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Abstract

Motivation: Identifying cis-acting genetic variants associated with gene expression levels—an analysis commonly
referred to as expression quantitative trait loci (eQTLs) mapping—is an important first step toward understanding
the genetic determinant of gene expression variation. Successful eQTL mapping requires effective control of con-
founding factors. A common method for confounding effects control in eQTL mapping studies is the probabilistic es-
timation of expression residual (PEER) analysis. PEER analysis extracts PEER factors to serve as surrogates for con-
founding factors, which is further included in the subsequent eQTL mapping analysis. However, it is
computationally challenging to determine the optimal number of PEER factors used for eQTL mapping. In particular,
the standard approach to determine the optimal number of PEER factors examines one number at a time and choo-
ses a number that optimizes eQTLs discovery. Unfortunately, this standard approach involves multiple repetitive
eQTL mapping procedures that are computationally expensive, restricting its use in large-scale eQTL mapping stud-
ies that being collected today.

Results: Here, we present a simple and computationally scalable alternative, Effect size Correlation for COnfounding
determination (ECCO), to determine the optimal number of PEER factors used for eQTL mapping studies. Instead of
performing repetitive eQTL mapping, ECCO jointly applies differential expression analysis and Mendelian random-
ization analysis, leading to substantial computational savings. In simulations and real data applications, we show
that ECCO identifies a similar number of PEER factors required for eQTL mapping analysis as the standard approach
but is two orders of magnitude faster. The computational scalability of ECCO allows for optimized eQTL discovery
across 48 GTEx tissues for the first time, yielding an overall 5.89% power gain on the number of eQTL harboring
genes (eGenes) discovered as compared to the previous GTEx recommendation that does not attempt to determine
tissue-specific optimal number of PEER factors.

Availabilityand implementation: Our method is implemented in the ECCO software, which, along with its GTEx
mapping results, is freely available at www.xzlab.org/software.html. All R scripts used in this study are also available
at this site.

Contact: xzhousph@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction (Cookson et al., 2009). In the past decade, various eQTL mapping

studies have identified many eQTLs that are associated with gene
Identifying genetic variants associated with gene expression levels— expression levels for a large number of genes (Battle ez al., 2014;
an analysis commonly referred to as expression quantitative trait Conesa et al., 2016; Consortium, 2018; Lappalainen et al., 2013;
loci (eQTLs) mapping—is an important first step toward under- Pickrell et al., 2010; Tung et al., 2015). The identified eQTLs are
standing the genetic determinant of gene expression variation enriched near transcription start sites (TSSs) and often reside nearby
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their associated genes, thus likely influence the gene expression level
of their associated genes in a cis-acting fashion (Bryois ez al., 2014;
Parisien et al., 2017). Importantly, the identified eQTLs are often
colocalized with SNPs that are associated with common diseases or
disease-related complex traits, thus representing an important mo-
lecular mechanism underlying SNP-disease associations (Davis
et al., 2013; Giambartolomei et al., 2014; Hormozdiari et al., 2016;
Nanda et al., 2018; Torres et al., 2014). In addition, the estimated
eQTL effect sizes on the gene expression level can be used to con-
struct expression predictors in separate genome-wide association
studies (GWAS), facilitating the subsequent transcriptome wide as-
sociation studies (TWAS) and Mendelian randomization (MR) anal-
yses that can reveal potentially causal genes underlying diseases
(Gamazon et al., 2015; Gusev et al., 2016; Yuan et al., 2019; Zeng
and Zhou, 2017). Therefore, eQTL mapping can facilitate our
understanding of the genetic basis of gene expression variation and
reveal causal molecular mechanisms underlying diseases.

Successful eQTL mapping requires effective control of various
measured and unmeasured confounding factors. These confounding
factors, such as batch labels, environmental exposures as well as
intracellular fluctuations, often have relatively large effects on the
measured gene expression levels (Gibson, 2008; Stegle ez al., 2010).
Subsequently, effective confounding effect control can often lead to
substantially increased power and/or reduced false positives in
e¢QTL mapping analysis (Leek and Storey, 2007). A standard pro-
cedure to control for confounding factors in eQTL mapping studies
proceeds by extracting the top probabilistic estimation of expression
residual (PEER) factors from the gene expression matrix
(Consortium, 2018; Lappalainen et al., 2013; Stegle et al., 2010).
These PEER factors are served as surrogate variables for confound-
ing factors and are subsequently either removed from the gene ex-
pression levels before eQTL mapping or directly included as
covariates in eQTL mapping (Liang et al., 2013). In the standard
procedure for confounding factor control, an important analytic
step is to determine the optimal number of PEER factors, k, to be
included in the eQTL mapping analysis (Parts et al., 2011; Stegle
et al., 2010). A small k may be insufficient to capture all confound-
ing effects while a large k may either introduce unnecessary noise or
incorrectly include true genetic effects underlying expression.
Consequently, failing to identify the optimal k can lead to a poten-
tial loss of eQTL mapping power. The standard procedure for con-
founding factor control determines the optimal k by examining one
k at a time and choosing a k that maximizes the number of eQTLs
or eQTL harboring genes (eGenes) discovered in the study (Degner
et al., 20125 Raj et al., 2014; Tung et al., 2015). However, examin-
ing one k at a time is computationally costly and such approach may
not be applicable to even a moderate-sized eQTL mapping study
with a few hundred samples. For example, due to the heavy compu-
tational cost, the Genotype-Tissue Expression (GTEx) study does
not attempt to determine an optimal k for every tissue using the
standard procedure; instead, a common & is used for a group of tis-
sues with similar number of samples (Consortium, 2018). As we will
show below, lack of a data-specific optimal k can lead to an appre-
ciable power loss for eQTL mapping.

