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Motivated by the observation of even denominator fractional quantum Hall e↵ect in the n = 3
Landau level of monolayer graphene [Y. Kim et al., Nature Physics 15, 154 (2019)], we consider
a Bardeen-Cooper-Schrie↵er variational state for composite fermions and find that the composite-
fermion Fermi sea in this Landau level is unstable to an f -wave pairing. Analogous calculation
suggests the possibility of a p-wave pairing of composite fermions at half filling in the n = 2 graphene
Landau level, whereas no pairing instability is found at half filling in the n = 0, 1 graphene Landau
levels. The relevance of these results to experiments is discussed.

The ⌫ = 5/2 fractional quantum Hall e↵ect (FQHE)
at half-filled second Landau level (LL) in semiconductor
quantum wells [1] has been modeled through a Moore-
Read (MR) Pfa�an wave function, which represents
a p-wave paired state of the spin-polarized composite
fermions [2, 3], where the composite fermion (CF) is a
topological particle composed of an electron and an even
number of quantized vortices [4, 5]. This raises the ques-
tion of whether CF pairs with other symmetry can also
be realized.

Which FQHE state occurs depends on the Haldane
pseudopotentials Vm [6] (Vm is the energy of two electrons
in a state with relative angular momentum m), which, in
turn, are determined by both the interaction and the LL
in which the electrons reside. Graphene provides a plat-
form for the realization of many old as well as new FQHE
states. Unexpectedly, an FQHE state has been observed
at half-filling in the n = 3 LL of monolayer graphene
[7]. Ref. [7] considered many candidate FQHE states and
concluded that while none matches the Coulomb ground
state, the 221 parton state [8] is the most promising be-
cause it can be stabilized when the V1 and V3 pseudopo-
tentials are varied slightly away from their pure Coulomb
values (which may in principle happen due to screen-
ing by metallic gates or LL mixing). A realization of
this state would be of interest because it represents an
f -wave pairing of composite fermions [9, 10] and sup-
ports Ising type non-Abelian quasiparticles [11, 12]. It is
also the exact ground state [12, 13] for the short range
Trugman-Kivelson model interaction [14]. The 221 and
the related 22111 states have been shown theoretically
to be promising candidates also for 1/2 FQHE in multi-
layer graphene [13] and 1/4 FQHE [10] observed in wide
quantum wells [15–17].

We investigate in this work the possibility of CF pair-
ing in monolayer graphene directly from the Bardeen-
Cooper-Schrie↵er (BCS) perspective. Such an approach
has previously been used in the contexts of p-wave CF
pairing in the 5/2 state [18, 19] and s and p-wave CF
pairing in bilayer systems [20]. We consider more general
pairings to address even-denominator FQHE in graphene.
We employ a BCS wave function of composite fermions

in the torus (periodic) geometry, which is convenient for
momentum space pairing [19]. This wave function has
two variational parameters, analogous to the gap func-
tion and the Debye cuto↵ of the standard BCS theory.
An advantage of this method is that it enables a study
of the competition between di↵erent kinds of pairing in-
stabilities. Specifically, we can choose the gap function

as �(l)

k ⇠ e
�il✓, where ✓ is the angular coordinate of

the wave vector k, and the relative angular momentum l

must be an odd integer for fully spin-polarized fermions.
The choice l = 1 corresponds to p-wave pairing and l = 3
to f -wave (in our convention of magnetic field B pointing
in the �z direction). Another advantage of this method
is that it allows minimization of energy by adjusting pa-
rameters and thus may capture physics missed in studies
that use a single, fixed wave function. Finally, the vari-
ous paired states are explicitly seen to arise through an
instability of the CF Fermi sea (CFFS), which is a spe-
cial case of the CF-BCS wave function. Ref. [19] demon-
strated that this approach is capable of capturing the
p-wave pairing instability at ⌫ = 5/2 in semiconductor
systems.

We find that the CFFS is unstable to f -wave pairing at
half filling in the n = 3 graphene LL. Notably, this insta-
bility is seen without any modification to the Coulomb
interaction. No pairing instability occurs in the n = 0 or
n = 1 graphene LL, but our work suggests the possibility
of p-wave pairing in the n = 2 graphene LL.

Our starting point is the BCS wave function for com-
posite fermions on a torus. We consider a torus de-
fined by a parallelogram with sides L and L⌧ , where
the complex number ⌧ = ⌧1 + i⌧2 specifies the modu-
lar parameter of the torus [21]. The allowed values of

wave vectors are k =
h
n1 +

�1

2⇡

i
b1 +

h
n2 +

�2

2⇡

i
b2, with

b1 =
⇣

2⇡
L ,� 2⇡⌧1

L⌧2

⌘
, b2 =

⇣
0, 2⇡

L⌧2

⌘
, where the angles �j

represent twisted phase in quasiperiodic boundary con-
ditions. We take �1 = �2 = ⇡ in what follows, to ensure
that k = 0 is not an allowed value, and for each k, �k is
also allowed. We define zj = xj+iyj , where rj ⌘ (xj , yj)
are the coordinates of the jth electron.
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FIG. 1. Fermi seas for N = 12 and 32 composite fermions.

The BCS wave function for fully spin-polarized elec-
trons is written as | BCSi =

Q0
k(uk + vkc

†
kc

†
�k) |0i,

where |0i is the null state, c†k creates an electron at the
wave vector k, and each k,�k is counted only once in
the product, and |vk|

2 (|uk|
2) is the probability of this

state to be occupied (empty). The real space form of
the BCS wave function for a fixed number of electrons is
given by [22]

 BCS(r1, ...rN ) = Pf
h
g
(l)(ri � rj)

i
, (1)

where Pf refers to Pfa�an, and the antisymmetric matrix
element g(l)(ri � rj) can be expanded as

g
(l)(ri � rj) =

X

k

g
(l)

k e
ik·(ri�rj) (2)

with

g
(l)

k ⌘ vk/uk =


✏k �

q
✏2k + |�(l)

k |2
�
/�(l)⇤

k = �g
(l)

�k.

