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Background: Genome-wide association studies (GWASs) have identified thousands of genetic variants that are

associated with many complex traits. However, their biological mechanisms remain largely unknown. Transcriptome-

wide association studies (TWAS) have been recently proposed as an invaluable tool for investigating the potential gene

regulatory mechanisms underlying variant-trait associations. Specifically, TWAS integrate GWAS with expression

mapping studies based on a common set of variants and aim to identify genes whose GReX is associated with the

phenotype. Various methods have been developed for performing TWAS and/or similar integrative analysis. Each

such method has a different modeling assumption and many were initially developed to answer different biological

questions. Consequently, it is not straightforward to understand their modeling property from a theoretical

perspective.

Results: We present a technical review on thirteen TWAS methods. Importantly, we show that these methods can all

be viewed as two-sample Mendelian randomization (MR) analysis, which has been widely applied in GWASs for

examining the causal effects of exposure on outcome. Viewing different TWAS methods from an MR perspective

provides us a unique angle for understanding their benefits and pitfalls. We systematically introduce the MR analysis

framework, explain how features of the GWAS and expression data influence the adaptation of MR for TWAS, and

re-interpret the modeling assumptions made in different TWAS methods from an MR angle. We finally describe

future directions for TWAS methodology development.

Conclusions: We hope that this review would serve as a useful reference for both methodologists who develop TWAS

methods and practitioners who perform TWAS analysis.
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Author summary: Transcriptome wide association studies (TWAS) integrate expression mapping studies and GWAS

studies and aim to identify candidate genes whose genetically regulated expression is associated with trait of interest. We

present a comprehensive review on a broad category of recently developed and commonly used TWAS methods. Our review

covers different modeling assumptions, different inference procedures, modeling of horizontal pleiotropic effects, and

extensions of TWAS towards multivariate MR analysis and summary statistics. Our review also aims to provide a unified

view of various TWAS methods from the perspective of Mendelian randomization (MR).

INTRODUCTION

Genome-wide association studies (GWASs) have identi-

fied thousands of genetic variants that are associated with

many common diseases and disease related complex

traits. However, most of these identified genetic variants

reside outside protein-coding regions, making it challen-

ging to understand the biological mechanism underlying

these identified associations. One possible mechanism

that a genetic variant may influence the associated trait is

through regulating the gene expression level of its

neighborhood gene [1]. To investigate such potential
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mechanism, many gene expression mapping studies are

performed to in parallel to GWASs to characterize the

transcriptome landscape and investigate the genetic

architecture underlying gene expression variation. These

gene expression mapping studies collect both gene

expression data and genotype data on the same set of

individuals and aim to identify genetic variants associated

with gene expression levels. Exemplary expression

mapping studies include the Genotype-Tissue Expression

(GTEx) project [2], the Genetic European Variation in

Disease (GEUVADIS) project [3] and many others [4–13]

(a summary of recently large-scale transcriptome datasets

is shown in Table 1). With the availability of both GWASs

and expression mapping studies, there is a strong recent

interest in developing methods to integrate these two data

types together. Integrating GWASs and expression

mapping studies is commonly referred to as the

transcriptome-wide association study (TWAS), which

can facilitate our understanding of the molecular and

causal mechanisms underlying variant-trait associations.

Several statistical methods have been recently proposed

to perform TWAS. For example, PrediXcan [14] performs

a weighted SNP-set-based test in GWAS using SNP

weights inferred from the expression mapping study

based on elastic net [15]. TWAS [1] infers the association

between an outcome phenotype and the predicted gene

expression level, where the predicted gene expression

levels is built upon the Bayesian sparse linear mixed

model (BSLMM) [16]. Zeng and Zhou [17] proposed a

non-parametric latent Dirichlet process regression (DPR)

model that can flexibly model the underlying complex

genetic architecture of expression data for TWAS. TIGAR

(Transcriptome-Integrated Genetic Association Resource)

further implements DPR in a user friendly software for

convenient TWAS analysis [18]. SMR (summary data–

based Mendelian randomization) [19] and GSMR (gen-

eralized SMR) [20] directly tests the causal relationship

between gene expression and disease trait under a

Mendelian randomization (MR) framework through

selecting a single instrumental variable (IV) or multiple

independent IVs. The probabilistic Mendelian randomi-

zation (PMR) further uses likelihood-based inference

framework to both model all cis-SNPs jointly that are in

high linkage disequilibrium (LD) with each other and

account for horizontal pleiotropic effects, thus substan-

tially enhancing the power of MR analysis in TWAS

settings [21]. While these integrative methods were

originally proposed to solve different problems, as we

will show below, all of them can be viewed as a two-

sample MR method with different modeling assumptions

and different inference algorithms (more details below).

MR is a causal inference method that uses genetic variants

as instrumental variables (IVs) to estimate causal effect of

an exposure variable (e.g., gene expression) on an

outcome of interest in observational studies. Because of

their relationship to MR, these methods effectively

attempt to identify causal genes associated with diseases

or disease related complex traits in the context of TWAS.

Besides the aforementioned methods that perform

univariate MR analyses where the exposure variables

are examined one at a time, several recent methodological

extensions have enabled multivariate MR analysis that

models many exposure variables jointly [22–27]. For

TWAS applications in particular, multivariate MR

attempts to either model the same gene across multiple

tissues [28–32] or model multiple genes in the same

locus [33].

