
Action-Based Test Carving for Android Apps

Alessio Gambi∗, Hemant Gouni†, Daniel Berreiter‡, Vsevolod Tymofyeyev‡, Mattia Fazzini†
∗IMC University of Applied Science Krems, Austria; alessio.gambi@fh-krems.ac.at

†University of Minnesota, MN, USA; gouni008@umn.edu, mfazzini@umn.edu
‡University of Passau, Germany; daniel.berreiter@gmail.com, timvseffolod@gmail.com

Abstract—The test suites of an Android app should take
advantage of different types of tests including end-to-end tests,
which validate user flows, and unit tests, which provide focused
executions for debugging. App developers have two main options
when creating unit tests: create unit tests that run on a device
(either physical or emulated) or create unit tests that run on
a development machine’s Java Virtual Machine (JVM). Unit
tests that run on a device are not really focused, as they use
the full implementation of the Android framework. Moreover,
they are fairly slow to execute, requiring the Android system
as the runtime. Unit tests that run on the JVM, instead, are
more focused and run more efficiently but require developers
to suitably handle the coupling between the app under test
and the Android framework. To help developers in creating
focused unit tests that run on the JVM, we propose a novel
technique called ARTISAN based on the idea of test carving.
The technique (i) traces the app execution during end-to-end
testing on Android devices, (ii) identifies focal methods to test,
(iii) carves the necessary preconditions for testing those methods,
(iv) creates suitable test doubles for the Android framework, and
(v) synthesizes executable unit tests that can run on the JVM. We
evaluated ARTISAN using 152 end-to-end tests from five apps
and observed that ARTISAN can generate unit tests that cover a
significant portion of the code exercised by the end-to-end tests
(i.e., 45% of the starting statement coverage on average) and
does so in a few minutes.

I. INTRODUCTION AND MOTIVATION

Testing is an essential aspect of the software development

life cycle and is crucial in improving software quality. For

Android applications (or apps in short), testing is critical to

avoid failures that can lead to the disruption of mission-critical

activities, loss of reputation, and customer loss.

A good testing strategy needs to find an appropriate balance

between the fidelity of the tests, testing speed, and testing

reliability [1]. To achieve this balance, app developers can

create tests at different granularity levels [1]. End-to-end tests
exercise large parts of an app through its Graphical User

Interface (GUI) and help developers check user flows. Unit
tests focus on a small portion of an app and help developers

debug and test regression. In the Android realm, developers

also need to decide on which platform tests shall run [1]. In-
strumented tests execute on an Android device, either physical

or emulated, whereas Local tests execute on a JVM.

Although it is possible to create tests by combining gran-

ularity levels and execution environments (e.g., unit tests that

run in the Android device), related work on app testing [2],

[3] observed that instrumented end-to-end GUI tests and local

unit tests are the most frequently used.

Researchers and practitioners proposed several automatic

and semi-automatic techniques to help app developers create

end-to-end instrumented tests (e.g., [4]–[8]). However, only

a few existing techniques for automatically creating local

unit tests have been proposed (see [9], [10]) even though

developers would benefit from having those tests, which run

fast and simplify debugging activities [2]. Existing techniques

have limited applicability as they require substantial manual

effort [9] or are not based on the tester’s intent [10] (i.e., they

are based on an input generation strategy).

Test carving [11] has been proposed for generating unit tests

from end-to-end tests by either checkpointing portions of an

application state and reloading it during unit testing to set the

test preconditions (state-based carving) or by extracting units

of execution from end-to-end executions and replaying them

as part of the generated unit tests (action-based carving). The

potential benefits of test carving include improving regression

testing effectiveness by enabling standard regression test selec-

tion techniques, reducing the sensitivity to interference bugs by

isolating tests better, and enabling developers to perform more

focused debugging activities. Consequently, various techniques

for performing test carving have been proposed (e.g., [11]–

[19]). However, none of the existing techniques carves unit

tests across different platforms, as it is needed in Android

for extracting focused and efficient unit tests that run on the

JVM from end-to-end tests that run on a device. Addition-

ally, carving unit tests in Android also necessitates handling

the challenges of testing typical Android apps that operate

through event-based and inversion-of-control paradigms (i.e.,

everything, including the instantiation of some components

required as a precondition by the unit tests, is orchestrated

by the Android framework), and are tightly coupled with

the Android framework, which requires replacing Android

components with test doubles [3], [20], [21] during testing.

To facilitate unit testing of Android apps, we propose

ARTISAN, an action-based test carving technique that takes

as input the app under test (AUT) and its end-to-end GUI

tests and automatically produces a set of locally executable

unit tests as output. As illustrated in Figure 2, ARTISAN (i)

instruments the AUT to enable tracing of method invocations

at runtime during the execution of end-to-end GUI tests, (ii) it

identifies focal methods to test, (iii) carves the relevant method

invocations for testing a unit based on the collected traces, (iv)

creates suitable test doubles for the Android framework needed

by the unit tests, and (v) synthesizes executable unit tests that

can run on the JVM.

107

2023 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)

979-8-3503-3335-0/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSTW58534.2023.00032

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Te
st

in
g,

 V
er

ifi
ca

tio
n

an
d

V
al

id
at

io
n

W
or

ks
ho

ps
 (I

C
ST

W
) |

 9
79

-8
-3

50
3-

33
35

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

ST
W

58
53

4.
20

23
.0

00
32

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

ResultActivityMainActivity MainActivity MainActivity

Type Text:
1+1

Hide
Keyboard

Press Button:
Calculate

Intent

21+1 1+1 2

Fig. 1: Main user flow of BASICCALCULATOR.

To assess the usefulness of ARTISAN, we performed an

empirical evaluation based on 152 end-to-end GUI tests from

five apps and assessed the effectiveness and efficiency of our

technique. As far as effectiveness is concerned, ARTISAN

can generate unit tests that cover a significant portion of

the code exercised by the end-to-end tests (i.e., 45% of the

starting statement coverage on average). As for efficiency,

ARTISAN can generate unit tests in just a few minutes.