(3)
Here ✏k = ~2(|k|2 � k

2
F )/2me (we determine the mag-

nitude of kF using the relation: ⇡|kF |2 = N |b1 ⇥ b2|),
and the gap function for the l pairing channel has the

form �(l)

k = �|k|e�il✓, where ✓ is the angular coordi-
nate of k, with l = 1 and l = 3 corresponding to p-wave
and f -wave pairing (This form corresponds to the real
space pair wave function of the form e

il✓
/|zi � zj | for

large |zi�zj |.). We note that we can alternatively choose

�(l)

k = �|k|le�il✓. The two choices are equivalent in the
limit where only wave vectors on the Fermi surface are
relevant to pairing, in which case |k| can be replaced by
kF (Our explicit calculations shown in the Supplemental
Material (SM) [23] demonstrate that the conclusions are
not a↵ected by this detail.).
The BCS wave function for CFs at ⌫ = 1/2 can now

be constructed in the standard manner by vortex at-
tachment [4, 5]. In the disk geometry, one would write
 CF�BCS ⇠ PLLLPf[g(l)(ri � rj)]

Q
j<k(zj � zk)2, where

PLLL refers to lowest-LL (LLL) projection. One would
then attempt to implement the Jain Kamilla (JK) pro-
jection into the LLL [24, 25] by writing the Jastrow fac-
tor as

Q
j<k(zj � zk)2 =

Q
i Ji, where Ji =

Q
k 6=i(zi �

zk); incorporating it into the Pfa�an as  CF�BCS ⇠
PLLLPf[g(l)(ri � rj)JiJj ] [26]; and then projecting each
matrix element separately into the LLL. In the torus ge-
ometry, we write

 CF�BCS
1
2

= PLLLPf

0

@
X

k

g
(l)

k e
ikn·(ri�rj)

1

A L
1/2, (4)

where  L
1/2 is the ⌫ = 1/2 Laughlin wave function [27] in

the torus geometry [28–30], while also replacing the mass
of electron me in Eq. (3) by the CF e↵ective mass of m⇤.
An implementation of the standard JK projection [24, 25]
in the torus geometry yields unphysical wave functions
that do not satisfy the stipulated periodic boundary con-
ditions (PBC). However, a modified JK projection ac-
complishes the task [19, 31, 32]. The resulting LLL wave
function has the form (see Ref. [19] and SM [23] for de-
tails)

 CF�BCS
1
2

= e

P
i

z2i �|zi|
2

4`2

(
#


�1

4⇡ + N��2
4

��2

2⇡ +N � 1

� 
2Z

L

�����2⌧
!)

Pf(Mij) (5)

Mij =
X

k

gke
� `2

2 k(k+2k̄)
e

i
2 (zi�zj)(k+k̄)

 
#


1
2
1
2

� 
zi + ik`

2 � (zj � ik`
2)

L
|⌧
!!2

(
Y

r
r 6=i,j

#


1
2
1
2

� 
zi + i2k`2 � zr

L
|⌧
!
Y

m
m 6=i,j

#


1
2
1
2

� 
zj � i2k`2 � zm

L
|⌧
!)

. (6)

Here Z =
PN

i=1 zi is the center-of-mass (COM) coor-

dinate, k = kx + iky, ` =
p
~c/eB is the magnetic

length, N is the number of particles, and N� = 2N is

the number of flux quanta through the torus. The Jacobi
theta function with rational characteristics is defined as
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[33] #


a

b

�
(z|⌧) =

P1
n=�1 e

i⇡(n+a)2⌧
e
i2⇡(n+a)(z+b). The

above BCS wave function satisfies proper quasiperiodic
boundary conditions on the torus. In terms of a dimen-

sionless “gap parameter” �̃ = |�(l)
kF

|/(~2|kF |2/2m⇤), we

have g
(l)

k =
|k|2�|kF |2�

q
(|k|2�|kF |2)2+�̃2|kF |2|k|2
�̃|k|kF eil✓

. We in-

troduce an additional variational parameter, namely a
momentum cuto↵ kcuto↵ , analogous to the Debye cut-

o↵ of the BCS theory, by setting g
(l)

k = 0 for |k| >

kcuto↵ . For kcuto↵ = kF the CF-BCS wave function
reduces to the CFFS wave function [30, 32, 34]. The
221 state lies in the sector with Haldane pseudomomenta
(Kx,Ky) = (N/2, N/2), (0, N/2) or (N/2, 0) [35]; in what
follows, we will choose our CF-BCS state in the sector
(Kx,Ky) = (N/2, N/2).

In the absence of LL mixing, the electron-electron in-
teraction in the n = 0 LL of monolayer graphene is iden-
tical to that in the LLL of GaAs quantum well with zero
width. One, therefore, expects that the physics in the
n = 0 LL of monolayer graphene is identical to that
in the LLL in GaAs quantum well (of zero width), in-
cluding the state at half-filling, which is well known to
be a CFFS [36–38]. The interaction pseudopotentials
in the n 6= 0 LLs of monolayer graphene are di↵erent
from those in the corresponding LLs of semiconductor
quantum wells. We numerically investigate the candi-
date states at half filling in the |n| = 1, |n| = 2, and
|n| = 3 LLs of graphene.

