Candidate local parent Hamiltonian for 3/7 fractional quantum Hall effect
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While a parent Hamiltonian for the Laughlin 1/3 wave function has been long known in terms
of the Haldane pseudopotentials, no parent Hamiltonians are known for the lowest-Landau-level
projected wave functions of the composite fermion theory at n/(2n + 1) with n > 2. If one takes
the two lowest Landau levels to be degenerate, the Trugman-Kivelson interaction produces the

unprojected 2/5 wave function as the unique zero energy solution.

If the lowest three Landau

levels are assumed to be degenerate, the Trugman-Kivelson interaction produces a large number of
zero energy states at v = 3/7. We propose that adding an appropriately constructed three-body
interaction yields the unprojected 3/7 wave function as the unique zero energy solution, and report
extensive exact diagonalization studies that provide strong support to this proposal.

I. INTRODUCTION

The fractional quantum Hall effect (FQHE) [1] is one
of the most striking phenomena to arise from the inter-
action between electrons. Its rich phenomenology is ex-
plained in terms of emergent particles called composite
fermions (CFs), which are bound states of electrons and
an even number of quantized vortices, sometimes viewed
as electrons bound to an even number of magnetic flux
quanta [2]. A remarkable aspect of the CF theory is that
it establishes a mapping between the FQHE of electrons
at filling factors v = n/(2pn + 1) and the integer quan-
tum Hall effect (IQHE) of CFs carrying 2p vortices at
filling factor v* = n. It further allows explicit construc-
tion of wave functions for the FQHE states starting from
the known IQHE wave functions [2], which provide ex-
tremely accurate representations of the exact Coulomb
wave functions known numerically for finite systems for
which exact diagonalization on the computer is possi-
ble [3, 4]. The Laughlin wave function [5] appears in this
theory as the ground state wave function of CFs at filling
factor v* = 1.

While the close agreement with the Coulomb solutions
is sufficient to establish the quantitative validity of these
wave functions, one may ask if they are exact solutions
of some model interactions. The interaction is often ex-
pressed in terms of the Haldane pseudopotentials V,,,
which are energies of pairs of electrons with relative an-
gular momenta m [6]. Haldane showed that the Laugh-
lin 1/3 state is the exact and unique zero energy state
of fully spin polarized electrons confined to the lowest
Landau level (LLL) for the interaction Vi, = d,,,1 [6].

The Jain wave functions at v = n/(2pn + 1) are given
by

UL sty = PLin®a, @77, (1)

where ®,, is a Slater determinant state of completely
filled lowest n LLs, we define ®_,, = ®*,, and PriL
denotes projection into the LLL. (We drop the ubiqui-
tous Gaussian factors, which will be absent anyway once
we specialize to the spherical geometry.) Extensive stud-
ies [7] have failed to find a pseudopotential Hamiltonian

for which the LLL projected Jain 2/5 wave function for
fermions, or the analogous 2/3 wave function for bosons,
is the exact ground state.

We will consider below the unprojected Jain n/(2pn+1)
wave functions, referred to simply as the n/(2pn+1) wave
functions below, given by
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an/(?pn-&-l) = (I)NCI)lp' (2)

These have a simpler form, but involve higher Landau
levels (LLs). (The number of LLs participating in a wave
function can be read off from the highest power of Z;
in the polynomial part of the wave function multiply-
ing the Gaussian factor; the highest power z" implies
nonzero weight in the lowest m + 1 LLs.) Interestingly,
the Trugman-Kivelson (TK) interaction [8]

VTK = V%é(m(’l"g - ’!‘1) (3)

obtains the 2/5 wave function as the exact and unique
zero energy ground state provided that the lowest two
LLs are taken to be degenerate [9, 10]. (Here, V3 rep-
resents the Laplacian with respect to r3.) One can see,
using integration by parts, that any state that vanishes
as the first power of the distance r between two particles,
when they are brought close to one another, has a finite
energy for Vg, but any state that vanishes as 73 has zero
energy. (States that vanish as 72 are not allowed due to
antisymmetry of the fermionic wavefunctions.) One can
further show that ®;®? is the only state at v = 2/5
that vanishes as 2 within the space of the lowest two
LLs . Numerical diagonalization has shown that this
state evolves smoothly, without gap closing, for either
the short-range or the Coulomb interaction as the kinetic
energy gap between the lowest two LLs is increased from
zero to infinity [10].

This strategy does not carry over to the 3/7. Because
the unprojected Jain wave function at v = 3/7 involves
the lowest three LLs, we assume the lowest three LLs to
be degenerate. The 3/7 wave function, V3,7 = GRGER
vanishes as r® (as each factor vanishes as r) when two
particles approach one another and thus has zero energy



for the TK interaction, but it is not the only wave func-
tion with this property. It is degenerate with many other
states of the form:

‘I’;(;V/?UQ) = Xy Xvz P1, (4)
where v; and vj satisfy (v)™ 1+ (v3)" 1 +171 = (3/7)1
and v{,v; < 2. Because Xy contains at most one power

of z;, \I'él;l?’yz) has at most 2? and is therefore restricted to
the lowest three LLs. (We also must have v§,v3 > 6/5
because (v§)7! = 4/3 — (13)~! < 5/6.) We have used
the fact that the inverse of the filling factor of a product
state is sum of the inverse filling factors of the differ-
ent factors [11]. We use here and below the symbol x,-
to denote a Slater determinant in the standard angular
momentum basis in which there is at least one particle
in both LLs. The zero mode (ZM) subspace of Vrk is

spanned by all wave functions of the form \Ilgﬁ’yg) [12].