Overall, we believe that our results are promising and provide

initial evidence of the usefulness of our technique.

In summary, this paper makes the following contributions:

• An automated technique that performs action-based test

carving for Android apps.

• A publicly available implementation of the technique (see

replication package [22]).

• An empirical evaluation that provides initial evidence of

the effectiveness and efficiency of our technique.

II. BACKGROUND

In this section, we report background information that aims

to facilitate the understanding of our technique. Android apps

are composed of different types of components. Activities are

one of the main types of components and are one of the

primary ways to interface with app users. Only one activity can

be active at any time and activities communicate via message

passing. The messages used by activities are called intents
and can contain an arbitrary, serializable payload. Under the

hood, Android delivers intents by serializing and deserializing

their content. Activities are also event-based: their logic is

encapsulated into listeners and callbacks, and the dispatch

of predefined events by the Android framework triggers their

execution. Typical examples of such event listeners are life-

cycle events and events generated by GUI elements.

We further illustrate background concepts using an exam-

ple Android app called BASICCALCULATOR, which solves

user-provided mathematical expressions through two activ-

ities: MainActivity (which solves the expressions) and

ResultActivity (which displays the results of the expres-

sions). Figure 1 displays the main user flow of BASICCAL-

CULATOR.

MainActivity sets up the app GUI, i.e., the text input field

and the “CALCULATE” button shown in Figure 1, and regis-

ters the various callbacks to handle user interactions (e.g., the

pressing of the “CALCULATE” button). The MainActivity

has a method called sendResult and this method is invoked

when the user presses the “CALCULATE” button, which

fetches the content of the text input field on the GUI, computes

the result of the expression provided by the user, and sends the

result to the ResultActivity (which displays the result).

In this process, sendResult retrieves the expression

of the text input field using the Android findViewById

method [23], which takes as input the ID of the text input

field. Starting another activity requires calling the Android

startActivity method [24] and passing an intent that con-

tains a reference to the activity to start and an optional payload.

In the case of our example, the activity is ResultActivity

and the optional payload is the result of the expression.

1 @RunWith(AndroidJUnit4.class) @LargeTest
2 public class MainActivityTest {
3 @Test
4 public void testCalculate() {
5 onView(withId(R.id.input)).perform(typeText("1+1"));
6 Espresso.closeSoftKeyboard();
7 onView(withId(R.id.calculateButton)).perform(click());
8 onView(withId(R.id.resultView))
9 .check(matches(withText("2")));

10 }
11 }

Listing 1: A GUI test stressing BASICCALCULATOR.

Testing BASICCALCULATOR main user flow can be done

using the GUI test in Listing 1; doing so requires developers

to (i) build the app, (ii) install it inside an Android device or

emulator, and (iii) execute the test interacting with the app’s

GUI on that device.

An alternative for testing BASICCALCULATOR is to use

unit tests focusing on specific code units that can run on any

standard JVM. Listing 2 reports a local unit test that checks

the behavior of the sendResult method under the same

conditions observed while running the GUI test in Listing 1.

The test_MainActivity_sendResult unit test imple-

ments a complex setup to ensure that objects such as the

“CALCULATE“ button and the text input field, which are

normally provided by the Android framework, are also avail-

able during unit testing. Since the Android runtime does not

manage those objects during local unit testing, it is necessary

to replace them with mocks and stubs. To that end, the

example uses Mockito [25] and Robolectric [26] Mockito is

a framework for creating mocks and stubs and Robolectric

provides basic stubbing capabilities by (partially) simulating

the Android framework on the JVM.

In the example, the test creates a simple mock for the “CAL-

CULATE” button (Lines 8–11), nested mocks that simulate

accessing the text input field (Lines 18–25), and injects these

mocks into Robolectric to enable their execution (Lines 29–

30).

108

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

1 @RunWith(RobolectricTestRunner.class)
2 @Config(shadows = { EditTextShadowForSendResult.class })
3 public class Test028 {
4

5 @Test(timeout = 4000)
6 public void test_MainActivity_sendResult() {
7 // Mock the Calculate button
8 Button button2 = Mockito.mock(Button.class);
9 Stubber stubber3 = Mockito.doReturn(R.id.

calculateButton);
10 Button button3 = stubber3.when(button2);
11 button3.getId();
12 // Instantiate MainActivity using Robolectric
13 ActivityController controller = Robolectric.

buildActivity(MainActivity.class);
14 MainActivity mainactivity = controller.get();
15 // Simulate triggering "create" event
16 controller.create();
17 // Mock the text input field
18 SpannableStringBuilder stringbuilder3 = Mockito.mock(

SpannableStringBuilder.class);
19 Stubber stubber4 = Mockito.doReturn("1+1");
20 SpannableStringBuilder stringbuilder4 = stubber4.when

(spannablestringbuilder3);
21 spannablestringbuilder4.toString();
22 EditText edittext3 = Mockito.mock(EditText.class);
23 Stubber stubber5 = Mockito.doReturn(

spannablestringbuilder3);
24 EditText edittext4 = stubber5.when(edittext3);
25 edittext4.getText();
26 // Inject the mocks in Robolectric
27 EditText edittext2 = mainactivity.findViewById(R.id.

input);
28 EditTextShadowForSendResult edittextshadow = Shadow.

extract(edittext2);
29 edittextshadow.setMockFor("android.widget.EditText:

android.text.Editable getText()", edittext3);
30 edittextshadow.setStrictShadow();
31 // Invoke the Method Under Test
32 mainactivity.sendResult(button3);
33 }
34 }

Listing 2: A unit test carved by ARTISAN for

BASICCALCULATOR

In summary, this motivating example shows how complex

Android apps’ unit tests can be and illustrates some technical

challenges in their automated generation.