Here, we present a simple and computationally efficient alterna-
tive for determining the optimal number of PEER factors, k, for
eQTL mapping studies. Our method requires the availability of an
outcome phenotype in addition to the usual genotype and expression
data required for eQTL mapping studies. With the outcome pheno-
type, we estimate the gene expression effect on the phenotype for
one gene at a time through two different analyses: a differential ex-
pression regression analysis and a MR analysis. By computing and
examining the correlation between the estimated effect sizes from
the two different analyses, we can subsequently determine the opti-
mal k& for eQTL mapping. We refer to our method as Effect size
Correlation for COnfounding determination (ECCO). In both simu-
lations and an in-depth analysis of 48 GTEx tissues, ECCO deter-
mines a similar k as the previous standard approach but is two
orders of magnitude faster. ECCO is freely available at www.xzlab.
org/software.html.

2 Materials and methods
2.1 Method details

We focus on an eQTL mapping study performed on 7 samples and
m genes. Our goal is to determine the number of PEER factors opti-
mal for eQTL mapping. Our method requires that the eQTL study
to also contain a phenotype in addition to the usual gene expression
matrix and genotype matrix. Such phenotype should have a genetic
determinant and should be associated with the expression level of at
least a subset of genes. Exemplary phenotypes may include height,
BMI, fasting glucose, blood pressure and so on (Porcu et al., 2019).
This phenotype is used to facilitate eQTL discovery but is not used
for the discovery of phenotype-specific eQTLs. We denote y as an 7-
vector of such phenotypic measurements. For ease of presentation,
we assume that the phenotype is quantitative. However, extension
to a binary phenotype is straightforward, requiring only replacing
the linear regression models with logistic regression models. With
the available phenotype, we first perform a differentially expression
analysis across all genes to estimate the effect size of each gene on
the phenotype. Specifically, we examine one gene at a time and de-
note x; as the n-vector of gene expression level for ith gene. We re-
move the effects from the first j PEER factors on x; by fitting a
regression model. In the regression model, x; is treated as the out-
come variable and the first j PEER factors are treated as covariates.
Through the regression model, we obtained X;; as the gene expres-
sion residuals, which is now free of confounding effects captured by
the first j PEER factors. Afterward, we fit the following linear re-
gression to estimate the effect size of X;; on y,

y = Lupy; + XiB; + €, (1)

, where 1,, is an n-vector of 1s; u; is the intercept; f§; is the effect
size of gene expression on phenotype and is the focus of this study;
€; 1s an n-vector of residual errors that each is assumed to be inde-
pendently and identically distributed from a normal distribution.
The estimated effect size f8;; will change depending on j, which again
is the number of PEER factors controlled for. With the ideal number
of PEER factors, the estimated effect size §;; would be close to the
true gene effect size on the phenotype.

Next, in parallel, for each gene in turn, we extract its cis-SNPs
that reside within 1 Mb of the TSS. Among the cis-SNPs, we select
one that has the strongest association evidence with x;. We denote
the n-vector genotype of such SNP as g;. We treat this selected SNP
as the instrumental variable. To minimize estimation bias, we follow
standard MR (Burgess et al., 2011) and only retain the instrument if
the F-statistics that measures the association evidence between g;
and x; is above a threshold of 10. For genes that have a selected in-
strument, we consider the following MR model to estimate the effect
size of the gene on the phenotype

x; = Lp, + g0 + €xi, (2)

y = Lupy +87i + €, (3)

where w, and p, are the intercepts; o; is the SNP effect on gene ex-
pression; y; is the SNP effect on phenotype; € and €,; are both #-
vectors of residual errors, each assumed to be independently and
identically distributed from a normal distribution. The effect size of
gene expression on phenotype can be estimated through the above
two equations using the ratio method: ~f; = 3,;/&; (Wald, 1940).
Because MR is resilient to confounding factors, the estimated gene
expression effect on phenotype ~f; would be close to the true gene
effect on the phenotype.

B,; obtained in Equation (1) and ~f; obtained in Equations (2)
and (3) are both estimates for the true underlying gene expression ef-
fect on the phenotype. One would intuitively expect the two esti-
mates to be correlated with each other across genes, and more so
when the number of PEER factors included, j, is closer to the opti-
mal number k. Therefore, for each j in turn, we can compute the cor-
relation between f3; and ~f;, and select a j that maximizes such
correlation to serve as the optimal number of PEER factors needed
for eQTL mapping. We can also visualize the selection procedure by
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plotting the correlation values versus the number of PEER factors
included.