The inter-electron interaction in any given LL is com-
pletely specified by its Haldane pseudopotentials [6].
The problem of electrons in the nth LL can thus be
mapped into the problem of electrons in the n = 0
LL with an e↵ective interaction that has the same Hal-
dane pseudopotentials as the Coulomb interaction in the
nth LL. We consider two approximate real-space e↵ec-
tive interactions[39, 40]: VToke = r

�1 +
P6

i=0 cir
i
e
�r

and VPark(r) = r
�1 + a1e

�↵1r
2

+ a2r
2
e
�↵2r

2

. For the
former, we obtain the coe�cients by matching the first
seven odd pseudopotentials of the e↵ective interaction
(V2m�1,m = 1, 2, · · · , 7) in LLL with the pseudopoten-
tials of the Coulomb interaction in the nth graphene
LL [7, 41–43]; for the latter, we match the first four odd
pseudopotentials (in the n = 2 LL, we need to make
an additional approximation, discussed in the SM [23]).
Both lead to the same conclusions, consistent with the
expectation that the nature of the state is dictated by
the first few odd pseudopotentials (even pseudopoten-
tials are not germane for fully spin-polarized electrons).
The validity of these e↵ective interactions is further sup-
ported by the fact that the energy expectation values of
the CF-BCS states for the Coulomb and the e↵ective in-
teractions are very nearly the same [23]. For the torus
geometry, this interaction is replaced by an appropriate
periodic interaction (see SM [23] for details). In the fol-
lowing, we assume spin-polarized electrons, disregard LL
mixing, and quote all energies in units of e2/✏`.

We have calculated the energies of the CF-BCS wave
function using the lattice Monte Carlo method [44],
which allows us to go to fairly large systems. We have
considered systems with 12 and 32 particles because the
Fermi seas for these systems are close to being circular
(Fig. 1). We minimize the Coulomb energy in n = 2 and
n = 3 graphene LLs with respect to the two variational
parameters. Fig. 2 shows the minimum energy as a func-
tion of the gap parameter �̃ where each point is obtained
by minimizing the energy with respect to kcuto↵ . We note
that because the CFFS is a special case of the BCS-p and
the BCS-f states (with kcuto↵ = kF ), the minimum en-
ergy of the BCS-p or the BCS-f state is guaranteed to
be less than or equal to that of the energy of the CFFS.
Energy less than that of the CFFS implies a pairing in-
stability of the CFFS.

As shown in Fig. 2, the lowest energy state in n = 3
graphene LL is obtained for the BCS-f state. Interest-
ingly, the Coulomb energy is insensitive to the variation
of the gap parameter �̃ for larger values. In fact, the
optimal state is well approximated by the limit �̃! 1,
where the CF-BCS state simplifies with gk = �e

�il✓.
The BCS-p state may have slightly lower energy than the
CFFS, but has higher energy than the f -wave CF-BCS
state.

Fig. 3 shows the overlaps of the various candidate
states with the exact ground state for the Coulomb in-
teraction in graphene. For this purpose, we obtain the
exact Fock-space representation of the CF-BCS state us-
ing the method in Ref. [45]. The overlap of the exact
Coulomb ground in graphene at the half-filled n = 3 LL
with BCS-f state is approximately 0.25 in the parame-
ter range where the energy is minimum. This overlap is
not decisive, but still significant for an FQHE state in a
high LL. (For the LLL, the wave functions of composite
fermions at fractions ⌫ = s/(2s±1), s integer, have over-
laps of ⇠0.99 with the Coulomb ground states for systems
accessible to numerical diagonalization [5, 46, 47], but for
the n = 1 LL in GaAs the overlaps are generally much
smaller; for example, the 7/3 and 5/2 Coulomb ground
states have overlaps in the ranges 0.5-0.7 and 0.7-0.9,
respectively, with the Laughlin and MR wave functions
for numerically accessible particle numbers [48–52].) The
BCS-f state is substantially better than other candidate
states: the overlaps of the CFFS, BCS-p, and the MR-p
states with the exact Coulomb ground state at half fill-
ing in the n = 3 graphene LL are, respectively, 0.01544,
⇠0.025, and 0.01078 (we have used MR-p wave function
given in Refs. [53–55]).

In contrast to Ref. [7], the pure Coulomb interaction
itself appears to produce CF pairing at half filling in the
n = 3 LL of graphene, thus providing important theo-
retical support to f -wave pairing in the half-filled n = 3
graphene LL. Given that our results for 12 and 32 parti-
cles are quite consistent, we speculate that for this prob-
lem, the torus geometry may better represent the ther-
modynamic behavior than the spherical geometry used
in Ref. [7]. Exact diagonalization of the Coulomb in-
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FIG. 2. Energy per particle of the BCS-p and BCS-f wave states for the “Park” and “Tőke” forms for the interaction
(Refs. [39, 40]) for the n = 3 graphene LL (left panel) and n = 2 graphene LL (middle panel) as a function of the gap parameter
�̃ for systems of 12 and 32 particles. The energies are quoted in units of e2/✏`, and measured relative to the energy of the
CFFS. The energies for the �̃! 1 limit are marked as isolated points at the right side of each plot. The legends are listed in
the right panel, with the number of particles given in parentheses.

teraction on torus with ⌧ = i shows that the ground
states for N = 8, 12, 14 and 16 particles lie in the sector
with Haldane pseudomomenta (Kx,Ky) = (N/2, N/2)
or (Kx,Ky) = (0, N/2) or (Kx,Ky) = (N/2, 0), which
are the momentum sectors for the paired state [35]. As
shown in the SM, the BCS-f -wave state can be made
stronger by modifying the interaction [23].

Fig. 2 also shows the results for N = 12 and 32 par-
ticles at half filling in the n = 2 graphene LL. We find
that the lowest energy is obtained for the p-wave paired
state. The overlap of the 12 particle CF-BCS state with
the exact Coulomb state is ⇠ 0.6 (Fig. 3). Intuitively,
a p-wave pairing would not be entirely surprising here,
as the n = 2 graphene LL wave function is a combina-
tion of the n = 2 and n = 1 GaAs LL wave functions,
the latter of which is believed to support p-wave pair-
ing [41, 49, 50, 52, 56, 57].

