
Algorithmica (2023) 85:563–583
https://doi.org/10.1007/s00453-022-01043-6

Improved Algorithms for Scheduling Unsplittable Flows on
Paths

Hamidreza Jahanjou1 · Erez Kantor2 · Rajmohan Rajaraman3

Received: 21 December 2018 / Accepted: 20 September 2022 / Published online: 1 October 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We investigate offline and online algorithms for Round-UFPP, the problem of min-
imizing the number of rounds required to schedule a set of unsplittable flows of
non-uniform size on a given path with heterogeneous edge capacities. Round-UFPP
is known to be NP-hard and there are constant-factor approximation algorithms
under the no bottleneck assumption (NBA), which stipulates that maximum size of
any flow is at most the minimum global edge capacity. In this work, we present
improved online and offline algorithms for Round-UFPP without the NBA. We first
study offline Round-UFPP for a restricted class of instances, called α-small, where
the size of each flow is at most α times the capacity of its bottleneck edge, and
present an O(log(1/(1 − α)))-approximation algorithm. Next, our main result is
an online O(log log cmax)-competitive algorithm for Round-UFPP where cmax is the
largest edge capacity, improving upon the previous best bound of O(log cmax) due to
Epstein et al. (SIAM J Discrete Math 23(2):822–841, 2009). These new results lead to
an offline O(min(log n, logm, log log cmax))-approximation algorithm and an online
O(min(logm, log log cmax))-competitive algorithm for Round-UFPP, where n is the
number of flows and m is the number of edges.

Keywords Unsplittable flows · Optical routing · Scheduling · Interval scheduling

A previous version of this paper has appeared in the proceedings of ISAAC 2017.

B Hamidreza Jahanjou
h.jahanjou@northeastern.edu

Erez Kantor
ekantor@akamai.com

Rajmohan Rajaraman
r.rajaraman@northeastern.edu

1 Northeastern University, San Jose, CA, USA

2 Akamai Technologies Inc., Cambridge, MA, USA

3 Northeastern University, Boston, MA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01043-6&domain=pdf
http://orcid.org/0000-0003-2690-406X

564 Algorithmica (2023) 85:563–583

1 Introduction

The unsplittable flow problem on paths (UFPP) considers selecting amaximum-weight
subset of flows to be routed simultaneously over a path subject to satisfying capacity
constraints on the edges of the path. In this work, we investigate a variant of UFPP
known in the literature as Round-UFPP or capacitated interval coloring. The objective
in Round-UFPP is to schedule all the flows in the smallest number of rounds, subject
to the constraint that the flows scheduled in each round collectively respect edge
capacities. Formally, in Round-UFPP we are given a path P = (V , E), consisting of
m links, with capacities {c j } j∈[m], and a set of n flowsF = { fi = (si , ti , σi) : i ∈ [n]}
each consisting of a source vertex, a sink vertex, and a size. A set R of flows is
feasible if all of itsmembers can be scheduled simultaneouslywhile satisfying capacity
constraints. The objective is to partition F into the smallest number of feasible sets
(rounds or colors) R1, . . . , Rt .

One practicalmotivation forRound-UFP is routing in optical networks. Specifically,
a flow fi of size σi can be regarded as a connection request asking for a bandwidth
of size σi . Connections using the same communication link can be routed at the same
time as long as the total bandwidth requested is at most the link capacity. Most modern
networks have heterogeneous link capacities; for example, some links might be older
than others. In this setting, each round corresponds to a transmission frequency, and
minimizing the number of frequencies is a natural objective in optical networks.

Acommon simplifying assumption, knownas the no-bottleneck assumption (NBA),
stipulates that the maximum demand size is at most the (global) minimum link capac-
ity; i.e. maxi∈[n] σi ≤ min j∈[m] c j ; most results on UFPP and its variants are under the
NBA (see Sect. 1.1). A major breakthrough was the design of O(1)-approximation
algorithms for the unsplittable flow problem on paths (UFPP) without the NBA [2,
11]. In this paper, we make progress towards an optimal algorithm for Round-UFPP
without imposing the NBA.

We consider both offline and online versions of Round-UFPP. In the offline case,
all flows are known in advance. In the online case, however, the flows are not known a
priori. Moreover, every flowmust be scheduled (i.e. assigned to a round) immediately
on arrival; no further changes to the schedule are allowed.

Even the simpler problem Round-UFPP-NBA, that is Round-UFPP with the NBA,
in the offline case, isNP-hard since it contains Bin Packing as a special case (consider
an instance with a single edge whose capacity equals the bin size). On the other hand,
if all capacities and flow sizes are equal, then the problem reduces to interval coloring
which is solvable by a simple greedy algorithm.

1.1 PreviousWork

The unsplittable flow problem on paths (UFPP) concerns selecting a maximum-weight
subset of flows without violating edge capacities. UFPP is a special case of UFP,
the unsplittable flow problem on general graphs. The term, unsplittable refers to the

123

Algorithmica (2023) 85:563–583 565

requirement that each flowmust be routed on a single path from source to sink.1 UFPP,
especially under the NBA (UFPP-NBA) and its variants have been extensively studied
[3, 7–10, 12, 14, 15, 26]. Recently, O(1)-approximation algorithms were discovered
for UFPP (without NBA) [2, 11]. Note that, on general graphs, UFP-NBA is APX-hard
even on depth-3 trees where all demands are 1 and all edge capacities are either 1 or
2 [19].

Round-UFPP has been mostly studied in the online setting where it generalizes
the interval coloring problem (ICP) which corresponds to the case where all demands
and capacities are equal. In their seminal work, Kierstead and Trotter gave an online
algorithm for ICP with a competitive ratio of 3. Their algorithm uses at most 3ω − 2
colors, where ω denotes the maximum clique size [22]. Observe that, since interval
graphs are perfect, the optimal solution is simply ω. Many works consider the perfor-
mance of the first-fit algorithm on interval graphs. Adamy and Erlebach were the first
to generalize ICP [1]. In their problem, interval coloring with bandwidth, all capacities
are 1 and each flow fi has a size σi ∈ (0, 1]. The best competitive ratio known for this
problem is 10 [6, 18] and a lower bound of slightly greater than 3 is known [21]. The
online Round-UFPP is considered in Epstein et al. [17]. They give a 78-competitive
algorithm for Round-UFPP-NBA, an O(log σmax

cmin
)-competitive algorithm for the gen-

eral Round-UFPP, and lower bounds of Ω(log logm) and Ω(log log log cmax
cmin

) on the
competitive ratio achievable for Round-UFPP. We note that in [17], parameters m
and n represent the number of flows and edges respectively. In the offline setting, a
24-approximation algorithm for Round-UFPP-NBA is presented in [16].