While the above intuition is straightforward, we note that tech-
nically there are certain mathematical conditions we need to satisfy
to ensure the validity of the above procedure. Specifically, for the
MR model in Equations (2) and (3), the selected SNP for each gene
needs to satisfy three standard MR conditions: (i) relevance condi-
tion, that the selected SNP is associated with the gene exposure x;;
(ii) independence condition, that the selected SNP is independent of
unmeasured confounders that affect both x; and y; (iii) exclusion re-
striction, that the select SNP only affects the outcome y through the
exposure x;. For the relevance condition, we use F-statistics to meas-
ure the strong association strength between g; and x;, and only use
genes with the F-statistics above the usual threshold of 10 for ana-
lysis following (Bound et al., 1995; Staiger and Stock, 1997). In add-
ition, to further ensure the strong association between g; and x;, we
rank genes based on the P-values for testing «; and use the top 1000
genes for computing correlations. For the independence condition,
we note that SNP genotypes are generally measured accurately and
are often measured in a separate genotyping study different from the
gene expression study. Subsequently, SNP genotypes are unlikely
affected by the same confounding factors such as batch effects in the
gene expression study. For the exclusion restriction condition, we
acknowledge that, as in any MR analysis, it is indeed impossible to
validate such condition. When the exclusion restriction condition is
not satisfied, the selected SNPs can affect the outcome y directly
through pathways other than x;. Subsequently, the estimated gene
effect ~f3; would deviate from the true gene effect fi;: ~f;, = f; + 9,
with the difference ; being related to the part contributed by the
direct effect of SNP on the phenotype not mediated through the
gene. However, as long as d; is not correlated with f8; across genes,
then the violation of the exclusion restriction condition would not
influence the validity of our method. Therefore, instead of the gen-
eral exclusion restriction condition, our method effectively only
requires the InSIDE assumption (Bowden et al., 2015) to hold.

We refer to our method as Effect size Correlation for
COnfounding determination (ECCO). While we have primarily
focused on describing ECCO based on the MR method with a single
instrumental variable, we note that ECCO can be paired with any
other MR approaches. For example, ECCO can be paired with the
Inverse-Variance Weighted (IVW) approach of MR (Jack Bowden
et al., 2015) to take advantage of multiple instrumental variables.
ECCO can also be paired with MR-Egger regression (Bowden et al.,
2015) to control for potential horizontal pleiotropy (Yuan et al.,
2019). We examine these two additional variations of ECCO,
ECCO-IVW and ECCO-Egger, in both simulations and real-data
applications.

Finally, we note that our MR-based procedure to infer the opti-
mal number k is computationally efficient, much more so than the
previous standard procedure of choosing k& by maximizing eQTL
discovery. In particular, the previous standard procedure requires
performing eQTL mapping across all 7 SNP-Gene pairs 7 different
times to examine d different choices of PEER factors, all with [ dif-
ferent permutations. Subsequently, the previous procedure has a
computing time complexity of O(nrdl)). In contrast, our method
only needs to perform eQTL mapping one time but fits a simple lin-
ear regression in Equation (1) d different times. Subsequently, our
method has a computing time complexity of O(nr + nd), approxi-
mately dl times faster than the previous standard procedure.
Common eQTL studies use an / that equals 10 to 20 and a d that
equals a few dozen. Therefore, we expect our method to be at least
two orders of magnitude faster than the standard procedure.

2.2 Standard approach to determine k

The standard approach to determine the optimal number of PEER
factors included for eQTL mapping analysis is through examining a
range of PEER factors and identifying the number of PEER factors
that maximize the eGenes discovery. Here, eGene represents eQTL
harboring gene. To apply the standard approach, for each gene in
turn, we identified the most significantly associated cis-SNP for the
gene as the candidate eQTL. We treated the P-value from the

candidate eQTL as the gene-level P-value. We permuted individual-
label /=10 times and applied the same procedure to obtain an em-
pirical null distribution of the gene-level P-values. With the empiric-
al null distribution, we calculate the number of eGenes detected
based on 10% empirical false discovery rate (FDR). We repeat the
above procedure across varied number of PEER factors and deter-
mine the optimal number of PEER factors as the one that maximized
the number of discovered eGenes. Note that the empirical null P-val-
ues from permutation are computed based on the same set of covari-
ates and PEER factors as used in the corresponding analysis.
Therefore, there is no artificial selection of confounders to boost
power. Instead, all power comparisons are carried out in a fair way
based on the same empirical FDR. We used the computationally effi-
cient MatrixeQTL package (Shabalin, 2012) to perform all these
mapping analyses.