Certain other models have been advanced. Bandy-
opadhyay et al. have constructed a local two-body
interaction for all unprojected Jain wave functions at
n/(2n + 1) [12] as well as for the Jain parton states
[13] building upon previous work [14]. It is not evi-
dent, however, how this interaction may be expressed in a
real space form or in terms of Haldane pseudopotentials.
Anand et al. [15, 16] have introduced an interaction, de-
fined in terms of generalized Haldane pseudopotentials,
which does not cause inter-LL scattering, and shown
that this interaction can be solved exactly, and its spec-
trum at v has an exact correspondence with that of non-
interacting fermions at v*, given by v = v*/(2pr*+1). In
particular, it produces incompressibility at the Jain frac-
tions v = n/(2pn + 1). This formulation also provides a
solvable model for non-Abelian FQHE [17]. The eigen-
functions of this interaction, however, are not the unpro-
jected Jain CF states and for n > 2 have large occupancy
of higher LLs. The 3/7 FQHE has been extensively stud-
ied from various other perspectives as well [18-21].

Our strategy in this paper is to ask if we can add a
three-body interaction to the TK interaction to single out
the 3/7 wave function ®3®% as the unique zero energy
solution. The reason why we can expect a three-body
interaction to single out ®3®? from the other TK ZMs
is because x,+« with v* > 1 has a different behavior than
@, when three particles are brought close to one another:
while ®; vanishes as 73, x,~ vanishes as r2. (A proof
is given in Appendix A). As a result, ®3®? vanishes as
r® whereas XviXv; @1 vanishes as r7. The three-body
interaction that can take advantage of this difference is

Vi = VYRR [50(r — )i —rs)] (5)

where (s,t,u) are non-negative integers. With s+t+u =
7, the wave function ®3®? has a zero expectation value
for this interaction whereas the other states of the form
XVYXVSCI)l do not.

There are several subtle problems with the above ar-
gument, which we now mention along with possible res-
olutions.
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Problem 1: The three-body interaction V?,(s’t’u) has
positive as well as negative eigenvalues. This is problem-
atic because, then, a state with zero expectation value is
not necessarily an eigenstate, and even if it is, lower en-
ergy solutions can exist. Fortunately, within the Hilbert
space defined by the ZMs of Vrk, called the TK-ZM
space, the eigenvalues of Vg(s’t’u) are non-negative. (See
discussion below. An analogous situation occurs when
one considers spinful fermions with TK interaction. In
this case, the TK interaction in general has negative
energy solutions. However, if one confines the Hilbert
space to the ZMs of the delta function interaction, i.e.
to states that vanish when two electrons coincide, then
the eigenenergies of the TK interaction are non-negative.
See Ref. [22].) In what follows, we will first send the coef-
ficient of Vi to infinity, so that only the TK-ZM states
survive, and then diagonalize V3(s’t’u) withs+t4+u=7
within that subspace. In other words, our proposed
Hamiltonian is

H = lim AVig + V&, (6)
A— o0

Problem 2: Though x,:x,; ®1 vanishes as r7, linear
combinations of Xvi Xvz @1 may vanish as r8. In fact, it
was shown by Bandyopadhyay et al. in Ref. 13 that the
Jain unprojected 3/7 state ®3®? can be generated as a
linear combination of x,xx,; ®1. This does not rule out
the possibility, however, that our model will produce a
unique ZM state. This can be tested by exact diagonal-
ization (ED) on finite systems.

Problem 3: To perform ED for this Hamiltonian, we
will use Haldane’s spherical geometry [6], which is the
most convenient geometry for dealing with incompress-
ible states. For the 3/7 state, we must have a mini-
mum of 9 particles, because it takes a minimum of 9
particles to fill three LLs to produce ®3. The dimen-
sion of the Hilbert space for this system is 229,339,157
in the L, = 0 sector, which is too large for ED. To get
around this issue, we study the corresponding bosonic
system at v = 3/4. For a given particle number N,
total fluxes 2Q) for the bosonic system at v = 3/4
and the fermionic system at v = 3/7 are related by
2Q@boson = 2Qtermion — (N — 1). The total Hilbert space
dimensions across all L, sectors of the fermionic and
bosonic problems are given by d, =(2nQfermion+n?) Cn
and d,, p =2nQrermion+n®~(n=1)(N=1)) O\ where n is the
number of LLs included. [The “r choose s” function is de-
fined as "Cs = r!/s!(r—s)!.] From the fact that *C), is an
increasing function of x, we see that d, g < d,,  if more
than 1 LL is included, as in our case (while dy, p = d,,  if
only the LLL Hilbert space is allowed). The reduction in
the total dimension when going from the fermionic to the
bosonic problem is reflected in the individual L, sectors
as well. The dimension of the bosonic system at N =9
in the L, = 0 sector is given by 12,649,289 when we
include the lowest three LLs.