It has been five years since the first TWAS method,

Table 1 A summary of commonly used gene expression database with sample size over 50

Data sets RNAseq Sample size Ref.

ABRP Blood (Baboons) 63 [7]

GSE19480 Lymphoblastoid cell lines 69 [8]

Braineac Ten brain regions 134 [5]

NABEC Four brain regions 150 [6]

CommonMind Dorsolateral prefrontal cortex 452 [11]

GEUVADIS Lymphoblastoid cell lines 465 [3]

TCGA Prostate adenocarcinoma 483 [10]

METSIM Adipose 563 [9]

GTEx (v8) 54 tissues 838 [2]

DGN Whole blood 922 [4]

NTR Blood 1247 [12]

YFS Blood 1264 [13]
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PrediXcan [14], was proposed. Since then, many TWAS

analysis methods and software have been developed for

uncovering gene-trait associations. However, there has

been a lack of systematic review from a technical

perspective summarizing the advantages and shortcom-

ings of these existing methods. Most existing reviews on

TWAS often covers a limited number of methods and

often aims for experimental biologists. For example,

Wainberg et al. [34] published a work to point out the

opportunities and challenges of TWAS. They affirmed the

accomplishments of TWAS in prioritizing candidate

genes while also expressed their concerns about the

causality of these identified genes. However, Wainberg et

al. only focused on conducting analysis to evaluate the

performance of TWAS [1] and S-PrediXcan [35] and also

briefly mentioned UTMOST [29] and MultiXcan [28] in

one sentence. To complement these existing review

works, here, we present a technical review on thirteen

recently developed statistical methods for TWAS. We

organize the present review from the perspective of MR

framework and gear the presentation towards computa-

tional biologists and applied statisticians. In particular,

our review is organized as follows. In Section “Mendelian

randomization analysis” we describe the MR analysis

framework, how it is adapted for TWAS, and the

modeling assumptions necessarily for causality interpre-

tation. In Section “Different modeling assumptions

on the SNP-gene effect sizes β” we describe different

TWAS methods along with their detailed modeling

specifications and show how they are interconnected

with each other under the MR framework. In Sections

“Extensions of TWAS towards multivariate MR analysis”

and “Use of summary statistics” we describe several

current extensions of TWAS methods towards using

multiple tissues, multiple genes and summary statistics,

and explain how such extensions can also be included into

the MR framework. In the last Discussion section, we

provide our view of future development for TWAS

methods. We hope that our review can serve as a useful

reference for statistical geneticists and computational

biologists.

MENDELIAN RANDOMIZATION

ANALYSIS

Both MR and TWAS have become popular in the past

decade with increased popularity and availability of

GWASs (Fig. 1A, B). These two approaches are

mathematically interconnected with each other. In this

section, we provide a technical review of MR and

illustrate how different TWAS methods can be viewed in

the MR framework. MR is a causal inference method that

uses genetic variants as IVs to infer the presence or

absence of a causal effect of an exposure variable (e.g.,

gene expression) on an outcome of interest in observa-

tional studies. MR methods have been widely applied to

estimate and test the causal relationship among various

complex traits [36–39], and, through a two-sample

design, can be easily adapted to settings where the

exposure variable and outcome are measured on two

independent samples of individuals [40,41].

Two-sample MR considers two separate studies in the

setting of TWAS: the gene expression study that measures

both the expression data and the genotype data on n1
individuals; and the GWAS that measures both the

outcome variable of interest and the genotype data on

n2 individuals. The two studies are often separate from

each other with no individual overlap. MR analysis

examines one gene at a time and aims to infer the causal

effect of gene expression on the outcome trait. For the

given gene, we denote z as an n1-vector of the gene

expression measurements in the first sample (i.e., the gene

expression study). We denote X as an n1 � p genotype

matrix for the p cis-SNPs that are selected for the gene in

the first sample. Note that, while standard MR methods

select one or multiple independent IVs, TWAS methods

often take advantage of all SNPs that reside in the cis-

region of the gene. These cis-SNPs are often in LD with

each other and using all cis-SNPs for TWAS can ensure

optimal power (more details in the next section below).

We denote y as the n2 vector of the outcome variable (i.e.,

trait) in the second sample (i.e., the GWAS study). For

simplicity, we only consider y to be a quantitative trait,

although extensions to a binary trait is straightforward,

requiring replacing certain linear regression models with

logistic regression models. We also denote eX as an n2 � p

genotype matrix for the same p cis-SNPs in the second

sample. We assume z, y and each column of X and eX
have all been standardized to have a mean of zero and a

standard deviation of one. MR analysis incorporates three

linear models to link the two studies jointly:

z=Xβ þ εz, (1)

ez=eXβ þ ε~z, (2)

y=aez þ εy, (3)

where Eq. (1) is for the first sample and Eqs. (2) and (3)

are for the second sample. Here, ez is the unobserved gene
expression measurements for the n2 individuals in the

second sample; β=ðβ1,:::,βj,:::,βpÞ
T is the p -length effect

sizes of the cis-SNPs on the exposure; εz, ε~z, and εy are
error terms in the three models, and follow multivariate