3 Results

Details of ECCO are provided in the Section 2. Briefly, ECCO aims
to select the optimal number of expression PEER factors to control
for in an eQTL mapping analysis. To do so, besides the usual SNP
and expression data, we also require the presence of an additional
phenotype. This additional phenotype should have a genetic deter-
minant and is associated with the expression of at least a subset of
genes. Some common exemplary phenotypes include height, BMI,
fasting glucose, blood pressure, etc. This phenotype is used to facili-
tate eQTL discovery but is not used for the discovery of phenotype-
specific eQTLs. With the phenotype, ECCO proceeds by fitting two
regression models for one gene at a time to estimate the gene effect
on the phenotype. In particular, for the ith gene, we first select a cis-
SNP as the instrument for the expression level and perform a MR
analysis to estimate the effect size of gene expression on the pheno-
type, ~f;. For the same gene, we also perform a standard differential
expression analysis to estimate the effect size of gene expression on
the phenotype, ﬁ,], where the top j PEER factors are removed from
the gene expression data (hence ﬁl] depends on /). The two effect
estimates from the two regression models, ~f; and /3,] are both esti-
mates for the true underlying gene expression effect on the pheno-
type. Subsequently, one would expect that the two estimates are
correlated with each other across genes, more so when the correct
number of PEER factors, j, is chosen. Therefore, for each j in turn,
ECCO computes the correlation between ~f; and f;, and further
selects a j that maximizes such correlation. The selected j is served as
the optimal number of PEER factors to control for in an eQTL map-
ping analysis. In the process, we can also visualize the selection pro-
cedure by plotting the correlation value versus j across a range of j’s
examined.

3.1 Simulations

We performed simulations to validate the intuition underlying
ECCO and examine its effectiveness. The simulation details are pro-
vided in the Supplementary Material. Briefly, we randomly selected
10 000 genes from 491 samples in GTEx (Consortium, 2018). We
extracted cis-SNPs for each gene (median = 4818 cis-SNPs per gene)
and randomly selected either one SNP or five SNPs among them to
serve as the eQTLs. We also simulated ten confounding factors.
Based on the eQTL genotype and confounding factors, we simulated
the expression level for 10 000 genes. The expression level of each
gene is contributed by the eQTL and the confounding factors. In
particular, the eQTLs contribute to either 3% (one causal SNP case)
or 10% (five causal SNP case) of the gene expression variation. For
the confounding factor contribution, we explored two scenarios: a
heterogeneous confounding scenario where each gene was affected
by a randomly selected five confounding factors and a homogeneous
confounding scenario where each gene was affected by all ten con-
founding factors. For each of those genes that are influenced by the
confounding effects, the confounding factors in total contribute to
50% of expression variation, consistent with real-data estimates
(Supplementary Fig. S1). The phenotype is contributed by either 1%
of the genes (=100; sparse scenario) or all genes (polygenic
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scenario), with the contributing genes explaining 25% of phenotypic
variance. In the multiple causal SNP scenario, we also examined
cases where the cis-SNP of a certain proportion of genes (set to be ei-
ther 0, 1%, 10% or 100%) exhibit pleiotropic effects which equal
to 10% of phenotypic variance. We then extracted the PEER factors
from the gene expression data. As expected, the top 10 extracted
PEER factors capture the majority of confounding effects
(Supplementary Fig. S2). We then applied ECCO and compared it to
the standard approach to determine the number of PEER factors
needed. In total, we considered four different scenarios (heteroge-
neous versus homogeneous confounding; sparse versus polygenic
gene effects). For each scenario, we performed 10 simulation repli-
cates, with each consisting of 10 000 genes. We applied ECCO to all
simulation replicates.

As a comparison, we also carried out the standard approach to
determine the optimal number of PEER factors on the first simula-
tion replicate in each scenario; we did not apply the standard ap-
proach to the other replicates due to its heavy computational
burden. The standard approach explores different numbers of PEER
factors in eQTL mapping and determines the optimal number based
on the number of eGenes discovered. In the simulations, as one
would expect, the standard approach correctly identified 10 as the
optimal number of PEER factors across a range of simulation scen-
arios (Fig. 1A). For example, in scenario I, the number of eGenes is
4731 with zero PEER factor, increases to 9530 with 10 PEER fac-
tors, and becomes slightly reduced and stabilized afterward. While
being effective, unfortunately, the standard approach for determin-
ing the optimal number of PEER factors requires a full-scale eQTL
mapping analysis for each number of PEER factors considered and
is thus computational expensive. Indeed, it took the standard
method an average of 96.27h to determine the correct number of
PEER factors across simulation scenarios.

