Cyberspace Technology (CCT
2014), 2014, pp. 1-4.

J. Cao, H. Huang, and F. Liu, “Android unit test case generation based
on the strategy of multi-dimensional coverage,” in 7th International
Conference on Cloud Computing and Intelligent Systems, 2021.

S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving
differential unit test cases from system test cases,” in Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2006, p. 253-264.

F. Krikava and J. Vitek, “Tests from traces: automated unit test extrac-
tion for R,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 232-241.

A. Kampmann and A. Zeller, “Carving parameterized unit tests,” in
Proceedings of the 41st International Conference on Software Engineer-
ing: Companion Proceedings. Piscataway, NJ, USA / New York, NY,
USA: Institute of Electrical and Electronics Engineers / Association for
Computing Machinery, 2019, pp. 248-249.

A. Orso, S. Joshi, M. Burger, and A. Zeller, “Isolating relevant compo-
nent interactions with jinsi,” in Proceedings of the 2006 international
workshop on Dynamic systems analysis. New York, NY, USA:
Association for Computing Machinery, 2006, pp. 3-10.

S. Juvekar, J. Burnim, and K. Sen, “Path slicing per object for
better testing, debugging, and usage discovery,” EECS Department,
University of California, Berkeley, Tech. Rep., Sep 2009. [Online].
Available: http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-132.html

A. Orso and B. Kennedy, “Selective capture and replay of program
executions,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4,
pp. 1-7, 2005.

D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic test
factoring for java,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering. New York, NY, USA:
Association for Computing Machinery, 2005, pp. 114-123.

S. Thummalapenta, J. de Halleux, N. Tillmann, and S. Wadsworth, “Dy-
gen: Automatic generation of high-coverage tests via mining gigabytes
of dynamic traces,” in Tests and Proofs. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 77-93.

B. Pasternak, S. Tyszberowicz, and A. Yehudai, “Genutest: a unit test
and mock aspect generation tool,” International Journal on Software
Tools for Technology Transfer, vol. 11, no. 4, pp. 273-290, 2009.

G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.
M Fowler, “Testdouble.” [Online]. Available:

https://martinfowler.com/bliki/TestDouble.html
A. Authors, “Artifact for action-based test carving for android apps.”
[Online]. Available: https://zenodo.org/record/7285409

[23]

[24]

[25]

[26]
[27]

[28]

[29]

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

Google, “Android - view.” [Online]. Avail-
able: https://developer.android.com/reference/android/view/
View#findViewById(int)

3 “Android - activity.” [Online].
able: https://developer.android.com/reference/android/app/
ity#startActivity(android.content.Intent)

S. Faber, B. Dutheil, R. Winterhalter, and T. van der Lippe, “Mockito.”
[Online]. Available: https://site.mockito.org/

Robolectric, “Robolectric.” [Online]. Available: http://robolectric.org
R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 4, pp. 451-490, 1991. [Online]. Available:
https://doi.org/10.1145/115372.115320

A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer, “Efficient unit
test case minimization,” in 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), November 5-9,
2007, Atlanta, Georgia, USA, R. E. K. Stirewalt, A. Egyed, and
B. Fischer, Eds. ACM, 2007, pp. 417-420. [Online]. Available:
https://doi.org/10.1145/1321631.1321698

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers. Armonk, NY, USA: IBM Corp., 2010,
p. 214-224.

Avail-
Activ-

116

[30]

[31]

[32]
[33]

[34]
[35]

[36]

[37]

J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis
framework,” in Proceedings of the 2007 international symposium on
Software testing and analysis, 2007, pp. 196-206.

J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in NDSS, vol. 5, 2005, pp. 3—4.

Google, “Espresso.” [Online]. Available:
https://developer.android.com/training/testing/espresso
——, “Processes and threads overview.” [Online]. Available:

https://developer.android.com/guide/components/processes-and-threads
JaCoCo, “Jacoco.” [Online]. Available: https://www.jacoco.org

G. Grano, F. Palomba, D. Di Nucci, A. De Lucia, and H. C. Gall,
“Scented since the beginning: On the diffuseness of test smells in
automatically generated test code,” Journal of Systems and Software,
vol. 156, pp. 312-327, 2019.

A. Zeller, “Isolating cause-effect chains from computer programs,” in
Proceedings of the 10th ACM SIGSOFT Symposium on Foundations
of Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2002, pp. 1-10.

T. Bach, R. Pannemans, and A. Andrzejak, “Determining method-
call sequences for object creation in C++,” in Proceedings of the
13th IEEE International Conference on Software Testing, Validation
and Verification. Piscataway, NJ, USA: Institute of Electrical and
Electronics Engineers, 2020, pp. 108-119.