A relevant research topic is optical routing and scheduling (also known as path
coloring) which corresponds to Round-UFP2 where all flows and edge capacities are
1. This problem has been studied in [5, 24, 25, 27] among others. It is worthwhile to
note that, path coloring is hard to approximate to within a factor of n1−ε , for all ε > 0,
even on grids [20, 28].

1.2 Our Results

We design improved offline and online algorithms for Round-UFPP. Let m denote
the number of edges in the path, n the number of flows, and cmax the maximum edge
capacity.

– In Sect. 3, we design an offline O(log(1/(1 − α)))-approximation algorithm for
Round-UFPP with α-small instances where the size of each flow is at most an α

fraction of the capacity of the smallest edge used by the flow (0 < α < 1). This
implies an O(1)-approximation for any α-small instance. Previously, constant-
factor approximations were only known for α ≤ 1/4.

– In Sect. 4, we first present an online O(log log cmax)-competitive algorithm
for Round-UFPP with (1/4)-large instances. This result, combined with the
one above, leads to an offline O(min(log n, logm, log log cmax))-approximation

1 Clearly, in the case of paths and trees, the term is redundant.We use the terminologyUFPP to be consistent
with the prior work in this area.
2 Not to be confused with Round-UFPP where the graph is restricted to be a path.

123

566 Algorithmica (2023) 85:563–583

algorithm and an online O(min(logm, log log cmax))-competitive algorithm for
Round-UFPP. Note that cmin = 1 without loss of generality.

Our algorithm for large instances, which improves on the previous O(log cmax)-bound
[17], is based on a reduction to the classic rectangle coloring problem (c.f. [4, 13,
23]). In particular, we introduce the notion of “line-sparse” rectangles that may be of
independent interest, and show how competitive algorithms for coloring this class of
rectangles lead to competitive algorithms for Round-UFPP.

2 Preliminaries

In Round-UFPP we are given a path P and a set of flows F . The path P consists of m
links andm+1 vertices, enumerated left-to-right as v0, e1, v1, . . . , vm−1, em, vm with
link capacities {c j } j∈[m]. The set of flows F consists of n flows { fi = (si , ti , σi) : i ∈
[n]}, where si < ti represent the two endpoints of flow fi , and σi denotes the size of
the flow (note the slight abuse of notation: si < ti means that si is to the left of ti). We
say that a flow fi , with endpoints si = vk and ti = vl , uses a link e j if k < j ≤ l.

Definition 1 The bottleneck capacity of a flow fi , denoted by bi , is the smallest capac-
ity among all links used by fi . Such edges are called the bottleneck edges of fi (a
flow can have multiple bottleneck edges). Additionally, an edge is called a bottleneck
edge if it is a bottleneck edge for some flow.

Definition 2 A set of flows R is called feasible if all of its members can be routed
simultaneously without causing capacity violation.

The objective in Round-UFPP is to partitionF into the smallest number of feasible
sets R1, . . . , Rt . A feasible set is also referred to as a round. Alternatively, partitioning
can be seen as coloring where rounds correspond to colors.

Definition 3 For a set of flows F , we define its chromatic number,χ(F), to be smallest
number of colors (rounds) into which F can be partitioned.

Definition 4 The congestion of an edge e j with respect to a set of flows F is

r j (F) =
∑

i∈F(j) σi

c j
(1)

where F(j) is the subset of flows in F using edge e j . In other words, r j (F) is the ratio
of the total size of flows in F using e j to its capacity. Also, let rmax(F) = max j r j (F)

be the maximum edge congestion with respect to F . When the set of flows is clear
from the context, we simply write rmax.

Remark 1 When referring to an arbitrary edge e, we drop the index and write ce and
re(F) in place of c j and r j (F) respectively.

An obvious lower bound on χ(F) is maximum edge congestion; that is,

123

Algorithmica (2023) 85:563–583 567

Fig. 1 An example of a path with 5 links and two flows. The first flow f1 is from v1 to v3 of size 1; the
second flow f2 is from v4 to v6 also of size 1. Even though both flows have the same size, f1 is 1

4 -large

whereas f2 is 1
4 -small. The reason is different bottleneck capacities, b1 = 2 and b2 = 4

Observation 1 χ(F) ≥ �rmax(F)�.
Proof Suppose e j is any edge of the path. In each round, the amount of flow passing
through the edge is at most its capacity c j . Therefore, the number of rounds required
for the flows in F using e j to be scheduled is at least �r j (F)�. ��

Without loss of generality, we assume that the minimum capacity cmin = 1 (we can
always rescale if needed). Furthermore, let cmax = maxe∈E ce denote the maximum
edge capacity. As is standard in the literature, we classify flows according to the ratio
of size to bottleneck capacity.

Definition 5 Let α be a real number satisfying 0 ≤ α ≤ 1. A flow fi is said to be
α-small if σi ≤ α · bi and α-large if σi > α · bi (refer to Fig. 1 for an example).
Accordingly, a set of flows F is divided into small and large classes

FS
α = { f ∈ F | f is α-small}; FL

α = { f ∈ F | f is α-large}. (2)

As is often the case for unsplittable flow algorithms, we treat small and large
instances independently. In Sects. 3 and 4 we present algorithms for Round-UFPP
with α-small and α-large instances respectively. The exact value of α will be set later.

3 An Approximation Algorithm for Round-UFPP with˛-Small Flows

In this section, we design an offline O(1)-approximation algorithm for α-small flows
for any α ∈ (0, 1). We note that offline and online algorithms for α-small instances
are known when α is sufficiently small. More precisely, if α = 1/4, 16-approximation
and 32-competitive algorithms for offline and online cases have been presented in [16,
17] respectively.

Theorem 2 [16, 17] There exist O(1)-approximation algorithms for instances of
Round-UFPP where all flows are 1

4 -small.

123

568 Algorithmica (2023) 85:563–583

However, these results do not extend to the case where α is an arbitrary constant in
(0, 1). In contrast, we present an algorithm that works for any choice of α ∈ (0, 1).
In our algorithm, flows are partitioned according to the ratio of their size to their
bottleneck capacity. If α ≤ 1/4, we simply use Theorem 2. On the other hand, if
α > 1/4, our approach is to further partition the set of flows based on their bottleneck
capacity. This motivates the following definition.

Definition 6 Given two real numbers 0 ≤ α < β < 1, a flow fi is said to be (α, β]-mid
if σi ∈ (α · bi , β · bi]. Accordingly, we define the corresponding set of flows as

FM (α, β) = { f ∈ F | f is (α, β]-mid}.