Our study does not decisively prove CF-pairing in n =
2 and n = 3 graphene LLs, as we have not ruled out all
possible states such as the stripe phase. Nevertheless,
we conclude that a paired state is at least competitive,
and that if an FQHE state is observed at half filling in
the n = 3 (n = 2) graphene LL, it is likely an f -wave (a
p-wave) paired state. It is noted that 1/2 FQHE has not
yet been observed in the n = 2 graphene LL [58, 59]; we
have not considered the possibility of whether the paired
state can be destabilized by LL mixing.

We find no pairing instability at half filling in the n = 1
graphene LL, i.e. our calculations show that the lowest
energy is obtained when kcuto↵ = kF for arbitrary �̃.
This is in agreement with earlier variational and exact
diagonalization studies [47, 60–63]. The observation of
many fractions along the sequences ⌫ = s/(2s± 1) [64] is
consistent with a CFFS at ⌫ = 1/2.

The BCS-f state is topologically distinct from the
BCS-p wave state. The thermal Hall conductance at

temperature T , which is given by  = c
⇡2k2

B
3h T where

c is the chiral central charge [65], can in principle dis-
tinguish between them [9, 10, 66]. The chiral central
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FIG. 3. Upper panel: Overlaps of the candidate states with
the exact Coulomb ground state in the n = 3 graphene Lan-
dau level for 12 particles. The optimal overlap between the
f -wave CF-BCS state and the exact ground state is approxi-
mately 0.25. The overlap of the p-wave paired state with the
exact state is less than 0.025 for all values of �̃. The overlap of
the MR (p-wave) state with the exact Coulomb ground state
in the n = 3 graphene LL is 0.01078. Lower panel: Overlaps
of the candidate states with the exact Coulomb ground state
in the n = 2 Landau level of graphene for 12 particles. The
optimal overlap between the f -wave CF-BCS state and the
exact ground state is approximately 0.174. The optimal over-
lap of the p-wave paired state with the exact state is 0.5928.
The overlap of the MR (p-wave) state with the exact Coulomb
ground state in the n=2 LL of graphene is 0.19234.
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charge for di↵erent paired CF states is given by the re-
lation c = (1 + l/2); in particular, for the p and f states
considered here it is given by c = 3/2 and 5/2. The Hall
viscosity ⌘A [67] is given by [68] ⌘A = ~⇢S/4, where ⇢ is
the 2D density and S = N/⌫ � N� is the “shift” [69] in
the spherical geometry. For the p and f states at ⌫ = 1/2
we have S = 3 and 5 respectively.

What is the mechanism of pairing? It is known empir-
ically that a CFFS is obtained when the short distance
repulsion between electrons is dominant, as is the case
in the n = 0 LL. When the short distance repulsion is
reduced, which is what happens in higher LLs, the e↵ec-
tive interaction between composite fermions may become
attractive, causing pairing. We do not have a simple way
to predict which pairing is preferred without performing
a detailed calculation. A Chern-Simons based analysis of
gauge fluctuations, as in Ref. [70], could provide further
insight into this question.

In summary, we have minimized the energy of the CF-
BCS wave function to determine the optimal pairing at
half filling in graphene LLs. We find an absence of pairing
instability in the n = 0 and n = 1 LLs but CF pairing ap-
pears possible in n = 2 and n = 3 LLs. Our primary con-
clusion is that if FQHE is observed in the n = 2 (n = 3)
graphene LL, it likely represents p (f) wave pairing of
composite fermions. We hope that this study will moti-
vate further experimental investigations of these states,
which will be necessary for a definitive confirmation of
their physical origin.
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SUPPLEMENTAL MATERIAL

The supplementary material contains the following. In
Sec. S1, we provide a brief review, for completeness, of
the basics of composite fermions on torus and also intro-
duce certain known wave functions. In Sec. S2, we review
our CF-BCS wave function for spin-polarized composite
fermions. Section S3 gives the interaction pseudopoten-

tials for graphene LLs. Section S4 contains technical
details of the energy calculation. Certain consistency
checks are described in Sec. S5. Finally, we provide a
review of the lattice Monte Carlo approach along with
certain details of our sampling procedure in Sec. S6.

S1. COMPOSITE FERMIONS ON TORUS

This section contains a review of various relevant wave
functions in the torus geometry. A torus can be mapped
to a parallelogram with periodic boundary conditions
[28, 30–32, 72–76]. The two edges of the parallelogram
are denoted by L1 = L and L2 = L⌧ , where ⌧ = ⌧1 + i⌧2

is a complex parameter specifying the torus. L1 is con-
sidered to be along the real axis. The magnetic field
B = �Bẑ is perpendicular to the parallelogram. The
complex coordinates of the particles are represented by
z = x+ iy. We work with the symmetric gauge given by
A = B

2 (y,�x, 0). The single particle wave functions on
the torus satisfy the periodic boundary conditions in the
two directions:

t(L1) (z, z̄) = e
i�1 (z, z̄) (7)

t(L2) (z, z̄) = e
i�2 (z, z̄)

where t(Li) is the magnetic translation operator in the
Li direction. The magnetic translation operator t(⇠) with
⇠ = ⇠x + i⇠y is defined by

t(⇠) = e
� i

2`2
ẑ.(⇠⇥r)

T (⇠) (8)

where ` =
p

~c/eB is the magnetic length, and

T (⇠) = e
⇠@z+⇠̄@z̄ (9)

is the translation operator. One can use

t(L1)e
z2�|z|2

4`2 = e
z2�|z|2

4`2 T (L1) (10)

and

t(L2)e
z2�|z|2

4`2 = e
z2�|z|2

4`2 e
�i⇡N�(2z/L+⌧)

T (L2) (11)

to show that the many-particle wave functions satisfy the
periodic boundary conditions

tj(L1) ({zi}, {z̄i}) = e
i�1 ({zi}, {z̄i}) (12)

tj(L2) ({zi}, {z̄i}) = e
i�2 ({zi}, {z̄i})

where tj is the magnetic translation operator for the jth
particle.