The arguments about the vanishing properties and in-
teractions remain valid if one replaces the wave functions
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FIG. 1. Energy spectrum of 1/3(0’2’2) within the TK-ZM space for bosons with (N, 2Q) = (9, 8), which represents filling factor
3/4. The state U3, is observed as a unique ZM. The integers colored in orange and green in the right panel indicate the
dimension of the Hamiltonian matrix and the TK-ZM space in each L sector, respectively.

as well as the two- and three-body interactions as

U7 = 0307 — Uy, = 03Py

vy Uyt = s

Vrk = V§6(2)(r2 —7‘1) — VTK :6(2)(7‘2 —’l"1)
st+t+u=7—s+t+u=4,

=Xvi Xz 1 = ¥

where the quantities / symbols for bosons are marked by
a tilde. The specific values of s, t,u will be discussed in
later sections.

One may ask how the TK-ZMs of fermions and bosons
are related. If a bosonic state f is a ZM of Vg, then it is
clear that f®; is a ZM of Vrk, and linearly independent
set of f will produce a linearly independent set of f®;.
Conversely, any fermionic ZM of Vg, which must be a
linear superposition of x,xx,;®1 [12], contains the fac-
tor @1, which implies that the set of linearly independent
ZMs of fermions will produce a set of linearly indepen-
dent set of ZMs of bosons. This implies that there is an
exact one-to-one correspondence between the TK-ZMs
of fermions and bosons. Our numerical diagonalization
studies presented below are consistent with this state-
ment.

Numerically, for all parameters for which we can study
both the fermionic and bosonic systems, we find a one-
to-one correspondence also between the ZMs of the full
Hamiltonian of Eq. (6) that includes both two and three-
body interactions. Assuming this to be generally true,
we can address the question of the uniqueness of the

fermionic ZM with N = 9 particles through a study of the
corresponding bosonic system, which is computationally
more tractable.

Result: To address these questions, we have considered
fermions (bosons) for a range of filling factors between
3/7>v>2/5(3/4> v > 2/3) and numerically diag-
onalized the three-body interaction within the TK-ZM
space. We summarize the results here, with details given
in subsequent sections.

e All eigenenergies of Eq. (6) are non-negative.

e Fermions and bosons at corresponding filling fac-
tors produce the same number of ZMs.

e For fermions at v < 3/7, the number of ZMs pro-
duced by ED is larger than the number of states
of the form y/,.®2, where Y. is confined within
the lowest three LLs. This is an explicit demon-
stration that many states of the form x,: x,; ®1 for
fermions are combining to produce ZMs for the 3-
body interaction. The same is true for bosons with
v < 3/4.

We are able to diagonalize the three-body interac-
tion within the TK-ZM space for bosons at v = 3/4
for 9 particles. We find a unique zero energy state
here, which must be the ZM ®3®,. The calculated
spectrum is shown in Fig. 1. This implies a unique
zero energy state also for 9 fermions at v = 3/7.



e The above result is rather nontrivial: there are 40,
82, 140, 158, 177, --- ZMs at L = 0, 1, 2, 3, 4,
- for the TK interaction, but when the three-
body interaction is turned on, a single ZM remains
at L = 0. This strongly suggests that our model
will produce a unique ZM at v = 3/7 for fermions
or at v = 3/4 for bosons for arbitrary number of
particles. However, we are not able to prove this
statement analytically, nor are we able to perform
ED for the next incompressible system which has
N = 12 particles.

The plan of the rest of the paper is as follows. In
Sec. II, we discuss how to construct our model interaction

Vé(s’t’u) in greater details. In Sec. I11, we give an explicit
expression of our model in the sphere geometry for ED. In
Sec. IV, we discuss other numerical results. Concluding
remarks are given in Sec. V. More technical details can
be found in Appendices.

II. MODEL INTERACTION V,*"*
We begin by noting that V") defined in Eq. (5)
satisfies the relation:
Pt e Lyt (11)
This can be seen by writing §©) (13 —r1)8®) (r3 — ry) as
031032 = (031032 + 23021 + d12013) /3, (12)

where §;; is a shorthand for 6 (r; —r;). The expression
in Eq. (12) is invariant under a permutation of particle
labels, which leads to Eq. (11). Hereafter, we set s <t <
u without loss of generality.

A. Short distance behavior

To facilitate the analysis, we use the center of mass
coordinate R and relative coordinates 7,7, for three
particles:

R T1 1/3 1/3 1/3
re | =T | r2 |, T= 1 -1 0 |. (13)
Ty T3 1 0 -1

We have detT = 1. When three particles approach one
another, a general wave function of fermions must vanish
at least as r,7, due to antisymmetrization. However, in
the LLL, the wave function vanishes faster. Any LLL
wave function has the form f({z;})®;, and therefore a
three-particle wave function vanishes at least as fast as

o) = H(zl — 2j) ~TaTE, T2Ty, (14)
i<j

where the notation indicates that the quantity is a linear
combination of two terms that vanish as rarf and rgrb.