Observe that, FM (α, β) = FL
α ∩ FS

β .

In the remainder of this section, we present an O(1)-approximation algorithm,
called ProcMids, for FM (1/4, α). ProcMids (Algorithm 1) initially computes
a less efficient schedule (coloring) and then improves on it by reusing rounds (col-
ors). Specifically, the algorithm works in three steps. First, it starts by partitioning
FM (1/4, α) into �log cmax� classes according to their bottleneck capacity

FM
	 =

{
{ fi ∈ FM (1/4, α) | 1 ≤ bi ≤ 2	}, if 	 = 1

{ fi ∈ FM (1/4, α) | 2	−1 < bi ≤ 2	}, if 	 = 2, . . . , �log cmax� (3)

In words, FM
	 is the subset of flows in FM (1/4, α)whose bottleneck capacity fall into

the bracket (2	−1, 2] (for 	 = 1 we use [2	−1, 2] instead). The following implication
holds for every class FM

	

∀ fi ∈ FM
	 ⇒ 2	−3 ≤ σi ≤ α · 2	. (4)

Algorithm 1: ProcMids

input : A set of (14 , α]-mid flows F
output: A partition of F into rounds (colors)

1 F1 ← { fk ∈ F | 1 ≤ bk ≤ 2};
2 R1 ← FlowDec(F1);
3 for i ← 2 to �log cmax� do
4 Fi ← { fk ∈ F | 2i−1 < bk ≤ 2i };
5 Ri ← FlowDec(Fi);

6 R′ ← ColOptimize({⋃�log cmax�
k=1 Rk });

7 return R′;

Next, the second step is to compute a coloring for each class by running a separate
algorithm called FlowDec, explained in Sect. 3.1. This will result in a coloring
of FM (1/4, α) using O(rmax log cmax) colors. Finally, in step 3, ProcMids runs

123

Algorithmica (2023) 85:563–583 569

ColOptimize, described in Sect. 3.2, to optimize color usage in different levels;
this results in removal of the logarithmic factor and, thereby, a more efficient coloring
using O(rmax) colors.

3.1 A Logarithmic Approximation

The job of FlowDec (Algorithm 2) is to schedule a set of flows F into O(rmax(F))

rounds (i.e. feasible sets of flows). In each iteration, it extracts from F two disjoint
rounds C1,C2 and removes them from F . This continues as long as F �= ∅.

Algorithm 2: FlowDec
input : A set of flows F
output: A partition of F into feasible subsets

1 i ← 1;
2 while F �= ∅ do
3 (Ci

1,C
i
2) ← rCOVER(F);

4 F ← F\(Ci
1 ∪ Ci

2);
5 i ← i + 1;

6 return {(C j
1 ,C j

2) : 1 ≤ j < i};

The task of extraction is handled by rCover (Algorithm 3) which guarantees that
each returned pair (C1,C2) has the following properties

(P1) ∀e ∈ E : |C1(e)| ≤ 1 ∧ |C2(e)| ≤ 1,
(P2) ∀e ∈ E : |F(e)| > 1 ⇒ C1(e) ∪ C2(e) �= ∅.

In words, an edge an used by at most one flow in each subset. Moreover, these two
subsets cover all the links used by the flows in F . Recall that X(e) denotes the subset
of flows in X that use link e. These two properties suffice to show the following.

Lemma 1 For all 	 ∈ {1, 2, . . . , �log cmax�}, FlowDec partitions FM
	 into at most

2�8rmax(FM
)� feasible subsets.

Proof Let Fi denote the set F at the end of the i-th iteration. Before the first iteration,
F0 = FM

	 . Consider the set B of bottleneck edges used by flows in FM
	 . By definition,

the capacity of each edge in B is in (2	−1, 2] if 	 > 1, or [2	−1, 2] if 	 = 1. We
claim that, in each iteration, the congestion of every edge in B is reduced by at at least
1/8. Indeed, let e ∈ B be a bottleneck edge with re(Fi−1) > 0 at the start of the i-th
iteration. Since re(Fi−1) > 0, by (P2), e is covered by at least one flow in Ci

1 ∪ Ci
2.

Let fk be such a flow. Then,

re(F
i+1) = re(F

i\(Ci
1 ∪ Ci

2)) ≤ re(F
i) − σk

ce
≤ re(F

i) − 2	−3

2	
= re(F

i) − 1

8
(5)

123

570 Algorithmica (2023) 85:563–583

since, by (4), the size of each flow f ∈ FM
	 is at least 2	−3. Hence, the congestion

of each bottleneck edge must have reduced to 0 after at most �8rB(FM
)� iterations,

where rB(F) is the maximum congestion among bottleneck edges with respect to
the flows in F ; that is, rB(F) = maxe∈B re(F). At the end of the last iteration, the
congestion of all edges must be 0 since every flow in FM

	 must use an edge in B.
Finally, since two feasible subsets are produced in every iteration, the total number of
feasible subsets is at most 2�8rB(FM

)� ≤ 2�8rmax(FM
)�. ��

Now we describe rCover (Algorithm 3). It maintains a set of flows F ′ which is
initially empty and a current flow fg . The algorithm processes the flows in the order
of increasing left point (i.e. the source vertex). Before the first iteration, the current
flow, fg , is chosen to be the longest among the flows with the leftmost source vertex.
At each iteration, rCover looks for the longest flow that overlaps with the current
flow fg . If found, it becomes the next current flow fg′ . If no such flow is found,
the next current flow fg′ is chosen to be the longest among the flows whose source
vertex is immediately to the right of the current flow’s sink vertex tg . Thus in the
first case, the longest overlapping flow is chosen and in the second case the longest
non-overlapping coming next is chose. In either case, the chosen flow will also be
added to F ′ and removed from further consideration. Finally, rCover splits F ′ into
two feasible subsets based on their index and returns them.

Lemma 2 Procedure rCover computes two feasible subsets C1 and C2 satisfying
properties (P1) and (P2).

Proof Let F ′ = { f j1, f j2 , . . . , f jp } denote the set of flows obtained by rCover after
termination of the loop, where f jk is the current flow at iteration k. We first establish
that

∀k ∈ {1, 2, . . . , p − 1} : t jk < t jk+1 (6)

which follows immediately from the selection of f jk+1 in iteration k. There are two
possible cases. In the first case, where an overlapping flow is found, f jk+1 satisfies
t jk+1 > t jk by definition. In the second case, where no overlapping flow is found, f jk+1

satisfies t jk+1 > s jk+1 > t jk again by definition.
We next show that

∀k ∈ {1, 2, . . . , p − 2} : s jk+2 > t jk (7)

which implies that no twoflows inC1 (resp.,C2) overlap, establishing property (P1). To
this end, let k be the smallest index for which the above condition is violated. Consider
iteration k. In this iteration f jk+1 is selected either as the longest flow overlapping with
f jk or as the longest flow not overlapping with f jk . In the latter case, t jk < s jk+1 and
(7) follows immediately. In the former case, we need to consider iteration k+1 where
f jk+2 is chosen. If t jk < s jk+2 , there is nothing to prove. Otherwise, not only does f jk+2

overlap with f jk but it is also the longer one due to (6). But this contradicts the fact
that rCover always selects the longest overlapping flow.