A. Certain wave functions

In this subsection, we list certain wave functions in the
torus geometry that have been used in this work. These



6

are expressed in terms of the Jacobi theta function with
rational characteristics [33], defined as

#


a

b

�
(z|⌧) =

1X

n=�1
e
i⇡(n+a)2⌧

e
i2⇡(n+a)(z+b)

. (13)

It is useful to list here several periodic properties of Ja-
cobi theta function that are used in demonstrating the
quasiperiodicity of various wave functions:

#


a

b

�
(z + 1|⌧) = e

i2⇡a
#


a

b

�
(z|⌧) (14)

#


a

b

�
(z + ⌧ |⌧) = e

�i⇡[⌧+2(z+b)]
#


a

b

�
(z|⌧) (15)

#


a

b

�
(z + w|w⌧) = #


a

b+ w

�
(z|w⌧) (16)

#


a

b

�
(z + ⌧ |w⌧) = e

�i 2⇡
w (z+b+ ⌧

2 )#

"
a+

1

w
b

#
(z|w⌧)

(17)
where w is a real number.

Laughlin wave function:

The general Laughlin wave function [27] can be written
as [28, 30]

 L
1/m,kCM

[zi, z̄i] = e

P
i

z2i �|zi|2
4`2


#


�1

2⇡m+
kCM
m +N�1

2

��2
2⇡ +m(N�1)

2

�✓
mZ

L1

����m⌧
◆�Y

i<j


#


1
2
1
2

�✓
zi � zj

L1

����⌧
◆�m

(18)

where kCM = 0, 1, · · ·m� 1 labels the eigenvalue under center-of-mass translation

NY

i=1

ti(L1/N�) 
L
1/m,kCM

[zi, z̄i] = e
ı2⇡(

�1
2⇡m+

kCM
m +N�1

2 ) L
1/m,kCM

[zi, z̄i]. (19)

CFFS wave function:
The CFFS is given by

 CFFS
kCM

= PLLLDet[eikn·rm ] L
1/2,kCM

(20)

where PLLL is the lowest Landau level (LLL) projection
operator; the details of LLL projection can be found in
Refs. [30, 32]. The wave vectors k span the CFFS, and
their allowed values constrained by the PBC are

kn =


n1 +

�1

2⇡

�
b1 +


n2 +

�2

2⇡

�
b2 (21)

where

b1 =

✓
2⇡

L
,�2⇡⌧1

L⌧2

◆
, b2 =

✓
0,

2⇡

L⌧2

◆
. (22)

The last part  L
1/2,kCM

is the Laughlin wave function at

⌫ = 1/2.

S2. CF-BCS WAVE FUNCTION

The LLL projected form of the CF-BCS wave function
at ⌫ = 1/2 can be expressed as

 CF�BCS
1
2

= e

P
i

z2i �|zi|
2

4`2 #


�1
4⇡ +N�1

2

��2
2⇡ +(N�1)

�✓
2Z

L1

����2⌧
◆
Pf

2

4
X

k

g
(l)

k F̂k(zi, zj)

3

5
Y

i

Ji, (23)

where Ji =
Q

r 6=i #


1
2
1
2

� 
zi�zr

L

�����⌧
!

and

F̂k(zi, zj) = e
� k`2

2 (k+2k̄)
e

i
2 (zi�zj)(k+k̄)

e
ik`2@zi e

�ik`2@zj . (24)

The above form of the wave function is not amenable to calculations for large systems, because the LLL projection
can be performed only for rather small systems. Following the standard Jain-Kamilla projection method [24, 25], one
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can bring the Jastrow factor inside the Pfa�an matrix as

Pf

2

4
X

k

g
(l)

k F̂n(zi, zj)

3

5
Y

i

Ji ! Pf

2

4
X

k

g
(l)

k F̂n(zi, zj)JiJj

3

5 (25)

This wave function, as it stands, does not satisfy the
correct periodic boundary conditions. It was shown in
Ref. [19] how the LLL projection can be modified to pre-
serve the boundary conditions. The resulting wave func-
tion is given in the main text.

S3. PSEUDOPOTENTIALS FOR GRAPHENE
LANDAU LEVELS

The Coulomb interaction can be described completely
by its Haldane pseudopotentials Vm, which are the ener-
gies of two electrons in relative angular momenta m. The
Haldane pseudopotentials for Coulomb interaction in the

nth LL in the planar geometry is given by:

V
(n)
m =

Z 1

0
dq F

(n)(q)e�q2
Lm(q2), (26)

where F
(n)(q) is the form factor and Lm(x) is the m-th

order Laguerre polynomial. For the LLs of a parabolic
system (as in GaAs quantum wells), the form factor is
given by F

(n)(q) = [Ln(q2/2)]2. In graphene, the form
factor is given by [7, 41–43]:

F
(n)(q) =

8
><

>:

1 n = 0

1
4

"
L|n|�1(

q2

2 ) + L|n|(
q2

2 )

#2
n 6= 0

(27)

The pseudopotentials for the Coulomb interaction in the
|n| = 1, |n| = 2 and |n| = 3 graphene Landau levels are
given by[7, 63]:

V
(1)
m =

 
m

2 � 15

8
+

153

256

!
�(m� 3

2 )

2�(m+ 1)
(28)

V
(2)
m =

(65536m4 � 499712m3 + 1250048m2 � 1136032m+ 264705)�(m� 7
2 )

131072 �(m+ 1)
(29)

V
(3)
m =

(64m(4m(16m(4m(32m(8m� 139) + 29817)� 386923) + 9915059)� 27868989) + 361610865)�(m� 11
2 )

8388608 �(m+ 1)
(30)

For the n = 0 graphene LL, the pseudopotentials are
the same as in GaAs quantum wells. The problem of
electrons in the nth LL is equivalent to that of elec-
trons in the LLL interacting with an e↵ective interaction
that reproduces the desired pseudopotentials. We use
e↵ective interactions VPark and VToke whose forms are
given in the main text. To obtain the coe�cients ci for
i = 0, ..., 6 in VToke, we match the first seven odd pseu-
dopotentials. The coe�cients a1, a2,↵1,↵2 in VPark are
obtained by matching the first four odd pseudopotentials.
For the n = 2 LL in graphene, we obtain the parameters

a1, a2,↵1,↵2 with �V
(2)
5 = 0.0042, where �V (2)

5 is the
change in the value of the fifth pesudopotential in n = 2
LL; this ensures the existence of numerical solution to
the system of equations. No such variation is needed for

the other cases. The values of the coe�cients of both the
interactions are listed in Table S1.