III. TECHNIQUE

ARTISAN is an end-to-end approach composed of several

steps (Figure 2). It starts by instrumenting the (non-obfuscated)

original AUT to enable tracing method invocations. Next,

it executes the Instrumented AUT on an Android device

against GUI Tests to collect Execution Traces. Then, it parses

the traces into a form amenable to automatic analysis (i.e.,

graphs) and carves the original executions. Finally, it augments

the Carved Executions with code that mocks dependencies

provided by the Android framework and synthesizes the source

code of the Carved Unit Tests from the Extended Carved
Executions.

Notably, ARTISAN generates carved unit tests in the static

single-assignment (SSA) form [27]. Although programs writ-

ten in SSA form are generally longer than programs written in

other forms, which might affect their readability, we decided

Instrument.

Instrumented
AUT

AUT GUI Tests

Execution
Traces

Parsing Carving

Mock
Generation

Parsed
Traces

Carved
Executions

Carved
Unit Tests

Tracing

Test
Synthesis

Extended Carved
Executions

Fig. 2: An overview of ARTISAN’s end-to-end approach to

carving local unit tests from instrumented GUI tests.

to generate test code in SSA form for two main reasons: on

the one hand, it is easy to translate the carved executions in

this form; on the other hand, SSA enables the application of

standard program analyses (e.g., live variable analysis) and

optimization techniques (e.g., test minimization [28]) that can

improve the generated tests’ quality.

A. Instrumentation and Tracing

Action-based test carving is a dynamic analysis technique

that requires execution traces to identify the units of execution,

i.e., method invocations, that are relevant for testing code units.

ARTISAN instruments the original AUT using the byte-code

modification library Soot [29].

ARTISAN adopts a light-weighted approach to trace An-

droid apps and generates traces in plain text, making it possible

for developers to easily inspect them. Specifically, ARTISAN

injects code that logs for each method invocation, the method

signature, the actual parameters, and any returned values

or thrown exceptions. Tracing focuses only on the AUT’s

operations, as we want unit tests that focus on the AUT. To

this end, ARTISAN instruments only the method bodies of

the methods that belong to the AUT and not other components

such as third-party libraries, standard language libraries, and

the Android runtime. In the instrumentation, ARTISAN dif-

ferentiates between calls to instance and static methods, traces

method calls at different visibility levels and distinguishes

whether methods return normally or exceptionally. In the latter

case, the trace contains also whether the exceptional behavior

was caused by a checked or an unchecked exception.

109

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

Differently than state-based carving, ARTISAN does not

check-point the application state nor serialize the objects

used as parameters or return values. Instead, it manages

all the object instances, including exceptions, by-reference
and stores in the trace only their object id. ARTISAN

obtains the object id of non-null instances by calling

System.getObjectIdentity() to capture the actual object

types along with their hash codes. To avoid cluttering the

execution traces, ARTISAN manages primitive types, boxed

primitive types, and “string” types (e.g., String) by-value and

saves only their string representation.

Action-based carving implicitly assumes that all interactions

between objects happen exclusively via method invocations;

unfortunately, units of executions like array stores, array

accesses, and field assignments are not implemented as method

calls in Java and would be missed if not properly handled. To

avoid missing such fundamental units of execution, ARTI-

SAN implements a custom instrumentation code that traces

them as synthetic methods. For example, it traces an array

store like array[0] = 10 as the generic method invocation

abc.ArrayOperation.set(array, 0, 10).

As discussed in Section II, activities communicate by pass-

ing Intent objects that the Android framework serializes in

a stream of bytes and deserializes into actual objects. Thus,

the object ids of serialized and deserialized objects differ,

which effectively breaks the (logical) connection between

them. To avoid losing this connection, ARTISAN leverages

application level taint tracking [30], [31]. Instead of modifying

the Intent’s bytecode to accommodate the tainting value, i.e.,

the object id of the intents to be sent, ARTISAN stores the

tainting values directly in the intents as a regular payload using

a special key before Android sends them. To read the tainting

value, instead, ARTISAN injects custom code that is invoked

before the receiving activity accesses the payload. This custom

code extracts from the payload the tainted value by invoking a

standard Intent method using the special key as a parameter.

Doing so, ARTISAN is able to trace the logical connection

between sent and received intents.

B. Trace Parsing

After tracing the execution of the GUI tests, ARTISAN

parses the generated execution traces into graph data structures

that capture chronological, data, and call dependencies of

method invocations and object instances. For each trace, the

technique creates three graph data structures.

Execution Flow Graph (EFG). This graph captures the

chronological dependencies of the method invocations ap-

pearing in the trace; hence, EFGs are useful to identify

(past) method invocations that may set test preconditions. The

graph is a (doubly) linked list whose nodes represent method

invocations and edges the (strict) precedence/follow relations.

Data Dependency Graph (DDG). This graph is a directed

graph that links method invocations to data nodes and data

nodes to method invocations. Data nodes can be either object

instances or primitive values. Object instances can be linked

to multiple method invocations, whereas primitive values are

always linked to one and only one method invocation. In this

graph, two nodes are linked when (i) an object instance OWNS

a method invocation; (ii) a data node is used as a PARAMETER

of a method invocation; (iii) a STATIC data node is used inside

a method invocation; (iv-a) a method invocation RETURNS a

data node or (iv-b) THROWS an exception. DDG is useful to

identify test preconditions.

Call Dependency Graph (CDG). This graph captures the

nesting relations among the method invocations; hence, it is

useful to ensure that carved method invocations are executed

the right amount of times (e.g., no duplicate executions). The

graph is a directed and acyclic graph whose nodes represent

method invocations and edges the INVOKE relation. The graph

is a forest because apps can have multiple entry points.