When higher LLs are allowed, the availability of nonholo-
morphic coordinates allows one to construct wave func-
tions vanishing slower, as r,7,. As shown in Appendix A,
any three-body Slater determinant state ¥ where two
particles occupy the LLL and the third the second LL
vanishes as

U~ reryp. (15)

Any Slater determinant that has a non-zero occupation
of such three particle configurations vanishes as ~ r,7.
Since the Slater determinant states ®3 and x,+ with v* >
1 contain such three particle configurations, they also
scale as

O3 ~ 11y,

Xv* ~ Talb- (16)
Using Egs. (14) and (16), we have
@5 y2l* ~ rgry”s rarys - Ty,
D i, 2T, 030 "
Analogous behavior follows for bosons:
[syal® ~ rrg, rorg, rory,
(18)

5 (v1vs)2 4.4
‘\113/4 | ~TeTy-

B. Expectation value of Vé(s,t,u)

We consider the expectation value of V3(s’t’u) for a gen-
eral N-body wave function U:

(Vg(s’t’u)>\p x Z /dm . ~-drN|\Il\2V';S’t’u) (ri,rj,TK)

i<j<k

X / dT‘l e d’l"N|‘~If|2V3(s’t’u) (1”‘1, T2, 7’3)
= / d1°1 e drN512613V§5V§tV§“|\IJ|2. (19)

The goal in this subsection is to find a set of (s,t,u) such
that (V;S’t’u)> =0 and <V},(S’t’u)>‘1l(uf,ug> # 0.

3/7

W37

To simplify (VB(s’t’u)>q,, we express the derivatives as
V2V = (V, + V) V2V (20)

where we have plugged V p = 0 and used (V1,Va, V3) =
(Va+Vy, =V, —Vy). Integrating over r, and ry,, we get

/drld'rgdrgéuélgV%SV%tV%“|\I/|2

- / AR (V. + Vy)* V20202 (21)

Ta,Ty—0
For this to be non-zero for the state \I/g;l;’l’;), we require

s+t+u=7as \\Ilgl;l;’y;)F ~rt when r,,r, =7 — 0. In



TABLE L All terms appearing in expansion of
(Vo + V3)** VEVZ are shown for each (s,t,u). The
operators in bold text, denoted D, satisfy D ‘\Ilg% N 1

s ey |2
fors—i—t—&—u:?orD‘\I/(ul’U?) ~ 1for s+t+u = 4.

3/4
“o” indicates a candidate of (s,t,u) to construct a parent
Hamiltonian.

s+t+u
7

All terms

VoVt

V2vi2

vivie

véve

V2Vi2, (Vo - Vi) V2V, ViVLO
V§Vé07 (Va . Vb)ViV?, nglsz
ViVs, (Va- V) VEVE VEVS
Vavil, (Ve - Vi)Vavs, VEVE

(Va-Vy)VEVE, VaVS

) VaVs

) VoV

) o VaVj

) © VaVi, (Va Vi)ViVi, VoV

W Wk Ui ot O |8
NGNS IS ) N
(¢}

Table I, we list all terms appearing in the expansion of
(Vo + V )28 V2tv2u for different choices of s, ¢, u. Com-

paring them with Eq. (17), we see that <V3(s b u)>\p3/7 =0
while <V3(s’t’“)> (vi.w3 can be non-zero if
\113/7
(37 t, u) = (07 37 4)7 (17 27 4)7 (17 37 3)7 (27 27 3)' (22)

This makes V3(S’t’") with any of these values of s,t,u
a candidate parent Hamiltonian. For the remaining

choices:

(s,t,u) = (0,0,7),(0,1,6),(0,2,5),(1,1,5), (23)
both (%(s’t’u)ﬁ,sﬁ and (V(Stu)>wéy/:,,*> are zero. Since
\I!éy/l;’%) spans the TK-ZM space, V5* £ hecomes a zero

matrix in this space.
Applying the above argument to the bosonic 3/4 prob-

lem, we identify Vs(s’t’u) with

(s,t,u) = (0,2,2),(1,1,2) (24)
|
() @ ¢ 0
V12;1,2, =(-1) 2Q miz— mz l—|—1 l1 lll/ l
—mp mjp m
-Q Q 0
Vit =(—1)3@7m N @ (g g, | S0
Ll le —mi my mg

as a candidate parent Hamiltonian for \ilg /4; see Table I.

We note here that <V3(S’t’")>\p = 0 does not necessarily

lead to Vi*"™ |¥) = 0. This is guaranteed if V"™ is
positive semi-definite.

In the following sections, we check, by explicit numeri-
cal diagonalization, whether our model interaction singles
out W37 or W3/ from the other TK ZMs.

III. MATRIX ELEMENTS

For diagonalization studies, we consider Haldane’s
spherical geometry [6], where N particles move on the
surface under a radial magnetic field. The total radial
flux is 2Q¢g, where ¢g = hc/e is the flux quantum and
2@ is an integer. Because of rotational symmetry, single-
particle states are labeled by the orbital angular momen-
tum [ and its z-component m. Their possible values are
1=1Q,1Q|+1,...and m=—-l,—l+1,...,l. The 2l +1
states with [ = |@Q|+n corresponds to the nth LL. Many-
body states are labeled by the total orbital angular mo-

mentum L.