S4. INTERACTION ENERGY

On torus, the interactions are periodic, i.e., satisfies

V (r +mL1 + nL2) = V (r) (31)

where m and n are integers. We use the periodic form of
the interaction given by

V (r) =
1

L2Im(⌧)

X

q
Ṽ (q)eiq·r (32)
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Coe�cient n = 1 n = 2 n = 3

c0 -6.631003 -50.613975 492.523594
c1 13.297839 76.637596 -976.021237
c2 -8.996789 -42.305604 692.712510
c3 2.934041 11.542866 -235.341758
c4 -0.498770 -1.666281 41.446029
c5 0.042572 0.121853 -3.644917
c6 -0.001430 -0.003521 0.126428
a1 0.0107017 0.369253 11.8887
a2 0.109467 -443.84 -9.64883
↵1 0.038443 0.129292 0.247147
↵2 0.446909 6.23332 0.479972

TABLE S1. Values of coe�cients ci, ai,↵i of the e↵ective
interactions for n = 1, 2 and 3 LL in graphene.

q =

✓
2⇡m

L
,�2⇡⌧1m

L⌧2
+

2⇡n

L⌧2

◆
(33)

where Ṽ (q) is the Fourier transform of V (r). The Fourier
transforms of the terms in the VPark are:

Z
1

r
e
�iq·r

d
2r =

2⇡

q
(34)

Z
e
�↵r2

e
�iq·r

d
2r =

⇣
⇡

↵

⌘
e

�q2

4↵ (35)

Z
r2e�↵r2

e
�iq·r

d
2r =

⇣
⇡

2↵2

⌘
e

�q2

4↵

✓
2� q

2

2↵

◆
(36)

The e↵ective interaction VPark can thus be written as

VPark(r) =
1

L2Im(⌧)

X

q
ṼPark(q)e

iq·r (37)

with

ṼPark(q) =
2⇡

q
+a1

✓
⇡

↵1

◆
e

�q2

4↵1 +a2

✓
⇡

2↵2
2

◆
e

�q2

4↵2

✓
2� q

2

2↵2

◆
.

(38)
The Fourier transforms of the terms in VToke are given

by:
Z

e
�r

e
�iq·r

d
2r =

2⇡

(1 + q2)
3
2

Z
re

�r
e
�iq·r

d
2r =

2⇡(2� q
2)

(1 + q2)
5
2

Z
r
2
e
�r

e
�iq·r

d
2r =

2⇡(6� 9q2)

(1 + q2)
7
2

Z
r
3
e
�r

e
�iq·r

d
2r =

2⇡(24 + 9q2(q2 � 8))

(1 + q2)
9
2

Z
r
4
e
�r

e
�iq·r

d
2r =

30⇡(8� 40q2 + 15q4)

(1 + q2)
11
2

Z
r
5
e
�r

e
�iq·r

d
2r =

2⇡(720� 225q2(24� 18q2 + q
4))

(1 + q2)
13
2

Z
r
6
e
�r

e
�iq·r

d
2r = �630⇡(�16 + 7q2(24 + 5q2(q2 � 6)))

(1 + q2)
15
2

.

(39)

For our calculations, we use a cuto↵ value of |m|, |n| 
30 in Eq. (32). We omit the q = 0 term in Eq. (32)
since it is canceled by the electron-background and
background-background energies. We do not consider the
self interaction energy, which is the interaction of an elec-
tron in the principal zone with its images in other zones.
For a given system size, interaction and periodic bound-
ary conditions, the self-interaction energy is independent
of the state and thus does not a↵ect energy di↵erences of
two states at the same filling.

S5. CERTAIN CONSISTENCY CHECKS

In this section, we show certain consistency checks.
We first ask how reliably our e↵ective interactions simu-
late the Coulomb physics. As explained above, we work
with e↵ective real-space interactions (Tőke and Park)
that produce, in the lowest Landau level, the desired Hal-
dane pseudopotentials accurately. The parameters of the
e↵ective interactions are obtained by fitting the first few
odd pseudopotentials of the e↵ective interaction in the
lowest Landau level to the Coulomb pseudopotentials in
the nth graphene LL. (This fitting procedure cannot be
carried out for the Park form for the n = 2 graphene
LL since the resultant equations for the pseudopotentials
do not yield a solution. Therefore, we change the pseu-
dopotentials slightly from the Coulomb values such that
for the modified pseudopotentials, the fitting procedure
for the Park interaction can be carried out. This varia-
tion in pseudopotentials is not unique: we have chosen
to add 0.0042 to V5 of Coulomb, which is a change of
1.7% in absolute value.) The e↵ective interactions are
approximate, because only the first few pseudopotentials
of the interaction are matched with the Coulomb ones.
However, we expect that they provide a good approxima-
tion to the Coulomb interaction, because the physics is
expected to be governed by the low-m pseudopotentials

0 2 4 6 8 10 12 14

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

FIG. 4. Energy per particle for lowest energy p-wave paired
CF-BCS state (at each �̃) for N = 12 particles in the n = 2
LL of graphene using the Park and Tőke interactions, as well
as the exact Coulomb interaction. All energies are measured
relative to the energy of the CFFS.
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0 1 2 3 4
-0.0010

-0.0005

0.0000

0.0005

0.0010

FIG. 5. Energy per particle for several states in n = 1 Lan-
dau level of graphene for a system with N = 32 particles. The
energies are measured in units of e2/✏`, relative to the energy
of the CFFS. The lowest energy is obtained for kcuto↵ = kF
for each value of �̃.