123

Algorithmica (2023) 85:563–583 571

Algorithm 3: rCover
input : A path P and a set of flows F
output: Two disjoint feasible subsets of F satisfying Properties (P1) and (P2)

1 F ′ ← ∅;
2 rmax ← maxe re(F);
3 smin ← min fi∈F {si };
4 tmax ← max fi∈F {ti };
5 g ← argmaxi {ti | fi ∈ F ∧ si = smin};
6 F ′ ← { fg};
7 F ← F\{ fg};
8 while True do
9 if ∃ fi ∈ F : si ≤ tg ∧ ti > tg then

10 g′ ← argmaxi {ti | fi ∈ F ∧ si ≤ tg};
11 else
12 if ∃ fi ∈ F : si > tg then
13 smin ← min{si | fi ∈ F, si > tg};
14 g′ ← argmaxi {ti | fi ∈ F, si = smin};
15 else
16 Break // from the while loop

17 F ′ ← F ′ ∪ { fg′ };
18 F ← F\{ fg′ };
19 g ← g′;

// Define fi j as the j-th flow added to F ′.
20 C1 ← { fi j ∈ F ′ | j is odd};
21 C2 ← { fi j ∈ F ′ | j is even};
22 return (C1,C2);

It remains to establish property (P2). The proof is again by contradiction. Let e
be the left-most edge for which (P2) is violated, and let fb be a flow that uses edge
e. We consider two cases. The first case is where there exists an index k such that
sb ≤ t jk . Let k be the smallest such index. In this case, tb > t jk , since otherwise,
if tb ≤ t jk , then either sb < tb ≤ s jk < t jk or sb ≤ s jk ≤ tb ≤ t jk . In the former,
k is not the smallest index where sb ≤ t jk . In the latter, e is already covered by the
flow f jk . Both lead to contradiction. Therefore, the first “if” statement in the loop
evaluates to true (i.e. there is a flow which overlaps the flow fg chosen in the previous
iteration). At this point, the algorithm will choose the longest flow overlapping fg .
Consequently, the chosen flow fg′ = f jk+1 satisfies tg′ ≥ tb, implying that e is covered
by flow f jk+1 , leading to a contradiction. The second case is where there is no index
k such that sb ≤ t jk ; in particular sb > t jp where f jp is the last flow in C1 ∪ C2. This
leads to another contradiction since the termination condition implies t jp ≥ tb. This
establishes property (P2) and completes the proof of the lemma. ��

3.2 Removing the log Factor

In this subsection, we present ColOptimize (Algorithm 4), which removes the
logarithmic factor by combining colors from across classes. The result is a coloring

123

572 Algorithmica (2023) 85:563–583

with O(rmax) colors. The algorithm uses a granularity parameter τ which will be set
later.

Recall that we started with a set FM = FM (1/4, α) of flows which are both
1/4-large and α-small. Next, we partitioned FM into �log cmax� classes based on
their bottleneck capacity. Subsequently, the execution of FlowDec on each class FM

	

results in at most �8rmax(FM
)� pairs of feasible subsets. Therefore, since rmax(FM

) ≤
rmax, in total we end up with the following set of feasible subsets (rounds).

{Ci
a() : 1 ≤ 	 ≤ �log cmax�, 1 ≤ i ≤ �8rmax�, a ∈ {1, 2}}. (8)

Algorithm 4: ColOptimize

input : A set of pairs {(C j
1 (),C j

2 ())}, 1 ≤ 	 ≤ �log cmax�, 1 ≤ j ≤ �8rmax�
input : A parameter τ

output: A set {Dt
a(k)}, a ∈ {1, 2}, 1 ≤ k ≤ τ , 1 ≤ t ≤ �8rmax�

1 for t ← 1 to �8rmax� do
2 for k ← 1 to τ do

3 Dt
1(k) ← ⋃�(log cmax)/τ�−1

z=0 Ct
1(zτ + k);

4 Dt
2(k) ← ⋃�(log cmax)/τ�−1

z=0 Ct
2(zτ + k);

5 return
⋃

a,k,t {Dt
a(k)};

For a given value of τ , ColOptimize reduces the number of colors by a factor
of τ/�log cmax� resulting in O(τ · rmax) colors being used in total. This is achieved by
introducing a new set of colors

Dt
a(k) =

�(log cmax)/τ�−1⋃

z=0

Ct
a(zτ + k) (9)

where a ∈ {1, 2}, k ∈ {1, . . . , τ }, and t ∈ {1, . . . , �8rmax�}. Notice that the same color
is being used across different classes. An example is illustrated in Fig. 2. Lemma 3
shows that setting τ = log(1/(1−α))+2 results in a valid coloring using 2�8rmax�(2+
log(1

1−α
)) colors. Of course, all flows are assumed to be α-small.

Lemma 3 For τ = 2 + �log(1/(1 − α))�, where α ∈ (0, 1), the sets Dt
a(k), where

a ∈ {1, 2}, k ∈ {1, . . . , τ }, and t ∈ {1, . . . , �8rmax�}, constitute a valid coloring.

Proof Fix an edge e ∈ E . Let F(e) be the set of flows in F that use e. We need
to show that for all valid values of a, k, and t , Dt

a(k) respect the capacity of e. Let
L(e) = �log ce�. Clearly, the flows in F(e) belong to FM

i for i ≤ L(e). In other
words, F(e) ∩ FM

i = ∅, for every i > L(e).
Note that, in each class, by Property (P1), FlowDec assigns each color to at most

one flow that uses e. This means that Dt
a(k) has at most one flow that uses e from each

set Ct
a(zτ +k), for z = 0, . . . , �L(e)/τ�−1. Moreover, the size σi of a flow fi ∈ FM

	

123

Algorithmica (2023) 85:563–583 573

Fig. 2 In this figure, each row represents the output of FlowDec applied to a class. Initially, seven colors
are used in each column, one per class. Next, ColOptimize, called with parameter τ = 3, combines the
colors across classes resulting in the use of 3 colors per column. For instance, in the sixth column colors
Red, Blue, and Green are used. Note the non-standard notation in this figure; namely,C()ia is used in place
of Ci

a() (Color figure online)

is bounded by α · 2	. Hence, the combined size of the flows in Dt
a(k) that go through

e adds up to at most

α · ce + 2L(e)−τ + 2L(e)−τ−1 + · · · ≤ α · ce + 2L(e)−τ (1 + 1/2 + 1/4 + · · ·)
≤ α · ce + 2L(e)−τ+1

≤ α · ce + 22−τ ce ≤ ce,

where the third inequality follows from ce > 2L(e)−1 and the last equality from
τ = log(1/(1 − α)) + 2, equivalently 22−τ = (1 − α). ��

The main result of this section now directly follows from Lemma 3.