Next, we applied ECCO to determine the optimal number of
PEER factors required. To do so, we estimated gene effect size on
phenotype using either the MR analysis or the standard linear re-
gression analysis. Afterward, we calculated the estimated effect size
correlation between these two approaches across genes. Because the
validity of MR analysis requires the presence of strong instruments,
we sorted genes based on their instrument strength and calculated
the effect size correlation using three different gene sets: either the
top 1000 genes, top 5000 genes or all genes. Afterward, we plotted
the calculated correlation values of effect size estimates against the
number of PEER factors included (Fig. 1B; Supplementary Fig. S3).
As expected, regardless of the number of genes included for comput-
ing the correlation, the effect size correlation is always the highest
when the top 10 PEER factors are included. For example, in scen-
ario II, the effect size correlation is 0.268 with zero PEER factor,
increases to 0.305 with 10 PEER factors, and becomes stabilized
afterward. The dependence of the effect size correlation on the num-
ber of PEER factors is general and holds in the polygenic phenotype
setting where all genes have non-zero effects on the phenotype (scen-
ario II and IV; Fig. 1B), in the sparse phenotype setting where only
1% of genes have non-zero effects on the phenotype (scenario I and
II; Fig. 1B), in the heterogeneous confounding setting where all
genes are affected by 5 of the 10 confounding factors (scenario III
and IV; Fig. 1B), as well as the homogeneous confounding setting
where all genes are affected by all 10 confounding factors (scenario I
and II; Fig. 1B). With ECCO, the estimated number of optimal
PEER factors is 10 across all four scenarios, with a relatively larger
estimation variance in the two sparse settings than in the two poly-
genic settings (Fig. 1C). Besides the sparse and polygenic settings, we
also explored the setting where none of the genes are associated
with the phenotype. Because ECCO requires the phenotype to be
associated with at least a few genes, ECCO fail to identify the opti-
mal number of PEER factors in this setting as one would expect
(Supplementary Fig. S4). Importantly, unlike the standard approach
in the previous paragraph, ECCO is computationally efficient:
ECCO took an average of 0.618 h to identify the optimal number of
PEER factors across simulation scenarios, resulting in 156 times
speed gain over the standard approach. The total computing time
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Fig. 1. ECCO identified a similar number of PEER factors as the standard approach
in simulations. (A) In the standard approach, the number of eQTLs identified (y-
axis) is plotted against the number of PEER factors removed in eQTL mapping ana-
lysis (x-axis). Results are based on 5% FDR and are shown for the homogeneous
confounding simulation scenario (scenarios I-II; pink) and the heterogeneous con-
founding simulation scenario (scenarios III-IV; green). Removing 10 PEER factors
results in the highest number of eQTLs detected. Note that the eQTL mapping
results are almost identical between scenario I and II as well as between scenario III
and IV. (B) In ECCO, correlation between the two types of effect size estimates
across genes (y-axis) is plotted against the number of PEER factors controlled.
Results are shown in the four scenarios (scenario I: red; scenario II: purple; scenario
III: blue; scenario IV: brown) and based on correlation computed using the top
1000 genes with the strongest instrumental strength. ECCO achieves highest correl-
ation when 10 PEER factors are included. (C) Estimated number of PEER factors by
ECCO across 10 simulation replicates in each of the four simulation scenarios. The
medium estimate is 10 across all scenarios, with larger estimation variance in the
sparse settings (I and II) than in the polygenic scenarios (II and IV). (D)
Computation time in hours (y-axis) for the two methods is plotted against the aver-
age number of cis-SNPs per gene. Specifically, we examined the computing time of
ECCO and the standard approach with respect to the number of cis-SNPs per gene.
Because different genes have a different number of cis-SNPs, we binned genes with
similar number of cis-SNPs together. We then computed the average computing
time (y-axis) and the average number of cis-SNPs (x-axis) in each bin and plotted
them against each other. Time is recorded on 10 000 genes and on a single core of
an Intel Xeon E5-2683 2.00 GHz processor

saving brought up by ECCO becomes more appreciable with
increased number of SNP—gene pairs (Fig. 1D).

Finally, we examined the effectiveness of ECCO in the scenarios
where multiple independent SNPs have effects on gene expression.
Here, besides applying the standard ECCO where we select one SNP
to serve as the instrumental variable, we also estimated other ECCO
variations where we selected multiple independent SNPs to serve as
instrumental variables and use either IVW approach or the MR-
Egger regression to combine association evidence across multiple
instruments. We term these two ECCO variations as ECCO-IVW
and ECCO-Egger, respectively. Here, we again sorted genes based
on their instrument strength and calculated the effect size correlation
using the top 1000 genes. In the simulations, we found that the esti-
mated number of optimal PEER factors from all three ECCO var-
iants is centered around the truth across almost all scenarios, either
in the absence of horizontal pleiotropic effects (Supplementary Fig.
S5) or in the presence of horizontal pleiotropic effects in 1%
(Supplementary Fig. S6), 10% (Supplementary Fig. S7) or 100%
(Supplementary Fig. S8) of genes. Consistent with the early simula-
tions, the estimated number of optimal PEER factors from all three
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ECCO variants has a relatively large estimation variance in the two
sparse settings as compared with the polygenic settings
(Supplementary Figs S5-S8). Among these ECCO variations,
ECCO-Egger often yields a larger estimation variance as compared
to ECCO and ECCO-IVW. In addition, ECCO-Egger tends to
underestimate the number of PEER factors in the sparse settings and
does not show a clear advantage in the presence of horizontal pleio-
tropic effect presumably due to its power limitation. On the other
hand, results from ECCO and ECCO-IVW are highly consistent
with each other, with no noticeable differences between the two.
Therefore, we recommend the use of either ECCO or ECCO-IVW to
estimate the number of PEER factors.