0 2 4 6 8 10
-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

FIG. 6. Energy per particle for the f -wave paired BCS states
in the n = 3 graphene Landau level with two di↵erent forms
of the pairing function shown on the figure. The energies are
measured relative to the energy of the CFFS.

(which correspond to the short range part of the inter-
action) and because all pseudopotentials are within 2.5%
of the Coulomb values.

As a direct check of the accuracy of the Park and Tőke
interactions, we have calculated the expectation value of
exact Coulomb interaction with respect to the CF-BCS
wave function (at various �̃ and kcuto↵) for N = 12 par-
ticles in the n = 2 graphene LL. For this purpose, we first
construct a Fock space representation of our CF-BCS
state for a given set of parameters following the method
in Ref. [77], which is also discussed in the Appendix of
Ref. [19]. (This procedure cannot be implemented for
larger N .) The expectation value of the Coulomb energy
can now be expressed in terms of the pseudopotentials
of the n = 2 graphene LL and thus evaluated exactly.
The Tőke and exact Coulomb energies are seen in Fig. 4
to be in excellent agreement as a function �̃ (where for
each value of �̃, we choose kcuto↵ that produces the low-

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIG. 7. Overlap
���
D
 BCS�f

1
2

| n=3
Ex

E��� of the f -wave paired

BCS states with the exact ground state in the n = 3 Landau
level as function of the variation of the first and third pseu-
dopotentials, �V1 and �V3 for N = 12. The Coulomb point is
at �V1 = �V3 = 0.

est energy). For the Park interaction (which is expected
to be less accurate as it fits fewer pseudopotentials, and
which also corresponds to a slightly modified Coulomb
interaction, as mentioned in the preceding paragraph),
the agreement is less good, but it still reproduces the
correct qualitative behavior as a function of the varia-
tional parameters. These comparisons demonstrate that
our conclusions derived from the e↵ective interactions are
valid for the Coulomb interaction.
For the n = 1 LL of graphene, we find that the low-

est energy state is obtained when kcuto↵ = kF as shown
in Fig. 5. This indicates in the n = 1 LL of graphene,
the lowest energy state, within the variational parame-
ter space considered here, is the CFFS, consistent with
earlier studies [63]. The overlap of the CFFS with the
exact graphene n = 1 LL state is 0.9944 for a system of
12 particles.
We also test how sensitive the conclusions are to the

precise form of the gap function �k. In the main text,
we have used �k = �|k|e�i3✓. An alternative form is
�k = �|k|3e�i3✓ [78]. To the extent pairing involves
electrons only near the Fermi surface, we expect to re-
cover the same state for both. We have calculated the
energy per particle as a function of �̃ for both of these
forms, shown in Fig. 6. Both produce very similar en-
ergies, and more importantly, the choice does not alter
the conclusion regarding the BCS-f state being the most
preferred state.
Finally, we ask how the nature of the f -wave paired

state depends on the interaction. Fig. 7 shows the over-
lap of the CF-BCS-f state and the exact ground state
for N = 12 particles in the |n| = 3 graphene LL as the
pseudopotentials V1 and V3 are varied by �V1 and �V3.
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The behavior is qualitatively similar to the overlap be-
tween the Jain-221 state and the exact ground state in
the spherical geometry [7] with the di↵erence that for the
Jain-221 state the overlap is nearly zero at the Coulomb
point.

S6. LATTICE MONTE CARLO

For our calculations, we use the lattice Monte Carlo
approach introduced in Ref. [44]. In this section, we
present, for completeness, the central results of lattice
Monte Carlo formalism necessary for our energy calcula-
tions. For a more detailed derivation, refer to Ref. [44] or
Appendix of Ref. [19]. Let us represent the positions of
the particles as x ⌘ (r1, r2, .., rN ). In continuous Monte
Carlo, the matrix elements for any operator O(ri � rj)
are calculated using

h 1|
P
i<j

O(ri � rj) | 2i
p
h 1| 1i h 2| 2i

=

R
d
2x 1(x)⇤ 2(x)

P
i<j

O(ri � rj)

p
h 1| 1i h 2| 2i

.

(40)
In periodic geometry, the periodic boundary conditions
simplify the above calculation. The integral is now re-

placed by a discrete summation as follows:

h 1|
P
i<j

O(ri � rj) | 2i
p
h 1| 1i h 2| 2i

=

0P

x̃
 ⇤

1(x̃) 2(x̃)
P
i<j

O
Lat(ri � rj)

s
0P

x̃
| 1|2

0P

x̃
| 2|2

(41)
where the summation on the r.h.s. is over discrete
lattice points given by x̃ ⌘ (r1, r2, .., rN ) with ri 2

{(miL1 + niL2)/N�|mi, ni 2 Z}.
0P

implies summa-
tion in the principal region of the torus.  1 and  2 are
confined to the nth LL.
The key idea is to obtain the representation of OLat

for a translationally invariant operator O. For such an
operator, we can write

O(ri � rj) =
1

L2Im(⌧)

X

q
Õ(q)eiq·(ri�rj). (42)

with Õ(q) being the Fourier transform of O(r). The sum-
mation is over all discrete q allowed by periodic boundary
conditions:

qm,n =

✓
2⇡m

L
,�2⇡⌧1m

L⌧2
+

2⇡n

L⌧2

◆
(43)

Splitting the coordinates and wave functions into Landau
orbits and the guiding center part, we can write:

h 1|O(ri � rj) | 2i =
1

L2Im(⌧)

X

q
Õ(q)f2

n(q)
⌦
 GC

1

�� eiq·(Ri�Rj)
�� GC

2

↵
(44)

where  GC
1 and  GC

2 are the guiding center parts of the
wave functions in guiding center coordinates Ri, and

fn(q) = e
� |q|2

4 Ln

⇣
|q|2
2

⌘
is the form factor in the nth

LL (Ln(q) is the Laguerre polynomial). The summation
over q in Eq. (44) can be divided into two parts: the first
BZ and the rest of the momentum space. Since the later
part can be incorporated into the summation of the first
BZ using the periodic boundary conditions, we can thus
rewrite Eq. (44) as:

h 1|O(ri � rj) | 2i

=
1

L2Im(⌧)

0X

q
O

GC(q)
⌦
 GC

1

�� eiq·(Ri�Rj)
�� GC

2

↵

(45)

where
0X

q
represents summation in the first BZ.