Theorem 3 For any α ∈ (0, 1), there exists an offline O(1+ log(1
1−α

)) approximation
algorithm for Round-UFPPwith α-small flows. In particular, we have a constant-factor
approximation for any constant α < 1.

4 Algorithms for General Round-UFPP Instances

In what follows, we present offline and online algorithms for general instances of
Round-UFPP-that is instances where flows are not assumed to be α-small or α-large.
Our treatment of large flows involves a reduction from Round-UFPP to the rectangle
coloring problem (RCOL) which is discussed in Sect. 4.1. Next, in Sect. 4.2, we design
an online algorithm for theRCOL instances that arise from the reduction. This algorithm
is of independent interest. Later, in Sect. 4.3, we study ProcLarges, an online
algorithm for Round-UFPPwith 1

4 -large flows; this algorithm is based on the reduction
to RCOL and the online algorithm we have designed for it. Finally, in Sect. 4.4, we

123

574 Algorithmica (2023) 85:563–583

Fig. 3 A rectangle is specified
by quadruple
(xl (R), xr (R), yt (R), yb(R))

present our final algorithm for the general Round-UFPP instances which combines
ProcLarges with an algorithm for 1

4 -small flows.

4.1 The Reduction from Round-UFPPwith Large Flows to RCOL

Definition 7 Rectangle Coloring Problem (RCOL). Given a collection R of n axis-
parallel rectangles, the objective is to color the rectangles with the minimum number
of colors such that rectangles of the same color are disjoint.

Each rectangle R ∈ R is given by a quadruple (xl(R), xr (R), yt (R), yb(R)) of
real numbers, corresponding to the x-coordinates of its left and right boundaries and
the y-coordinates of its top and bottom boundaries, respectively. More precisely, R =
{(x, y) | xl(R) ≤ x ≤ xr (R) and yb(R) ≤ y ≤ yt (R)} (see Fig. 3).When the context
is clear, we may omit R and write xl , xr , yt , yb. Two rectangles R and R′ are called
compatible if they do not intersect each other; else, they are called incompatible.

The reduction from Round-UFPP with large flows to RCOL is based on the work
in [11]. It starts by associating with each flow fi = (si , ti , σi), a rectangle Ri =
(si , ti , bi , bi − σi). If we draw the capacity profile over the path P , then Ri is a
rectangle of thickness σi sitting under the curve touching the “ceiling.” Let R(F)

denote the set of rectangles thus associated with flows in F . We assume, without loss
of generality, that rectangles do not intersect on their border; that is, all intersections
are with respect to internal points. We begin with an observation stating that a disjoint
set of rectangles constitutes a feasible set of flows.

Observation 4 [11] LetR(F) be a set of disjoint rectangles corresponding to a set of
flows F. Then, F is a feasible set of flows.

A rectangle Ri in this scenario is called α-large or α-small if its corresponding
flow fi is α-large or α-small respectively. The main result here is that if all flows in
F are 1

k -large then an optimal coloring of R(F) is at most a factor of 2k worse than
the optimal solution to the Round-UFPP instance arising from F . The following key
lemma is crucial to the result.

Lemma 4 [11] Let F be a feasible set of flows, and let k ≥ 2 be an integer, such that
every flow in F is 1

k -large. Then there exists a 2k coloring of R(F).

As an immediate corollary, we get the following.

123

Algorithmica (2023) 85:563–583 575

Corollary 1 Let F be a feasible set of flows, and let k ≥ 2 be an integer, such that
every flow in F is 1

k -large. Then, χ(R(F)) ≤ 2kχ(F).

Proof Consider an optimal coloringC of F with χ(F) colors. Apply Lemma 4 to each
color class Ci , for 1 ≤ i ≤ χ(F), to get a 2k-coloring of R(Ci). The final result is a
coloring of R(F) using at most 2kχ(F) colors. ��

We are ready to state the main result of this subsection.

Lemma 5 Suppose there exists an offline α-approximation (online α-competitive)
algorithm A for RCOL. Then, for every integer k ≥ 2 there exists an offline 2kα-
approximation (online 2kα-competitive) algorithm for Round-UFPP consisting of
1
k -large flows.

Proof Given a set F of 1
k -large flows for some integer k ≥ 2, construct the set of

associated rectangles R(F) and apply the algorithm A to it. The solution is a valid
Round-UFPP solution (Observation 4). Furthermore, by Corollary 1,

A(R(F)) ≤ αχ(R(F)) ≤ 2kαχ(F).

Importantly, the reduction does not depend on future flows; hence, it is online in nature.
��

4.2 Algorithms for RCOL

In this section, we consider algorithms for the rectangle coloring problem (RCOL). We
begin by introducing a key notionmeasuring the sparsity of rectangles with respect to a
set of lines. This is similar to the concept of point sparsity investigated byChalermsook
[13].

Definition 8 (s-line-sparsity) A collection of axis-parallel rectangles R is s-line-
sparse if there exists a set of lines LR, called an s-line-representative set of R,
such that every rectangle R ∈ R is intersected by 1 ≤ kR ≤ s lines in LR (see Fig. 4
for an example).

For simplicity, we assume that representative lines are all horizontal. The objective
is to design an online O(log s)-competitive algorithm for RCOL consisting of s-line-
sparse rectangles. In the online setting, rectangles appear one by one; however, we
assume that an s-line-representative set LR is known in advance. As we will later
see, this will not cause any issues since the RCOL instances considered here arise
from Round-UFPP instances with large flows from which it is straightforward to
compute s-line-representative sets. In the offline case, on the other hand, we get a
log(n) approximation by (trivially) computing an n-line-representative set–associate
to each rectangle an arbitrary line intersecting it. The remainder of this subsection is
organized as follows. First, in Sect. 4.2.1, we consider the 2-line-sparse case. Later, in
Sect. 4.2.2, we study the general s-line-sparse case.