In the second-quantized from, the two-body interac-
tions Virk, Vi, and the three-body interaction Vi*"™
are given by

Vik =5 > ARV fof, (25)
1,2,17,2
- 1 cpor . PO
Vi =5 > bibhVES gbaby, (26)
1,2,17,2/
(situ) _ 1 ot et ety (et
Vs =5 Z ¢1E5e 3V123 Vg CarCarCrr. (27)
1,2,3,1/,2/,3/
In these expressions, we use shorthandSA as f ;r =f lemlv
T = fl, . and so on, where fl and b}Lm are the cre-

atlon operators for a fermion and a boson, respectively,

and ész :l fle or bgm The summation Zﬂ indicates
S i

D he|Q| Dmiem The symbols V55,5, Vi5y, and

(s,t,u)
V 123;1/2/3/

Iy, m1| @ (l2, ’I’)’ZQDVTK(UI, m}) @11y, mh)). As derived in
Appendix B, they reduce to

are shorthands for the matrix elements, e.g.,

-Q Q@ 0
N A (28)
—mg mhy —m
Q0 Q 0 —Q Q 0 0 0 0
lo Uy By | SW 15 1 L | S| e b L
—mg mh my —m3 mh me Mg Mp Me

(29)

)
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FIG. 2.

(b) \/3(0’2’2> for bosons. Only the nonzero pseudopotentials
are shown for simplicity. At each M, the number of linearly
independent states with non-zero energy is shown in green.
Note that some pseudopotentials are nearly degenerate on
the scale shown; for example, it may appear that we have
only two states at M = —3 in (a) but in reality there are five.
We have set 2Q = 8 in both figures. [We have confirmed that
both positive and negative values of the pseudopotentials are
also obtained for the system in (a) when it is confined to the
lowest two LLs.]

Pseudopotentials of (a) Vi%** for fermions and

where

Q1 Q2 Q3
SO 1 1y s
mi ™o M3

Q1 Q2 Qs
S| L Ia I3
mi Mg M3

Q1 Q2 Q3
= [l + DS b I I3
m1 m2 M3

= / dﬂYQlllml YQzlzmz YQslsmsﬂ

and Ygum is the monopole harmonics.
V1(21;)1/2, and V5K R Vl(2 )1,2, In Eq. (28), mi2 = my +
mg, and m = my —m/}. In Eq. (29), mia3 = m1 +ma +
ms, Mg = ml—m’l, my = mg —mb, me = —Mmg —
mp. The range of each summation is explicitly given in
Appendix B.

TK  _
Here, Vi53o =

The interactions Vrx, f/TK, and V?Es’t’u) conserve the
total orbital angular momentum L and its z-component
L,. Within the subspace specified by L., we diagonal-
ize these interactions using the Lanczos method. The
Hilbert space is restricted in the lowest three LLs. In the
following, we focus on V3(0’3’4) for fermions and V;0’2’2)
for bosons as representatives of Egs. (22) and (24).

IV. EXACT DIAGONALIZATION RESULTS

A. Pseudopotentials

We first ask if the three-body interaction V(g’t’u)

positive semi-definite or not. To this end, we calculate
pseudopotentials Vi, [6] by diagonalizing the interactions
for three particles, where M = 3@ — L corresponds to the
relative angular momentum in the disk geometry.

TABLE II. Nonzero pseudopotentials of \/3(0’3’4) for fermions
and \/3<0’2’2) for bosons within the TK-ZM space.

0,3,4
V3(,M )
2Q M=1 2 3
6 4.30344 x 10° 1.25378 x 107 2.17974 x 108
7 1.00218 x 10° 3.09694 x 107 5.79790 x 108
8 2.18070 x 10° 7.06699 x 107 1.40204 x 10°
0,2,2
VB(,]W )
2Q M=-2 -1 0
6 1.54430 x 10° 2.88793 x 103 3.27657 x 10*
7 2.65699 x 102 5.10736 x 10° 5.99266 x 10*
8 4.37421 x 10? 8.60243 x 103 1.03738 x 10°

Figure 2 shows the pseudopotentials (energy eigenval-

(0,3,4)

ues of a three-particle system) Vi for fermions and

‘/'3(7(;\’/12’2) for bosons. Only pseudopotentials with nonzero
values are shown for simplicity. Both positive and nega-
tive values are obtained in the two figures. After project-
ing into the TK-ZM space, we are left with many fewer
pseudopotentials, which are all non-negative. Table II
summarizes those numbers. There are only three nonzero
pseudopotentials in each case and they are all positive.
Furthermore, the values increase with 2¢), which suggests
that V3(O’3’4) for fermions and V3(O’2’2) for bosons are pos-
itive semi-definite within the TK-ZM space for arbitrary
2Q. [With (N,2Q) = (5, 8) for fermions, we confirm that
AVik + V%% with finite A yields no ZMs while V{***
within the TK-ZM space does yield ZMs as shown in
Table V below.] This guarantees that ¥g,7; and W34,
which give the zero expectation values for each of the
interactions considered, are zero-energy eigenstates. We
investigate the question of their uniqueness below.

B. Short distance behavior of x,=

We noted previously that any Slater determinant y,
with v* > 1 vanishes as ~ r,7, [see Eq. (16)] when three
particles come close to one another. It is possible to
construct general Wave functions for fermions at v > 1
which vanish as ~ rarb,r 5. An explicit example is

Y =Al(z1 — 22)(21 — 23)(21 — 24) (21 — 25) - - (21 —2ZN)
(22 — 2’3)(22 — 24)(2’2 — 25) 21 — ZN)

(73 — 24)(23 — 25) - (Zl — zN)

]

= A H(Zifzj) H (Zi_ziJrl) (30)

i<j icodd (2i = zi41)

The filling factor of this wave function is close to unity.
Of course, for v < 1 we can construct wave functions of



TABLE III.  Nonzero pseudopotentials of 1/3(0’1’1) for
fermions.
0,1,1
Var ™
2Q M=-1 M=0
1 0.182378 1.77819
2 0.422172 4.66801
3 0.863533 10.3624
4 1.59581 20.2545

TABLE IV. Number of ZMs of V3<0’1’1) for fermions. “ZM”
indicates the existence of one or more ZMs, although their
number is unknown.