normal distributions Nn1
ð0,�2z In1Þ, Nn2

ð0,�2
z In2Þ, and

Nn2
ð0,�2yIn2Þ, respectively. Note that these three models

are joined together with the common variable β and the

unobserved gene expression ez. The goal of MR methods
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Figure 1. Importance of TWAS and MR methods. (A) The number of publications on PubMed on MR and TWAS over recent years. The

generated URL is https://www.ncbi.nlm.nih.gov/pubmed/?term =Mendelian + randomization + or + transcriptome-wide + association + stu-

dies. (B) The number of hits on MR based on Google Trends (https://trends.google.com/trends/?geo = US). The search on “transcriptome-

wide association studies” was not large enough to generate statistics. (C) Timeline of various TWAS landmark methods throughout the years.
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Figure 2. The Mendelian randomization framework for understanding TWAS. (A) The standard MR model assumes three assumptions on instrumental variable: (i) it must

be associated with the exposure, (ii) it must not be associated with confounders, and (iii) it is associated with the outcome only through the exposure. The blue solid line represents

the horizontal pleiotropic effects. (B) Multivariate MR analysis with two exposures as an example. (C) Scheme of the two-stage TWAS analysis. (D) Scheme of maximum

likelihood-based TWAS analysis.
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is to make inference on the causal effect a. The causal

interpretation of a requires each of the selected IVs to

satisfy three main assumptions (Fig. 2A): (i) it must be

associated with the exposure, (ii) it must not be associated

with confounders, and (iii) it is associated with the

outcome only through the exposure.

DIFFERENT MODELING ASSUMPTIONS

ON THE SNP-GENE EFFECT SIZES β

Almost all TWAS methods can be viewed in the above

MR framework and different TWAS methods often differ

in their modeling assumptions on β.

Assumptions in traditional MR methods

Perhaps the easiest assumption on β is that made in the

traditional MR methods, such as SMR [19], GSMR [20],

MR-Egger [42], and median-based regression [43]. Both

SMR [19] and GSMR [20] have been applied to perform

integrative analysis of gene expression study and GWAS

in the setting of TWAS. Specifically, SMR [19] selects

one SNP in the cis-region of the gene to serve as the IV.

To do so, SMR first performs a marginal association

analysis for each SNP in turn and selects the one that has

the smallest p-value association evidence with the gene

expression level. Afterwards, SMR estimates the SNP

effect on the outcome trait, the SNP effect on the gene

expression, and uses the standard MR ratio method [44] to

express the causal effect a as the ratio of the previous two

effect estimates. Because the MR ratio method computes

p-value based on asymptotic normality, which is often

unsatisfied in TWAS settings, the p-values from SMR are

often conservative under the null [21,35]. Different from

SMR that uses only one IV, GSMR [20] selects multiple

independent SNPs in the cis-region to serve as IVs. In

particular, GSMR uses the pruning strategy implemented

in PLINK to select IVs, estimates the causal effect of each

IV in turn using the standard MR ratio method, and

eventually combines these causal effect estimates together

using the standard inverse-variance weighting (IVW)

approach. Importantly, both SMR and GSMR often select

a small set of SNPs into Eq. (1). Modeling only a small set

of independent SNPs can be restrictive in the setting of

TWAS, since this approach neglects the fact that most

exposure variables/molecular traits are polygenic/omni-

genic and are influenced by numerous SNPs that are in

potential LD with each other. Consequently, incorporating

multiple correlated SNPs can help explain a larger

proportion of variance in the exposure variable than

using independent SNPs only, thus helping boost

statistical power and improve estimation accuracy of

MR analysis [45–48]. Indeed, almost all other TWAS

methods include all cis-SNPs of a gene into modeling

gene expression in Eq. (1). Note that the number of

individuals in the gene expression study is often in the

scale of a few hundred while the number of cis-SNPs for a

gene is often in the range of a few hundreds to a few

thousands, with the detailed number depending on the cis-

region size and SNP density in the expression data

(Table 1). Consequently, TWAS methods that accommo-

date all cis-SNPs will often need to make certain

modeling assumptions on the SNP effect sizes β to ensure

model identifiability. Various modeling assumptions on β

have been proposed.

Elastic net

The first modeling assumption on β is the elastic net

modeling assumption made in PrediXcan [14]. The elastic

net modeling assumption assumes that each element of β

a priori follows a linear combination of LASSO [49] (L1
penalty) and ridge regression [50] (L2 penalty) on the cis-

SNP effect sizes. In particular, it assumes that

β / expðl1kβk1 þ l2kβk2Þ, (4)

where k$k1 and k$k2 denote the L1 and L2 norms,

respectively. The elastic net assumption is equivalent to a

mixture of normal and Laplace prior. With the above

modeling assumption on β, PrediXcan obtains the

estimates of β in Eq. (1), plugs in the β estimates in

Eq. (2) to obtain the genetically predicted gene expression

(a.k.a. genetically regulated expression, or GReX), and

finally perform analysis in Eq. (3) to obtain the causal

effect estimates. Note that the elastic net modeling

assumption made in PrediXcan itself is polygenic in

nature, as it assumes that all elements of β are non-zero a

priori. However, PrediXcan relies on an optimization

algorithm to obtain the maximum a posterior (MAP)

estimates for β and the MAP estimates is sparse.