123

576 Algorithmica (2023) 85:563–583

(a) (b)

Fig. 4 A collection R of 4-line-sparse rectangles. The lines can be either a horizontal or b vertical

4.2.1 The 2-Line-Sparse Case

Consider a collection of rectangles R and a 2-line-representative set for it LR =
{	0, 	1, . . . , 	k} (that is, each rectangle R is intersected by either one or two lines in
LR) where the rectangles in R appear in an online fashion. Recall, however, that the
line set LR is known in advance. Without loss of generality, assume that y(0) <

y(1) < · · · < y(k).
For each R ∈ R, let T (R) denote the index of the topmost line in LR that intersects

R; T (R) = max{i | 	i intersects R}. Next, partitionR into three subsets

Rl = {R ∈ R | T (R) = l (mod 3)}, for l = 0, 1, 2. (10)

The following lemma shows that each of the above subsets can be viewed as a collection
of interval coloring problem (ICP) instances.

Lemma 6 Suppose two rectangles R, R′ ∈ R belong to the same subset; that is,
R, R′ ∈ Rl for some l ∈ {0, 1, 2}. Then, the following are true.

(1) If T (R) = T (R′) and the projections of R and R′ on the x-axis have a non-empty
intersection, then R ∩ R′ �= ∅.

(2) If T (R) �= T (R′), then R ∩ R′ = ∅.

Proof (1) is easy to verify. Indeed, the projections of R and R′ on the y-axis both
contain y(T (R)); hence, their intersection is non-empty. Thus, R and R′ intersect if
and only if their projection on the x-axis has a non-empty intersection.

Next, we prove (2). Consider two rectangle R, R′ ∈ Rl , where T (R) �= T (R′).
Let i = T (R) and i ′ = T (R′). Assume, without loss of generality, that i < i ′. Note
that i ′ ≥ i + 3 by definition. Additionally, yt (R) < y(i+1) since 	i is the topmost
line of L that intersects R. On the other hand, yb(R′) > y(i+1) since L is a 2-line-
representative set ofRmeaning that at most two lines in L intersect R′. Consequently,
the projection of R and R′ on the y-axis have an empty intersection. Therefore, R and
R′ do not intersect. ��

123

Algorithmica (2023) 85:563–583 577

Wewill use the optimal 3-competitive online algorithm due to Kierstead and Trotter
for ICP [22]. The algorithm colors an instance of ICP of clique size ω with at most
3ω − 2 colors which matches the lower bound shown in the same paper. Henceforth,
we refer to this algorithm as the KT algorithm.

Now we can present an O(1)-competitive online algorithm, named COL2SP, with
a known 2-line-representative set (see Algorithm 5).

Algorithm 5: COL2SP
input : A rectangle R ∈ R
input : The last state of COL2SP; a 2-representative-line set LR forR
output: A color for R

1 y ← T (R)%3;
2 return KT(Ry , R);

Basically, COL2SP computes a partition of R into R0,R1, and R2 as explained
above and runs three instances of the KT algorithm in parallel one for each subset (see
Fig. 5).

Lemma 7 Algorithm COL2SP is an online O(1)-competitive algorithm for RCOL on
2-line-sparse instances given prior knowledge of a 2-line-representative set for the
incoming rectangles. Moreover, COL2SP uses at most 9 · ω(R) colors

Proof Let Rec(i) denote the set of rectangles for which the line 	i is the topmost line
intersecting it. More precisely,

Rec(i) = {R ∈ R | T (R) = i}, for i = 0, 1, . . . , k.

Fig. 5 An example for rectangle collectionR0. The red lines are the oneswhose index i satisfies i = 1 (mod
3). None of the rectangles in R0 is intersected by a red line

123

578 Algorithmica (2023) 85:563–583

Observe that, Rl defined in (10), satisfies

Rl =
�(k−l)/3�⋃

j=0

Rec(3 j+l), for l = 0, 1, 2.

Now, executing the KT algorithm on Rl , is equivalent to executing the KT algorithm
on Rec(l), Rec(3+l), Rec(6+l), …, simultaneously. Indeed, by Lemma 6, for every
R, R′ ∈ Rl , we know that R ∩ R′ = ∅ if R ∈ Rec(i), R′ ∈ Rec(j) and i �= j . On
the other hand, if R, R′ ∈ Rec(i), part (2) of the lemma implies that the problem of
coloring Rec(i) is the same as that of coloring intervals resulting from the projection
of Rec(i) on the x-axis. Finally, since the KT algorithm is 3-competitive, COL2SP
uses at most 3ω(Rec(i)) colors to color Rec(i). Hence, overall, COL2SP colorsRl

with at most

3·max{ω(R(i)) | i = l, 3 + l, 2·3+l, . . . , �(k−l)/3� · 3+l}≤3 · ω(Rl)≤3 · ω(R)

colors for l = 0, 1, 2. However, since there could be rectangles R1 ∈ Ri and R2 ∈ R j ,
i �= j , such that R1 ∩ R2 �= ∅, different colors must be used in each invocation.
Consequently, the total number of colors used will be at most 9 · ω(R). ��

4.2.2 The s-Line-Sparse Case

Consider a set of s-line-sparse rectanglesR and an s-line-representative set LR. Our
goal in this subsection is to demonstrate a partitioning ofR into O(log s) 2-line-sparse
subsets, where each set is accompanied by its own 2-line-representative set. Given a
set of lines L , we define the degree of a rectangle R ∈ R, with respect to L , to be the
number of lines in L that intersect R,

DegL(R) = |{	 ∈ L | 	 ∩ R �= ∅}| .

We say that a rectangle R ∈ R is of level l ≥ 0 with respect to LR, if 2l ≤
DegLR(R) < 2l+1. The partitioning is based on the level of rectangles.More precisely,
R is partitioned into �log s� + 1 levels

Lev(i) = {R ∈ R | R is of level i}, for i = 0, 1, . . . , �log s�.

Next we show that each level is a 2-line-sparse set. To this end, we present a 2-line-
representative set for each level. Let LR = {	1, 	2, . . . , 	k} and define

S(i) = {	 j ∈ LR | j = 0 (mod 2i)}, for i = 0, . . . , �log s�.

Lemma 8 For every i ∈ {0, . . . , �log s�}, Lev(i) is a 2-line-sparse set and S(i) is a
2-line-representative set for Lev(i).