O
GC(q) =

P
q0 Õ(q+N�q0)f2

n(q+N�q0) is defined only
in the first BZ but it incorporates the short range part

using the q0 summation. The allowed values of q0 are
also given by Eq. (43). In our numerical calculations, we
consider a cuto↵ on the number of q0 in the summation.
We choose |m|, |n|  50, which guarantees convergence.
Using the properties of Fourier transform on a lattice and
boundary conditions, we obtain the expression for a two
body operator OLat(ri � rj) [19, 44]:

O
Lat(ri � rj) =

1

2⇡N�

0X

q

 
[fn(0)]N�

[fn(q)]N�

!2

O
GC(q)eiq.(ri�rj)

where [fn(ql,m)]N� =
P

q0
j,k

fn(ql,m +

N�q0
j,k)e

i(�k�1+j�2) ⇥ (�1)lk�mj+N�jk is the com-
pactified form factor. We can also implement the lattice
Monte Carlo to calculate the overlap between two states
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in Eq. (41), which is given by

h 1| 2ip
h 1| 1i h 2| 2i

=

0P

x̃
 ⇤

1(x̃) 2(x̃)

s
0P

x̃
| 1|2

0P

x̃
| 2|2

(46)

The Metropolis algorithm is set up in the same way as
that of the continuous case. For our calculations, we use
50,000 iterations for thermalization, and 10 samples with
10,000,000 iterations for Monte Carlo averaging.

[1] R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui,
A. C. Gossard, and J. H. English, Observation of an even-
denominator quantum number in the fractional quantum
Hall e↵ect, Phys. Rev. Lett. 59, 1776 (1987).

[2] G. Moore and N. Read, Nonabelions in the fractional
quantum Hall e↵ect, Nucl. Phys. B 360, 362 (1991).

[3] N. Read and D. Green, Paired states of fermions in
two dimensions with breaking of parity and time-reversal
symmetries and the fractional quantum Hall e↵ect, Phys.
Rev. B 61, 10267 (2000).

[4] J. K. Jain, Composite-fermion approach for the fractional
quantum Hall e↵ect, Phys. Rev. Lett. 63, 199 (1989).

[5] J. K. Jain, Composite Fermions (Cambridge University
Press, New York, US, 2007).

[6] F. D. M. Haldane, Fractional quantization of the Hall ef-
fect: A hierarchy of incompressible quantum fluid states,
Phys. Rev. Lett. 51, 605 (1983).

[7] Y. Kim, A. C. Balram, T. Taniguchi, K. Watanabe, J. K.
Jain, and J. H. Smet, Even denominator fractional quan-
tum Hall states in higher Landau levels of graphene, Na-
ture Physics 15, 154 (2019).

[8] J. K. Jain, Incompressible quantum Hall states, Phys.
Rev. B 40, 8079 (1989).

[9] A. C. Balram, M. Barkeshli, and M. S. Rudner, Parton
construction of a wave function in the anti-Pfa�an phase,
Phys. Rev. B 98, 035127 (2018).

[10] W. N. Faugno, A. C. Balram, M. Barkeshli, and J. K.
Jain, Prediction of a non-Abelian fractional quantum
Hall state with f -wave pairing of composite fermions
in wide quantum wells, Phys. Rev. Lett. 123, 016802
(2019).

[11] X. G. Wen, Non-abelian statistics in the fractional quan-
tum Hall states, Phys. Rev. Lett. 66, 802 (1991).

[12] S. Bandyopadhyay, L. Chen, M. T. Ahari, G. Ortiz,
Z. Nussinov, and A. Seidel, Entangled Pauli principles:
The DNA of quantum Hall fluids, Phys. Rev. B 98,
161118 (2018).

[13] Y. Wu, T. Shi, and J. K. Jain, Non-abelian parton
fractional quantum Hall e↵ect in multilayer graphene,
Nano Letters 17, 4643 (2017), pMID: 28649831,
http://dx.doi.org/10.1021/acs.nanolett.7b01080.

[14] S. A. Trugman and S. Kivelson, Exact results for the
fractional quantum Hall e↵ect with general interactions,
Phys. Rev. B 31, 5280 (1985).

[15] J. Shabani, T. Gokmen, and M. Shayegan, Correlated
states of electrons in wide quantum wells at low fillings:
The role of charge distribution symmetry, Phys. Rev.
Lett. 103, 046805 (2009).

[16] J. Shabani, T. Gokmen, Y. T. Chiu, and M. Shayegan,
Evidence for developing fractional quantum Hall states at
even denominator 1/2 and 1/4 fillings in asymmetric wide
quantum wells, Phys. Rev. Lett. 103, 256802 (2009).

[17] J. Shabani, Y. Liu, M. Shayegan, L. N. Pfei↵er, K. W.
West, and K. W. Baldwin, Phase diagrams for the sta-
bility of the ⌫ = 1

2 fractional quantum Hall e↵ect in elec-

tron systems confined to symmetric, wide GaAs quantum
wells, Phys. Rev. B 88, 245413 (2013).
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