Therefore, PrediXcan effectively relies on elastic net

that combines L1 and L2 penalty as a variable selection

method to select a sparse set of cis-SNPs with non-zero

effects on the gene expression. Similar strategy, pairing a

polygenic modeling assumption and a sparse MAP

estimation solution, is also used in several other TWAS

methods, in particular those applied to multiple-tissue

TWAS analysis, for example, UTMOST [29] (more

details in the multivariate TWAS section).

Bayesian sparse linear mixed model

The second modeling assumption on β is the Bayesian

sparse linear mixed model [16] used in the method TWAS

[1]. The BSLMM represents a hybrid modeling assump-

tion between a sparse modeling assumption such as the

Bayesian variable sparse regression (BVSR, more details

below) [51] and the standard polygenic modeling
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assumption. Consequently, BSLMM is able to take

advantages of LMM and sparse regression models and

can adaptively infer the genetic architecture underlying

the gene expression variation from the data. Technically,

BSLMM assumes that the effect size of each cis-SNP on

the gene expression follows a mixture of two normal

distributions

βj � πNð0, �2a þ �
2
bÞ þ ð1 – πÞNð0, �2bÞ: (5)

In particular, with probability 1 – π, βj tends to be small

and follows a normal distribution with a small back-

ground variance of �2
b. With probability π (which is often

small), βj tends to be large and follows a normal

distribution with a large variance that equals the

summation of the background variance and an additional

variance. The BSLMMmodeling assumption represents a

direct attempt for modeling the omnigenic hypothesis that

was proposed recently [52]. Specifically, the BSLMM

assumption categorizes SNPs into two groups: a small

group of SNPs with large effect sizes and a large group of

SNPs with small effect sizes. Such SNP categorization is

equivalent to assuming that all SNPs have non-zero

effects, while a small proportion of them have additional

effects. The assumption that all SNPs have non-zero

effects attempts to model the omnigenic hypothesis that

all genes/SNPs have non-zero effects. The assumption

that a small subset of SNPs has additional effects also

attempts to model the omnigenic hypothesis that a small

subset of genes, termed as core genes, have additional

effects. The set of core genes was hypothesized in the

omnigenic model to directly underlie disease etiology and

contribute disproportionally to disease and disease related

complex traits. With the BSLMM modeling assumption

on β, TWAS [1] obtains the estimates of β in Eq. (1),

plugs in the β estimates in Eq. (2) to obtain the genetically

predicted gene expression, and finally perform analysis in

Eq. (3) to obtain the causal effect estimates. Because of

the relatively robust and flexible assumption made in

BSLMM, the TWAS method often performs well across a

range of TWAS applications.

Dirichlet process regression

The third modeling assumption on β is the latent Dirichlet

process regression (DPR) [17] implemented in the TWAS

methods DPR [17] and TIGAR [18]. DPR relies on a

Bayesian non-parametric modeling assumption on the

genetic effects on the gene expression. In particular, it

assumes that each element of β follows a normal

distribution, with a further unknown distributionG placed

upon the variance parameter. DPR actively infers such

unknown distribution G by placing a non-parametric

Dirichlet process (DP) prior on the distribution itself:

βj � Nð0, �2
j Þ, �

2
j � G, G � DPðIGða, bÞ, lÞ, (6)

where the inverse gamma (IG) distribution is the base

distribution while the concentration parameter l deter-

mines how the distribution of G differs from the base

distribution. By inferring the distribution G based on the

data at hand, DPR becomes flexible and is adaptive to a

wide range of genetic architectures, leading to accurate

gene expression prediction and subsequent power

increase for TWAS. Note that the above modeling

assumption is also equivalent to assuming each element

of β follows a mixture of infinitely many normal

distributions a priori,

βj �
Xþ1

φ=1

πφNð0, �2
φÞ, πφ=vφ ∏

φ – 1

l=1

ð1 – vlÞ, vφ�Betað1, lÞ:

(7)

Here, πφ is the weight corresponding to the φ-th normal

distribution; it is generated from a stick breaking process

and determined by vl that each follows a Beta prior. With

the DPR modeling assumption on β, one can obtain the

estimates of β in Eq. (1) via two algorithms: either the

Monte Carlo Markov Chain or variational Bayesian

algorithm. Both these two algorithms are implemented in

the DPR software [17] while the second algorithm is also

conveniently implemented in the TIGAR software [18].

With the estimated β from Eq. (1), one can use Eq. (2) to

obtain the genetically predicted gene expression and

finally perform analysis in Eq. (3) to obtain the causal

effect estimates. Because of the relatively robust and

flexible assumption made in DPR, DPR and TIGAR often

performs well in TWAS applications.

Linear mixed model

The fourth modeling assumption is the normality

assumption on the effect sizes that is used in CoMM

[53] and PMR [21]. The normality assumption assumes

that each element of β follows a normal distribution

βj � Nð0, �2
βÞ: (8)

The above model effectively assumes that all SNPs have

non-zero effects on gene expression and their effect sizes

follow a normal distribution. The normality modeling

assumption is often referred to as the ridge regression

assumption or L2 assumption in statistics literature and is

also often referred to as the polygenic modeling

assumption or the linear mixed model (LMM) assumption

in various GWAS applications. For TWAS applications,

CoMM [53] and some of its extensions [32,54], as well as

PMR [21], all use this modeling assumption. The
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normality modeling assumption is known to be less

flexible than the BSLMM and DPRmodeling assumption.