123

Algorithmica (2023) 85:563–583 579

Proof Fix an i ∈ {0, . . . , �log s�}. If Lev(i) = ∅, then it trivially is 2-line-sparse and
any set of lines can serve as its 2-line-representative set. Now, suppose that Lev(i) �= ∅
and pick an arbitrary rectangle R ∈ Lev(i). We need to show that R intersects exactly
either one or two lines in S(i). By definition, we have that 2i ≤ DegLR(R) < 2i+1.
On the other hand, S(i) ⊆ LR contains one line for every 2i lines of LR. Hence, R
intersects at least one line and at most two lines in Lev(i). ��

We are ready to present an O(log s)-competitive online algorithm, named
RectCol (see Algorithm 6), for RCOL with a known line-representative set.

Algorithm 6: RectCol
input : A rectangle R ∈ R
input : The last state of RectCol; an s-representative-line set LR forR
output: A color for R

1 i ← argmin j (2
j ≤ DegLR (R) < 2 j+1);

2 Lev(i) ← Lev(i) ∪ {R};
3 return COL2SP(R, S(i));

Lemma 9 RectCol is anonline O(log s)-competitive algorithm forRCOLwith s-line-
sparse rectangles, given a representative-line set.Moreover,RectCol uses O(ω(R)·
log s) colors.

Proof Consider an s-line-sparse set of rectangles R and an s-line-representative
set L . By Lemma 8, Lev(i) is 2-line-sparse and S(i) is a 2-line-representative
set of Lev(i), for each i = 0, . . . , �log s�. Let #(COL2SP,Lev(i)) denote
the number of colors used by algorithm COL2SP to color Lev(i). Observe
that RectCol uses at most

∑�log s�
i=0 #(COL2SP,Lev(i)) colors. Furthermore, by

Lemma 7, #(COL2SP,Lev(i)) ≤ 9ω(R), for every i = 0, . . . , �log s�. Therefore,
Algorithm RectCol uses at most 9(�log s� + 1)ω(R) colors. ��

4.3 An Algorithm for Round-UFPPwith Large Flows

We are ready to present ProcLarges, an algorithm for Round-UFPP with large
flows. For concreteness, we present the algorithm for 1

4 -large flows; this result can
be easily generalized to α-large flows for any 1/4 ≤ α ≤ 1. The online algorithm
we have designed for RCOL needs to have access to an s-line-representative set LR
for the set of rectangles R. In our case, these rectangles are constructed from flows
(Sect. 4.1) which themselves arrive in an online fashion. However, all we need to be
able to compute an s-line-representative set is the knowledge of the path over which
the flows will be running–that is P = (V , E) with capacities {ce}e∈E (recall that
we assume that cmin = 1, which can always be achieved via scaling if needed). It is
possible to construct (at least) three different s-line-representative sets for R:

123

580 Algorithmica (2023) 85:563–583

L1 A set of s = �log4/3 cmax� + 1 horizontal lines L = {l0, l1, . . . , ls−1} where
the y-coordinate of the i th line is y(li) = (3/4)i · cmax. Note that 	0 is the
topmost line.

L2 A set of m vertical lines, one per edge in the path.
L3 A set of n axis-parallel lines, one per rectangle.

Note that L3 is only useful in the offline setting. It is obvious that L2 and L3 are
valid line-representative sets for R. Below, we show that L1 is valid as well.

Lemma 10 L1 is an s-line-representative set forR(F).

Proof Since there are exactly s lines in L1, every rectangle inR(F) is intersected by
at most s lines. It remains to show that every rectangle is intersected by at least one line
in L1. To this end, consider an arbitrary rectangle Ri ∈ R(F). Since Ri corresponds
to a 1

4 -large flow fi , we have that σi ≥ bi/4 = yti /4, where y
t
i is the top y-coordinate

of the rectangle. Now, let j be an index such that

y(l j+1) < yti ≤ y(l j). (11)

Note that such an index exists, since y(l0) = cmax and y(ls) < cmin = 1. It follows
from the right-hand side of (11) that 3

4 y
t
i ≤ 3

4 y(l j). On the other hand, y(l j+1) =
3
4 y(l j) by definition. Furthermore, ybi < 3

4 y
t
i since σi ≥ yti /4. Therefore,

ybi ≤ y(l j+1) < yti ,

which implies that l j+1 intersects Ri . This completes the proof. ��
The algorithm ProcLarges, for 1

4 -large flows, can be seen in Algorithm 7.

Algorithm 7: ProcLarges
input : A flow f
input : The last state of ProcLarges; a capacitated line graph P = (V , E, c)
output: A round for f

1 L ← ∅;
2 for i ← 0 to �log4/3 cmax� do
3 y(i) ← (3/4)i · cmax;
4 L ← L ∪ {	i };
5 Construct a rectangle R(f);
6 RectCol(R(f),L);
7 return the color index ofR(f) ;

Theorem 5 ProcLarges is an O(log log cmax)-competitive algorithm for instances
of Round-UFPP with 1

4 -large flows. Furthermore, the bound can be improved to
O(min(logm, log log cmax)).

123

Algorithmica (2023) 85:563–583 581

Proof ProcLarges executes algorithm RectCol on R(F) with a representative-
line set L = L1 of size O(log cmax). The colors returned by RectCol are used
for the flows without modification. Now, setting s = O(log cmax), Lemma 9 states
that Algorithm RectCol uses O(ω(R(F)) log log cmax) colors. Lemma 5 com-
pletes the argument. Finally, note that running algorithm RectCol with L = L2
as the representative-line set, we get a sparsity of s = m and a coloring using
O(ω(R(F)) logm) colors. To get the improved bound, we run the algorithm with
L = L1, if log cmax ≤ m; else, we run it with L = L2. ��

4.4 Putting It Together: The Final Algorithm

At this point, we have all the ingredients needed to present our final algorithm (Algo-
rithm 8) for Round-UFPP. SolveRUFPP simply uses procedure ProcLarges
(Sect. 4.3) for 1

4 -large flows and procedure ProcSmalls for 1
4 -small flows. For

ProcSmalls, we can use our algorithm in Sect. 3 or the 16-competitive algorithm
in [16] in the offline case; and the 32-competitive algorithm in [17] in the online case.

Algorithm 8: SolveRUFPP
input : A flow f
input : The last state of SolveRUFPP; a capacitated line graph P = (V , E, c)
output: A round for f

1 if σ f ≥ (1/4)b f then ProcLarges(f,P) else ProcSmalls(f,P) return;

Theorem 6 There exists an online O(min(logm, log log cmax))-competitive algo-
rithm and an offline O(min(log n, logm, log log cmax))-approximation algorithm for
Round-UFPP.