Number of ZM of V"

2Q N=3 4 5 6 7 8 9 10 11 12 13
1 3 1 0

2 10 6 0 0 0

3 17 22 7 1 0 0

4 28 47 40 10 O 0 0

5 108 74 13 1 0 0

6 242 124 19 O 0 0

7 505 208 22 1 0 O

8 /M ZM ZM 0 0 O

the type [[,;(zi — 2;) f where f is a symmetric polyno-
mial of z; and z; but with no more than one power of
Zj. In this subsection, we numerically show that it is not
possible to construct such wave functions for v* > 6/5,
i.e. an arbitrary wave function (i.e. any linear superpo-
sition of Slater determinants) at v* > 6/5 vanishes as
~TqTp.

To see this, we use the three-body interaction V?)(o,1,1).

As shown in Table III, V3(O’171) for fermions is positive

semidefinite and, thus, states that vanish as ~ rarf, r2ry,
are obtained as its ZMs. In Table IV, we list the num-
ber of ZMs of \/3(0’1’1) in fermionic systems with various
(N, 2Q). We find empirically that there is no ZM if

N N — 2 for odd N,
2Q7 < { N — 3 for even N. (31)

Recall that in \Ilé'f?’l';)
vi, vy > 6/5. In the spherical geometry, the constraints
I 4+ () Y+ (1)t = (3/7) 7! and vf, v5 < 2 translate
into

= Xv; Xv; @1 we must have

(N -1)+2Q5 +2Q5 = = —5 (32)
(2Q;+1)+(2Q; +3) > N, i=1,2, (33)

where 2Q)7 is the flux corresponding to v;. These lead to

2Q% < 5N/6 2 (34)

since 2Q1 = 4N/3 -4 -2Q3 <4AN/3 -4 — (N/2-2) =
5N/6 — 2. This is satisfied by Eq. (31) for any N > 9.
Because the 3/7 state has N > 9, this implies that there
is no ZM of the product form ¢, ¢,; @1, where gzb,,; is an
arbitrary state (as opposed to a single Slater determinant
state) at v > 6/5. Analogous result holds for bosons.

This, however, does not rule out that linear superposi-
tions of product states of the type x,: x,y ®1 may vanish
as ~ rqr2,r2ry. In fact, we already know that this is pos-
sible, as ®3®? can be expressed as a linear superposition
of such states [13]. The key question is whether that is
the only such state or there is more than one such state.
We address this by direct numerical diagonalization in
the next section.

C. Numerical diagonalization

We perform ED for the model interaction V3(0’2’2) for
5 < N < 9 bosons in the range 3/4 > v > 2/3, and for

the model interaction ‘/3(0’3’4) for 5 < N < 7 fermions in
the range 3/7 > v > 2/5. The number of ZMs for these
systems is shown in Table V as a function of the total
orbital angular momentum L. We find that the number
of ZMs is identical for the corresponding bosonic and
fermionic systems for 5 < N < 7 where both systems are
diagonalizable, strongly suggesting that the number of
ZMs of corresponding bosonic and fermionic systems are
equal in general. Though we discuss only the spectrum
for (s,t,u) = (0, 3,4) for fermions, calculations in specific
finite systems suggest that the remaining candidates for
(s,t,u) given in Eq. (22) produce the same ZM counting.

The bosonic system at ¥ = 3/4 requires a minimum
of N = 9 particles, which is the largest system size that
we can currently diagonalize. As shown in Table V, as
well as in the full energy spectrum in Fig. 1, a unique ZM
with L = 0 is obtained here, which must be ¥3,,. The
discussion in the preceding paragraph implies a unique
ZM for the interaction V3(0’374) for N =9 fermions at v =
3/7. As remarked in the Introduction section, the non-
triviality of the result suggests that our model interaction
very likely produces a unique ZM for bosons (fermions)
at v =3/4 (v = 3/7) for arbitrary N. (The next bosonic
system at v = 3/4 has N = 12 particles with 2Q = 12;
this system has 12,982,724,934 basis states with L, = 0
for which exact diagonalization is currently not feasible.)

We end by presenting an observation on the form of
the ZM states of our model interaction, focusing on the
fermionic ZMs at 3/7 > v > 2/5; translation to bosons
is straightforward. Two types of product ZM states can
be readily constructed:

\I’VA = X/V*‘I)%7
U = Xur s @1,

where x/,. is a Slater determinant confined to the low-
est three LLs and ¢,~ is a linear combination of Slater

(35)



TABLE V. Number of ZMs of V3(0’3’4) for fermions and \/3(0’2’2) for bosons within the TK-ZM space as a function of the total
orbital angular momentum L. For N = 5 6,7 we obtain the number of ZMs for both bosons and fermions and find identical
numbers; for N = 8,9 our calculations are for bosons only. The quantity dim H is the dimension of the full Hilbert space with
L, = 0. Nrk-zum is the number of TK-ZMs with L, = 0. We also evaluate the number of ZMs of the type given in Eq. (35),
which is shown in parentheses whenever it is different from the actual number of ZMs.