However, it is also a simple modeling assumption that

allows model inference based on a likelihood framework

that is known to be more powerful than the two stage

inference procedures used in common TWAS methods.

Consequently, CoMM and PMR often enjoy substantial

power gain over existing TWAS approaches including

PrediXcan and TWAS.

Bayesian variable selection regression

Finally, the Bayesian variable selection regression

modeling assumption (BVSR) [51] is also recently

adapted by the Factored QTL (fQTL) [31] into TWAS

settings. In contrast to the above polygenic modeling

assumptions (e.g., elastic net, BSLMM, DPR and LMM),

BVSR places a sparse modeling assumption on the

genetic effects on the gene expression. In particular,

BVSR assumes that each element of β follows a point-

normal distribution

βj � πð0,�2
βÞ þ ð1 – πÞδ0, (9)

where with a small proportion π, βj is non-zero and

follows a normal distribution; and with proportion 1 – π,

βj is zero with δ0 indicating a point mass at zero. The point

normal is also commonly referred to as a spike and slab

prior. More details about fQTL are given in the

multivariate TWAS section.

Overall, different TWAS methods make different

modeling assumptions on β. While the sparse modeling

assumptions used in SMR [19], GSMR [20], and fQTL

[31] are the easiest to understand, they often do not

perform well for TWAS applications as compared to the

polygenic modeling assumptions made in most existing

TWAS methods such as PrediXcan [14], TWAS [1], DPR

[17], TIGAR [18], CoMM [53] and PMR [21]. Indeed,

polygenic models (e.g., LMM, BSLMM, DPR) often

outperform sparse models (elastic net, LASSO, etc.) in

predicting gene expression and TWAS applications

[1,18,21]. The superior performance of polygenic model-

ing assumptions in TWAS is consistent with gene

expression heritability studies that reveal a polygenic

architecture underlying gene expression level [7]. In

terms of models with polygenic assumptions, both

BSLMM and DPR are flexible and include some other

polygenic models as special cases. Due to the flexible

modeling assumption in BSLMM and DPR, TWAS

methods using these assumptions often perform well

across genes with varying genetic architectures, which is

often unknown a priori. However, these flexible model-

ing assumptions also have the shortcomings of being

computationally difficulty to fit. Consequently, TWAS

methods using these flexible polygenic modeling assump-

tions often have to rely on a two-step estimation

procedure, by constructing the predicted genetic compo-

nent of gene expression and subsequently estimate its

association with the outcome trait. In contrast, simple

polygenic modeling assumptions such as the normality

assumption allows MR analysis to be carried out in a

likelihood framework, thus leading to substantial power

gain (more details below).

INFERENCE PRECEDURES AND

MODELING OF HORIZONTAL

PLEIOTROPIC EFFECTS

In terms of the inference procedure, as briefly explained in

the above section, while most TWAS methods perform

causal inference in a two-stage regression-based frame-

work (Fig. 2C), several recently developed TWAS

methods attempt to perform inference in a maximum

likelihood-based framework (Fig. 2D). Specifically, the

two-stage regression-based inference algorithm attempts

to construct a predictor of gene expression data using the

IVs and then perform an association between the

predicted gene expression levels and the outcome

phenotype. The majority of existing TWAS methods,

such as PrediXcan, TWAS, DPR, and TIGAR, rely on a

two-stage MR inference procedure: they estimate SNP

effect sizes in the reference transcriptome data and pass

these estimates to the GWAS study for causal effect

inference. In other words, these methods perform gene

expression “imputation” and subsequent “association”

between imputed expression and outcome phenotype as

two separate steps. In contrast, the maximum likelihood-

based inference procedure, as used in CoMM and PMR,

jointly model all the three equations together and perform

inference through maximizing the likelihood function.

The two-stage inference procedure in MR has the benefits

of simplicity and yields approximately unbiased causal

effect size estimates. However, the two-stage inference

procedure may also fail to account for the uncertainty in

parameter estimates in the transcriptome study and thus

resulting in power loss, especially in the presence of weak

IVs [45,47]. Indeed, similar to what have been observed

in the MR framework, recent TWAS studies also suggest

that likelihood-based inference can substantially improve

power for TWAS [53].

Beside the difference in inference procedure, different

TWAS methods also differ in their ways of modeling

horizontal pleiotropic effects. In particular, while most

TWAS methods do not account for horizontal pleiotropy,

some recently developed TWAS attempt to directly model

horizontal pleiotropy. In the TWAS setting, horizontal

pleiotropy occurs when an IVaffects the outcome through
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pathways other than the middle exposure variable [55]. It

has been recently observed that pervasive horizontal

pleiotropy occurs for both complex traits analysis [56]

and for TWAS applications [21]. The horizontal pleio-

tropy is widely distributed across the genome and is

important for our understanding of the genetic architec-

ture of human diseases and disease related complex traits

(Fig. 2A). Failing to account for horizontal pleiotropic

effects in MR or TWAS analysis can be overly restrictive

and can lead to a substantial inflation of test statistics and

subsequently false discoveries [21]. Because of the

importance and wide presence of horizontal pleiotropy,

several MR methods have been developed to test and

account for horizontal pleiotropic effects [20,43,56–63] in

GWAS and for TWAS applications [21]. For example,

MR-PRESSO [56] is proposed to test for horizontal

pleiotropic effects without directly controlling for them.