3.2 Real-data application

We applied ECCO to perform eQTL mapping in GTEx (Consortium,
2018). We analyzed all 48 tissues and focused on five of them for in-
depth comparison: three of the five tissues have the largest sample sizes
in GTEx and the remaining two tissues have relatively small sample
sizes. The five tissues are muscle skeletal (7 =491), thyroid (n=399),
artery tibial (z=388), liver (n=153) and artery coronary (n=152).
The number of PEER factors used in the original GTEx eQTL mapping
study is 35 for tissues with > 250 samples, 30 for tissues with > 150
samples and < 250 samples and 15 for tissues with < 150 samples, re-
spectively (Consortium, 2018). Given the heavy computational cost of
eQTL mapping analysis in GTEx and the relatively small number of
PEER recommended in (Consortium, 2018), we mostly focused on
using up to 100 PEER factors (though we explored up to 250 PEER
factors for the tissues that the optimal numbers of PEER factors were
inferred to be larger than 100). Data and processing details are avail-
able in Supplementary Material.

We first applied the standard method to determine the number
of optimal PEER factors in the five tissues. Here, we focused a total
of 22 017 genes and 101 814 843 SNP-gene pairs, with a median
number of 4571 cis-SNPs per gene across the five tissues. For all tis-
sues, we found that the number of eGenes gradually increases with
the increasing number of PEER factors included in the model and
gradually decreases after reaching a plateau (Fig. 2A). The optimal
number of PEER factors determined by the standard approach is
250 for muscle skeletal, 150 for thyroid, 200 for artery tibial, 70 for
liver and 90 for artery coronary. Importantly, the peak number of
eGenes detected with the optimal number of PEER factors detected
by the standard method is higher than that with the GTEx recom-
mended number of PEER factors included (35 for the first three tis-
sues and 30 for the last two tissues). Specifically, the number of
eGenes detected by the standard method is 9089 (muscle skeletal),
11 853 (thyroid), 9 796 (artery tibial), 3176 (liver) and 3454 (artery
coronary). The number of eGenes detected by the GTEx recom-
mended PEER factors is generally lower: 7755 (muscle skeletal),
10 557 (thyroid), 8712 (artery tibial), 3054 (liver) and 3367 (artery
coronary). The increased number of eGenes discovered using the
standard approach highlights the importance of identifying a tissue-
specific optimal number of PEER factors for eQTL mapping.

Next, we applied ECCO to examine the optimal number of PEER
factors in the five tissues. To do so, we obtained three quantitative
phenotypes in GTEx. These three phenotypes include height, weight
and body mass index (BMI). Regardless of the phenotypes we use, we
found that the effect size correlation gradually increases with increas-
ingly large number of PEER factors included and gradually decreases
after reaching a plateau (Fig. 2B, Supplementary Figs S9 and S10).
For example, for muscle skeletal tissue, with BMI as the phenotype,
the effect size correlation is 0.291 with zero PEER factors included.
The effect size correlation increases to 0.437 with 200 PEER factors
included. The optimal number of PEER factors determined by ECCO
is 200 for muscle skeletal, 150 for thyroid, 150 for artery tibial, 40
for liver and 40 for artery coronary, all close to that determined by
the standard approach. The results based on height and weight are
consistent (Supplementary Figs S9 and S10). We also applied ECCO-
IVW and ECCO-Egger to analyze the muscle skeletal tissue.
Consistent with simulations, we found that the optimal number of
PEER factors identified by ECCO-IVW is similar with that form
ECCO, while ECCO-Egger underestimates the optimal number of
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Fig. 2. ECCO identified a larger number of PEER factors as recommended in GTEx.
(A) In the standard approach, the number of eGenes identified (y-axis) is plotted
against the number of PEER factors removed in eQTL mapping analysis (x-axis) for
three GTEx tissues: muscle skeletal (250), thyroid (150) and artery tibial (200). (B)
In ECCO, correlation between the two types of effect size estimates across genes (y-
axis) is plotted against the number of PEER factors controlled (x-axis) for three
GTEx tissues: muscle skeletal (200), thyroid (150) and artery tibial (150). Results
are based on correlation computed using the top 1000 genes with the strongest in-
strumental strength (i.e. F-statistics > 10) and are based on using the phenotype
BML. (C) Jittered point plot shows the estimated number of PEER factors by ECCO
(y-axis) for tissues recommended using 15, 30 or 35 PEER factors in GTEx. The rec-
ommend number of PEER factors in GTEx is based on sample size (x-axis): 15
when the sample size 7 < 150 (20 tissues); 30 when the sample size 150<n <250
(11 tissues); and 15 when the sample size #>250 (17 tissues). The orange dashed
line represents the recommended number of PEER factors in each bin. (D) Scatter
plot shows the number of eGenes detected when one controls for the number of
PEER factors determined by ECCO (y-axis) versus the number of eGenes detected
when one controls for the number of PEER factors recommended in GTEx based on
sample size (x-axis)

PEER factors (Supplementary Fig. S11). Importantly, in addition to
achieving similar results as the standard approach, ECCO is 222
times faster (Table 1, Supplementary Fig. S12).