After parsing is completed, ARTISAN decorates the graphs

by including additional information that will be used later dur-

ing carving and test synthesis. This step includes (i) identifying

method invocation nodes that are owned by Android com-

ponents, like Activities, and tagging the nodes corresponding

to life cycle events callbacks (e.g., onCreate); (ii) aliasing

data nodes that correspond to sources and sinks of tainted

intents (i.e., logically related intents) and their payload; and,

(iii) injecting static dependencies.

C. Action-based Carving

The carving process begins after parsing the execution traces

and considers only one trace at a time. At first, ARTISAN

selects “carvable” targets, i.e., the method invocations for

which to generate unit tests. In general, there are no restric-

tions on which method invocations can be carved; however,

carving some method invocations, such as private methods

and methods that do not belong to the AUT might produce

non-compilable or irrelevant unit tests. Therefore, ARTISAN

automatically filters out invocations of private methods and

invocations whose owner type does not match the AUT’s

package name (i.e., they do not belong to the AUT). In case an

end-to-end test makes multiple calls to the same target method

ARTISAN provides a special option to either select one (i.e.,

the first) or all the invocations of that method as “carvable”

targets (i.e., ARTISAN offers different carving strategies to

developers). By default, ARTISAN selects the first invocation

of a method to be in the set of “carvable” targets. The idea

behind using this default strategy is that it allows for covering

the behavior of multiple methods while limiting the cost of

running the technique. This strategy might carve the same

method multiple times across different traces. Still, we think

that this is reasonable as traces originating from different GUI

tests likely have different objectives.

After selecting the target method invocations, ARTISAN

finds all the method invocations that are relevant to them,

either directly or indirectly, using a backward slicing algo-

rithm: Starting from a target method invocation, this algorithm

identifies the past method invocations that match one of the

following three conditions: (1) the method invocation shares

the same owner with the target method invocation; (2) the

method invocation is owned by a parameter used by the target

110

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

method invocation; or, (3) the method invocation belongs to a

static class used within the target method body.

Since the selected method invocations might introduce addi-

tional dependencies (e.g., parameters to be set), this algorithm

iteratively carves each of them. The algorithm converges

because, at every iteration, it considers a smaller set of de-

pendencies. Moreover, as the “carvable” targets are considered

sequentially and might share dependencies, ARTISAN caches

intermediate results and speeds up the algorithm.

Once the algorithm selects all the method invocations rel-

evant to a “carvable” target, ARTISAN uses the CDG to

retrieve all the additional method invocations that would be

executed because the relevant method invocations are (e.g.,

a method invocation triggered by an already selected method

invocation). Given this “extended” set of invocations, ARTI-

SAN creates carved executions by extrapolating the connected

components they form in the EFG, the DDG, and the CDG.

Finally, ARTISAN “cleans” the carved executions by re-

moving those units of computation, such as lambdas, which

occur in Android apps but cannot be directly instantiated in

the unit tests, and re-carves the target invocations within the

carved trace executions to ensure they remain consistent.

D. Mock Generation

Carved executions contain a list of executed method invo-

cations and their data dependencies. However, they might not

be executable yet as they might contain method invocations

on objects belonging to the Android framework. To be able to

execute those invocations, ARTISAN uses the Roboletric [26]

framework, which offers simplified implementations for the

classes in the Android framework (which the framework

calls shadow classes). These simplified implementations are

designed for testing purposes. However, Roboletric is not

comprehensive [26], and some of the method invocations in the

carved executions might not be executable as the framework

does not offer an implementation for them. Additionally, there

might be objects that, during end-to-end test execution, are

created within the Android framework (e.g., GUI elements)

or by third-party libraries. Consequentially, ARTISAN does

not know how to either define them or should not use their

implementation (as ARTISAN wants to minimize the use of

external dependencies such as third-party libraries). ARTI-

SAN deals with these cases by means of mocking, a standard

technique that improves the reliability of unit tests by replacing

complex dependencies with pre-programmed test doubles.

ARTISAN analyzes how each of those objects without

an “accessible” implementation is used within the carved

executions and automatically programs a mock object that

can replicate the (observed) behavior within the unit tests

through stubbed methods (i.e., methods that return canned

data). If a stubbed method invocation on a mocked object

returns another object without an accessible implementation,

ARTISAN reproduces its behavior utilizing another automati-

cally configured mock object; the process continues until there

are no more objects without an accessible implementation

left. ARTISAN takes advantage of forward slicing to identify

which mock objects are needed. Since the number of data

dependencies to consider is finite and shrinks at every iteration

of the algorithm, synthesizing mocks is guaranteed to always

terminate. After the mock generation phase, we call carved

executions as extended carved executions.

E. Synthesis of Carved Unit Tests

At this point, all the test preconditions are either instantiated

or mocked, and ARTISAN can finally synthesize the code

implementing the unit tests by transforming the extended

carved execution’s CDG root-level nodes, i.e., the directly

“visible” method invocations, into their corresponding source-

code method invocations. While doing so, ARTISAN relies

on the DDG to generate all the variables needed to host

the references or values that correspond to methods’ owners,

parameters, and return values. Notably, the extended carved

executions do not contain complex control flows; thus, the

generated tests consist of a number of variable declarations

and a sequence of method invocations, as one would expect

from unit tests.

To generate the mocking code which stubs the methods of

objects without an accessible implementation and contained in

the extended carved executions, ARTISAN uses a predefined

template. For each object o, ARTISAN (i) declares o as a

mock object using Mockito [25], (ii) it specifies which object

(if any) the mock should return using a stub, and (iii) it invokes

the stubbed method sm on o based on the carved execution.

The GUI elements of an app require special treatment. To

inject the pre-programmed mock objects inside GUI elements

(which are handled by Robolectric), ARTISAN (i) retrieves

the GUI elements from the activity using their known unique

ID, (ii) it extracts the shadow objects simulating them, and

(iii) passes the mock objects to the shadows.