CaMMEL [57] controls for horizontal pleiotropic effects

without directly testing them. Egger regression [43,58],

GLIDE [59], GSMR [20], MR-median method [43],

MRMix [60] and Bayesian MR [61,62] test and control

for horizontal pleiotropic effects with independent

instruments. LDAMR-Egger [63] is developed for testing

and controlling for pleiotropic effects in the presence of

correlated instruments. More recently, PMR [21] builds

upon these previous studies and relies on a jointly

integrative TWAS analysis to accommodate the presence

of both correlated instruments and horizontal pleiotropy.

Specifically, PMR replaces Eq. (3) with the following

extended version

y=αez þ eXγþ εy, (10)

where γ is a p-length vector representing the horizontal

pleiotropic effects. PMR [21] explored two different

modeling assumptions on the horizontal pleiotropic

effects γ. The first modeling assumption is the normality

modeling assumption gj � Nð0, �2
gÞ, which assumes that

all elements of γ is non-zero and they all follow a normal

distribution a priori. The second modeling assumption is

the Egger modeling assumption g1=:::=gp=g, which

assumes that all elements of γ equal to each other and all

equal to a common scalar value of g. The first modeling

assumption is analogous to the SKAT [64] modeling

assumption commonly used in the rare variant test setting

while the second modeling assumption is analogous to the

burden [65–67] modeling assumption also used in rare

variant test setting. PMR when paired with the first

modeling assumption is often referred to as PMR-VC

while PMR paired with the second modeling assumption

is often referred to as PMR-Egger. Both versions of PMR

test the causal effect H0 :α=0 while properly controlling

for horizontal pleiotropic effects, resulting in a substantial

reduction of false positives. Importantly, while PMR no

longer requires the third assumption of standard MR

model (i.e., instruments are associated with the outcome

only through the exposure), it still requires the InSIDE

assumption that the instrument-exposure effects and

instrument-outcome effects are independent of each

other, which is sometimes refered to as the weak

exclusion restriction condition [42]. Besides testing for

causal effects, both PMR-VC and PMR-Egger can also

directly test for horizontal pleiotropic effects by testing

the corresponding null hypothesis: H0 :�
2
g=0 in PMR-

VC and H0 :g=0 in PMR-Egger. By testing for

horizontal pleiotropic effects, widespread horizontal

pleiotropy has been revealed across the transcriptome.

EXTENSIONS OF TWAS TOWARDS

MULTIVARIATE MR ANALYSIS

Traditional TWAS methods are univariate in nature and

focus on analyzing one exposure and one gene at a time.

However, many recently developed TWAS methods are

gradually extending from the univariate TWAS analysis

to multivariate TWAS by using either multiple exposures

or multiple genes (Fig. 2B). For example, TisCoMM [32]

is an extension of CoMM [53] and can leverage the co-

regulation of cis-SNPs on multiple tissues via a like-

lihood-based inference. Specifically, TisCoMM regresses

expression data across multiple tissues on genotype by the

following multiple regression model:

Zn1�m=Xn1�pBp�m þ εz,n1�m (11)

where m ðk=1,:::,mÞ denotes the number of tissues, Z is

the expression matrix with each column representing a

tissue measured from n1 samples, B is the genetic effect

matrix with dimension p� m, and εz is the error term with

dimension n1 � m. TisCoMM assumes that the genetic

effect matrix B=diagðbÞW , where b=ðb1,:::,bpÞ �

Npð0,�
2
bIpÞ is the SNP-dependent component and W p�m

=ðwjkÞ is the tissue-dependent component, where wjk is

estimated using the marginal regression of gene expres-

sion on the j-th SNP in the k-th tissue. The GWAS model

is an extension of Eqs. (2) and (3):

y=eXn2�pBp�mαm�1 þ εy,n2�1, (12)

where αm�1=ðα1,:::,αk ,:::,αmÞ is a vector of causal effects
with each element indicating the effect of gene expression

in each tissue on the phenotype. TisCoMM uses the PX-

EM algorithm to estimate parameters and likelihood ratio

tests to make inference on αm�1 [53].

Similarly, UTMOST [29] uses the same expression

model as in Eq. (11). Different from TisCoMM that

requires a complete expression matrix Z in order to

complete the likelihood-based analysis, UTMOST allows

incomplete Z meaning only a subset of tissues is collected

from each sample. Denote Zk as an N k -length vector of
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expression data in the k-th tissue, which is a subset of the

k-th column of matrix Z that contain non-missing

expression data; X k is an N k � p genotype matrix for

the same N k samples; B
$k is the k-th column of matrix B

and represents the genetic effect sizes of p SNPs in the

k-th tissue; and Bj$ is the j-th row of B and represents the

genetic effect sizes of the j-th SNP across all m tissues.