Fermions Bosons L
N 2Q dim H 2Q dim H NrK-zM 0 1 2 3 4 5 6 7 &8 9 10 11 12 13 14
5 8 13,442 4 3,956 138 8(7) 11 16(15) 10 5 0 0 0 O - - - - - -
6 10 145,079 5 28,480 258 3(2) 14(13) 8(7) 9 1. 0 0 0 0 0 - - - - -
7 12 1,637,730 6 212,166 454 1(0) 7(4) 3(2) 2 0 0 0 0 0 0 O 0 - - -
8 - - 7 1,621,444 761 3(2) 1 1 0O 0 0 0O 0O 0 0 O 0 0 - -
9 - - 8 12,649,289 1203 1 0 0 0O 0 0 0O 0 0 0 O 0 0 0 0

determinants within the lowest two LLs that vanishes as
~ 141,721y, The state ¢, can be constructed by diago-

nalizing ‘/3(0,1,1). Both ¥4 and ¥B are ZMs of our model
interaction as the three factors within them scale as r2, 13
and 72 when three particles approach each other. We ask
if all ZMs of our model interaction belong to these two
types. For v < 3/7, the number of linearly independent
states of the forms U4 and W2 (shown in parenthesis in
the Table V) is always less than the number of ZMs pro-
duced by ED, demonstrating that there also exist ZMs
that are not of the above product form but linear com-
binations of Xovi Xz P1- The number of such additional
ZMs decreases as the 3/4 bosonic state with N = 9 is ap-
proached, eventually vanishing at 3/4 bosonic state with
N =09.

V. CONCLUDING REMARKS

In summary, we have constructed a candidate parent
Hamiltonian for the unprojected Jain wave function at
v = 3/7 for fermions or at v = 3/4 for bosons. This
model consists of an infinitely strong two-body Trugman-
Kivelson interaction, plus a three-body interaction. We
have numerically demonstrated that our model produces
a unique zero energy ground state for 9 particles. We
believe this to be the case for arbitrary particle numbers
although we have not succeeded in proving that analyti-
cally.

As noted above, the unprojected Jain 2/5 state ®o®?
is the unique ground state of the TK interaction within
the Hilbert space of the lowest two LLs. One may ask
if it remains the unique zero energy ground state when
we add a three-body interaction, such as ‘/'3(0’3’4). In-
deed, this three-body term has zero expectation value
with respect to the wave function ®,®2. However, many
pseudopotentials have negative energies for this three-
body interaction, as explicitly noted in Fig. 2. As a re-
sult, ®o®? remains a unique zero energy ground state for

)\VTK—FV3(0’3’4) only in the limit A — oo. For general val-
ues of \, P®? has zero energy, but it is not the ground
state.

It is natural to ask if our strategy can be applied to
other unprojected Jain wave functions at v = n/(2pn+1).
The wave function ®,®2” vanishes as 2?1 when two
particles are brought close to one another and thus has
zero expectation value for a generalized TK interaction
Vﬁg = V356®)(ry — ry) with s = 2p — 1. Further-
more, as proved in Appendix A, the Slater determi-
nant state ®,> vanishes as r2 when three particles ap-
proach one another, while ®; vanishes as r3. Therefore,
@n@%p vanishes as %712 and has zero expectation value

for Vg(s’t’u) with s +¢ 4+ u = 6p + 1. If necessary, one
can generalize these interactions to an N-body one as
VJS,SI""’SN) = V%Sl e V?\?N [5(2)(7”‘1 —rg)- - (r1 — T‘N)]
by investigating behaviors of N particles in a target
state. Whether these models produce the unprojected
Jain wave functions as the wunique zero energy ground
states will require a more detailed investigation, along
the lines presented above for v = 3/7.

Finally, we note that this method is not useful for the
negative-flux Jain states at v = n/(2pn — 1), because the
unprojected wave functions @;‘l@%p have arbitrary large
powers of z; and hence a nonzero occupation of an infinite
number of LLs in the thermodynamic limit.
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Appendix A: Proof of Eq. (15)

Single-particle states in the LLL and the second LL are
given by

10,m o< 2"

(A1)

where z = x — iy. The angular momentum of each state
is m. By using coordinates defined in Eq. (13), that is,

224 2
=7 —+ — A3
zZ2 3 33 ( )
Za 22
Z4+——— A4
23 t3 g (A4)

a three-body Slater determinant ¥ = det{no m, 70,n, 71,k }

n=2+ %“ + %, (A2) is evaluated as
J
S S
U 27 zy 23 + O3(za, 2p
zf“ k+122 z§+123
27" +z§n +2z5" Z{n o 27271 Z{n _ Zén
_ 21 +232 +23 Z{l — Zg’ zZ1 — Zg' + Od (za7 Zb)
k+17 [
F1tzy 3 otz Z{H_lél k+122 Z]f+121 Z§+123
zZm mZm 1z, mZm Lz
_ zmn nZ'rL—lza ) nzn—lzb B + Og(Za, Zb)
ZEY 28 (Zzg + (k4 1)Zz) ZF (Z2,+ (k+1)Zz,)
(1-2)z 0
— gm—lin—1+k Nz B nzyp B + 03(2117 Zb)
1 Z2,+ (k+1) 224 ZZ,+ (k+1)Z2
= 2" —m) | 2 2 4 0324, 7). (A5)
Za Za
[
where O,,(zq4, z) represents a polynomial of z, and z, where Y7, = Y0 1.m, Me = —Mg — myp.

where the sum of their powers in each term is greater
than n.