IV. EMPIRICAL EVALUATION

We performed a preliminary evaluation of ARTISAN’s

effectiveness and efficiency by targeting the following research

questions (RQs):

RQ1: Can ARTISAN carve unit tests from GUI tests?

RQ2: What is the cost of running ARTISAN?

RQ3: What are the characteristics of carved tests?

A. Experimental Benchmarks

In the evaluation, we used five open-source Android apps

(Table I) with existing tests. We used open-source apps be-

cause through their public repositories they make available

both their source code and the existing GUI tests, required by

the evaluation of our technique. To identify relevant apps, we

used a dataset of 1, 002 apps with tests from related work [2].

The apps in the dataset are publicly available on GitHub and,

to the best of our knowledge, the dataset was the largest set of

apps with tests at the time we started evaluating ARTISAN.

We selected the five apps from the dataset as follows:

First, we identified apps that contain GUI tests written in

Espresso [32]; this step identified 245 relevant apps. Second,

we filtered out apps that use programming languages other

111

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Benchmark apps used in the empirical evaluation.

ID Name Category Version LOC (K) GUI Tests
A1 BLABBERTABBER Tools 1.0.10 2.4 9
A2 FIFTHELEMENT Music 2.2.5 69.8 17
A3 OWL FLASH CARDS Education 1.1 6.4 12
A4 PRISMACALLBLOCKER Tools 1.2.3 12.0 67
A5 UK-GM Education 1.2.1 5.3 47

than Java (e.g., Kotlin), as ARTISAN does not currently

support them; this step left us with 180 apps. Third, we sorted

the 180 apps in descending order based on the number of

GUI tests associated with the apps and processed the list of

apps starting from the one having the highest number of tests.

We discarded any app that we could not build and for which

the available GUI tests did not pass or showed flakiness. We

determined whether all tests were passing and were not flaky

by checking whether all tests passed in ten runs of the tests.

We stopped as soon as we identified five apps. We could not

build or run some of the top-ranked apps as those had outdated

dependencies, required an API key for a third-party service of

the app, or interacted with servers not reachable anymore.

Table I summarizes the main elements of the apps we

considered in the evaluation. For each app, the table reports

an identifier for the app (ID), its name (Name), the category of

the app (Category), its version (Version), the number of source

and test code lines (in thousands) (LOC (K)), and the number

of existing GUI tests (GUI).

B. Experimental Settings

To answer the RQs, we ran ARTISAN on the five apps

considered on a dedicated workstation with 128GB of memory,

an Intel i9-9900K 3.60GHz processor, and running Ubuntu

18.04. To execute the GUI tests, we used an Android Nexus 5X

emulator running API 28. We used API 28 as it was compatible

with all the selected apps according to their supported Android

API versions. In the RQs, we evaluated ARTISAN using the

default carving strategy (i.e., the strategy that selects as carving

targets only the first occurrence of method invocations with the

same fully qualified method signature within a trace).

C. Results

RQ1: Can ARTISAN carve tests from GUI tests?: Table II

reports the results of running ARTISAN on the benchmark

apps. For each app, the table reports the identifier of the app

(ID), the number of traces collected from running the GUI

tests associated with the app (Traces), the number of method

invocations in the traces (Method Invocations), the number of

traces that ARTISAN could parse while carving tests (Parsed
Traces), the number of method invocations selected by the

carving strategy (Targets), the number of tests carved (Carved
Tests), and the statement and branch coverage achieved by

GUI and carved tests (GUI Tests and Carved Tests columns

under the Statement Coverage and Branch Coverage headers).

Additionally, the table relates the coverage of carved tests with

the one of GUI tests (columns labeled with Included under

the Statement Coverage and Branch Coverage headers) by

reporting the percentage of coverage from carved tests that

also appears in GUI tests.

Overall, ARTISAN carved 2,087 tests from 152 GUI tests.

The carved tests cover 45.28% and 41.33% of the statements

and branches that are covered by the GUI tests. The overall

number of targets is 3,609, and the number of method invo-

cations in the traces is 311,661. The difference between the

number of method invocations in the traces and the number

of targets is due to the fact that the traces contain a large

number of method invocations whose definition is not inside

the AUT (i.e., the methods are defined in the Java standard

library, third-party libraries, or the Android framework) and

due to the default carving strategy we adopted.

The difference between the number of targets and the

number of carved tests is caused by some limitations in

the implementation of the technique (see Section IV-F) and

our design choice to reject unit tests in which the method

under tests are not directly called. Additionally, some targets

cannot be carved by ARTISAN as those are methods in

anonymous classes (e.g., callback handler definitions for GUI

elements) that cannot be directly invoked in Java. To carve

those targets, ARTISAN could use a preprocessing step that

refactors the code of the app such that those methods are not

part of anonymous classes. However, we did not implement

such a solution as it could lead to unwanted changes by the

developers. There is a need for studies and interviews with

developers to investigate this aspect, and we leave those studies

as a possible direction for future work.

The design choices, limitations in the implementation of

the technique (Section IV-F), the focus on ARTISAN on

executions originating in the main thread [33], and the focus on

Android activities are the reasons why the coverage of carved

tests is not 100%. Nevertheless, ARTISAN still provides unit

tests that offer a considerable coverage of the GUI tests.

Table II also compares (columns Included under the State-
ment Coverage and Branch Coverage headers) the statement

and branch coverage achieved by GUI and carved tests.

Specifically, we look at how much of the coverage in carved

tests also appears in the GUI tests used for generating them.