UTMOST estimates B by minimizing the squared loss

function with a LASSO penalty on the columns (within-

tissue) and a ridge penalty on the rows (cross-tissue):

B / exp l1

Xm

k=1

1

N k

kB
$kk1 þ l2

Xp

j=1

kBj$k2

 !
: (13)

A third method, MultiXcan [28], leverages the

substantial sharing of eQTLs across multiple tissues

using multivariate regression. Specifically, MultiXcan

regresses the phenotype of interest on the predicted

expression from multiple tissues:

y=
Xm

k=1

ẑkαk þ εy, (14)

where ẑk is a vector of the standardized version (zero

mean and unit standard deviation) of the predicted

expressions in tissue k, i.e.,
P

jBjkX j, where Bjk is

estimated based on elastic net regression; and αk is the

causal effect of gene expression in the k-th tissue on

phenotype y. MultiXcan then uses an F-test to jointly infer

the significance of gene effects across multiple tissues.

A fourth multivariate TWAS approach is fQTL [31],

which decomposes the SNP effect of the j-th SNP in the

k-th tissue, Bjk , into a SNP-dependent component and a

tissue-dependent component. That is, fQTL assumes

Bjk=
P

t
r=1b

snp
jr ðbtisÞ

T
rk , where t£m. fQTL assumes the

BVSR [51] prior on each column of bsnp (SNP-dependent

genetic effect component) and btis (tissue-dependent

genetic effect component) and estimates the posterior

distribution of bsnp and btis based on stochastic variational

inference (SVI), which finds the best mean-field approx-

imating distribution to the posterior by optimizing the

variational objective function. Afterwards, the posterior

distributions of bsnp and btis can be obtained respectively,

together with the mean and variance of Bjk . Finally, fQTL

characterizes the distribution of the tissue-specific gene

expression from a Gaussian distribution where the mean

and variance are related to the mean and variance of Bjk .

A fifth method, multi-tissue TWAS [30] identifies

susceptibility genes by using gene expression panels

measured in various tissues from multiple expression

consortiums. Specifically, multi-tissue TWAS conducts

the univariate TWAS [1] for each tissue using the

FUSION software and is able to quantify the tissue-trait

relevance by the mean TWAS association statistics from

all genes.

Finally, in addition to extending TWAS from single

tissue to multiple tissues, a recently developed method

FOCUS [33] (Fine-mapping Of CaUsal gene Sets) also

attempts to extend TWAS from modeling one gene at a

time towards modeling multiple genes simultaneously.

FOCUS takes as input GWAS summary data, expression

prediction weights, and LD among all SNPs, and

estimates the probability of any given set of genes

containing the causal genes.

USE OF SUMMARY STATISTICS

Because of consent and privacy concerns, as well as

logistic limitations (e.g., large-scale data transfer and

storage often require high-end computing infrastructure),

it is now becoming increasingly difficult to access

complete individual-level data from large-scale associa-

tion studies. Indeed, using summary statistics across

multiple studies and then releasing results in terms of

summary statistics has become a standard practice in most

studies and it has several advantages over using

individual phenotype and genotype data. Using summary

statistics in TWAS settings has several important benefits.

First, GWAS summary statistics are often stored in the

datasets with open access, and it becomes incredibly easy

to obtain summary statistics than individual-level data

which requires a lengthy process for data approval.

Second, many GWAS summary statistics are often

obtained through meta-analysis of multiple sub-studies

where hundreds of thousands of individuals in total are

collected. Since sample size is the most important factor

in determining statistical power, using summary statistics

can lead to substantial benefits for TWAS. Third,

summary statistics-based analysis often offers advantages

in computational cost and computing memory storage as

compared to individual data-based approaches. Conse-

quently, many existing individual-level TWAS methods

can either directly accommodate summary statistics or

have corresponding extensions that can accommodate

them. For example, the summary statistics version of

PrediXcan (S-PrediXcan) [35] and CoMM (CoMM-S2)

[53] are presented as follow-up extensions of the original

individual-level data based version. Other methods are

proposed to directly use summary statistics without an

initial individual-level data model; such examples include

UTMOST [29], fQTL [31], and FOCUS [33]. Yet some

other methods are presented to work on both individual-

level data and summary statistics and such examples

include PMR [21], TIGAR [18], TWAS (STWAS) [1],

MultiXcan (S-MultiXcan) [28], and TisCoMM (Tis-

CoMM-S2) [32]. Regardless how the summary statistics

version of different TWAS methods were proposed, these

116 © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Huanhuan Zhu and Xiang Zhou

 20954697, 2021, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1007/s40484-020-0207-4, W

iley O
nline Library on [19/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



methods often require two important input information

from the GWAS study: the marginal association statistics

in terms of marginal z-scores obtained in the GWAS, and

the SNP correlation/LD matrix obtained from either a

sub-sample of the original GWAS or from a reference

panel. Certainly, the sample sizes used in these two input

data are often orders of magnitude different from each

other: while the marginal z-scores are calculated based on

often hundreds of thousands of individuals, the SNP

correlation matrix is often calculated based on a few

thousands of individuals. Even though the SNP correla-

tion matrix is often calculated based on a much smaller set

of individuals, the overall parameter estimation accuracy

remains high, especially when a polygenic modeling

assumption on SNP effect sizes are made [68]. Certainly,

besides the two input information from GWAS, the

summary statistics version of TWAS methods also

requires the input information from the gene expression

data. Because the current gene expression studies often

contain samples only in the scale of tenths to hundredths

(Table 1), many researchers can still use individual-level

genotype-expression data, although summary statistics

version of some TWAS methods can also make use of

summary level data from the gene expression study as

input.