Proof In the online case, ProcSmalls is 32-competitive [17]. On the other hand, by
Theorem 5, ProcLarges is O(min(logm, log log cmax))-competitive. Thus overall,
algorithm SolveRUFPP is O(min(logm, log log cmax))-competitive. In the offline
case, since the set of flows F is known in advance, we can get a slightly better bound
by using L3 in Sect. 4.3 as the third line-representative set (of sparsity s = n). Thus
we get the O(min(log n, logm, log log cmax)) bound by running the algorithm three
times with L1, L2, and L3 and using the best one. ��

5 Concluding Remarks

In this paper, we present improved offline approximation and online competitive algo-
rithms for Round-UFPP. Our work leaves several open problems. First, is there an
O(1)-approximation algorithm for offline Round-UFPP? Second, can we improve
the competitive ratio achievable in the online setting to match the lower bound of
Ω(log log log cmax) shown in [17], or improve the lower bound? From a practical
standpoint, it is important to analyze the performance of simple online algorithms

123

582 Algorithmica (2023) 85:563–583

such as First-Fit and its variants for Round-UFPP and RCOL. Another natural direction
for future research is the study of Round-UFP and variants on more general graphs.

Funding Funding was provided by National Science Foundation (Grant No. CCF-1422715) and Office of
Naval Research.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

1. Adamy, U., Erlebach, T.: Online coloring of intervals with bandwidth. In: Solis-Oba, R., Jansen, K.
(eds.) Approximation and Online Algorithms, pp. 1–12. Springer, Berlin (2004)

2. Anagnostopoulos,A.,Grandoni, F., Leonardi, S.,Wiese,A.:Amazing 2+eps approximation for unsplit-
table flow on a path. CoRR arXiv:1211.2670 (2012)

3. Arkin, E.M., Silverberg, E.B.: Scheduling jobs with fixed start and end times. Discrete Appl. Math.
18(1), 1–8 (1987)

4. Asplund, E., Grünbaum, B.: On a coloring problem. Math. Scand. 8, 181–188 (1960)
5. Aumann, Y., Rabani, Y.: Improved bounds for all optical routing. In: Proceedings of the Sixth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’95, pp. 567–576. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA (1995)

6. Azar,Y., Fiat,A., Levy,M.,Narayanaswamy,N.:An improved algorithm for online coloring of intervals
with bandwidth. Theor. Comput. Sci. 363(1), 18–27 (2006)

7. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplittable flow on line
graphs. In: STOC’06, pp. 721–729 (2006)

8. Bansal, N., Friggstad, Z., Khandekar, R., Salavatipour, M.R.: A logarithmic approximation for unsplit-
table flow on line graphs. In: SODA’09, pp. 702–709 (2009)

9. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach to approximating
resource allocation and scheduling. J. ACM 48(5), 1069–1090 (2001)

10. Bartlett, M., Frisch, A.M., Hamadi, Y., Miguel, I., Tarim, S.A., Unsworth, C.: The temporal knapsack
problem and its solution. In: CPAIOR’05, pp. 34–48. Springer, Berlin (2005)

11. Bonsma, P., Schulz, J., Wiese, A.: A constant factor approximation algorithm for unsplittable flow on
paths. In: FOCS’11, pp. 47–56 (2011)

12. Calinescu, G., Chakrabarti, A., Karloff, H., Rabani, Y.: An improved approximation algorithm for
resource allocation. ACM Trans. Algorithms 7(4), 48:1-48:7 (2011)

13. Chalermsook, P.: Coloring and maximum independent set of rectangles. In: APPROX. RANDOM
2011. Lecture Notes in Computer Science, vol. 6845. Springer, Berlin (2011)

14. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. Lecture Notes in Computer Science, vol.
2719. Springer, Berlin

15. Darmann, A., Pferschy, U., Schauer, J.: Resource allocation with time intervals. Theoret. Comput. Sci.
411(49), 4217–4234 (2010)

16. Elbassioni, K.M., Garg, N., Gupta, D., Kumar, A., Narula, V., Pal, A.: Approximation algorithms for
the unsplittable flow problem on paths and trees. In: FSTTCS’12, pp. 267–275 (2012)

17. Epstein, L., Erlebach, T., Levin, A.: Online capacitated interval coloring. SIAM J. Discrete Math.
23(2), 822–841 (2009)

18. Epstein, L., Levy, M.: Online interval coloring and variants. In: ICALP 2005. Lecture Notes in Com-
puter Science, vol. 3580. Springer, Berlin

19. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and
multicut in trees. Algorithmica 18(1), 3–20 (1997)

20. Golumbic, M.C., Lipshteyn, M., Stern, M.: Edge intersection graphs of single bend paths on a grid.
Networks 54(3), 130–138 (2009). https://doi.org/10.1002/net.20305

21. Kierstead, H.A.: The linearity of first-fit coloring of interval graphs. SIAM J. Discrete Math. 1(4),
526–530 (1988)

123

http://arxiv.org/abs/1211.2670
https://doi.org/10.1002/net.20305

Algorithmica (2023) 85:563–583 583

22. Kierstead, H.A., Trotter, W.T.: An extremal problem in recursive combinatorics. Congr. Numer. 33,
143–153 (1981)

23. Kostochka, A.: Coloring intersection graphs of geometric figures with a given clique number. In:
Contemporary Mathematics, vol. 342. AMS (2004)

24. Kumar, S.R., Panigrahy, R., Russell, A., Sundaram, R.: A note on optical routing on trees. Inf. Process.
Lett. 62(6), 295–300 (1997)

25. Mihail, M., Kaklamanis, C., Rao, S.: Efficient access to optical bandwidth wavelength routing on
directed fiber trees, rings, and trees of rings. In: Proceedings of IEEE 36th Annual Foundations of
Computer Science, pp. 548–557 (1995)

26. Phillips, C.A., Uma, R.N., Wein, J.: Off-line admission control for general scheduling problems. J.
Sched. 3, 879–888 (2000)

27. Raghavan, P., Upfal, E.: Efficient routing in all-optical networks. In: Proceedings of the Twenty-Sixth
Annual ACM Symposium on Theory of Computing, STOC ’94, pp. 134–143. ACM, New York, NY,
USA (1994)

28. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic
number. Theory Comput. 3(6), 103–128 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

	Improved Algorithms for Scheduling Unsplittable Flows on Paths
	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 Preliminaries
	3 An Approximation Algorithm for Round-UFPP with α-Small Flows
	3.1 A Logarithmic Approximation
	3.2 Removing the log Factor

	4 Algorithms for General Round-UFPP Instances
	4.1 The Reduction from Round-UFPP with Large Flows to RCOL
	4.2 Algorithms for RCOL
	4.2.1 The 2-Line-Sparse Case
	4.2.2 The s-Line-Sparse Case

	4.3 An Algorithm for Round-UFPP with Large Flows
	4.4 Putting It Together: The Final Algorithm

	5 Concluding Remarks
	References