In other words, these columns reveal whether the carved tests

cover portions of the apps that are not covered by the GUI tests

(i.e., lead to spurious coverage). We computed this information

by extending JaCoCo [34], the coverage tool we used in the

experiments. All the branches covered in the carved tests are

also covered by the GUI tests. In terms of statement coverage,

instead, there are a few statements (in two of the five apps) that

are covered by the carved tests but not by the GUI tests. We

analyzed the tests leading to the discrepancies and identified

that the cause behind the discrepancy is a different behavior

of some of the Android API methods when they execute

on an Android device and the JVM (via Robolectric). This

situation can appear because Robolectric is a partial model of

the Android framework.

112

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Results of running ARTISAN on the benchmark apps.

ID Traces Method Invocations Parsed Traces Targets Carved Tests Statement Coverage (%) Branch Coverage (%)
GUI Tests Carved Tests Included GUI Tests Carved Tests Included

A1 9 1,654 9 55 48 45 12 100 35 11 100
A2 17 35,495 17 1,559 1,004 49 18 100 35 15 100
A3 12 13,306 12 221 126 64 30 98 36 14 100
A4 67 31,151 67 1,479 821 64 29 99 52 23 100
A5 47 230,055 3 295 88 90 50 100 65 16 100

RQ1 answer: Yes, ARTISAN can carve tests from GUI

tests. Additionally, carved tests cover 45.28% and 41.33%

of the statements and branches that are covered by the GUI

tests and rarely have spurious coverage.

RQ2: What is the cost of running ARTISAN?: Table III

provides details on the execution time for running ARTISAN

on the benchmark apps. For each app, the table provides

the identifier for the app (ID), the time to execute the GUI

tests before instrumenting the app (GUI Tests Execution Time
Before Instrumentation), the time needed to instrument the

app (Instrumentation Time), the time to execute the GUI tests

after instrumenting the app (GUI Tests Execution Time After
Instrumentation), and the time to carve the tests (Carving
Time). The time values reported in Table III are averages across

10 runs of ARTISAN.

ARTISAN was able to generate carved tests in less than one

hour for each app considered. The technique was the fastest

when analyzing A1 and, in this case, ARTISAN took only

53 seconds. The technique took the longest when analyzing

A2, roughly 42 minutes. The time to instrument the apps is

negligible for the selected apps, especially considering that

instrumentation is a one-time activity. The overhead intro-

duced by the instrumentation when running the GUI tests

is 16.34%. We believe that the overhead is reasonable as it

is low and did not affect the test execution behavior (i.e.,

the tests passed before and after the instrumentation). The

time to carve tests, instead, varies significantly between apps.

We analyzed the causes behind the variance and identified

that the main contributing factors are the presence of static

method invocations in the traces and the size of the carved

executions. Static method invocations affect the carving time

as all the invocations to the same static classes need to be

(conservatively) taken into account when analyzing the targets

those invocations precede. Larger sets of required method

invocations also affect carving time as it takes longer to

extrapolate connected components from the graphs to generate

the corresponding carved executions.

RQ2 answer: Based on the results of our evaluation, we

believe that the time cost of running ARTISAN is low. For

the apps considered, the technique always terminated within

an hour, and, in some cases, within a few minutes.

RQ3: What are the characteristics of carved tests?: To

characterize carved tests, we consider the size of the unit tests

TABLE III: Time cost of running ARTISAN.

ID

GUI Tests
Execution Time

Before
Instrumentation

ARTISAN

Instrumentation
Time

GUI Tests
Execution Time

After
Instrumentation

Carving
Time

A1 34s 10s 36s 7s
A2 2m56s 28s 3m26s 38m07s
A3 1m49s 18s 1m41s 31s
A4 6m10s 15s 6m24s 3m12s
A5 4m51s 19s 6m53s 6m16s

and the number of mocks contained in them. We focus on test

size as larger tests can be harder to maintain and can lead

to test smells [35]. We also focus on the number of mocks

as they are not always straightforward to set up [3]; hence,

having tests with them can potentially help app developers.

For each app considered, Figure 3 reports the size of the

carved tests. The chart reports the size of the tests on the y-

axis and uses the log scale. We computed the size of each test

by counting the number of statements in the tests. The results

reported in Figure 3 are promising. For four out of the five apps

considered, the median number of statements in the tests is less

than 10. A2 is the app with the largest number of statements

per test. We observed that this app requires setting some values

in its database for a larger number of tests which, in turn, led to

an increase in the size of the tests. Considering that most tests

have a reasonable size, we believe that ARTISAN can provide

developers with tests that might be useful for debugging.

The total number of mocks in the carved tests is 241. The

ratio between the number of tests and the number of mocks

follows the ratio of developer-written tests in some of the apps

analyzed by related work on test doubles in Android [3].

Based on our experimental results, we argue that the tests

generated by ARTISAN, both in terms of test size and the

mocks they provided, could be actionable for developers.

However, to confirm this hypothesis, studies and interviews

with developers are necessary; hence, we suggest and envision

them as possible future work.

RQ3 answer: The tests carved by ARTISAN tend to be

concise and provide mocks that are required for testing cer-

tain parts of the apps. Considering the tests’ characteristics,

we believe that the tests could be actionable for developers.

113

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Test size (y-axis) for carved tests generated by ARTI-

SAN. The graph uses a logarithmic scale.

D. Discussion

ARTISAN is an end-to-end technique to perform tests

carving for Android apps. Implementing such a technique

required a significant technical effort, the mastery of several

technologies, and knowledge from different domains besides

Android. For instance, we employed byte code modification

for instrumenting and tracing the execution, automated build

systems for setting up the evaluation benchmarks, graph theory

and program analysis to carve the execution traces, and Java

code generation to synthesize the unit tests.