We summarized the thirteen TWAS approaches exam-

ined above in Table 2 from the following aspects: model

designs (two-stage or likelihood-based), number of

tissues from the expression mapping study (single or

multiple), data types a method is applicable for

(individual-level, summary statistics, or both), whether

controlling for horizontal pleiotropic effects (yes or no),

modelling assumptions on genetic effects (LMM,

BSLMM, DPR, etc.), and the URL link of implemented

software for each method.

DISCUSSION

Transcriptome-wide association studies have been pro-

posed for five years and have been widely applied for

prioritizing candidate genes whose genetically regulated

expression is associated with common diseases and

disease related complex traits. As we have presented

here, almost all TWAS methods can be viewed as a two-

sample Mendelian randomization analysis with different

modeling assumptions. We have comprehensively review

the existing TWAS methods from the perspective of MR.

Most TWAS methods and applications have been

focused on using common cis-SNPs that have a reason-

ably high minor allele frequency (MAF) and that reside in

a small cis-region of a gene (e.g., 1 Mb surrounding the

transcription factor starting site). In recent years, many

GWAS studies have shown that rare genetic variants can

play a crucial role in explaining missing heritability and

some of them are identified to be associated with many

diseases and traits [64,69,70]. Therefore, including rare

Table 2 A summary of thirteen TWAS approaches examined in the present review

Methods Design Tissue Data type Pleiotropy Model assumptions URLs

PrediXcan Two-stage Single Individual No Elastic net https://github.com/hakyimlab/PrediXcan

S-PrediXcan Two-stage Single Summary No Elastic net https://github.com/hakyimlab/MetaXcan

TWAS Two-stage Single Individual

/Summary

No BSLMM https://bogdan.dgsom.ucla.edu/pages/

twas/

DPR Two-stage Single Individual No DPR http://www.xzlab.org/software.html

TIGAR Two-stage Single Individual

/Summary

No DPR https://github.com/yanglab-emory/

TIGAR

CoMM Likelihood-

based

Single Individual No LMM https://github.com/gordonliu810822/

CoMM

CoMM-S2 Likelihood-

based

Single Summary No LMM https://github.com/gordonliu810822/

CoMM

PMR Likelihood-

based

Single Individual

/Summary

Yes LMM https://github.com/yuanzhongshang/PMR

UTMOST Two-stage Multiple Summary No LASSO & Ridge https://github.com/Joker-Jerome/

UTMOST

MultiXcan Two-stage Multiple Individual

/Summary

No Elastic net https://github.com/hakyimlab/MetaXcan

TisCoMM Likelihood-

based

Multiple Individual

/Summary

No LMM https://github.com/XingjieShi/TisCoMM

fQTL Two-stage Multiple Summary No BVSR https://github.com/ypark/fqtl

FOCUS Gene-mapping Multiple

genes

Summary No https://github.com/bogdanlab/focus
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variants into TWAS applications model may have added

benefits. In addition, while cis-SNPs explain a substantial

fraction of gene expression heritability, the explained

expression heritability is nevertheless small. For example,

it is estimated that 70%–90% of gene expression

heritability is determined by trans-acting factors [7,71].

Therefore, incorporating trans-SNPs into TWAS applica-

tions may help improve association power. Finally, while

several multivariate TWAS methods have been developed

to accommodate multiple tissues, important statistical and

computational challenges remain in multivariate TWAS

modeling. For example, current multivariate TWAS

methods are either combining single-tissue association

results together in a relatively simple fashion (e.g.,

UTMOST) or are only capable to using a small subset

of tissues with overlapping samples (e.g., TisCoMM).

Modeling more tissues (e.g., 54 tissues in GTEx)

simultaneously may help us better understand the

transcriptomic mechanism underlying disease etiology.

Besides the extensions towards multiple tissues and

genes, multivariate TWAS analysis can also be extended

towards multiple phenotypes. Multiple phenotypes ana-

lyses are widely employed in GWASs and have been

proven to be more powerful than testing each phenotype

at a time by considering the correlation across pheno-

types. Incorporating multiple correlated phenotypes into

TWASmay become a potential way to discover genes that

are associated with multiple phenotypes. However, this

practice needs more investigations due to the complexity

of phenotypic structures.

Finally, we caution that, while we have followed the

previous MR literature and use “causal effect” through the

text, the effect is causal only when certain MR modeling

assumptions hold. These MR assumptions are often not

straightforward to prove. For example, without measuring

all potential confounders, it is not straightforward to argue

that the SNP instruments are not associated with any other

confounders that may be associated with both exposure

and outcome. Therefore, we caution against the over-

interpretation of causal inference in observation studies

such as TWAS applications. However, we do believe MR

is an important step that allows us to move beyond

standard linear regressions and is an important analysis

that can provide potentially more trustworthy evidence

with regard to causality compared to simpler approaches.

In summary, we hope that our review could serve as a

useful reference for understanding TWAS from the MR

perspective and provide researchers useful information

for the future development of TWAS methods.
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