Appendix B: Derivation of Eqgs. (28) and (29)

We use the following properties of the monopole har-
monics Yg 1.m [3, 23]:

) =3 Y Vi@, (B
=0 m=—1

V2V = (1 +1)Yim, (B2)

Vi = (=170, (B3)
Yiama}/lbmb = (_1)mcx

la+lp 0 0 O
Z S la lb lc ch,—mc’ (B4)
lo=|la—1y| Ma My Me |

({lyma| @ (T2, ma V3™ (17, m}) © |1y, mb))

1. Two-body interaction

To treat Virk and Virk simultaneously, we consider the
following two-body interaction:

:V§”5(2) (7‘2 — 7’1)

(eS) l
=V Z Z (-

=0 m=—1

1)7mYl,—m(92))/l,m(Ql)
l

D" YD ()T

m=—1

m (€22)Y1,m (€21)

(B5)

M

Il
=]

Note that Vo = V2(1) and VTK = VQ(O). The matrix
element is given by



t”ﬁx

11+ 1))"

10

"> (- _m/dﬂld92 (Y3 t2,ma (22) Y5 1y iy (1)) (Yo, (22) Yin (1)) [Y,11,ms (1) Y 15,ms, (22)]

l:O m=—I

oo -Q Q 0 -Q@ Q@ 0

=y [+ )" Z 1)2@-memma=mge [ S

=0 m=—1 —my m’1 m

min [l +1,la+1)

:(_1)2Q—m2—m1 m

—mg mbH —m

-Q@ Q 0
[—i(l+1)"S
l:max[|l1—l/1|,\12—l/2”

-Q@ Q 0
l1 ol S lo A l . (B6)
—ma m'l m —ma2 mlg —m m=mi—m/}
One gets Eq. (28) by defining mq + mo as mqs
2. Three-body interaction
We can write
5(2)(7“3 — 1"1)5(2) (’I"3 — T‘g)
Iy
Z Z > Vi (Q8) Vi, (1) Y, (23) Vi, (22)
b (]ma_ l mb_flb
ol I L+l 0 0 0 "
= > > > | Y Sk bl | Yiem ()] Yim, (90)Yim, (22)
l(“lb:()ma:*l mbzflb lc:‘l —lb‘ ma mb mc
la+lp 0 O
B SHD SHD Sl Sl (A
laly=0l,=|lo—lp| ma=—lo mp=—1p myg

Y1, ma (21)Yim,, (22) Y1 m, (£23)
mp Me

(B7)
latly
D S

Lasly=0 Lo=|lo—1y|

where m, = —m, — my. Using this, we have

(Lo (la + 1)]° [~ (ly + 1)) [~le(le + 1)]

la Iy 0 0 O
> > S

la lb lc lea,ma (ﬂl) lymy (92) l mL(QS) (BS)
Mme=—lg mp=—1p Mg Mp Me
where we have used 6 (r; — r9)6@ (ry — r3) = 6@ (r3 — r1)6@ (r3 — 3). The matrix element is
(| @ (Ia, ma| @ (Ig, ms V™" (|1, m1) @ |Ig, mb) @ |15, m))
la+1p
Z D [Flalla+ D) [l + D) [
La)lp=0 lo=|lq—lp|

0
(le +1)] Z Z S| o Iy I /d91d92d93
Ma=—lq mp=—1y mg Mp Me
(Yo 1ms (23) Y1 mn (22) Y51y (1) Vi i (21)Yigmy, (22)Yiem, (23)] [YQl/ml(Ql>YQl/
Lo+
:( 1>3Q mi—mo—m3 Z Z

Loy lo=0le=|lo—1]

[la(la + 1)) [=l(ly + 1)) [

my (Q2)Yaumy, (Q3)]
0 0 0
l—|—1ZZSlalblcx
Ma=—lqg mp=—1y Mg Mp Me
-Q Q 0 -Q Q 0 -Q Q 0
S L 1, |S lo Iy Iy |S Is Iy 1
my my mg —mg mbh My —m3 mh me
L+l -Q Q 0 la+1) -Q Q 0
—(—1 3Q—m1—mz—ms3 _ s / _ t /
(—1) > [Flalla+ DS | h i la ST oW ADIS | b b ob
la=[l1—-17] —mi1 My Ma [ L=|la—1]

X
ma mh my



min[l3+lg,la+lb] _Q Q 0
> e+ DS [ B B L

!
le=max||l3—14],|la—1ls]] —mg Mg Mg

One gets Eq. (29) by defining m; + me + ms and
[<1(1 4+ 1)]" S as mi93 and S®)| respectively. The calcu-

11

0 0 0
la b L . (B9)

— / — ’ —
Mg Mp Me Ma=M1—M}| ,Mp="mM2—MsH,Mc=—Mg—Myp

(

lation of the elements with large 2@Q is a time-consuming
task. The expression in Eq. (B9) should be employed
rather than that in Eq. (29) to reduce the number of
times S is computed in numerical calculations.
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