Finally, we applied our method to analyze the remaining 43 tissues
in GTEx data. We did not apply the standard approach to infer the
number of PEER factors in these tissues due to its heavy computational
burden. The inferred optimal number of PEER factors by ECCO is
shown in Supplementary Table S2, which are generally higher than
that recommended by GTEx (Fig. 2C, Supplementary Fig. S13). Note
that the optimal number of PEER factors is inferred to be 100 for two
out of the twenty tissues that have less than 150 samples. Using a large
number of PEER factors for eQTL mapping is often safe even for data
with a small sample size: the lower-order PEER factors become increas-
ingly sparse with a large fraction of zeros and low variance
(Supplementary Fig. S14). Consequently, lower-order PEER factors
tend to contain less information as compared to the higher-order PEER
factors and using 100 PEER factors would not cause a substantial loss
of degrees of freedom as would be expected by, for example, using 100
principal components. In addition, as expected, the effects of the
selected instruments on gene expression are often strong: the median F-
statistics of the selected SNP instrument for the top 1000 genes is 61.7
(mean = 79.7; min = 20.4; max = 949.0). Therefore, we would not ex-
pect weak instrument bias commonly observed in MR analysis when
the F-statistics to measure instrumental strength is below 10 (Zeng
etal., 2019).
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Table 1. Computation time of ECCO and the standard approach for
determining the optimal number of PEER factors used in eQTL
mapping studies

Data Computation time (h)

No. of SNP-Gene
individuals  pairs

Standard No. of
ECCO approach

Simulation 0.618 96.27 491
GTEx 0.92 204.16 491

46212053
91610671

Note: The average computing time (in hours) in the first simulation repli-
cate across four scenarios is recoded for both approaches (top row).
Computing time (in hours) is also recorded for eQTL mapping in the muscle
skeletal tissue in GTEx (bottom row). Computing time is based on a single
thread of a Xeon E5-2683 2.00 GHz processor.

Importantly, the overall number of eGenes detected with the
number of PEER factors inferred by ECCO is 5.89% higher than
that GTEx recommended numbers across all 48 tissues. The power
gain brought by ECCO is higher for tissues with large sample sizes:
the power gain by ECCO increases to 7.14% when we focus on the
tissues with sample sizes > 150, and to 8.82% when we focus on the
tissues with sample sizes > 250. In addition, we examined whether
the eGenes detected only by ECCO are functionally important. To
do so, we extracted gene association results from transcriptome-
wide association studies (TWAS) and calculated the proportion of
eGenes that are also a TWAS gene. Consistent with the higher
power of ECCO, we found that the eGenes detected only by ECCO
are more likely to be TWAS genes as compared to the eGenes
detected by the standard approach (Supplementary Table S3).
Among the 48 tissues we examined, we found that the eGenes
detected by ECCO are more likely to be TWAS genes as compared
to the eGenes detected by the standard approach in 46 tissues. The
eQTL mapping results by ECCO highlight the importance of identi-
fying the optimal number of PEER factors for eQTL mapping.

4 Discussion

We have presented ECCO, a new and simple approach for determin-
ing the optimal number of PEER factors used for confounding
effects control in cis-eQTL mapping studies. ECCO estimates the
gene expression effects on an outcome phenotype using two compu-
tationally efficient models: a standard differential expression ana-
lysis model and a MR analysis model. By examining the gene effect
size correlation obtained from the two models, ECCO can be used
to determine the optimal number of PEER factors used in eQTL
mapping studies. In simulations and an in-depth analysis of 48 tis-
sues in GTEx, ECCO determines a similar number of PEER factors
for eQTL mapping as the previous standard approach, while being
two orders of magnitude faster. Therefore, ECCO represents an effi-
cient and effective alternative for controlling for confounding effects
in eQTL mapping studies.

ECCO requires the availability of an outcome phenotype in add-
ition to the usual genotype and expression data required for eQTL
mapping studies. Because of this requirement, ECCO cannot be dir-
ectly applied to eQTL studies that collect gene expression and geno-
types only. Fortunately, most eQTL mapping studies do collect
additional phenotype data. For example, among the seven relatively
large eQTL mapping studies carried out previously [ABRP (Tung
et al., 2015), GEUVADIS (Lappalainen et al., 2013), TCGA
(Abeshouse et al., 2015), METSIM (Stancakova et al., 2012), DGN
(Alexis Battle ez al., 2014), NTR (Wright et al., 2014) and YFS
(Raitakari ef al., 2008)], six of them have accompanying phenotype
measurements and only one of them (GEUVADIS) does not.
Therefore, ECCO can be applied to the majority of eQTL mapping
studies. Importantly, as we have shown in the real-data application,
the outcome phenotype does not have to be relevant to the