There are parts of ARTISAN that provide a solid base for

future work and others that can be further refined. For instance,

instrumentation and tracing of apps, as well as experiment

automation, worked smoothly. Similarly, the carving algorithm

and the generation of mocks produced excellent results. How-

ever, the carving algorithm also has some cost when carving

apps that heavily employ loops or implement overly complex

methods. In these cases, carving might take too long and

produce excessively long unit tests that can quickly become

hard to inspect and manage. We postulate that in these cases,

it might be beneficial to combine action-based and state-based

carving so that unit tests can directly load large objects created

with long method sequences, or loops, from memory. Another

way to reduce the size of the carved unit tests might be using

other dynamic techniques, such as delta debugging [36], or

employing purity analysis to identify and filter out method

invocations that do not introduce any relevant dependency.

Additionally, different carving strategies could be explored to

make action-based carving more efficient and effective.

E. Threats to Validity

As it is the case for most empirical evaluations, there are

both external and construct threats to validity associated with

the results we presented. In terms of external validity, our

results might not generalize to other apps. In particular, we

only considered five apps. This limitation is an artifact of the

complexity involved in setting up the infrastructure to run the

apps, which might require customized build configurations and

manually inspecting the results of our analysis. We selected

apps of different sizes that belong to different app categories

and are already considered in related work to mitigate this

threat. In terms of construct validity, there might be errors in

the implementation of our technique. To mitigate this threat,

we extensively inspected the evaluation results manually.

F. Limitations

In its current implementation, ARTISAN only supports

Android apps written in Java. Additionally, ARTISAN syn-

thesizes executable unit tests that lack test oracles, do not

involve any Android components besides activities (e.g., does

not handle Android services) and GUI elements, and consider

only traces generated by the main Android thread. We argue

that automatically generating test oracles, which is currently

an open research problem, is outside the scope of this first

work on carving unit tests for Android apps. Additionally,

we believe that extending ARTISAN’s implementation to

handle apps written in Kotlin, more Android components, and

multiple threads is mostly an engineering effort.

Regarding our evaluation, we did not involve developers

to evaluate the quality of carved tests. We plan to perform

such an evaluation in future work. Specifically, we plan to

perform studies with developers to understand which carved

tests best help developers and explore alternative carving

strategies based on the results of the studies.

V. RELATED WORK

The idea of test carving was originally proposed by Elbaum

et al. [11] as a means to generate unit tests, dubbed Differential

Unit Tests, to spot regression errors in Java programs. Elbaum

and co-authors identified three main test carving paradigms:

state-based carving, in which carving takes place on the

system under test’s state recorded during execution; action-

based carving, in which carving takes place on the sequence

of method invocations recorded during execution; and hybrid

carving, which combines the previous two. However, they

implemented only state-based carving. In this area, remarkable

results have been achieved by Krikava and Vitek [12], who

proposed GENTHAT for generating unit tests from execution

traces of R libraries, Kampmann and Zeller [13], who pro-

posed BASILISK for state-based carving of parameterized

unit tests targeting C programs, and, Juvekar et al. [15], who

created a program executing all public methods on a given

object the same way as in a given program trace. Compared

to those works, ARTISAN implements a different form of

test carving, works on Android apps, generates unit tests

across different platforms, and augments carved tests with

automatically synthesized mocks.

ARTISAN generates focused unit tests from execution

traces. Pasternak et al. [19], Saff et al. [17], and Thum-

malapenta et al. [18] achieved the same goal but with dif-

ferent techniques that, respectively, selected the interactions

114

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

to recreate the state of objects until a certain point in time,

automatically created focused unit tests by test factoring and

environmental mocks generation, and mined an extensive col-

lection of execution traces to generate generic parameterized

tests using dynamic symbolic execution to cover paths not

contained in the traces. Unlike these techniques, ARTISAN is

not limited to inter-object interactions implemented as method

calls, considers method invocations invoked by frameworks,

and generates focused unit tests.

Action-based carving sets unit tests’ preconditions, i.e.,

objects’ state, by re-executing specific sequences of method

calls that have been observed during end-to-end testing. There-

fore, action-based carving is a sensible solution to the object

creation problem defined by Bach et al. [37]. The main

differences between ARTISAN and the work done by Bach

et al. lies in the fact that they first identified feasible method-

call sequences for object creation statically and then selected

the most desirable sequence using a search algorithm. Another

difference is that Bach et al.’s approach is for C++ programs.

Alternative approaches make use of selective capture

and replay techniques. For instance, Orso et al. proposed

SCARPE [16] and JINSI [14] to capture parts of program

execution for replay and isolate the instructions that lead to

the failure to produce a minimal example that reliably replays

it. Compared to those works, ARTISAN has a broader scope

as it does not consider interactions involving a single com-

ponent, can generate tests from both normal and exceptional

executions, and can carve unit tests for Android apps.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented ARTISAN, a technique to perform

test carving for Android apps. ARTISAN carves unit tests

that run on the JVM from GUI tests that run on a device. We

evaluated ARTISAN based on 152 GUI tests and five apps

and identified that the technique carves tests that achieve 45%

of the original GUI tests’ coverage and does so in an amount

of time compatible with standard development practices.

In future work, we plan to perform studies and interviews

with developers to understand which carved tests best help

developers and explore alternative carving strategies based on

the gathered insights. We also plan to investigate test suite

reduction techniques to identify duplicate tests among carved

tests. Finally, we plan to investigate techniques to carve oracles

from end-to-end tests into oracles suitable for unit tests.

REFERENCES

[1] Google, “Fundamentals of testing android apps.” [Online]. Available:
https://developer.android.com/training/testing/fundamentals

[2] J.-W. Lin, N. Salehnamadi, and S. Malek, “Test automation in open-
source android apps: A large-scale empirical study,” in 2020 35th
IEEE/ACM International Conference on Automated Software Engineer-
ing. New York, NY, USA: Association for Computing Machinery, 2020,
pp. 1078–1089.

[3] M. Fazzini, C. Choi, J. M. Copia, G. Lee, Y. Kakehi, A. Gorla,
and A. Orso, “Use of test doubles in android testing: An in-depth
investigation,” in Proceedings of the 44th International Conference on
Software Engineering, 2022.