expression tissue. For example, the number of eGenes detected in
the Skin not sun exposed suprapubic tissue by the three different
phenotypes are 7303, 8971 and 8971, respectively, with 7070
eGenes in common. After all, such outcome phenotype is used to fa-
cilitate eQTL discovery but is not used for the discovery of
phenotype-specific eQTLs. Indeed, the only requirement for the out-
come phenotype is that the phenotype should be associated with
gene expression for at least some genes. In the simulations, we found
that the optimal number of PEER factors inferred using different
phenotypes are all centered around the truth. However, different
phenotypes do influence estimation variance: in the sparse setting
where 1% of genes are associated with the phenotype, the variance
of the estimated number of PEER factors k across simulation repli-
cates can be relatively large. In contrast, in the polygenic setting
where all genes are associated with the phenotype, the variance of
the estimated number of PEER factors k across simulation replicates
is relatively small. Certainly, when no gene is associated with the
phenotype, then ECCO would not work (Supplementary Fig. S4).

We have primarily focused on cis-eQTL mapping analysis and
have not explored the utility of ECCO for #rans-eQTL mapping.
Trans-eQTL mapping aims to identify SNPs associated with genes
that far away from the SNP or genes that reside on a different
chromosome. The identified SNPs from trans-eQTL mapping may
potentially influence the expression level of the targeted gene in a
trans-fashion. While cis-eQTL mapping has been the primary task in
most eQTL mapping studies, trans-eQTL mapping has become in-
creasingly common, thanks to recent experimental and analytical
advances. Experimentally, the sample size of eQTL mapping studies
has been steadily increasing in the past years, leading to substantially
improved power of trans-eQTL mapping. Analytically, the develop-
ment of new approaches has mitigated many RNA-sequencing align-
ment errors, leading to substantially reduced false positives in trans-
eQTL mapping (Liu et al., 2018; Saha and Battle, 2018). The
increased sample size and mitigation of sequencing alignment errors
have altogether made trans-eQTL mapping feasible and reasonably
effective (Aguet et al., 2019). While practical trans-eQTL mapping
often relies on the same procedure as in cis-eQTL mapping to deal
with confounding effects (Aguet et al., 2019), controlling for con-
founding effects in trans-eQTL mapping may face additional chal-
lenges. In particular, some of the extracted PEER factors from the
gene expression data may represent the true genetic effects underly-
ing the expression level of multiple genes (Consortium, 2018).
Subsequently, controlling for these PEER factors may unintentional-
ly reduce the power of trans-eQTL mapping (Rakitsch and Stegle,
2016). Therefore, investigating the utility of ECCO and exploring
its extensions for confounding effects control in trans-eQTL map-
ping is an important future direction.

We have primarily focused on estimating the number of PEER
factors. While PEER analysis is the most common approach for con-
founding effects control in eQTL mapping studies, many other con-
founding effects control approaches exist. For example, principal
component analysis (PCA) extracts principal components to serve as
surrogates for confounding factors (Degner et al., 2012; Tung et al.,
2015). SVA (Leek and Storey, 2007) extracts sparse non-orthogonal
components in the presence of covariates to serve as surrogate varia-
bles. RUV uses a set of housekeeping genes to serve as negative con-
trols for effective extraction of confounding factors (Gagnon-
Bartsch and Speed, 2012). scPLS further relies on the partial least
squares to model both control genes and target genes jointly to ef-
fectively extract confounding factors(Chen and Zhou, 2017). While
some of these methods have automatic ways for determining the
number of confounding factors (e.g. SVA), many methods do not.
Exploring the benefits of paring ECCO with these confounding fac-
tor analysis methods may have added benefits. For example, we
have performed simulations that using PCA to control for confound-
ing factors. In the simulations, we found that ECCO can also be
used to identify the optimal number of PCs needed (Supplementary
Figs S15 and S16).

ECCO is currently formulated as a two-step procedure that
includes fitting two different regression models and subsequently
examining the estimated effect size correlation. While intuitively
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appealing and practically effective, the two-step procedure in ECCO
does appear to be ad hoc in nature. It would be ideal in the future to
both extend ECCO to a formal statistical model with an underlying
data-generative process and place ECCO inference into a likelihood-
based inference framework. For example, we could treat the gene ef-
fect sizes on the phenotype in the linear regression model as a sum-
mation of the gene effect sizes on the phenotype in the MR model
and an additional noise term. The noise term effectively determines
the correlation p between the two sets of effect sizes. We can then
treat the number of included PEER factors k as another latent par-
ameter and aim to optimize a target function that consists of both &
and p. Certainly, despite the simple description, formalizing the
above model and developing the corresponding algorithm remains a
non-trivial task. Nevertheless, a model-based treatment of ECCO
would help us further understand its pros and cons from a theoretic-
al perspective.
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