[4] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis. New York, NY, USA:
Association for Computing Machinery, 2016, pp. 94–105.

[5] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu,
and Z. Su, “Guided, stochastic model-based gui testing of android
apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2017, pp. 245–256.

[6] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-based
approach to automated black-box android app testing,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). Piscataway, NJ, USA: Institute of Electrical and Electronics
Engineers, 2019, pp. 1070–1073.

[7] J. Wang, Y. Jiang, C. Xu, C. Cao, X. Ma, and J. Lu, “Combodroid:
generating high-quality test inputs for android apps via use case
combinations,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 469–480.

[8] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso, “Barista:
A technique for recording, encoding, and running platform independent
android tests,” in 2017 IEEE International Conference on Software
Testing, Verification and Validation. Piscataway, NJ, USA: Institute
of Electrical and Electronics Engineers, 2017, pp. 149–160.

[9] Y. Liu, Y. Lu, and Y. Li, “An android-based approach for automatic
unit test,” in International Conference on Cyberspace Technology (CCT
2014), 2014, pp. 1–4.

[10] J. Cao, H. Huang, and F. Liu, “Android unit test case generation based
on the strategy of multi-dimensional coverage,” in 7th International
Conference on Cloud Computing and Intelligent Systems, 2021.

[11] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving
differential unit test cases from system test cases,” in Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2006, p. 253–264.

[12] F. Krikava and J. Vitek, “Tests from traces: automated unit test extrac-
tion for R,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 232–241.

[13] A. Kampmann and A. Zeller, “Carving parameterized unit tests,” in
Proceedings of the 41st International Conference on Software Engineer-
ing: Companion Proceedings. Piscataway, NJ, USA / New York, NY,
USA: Institute of Electrical and Electronics Engineers / Association for
Computing Machinery, 2019, pp. 248–249.

[14] A. Orso, S. Joshi, M. Burger, and A. Zeller, “Isolating relevant compo-
nent interactions with jinsi,” in Proceedings of the 2006 international
workshop on Dynamic systems analysis. New York, NY, USA:
Association for Computing Machinery, 2006, pp. 3–10.

[15] S. Juvekar, J. Burnim, and K. Sen, “Path slicing per object for
better testing, debugging, and usage discovery,” EECS Department,
University of California, Berkeley, Tech. Rep., Sep 2009. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-132.html

[16] A. Orso and B. Kennedy, “Selective capture and replay of program
executions,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4,
pp. 1–7, 2005.

[17] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic test
factoring for java,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering. New York, NY, USA:
Association for Computing Machinery, 2005, pp. 114–123.

[18] S. Thummalapenta, J. de Halleux, N. Tillmann, and S. Wadsworth, “Dy-
gen: Automatic generation of high-coverage tests via mining gigabytes
of dynamic traces,” in Tests and Proofs. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 77–93.

[19] B. Pasternak, S. Tyszberowicz, and A. Yehudai, “Genutest: a unit test
and mock aspect generation tool,” International Journal on Software
Tools for Technology Transfer, vol. 11, no. 4, pp. 273–290, 2009.

[20] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[21] M. Fowler, “Testdouble.” [Online]. Available:
https://martinfowler.com/bliki/TestDouble.html

[22] A. Authors, “Artifact for action-based test carving for android apps.”
[Online]. Available: https://zenodo.org/record/7285409

115

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

[23] Google, “Android - view.” [Online]. Avail-
able: https://developer.android.com/reference/android/view/
View#findViewById(int)

[24] ——, “Android - activity.” [Online]. Avail-
able: https://developer.android.com/reference/android/app/ Activ-
ity#startActivity(android.content.Intent)

[25] S. Faber, B. Dutheil, R. Winterhalter, and T. van der Lippe, “Mockito.”
[Online]. Available: https://site.mockito.org/

[26] Robolectric, “Robolectric.” [Online]. Available: http://robolectric.org
[27] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and

F. K. Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 4, pp. 451–490, 1991. [Online]. Available:
https://doi.org/10.1145/115372.115320

[28] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer, “Efficient unit
test case minimization,” in 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), November 5-9,
2007, Atlanta, Georgia, USA, R. E. K. Stirewalt, A. Egyed, and
B. Fischer, Eds. ACM, 2007, pp. 417–420. [Online]. Available:
https://doi.org/10.1145/1321631.1321698

[29] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers. Armonk, NY, USA: IBM Corp., 2010,
p. 214–224.

[30] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analysis
framework,” in Proceedings of the 2007 international symposium on
Software testing and analysis, 2007, pp. 196–206.

[31] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in NDSS, vol. 5, 2005, pp. 3–4.

[32] Google, “Espresso.” [Online]. Available:
https://developer.android.com/training/testing/espresso

[33] ——, “Processes and threads overview.” [Online]. Available:
https://developer.android.com/guide/components/processes-and-threads

[34] JaCoCo, “Jacoco.” [Online]. Available: https://www.jacoco.org
[35] G. Grano, F. Palomba, D. Di Nucci, A. De Lucia, and H. C. Gall,

“Scented since the beginning: On the diffuseness of test smells in
automatically generated test code,” Journal of Systems and Software,
vol. 156, pp. 312–327, 2019.

[36] A. Zeller, “Isolating cause-effect chains from computer programs,” in
Proceedings of the 10th ACM SIGSOFT Symposium on Foundations
of Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2002, pp. 1–10.

[37] T. Bach, R. Pannemans, and A. Andrzejak, “Determining method-
call sequences for object creation in C++,” in Proceedings of the
13th IEEE International Conference on Software Testing, Validation
and Verification. Piscataway, NJ, USA: Institute of Electrical and
Electronics Engineers, 2020, pp. 108–119.

116

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on December 19,2023 at 01:22:58 UTC from IEEE Xplore. Restrictions apply.

