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Learning High-Dimensional Differential Graphs

From Multi-Attribute Data
Jitendra K. Tugnait

Abstract—We consider the problem of estimating differences
in two Gaussian graphical models (GGMs) which are known to
have similar structure. The GGM structure is encoded in its
precision (inverse covariance) matrix. In many applications one
is interested in estimating the difference in two precision matrices
to characterize underlying changes in conditional dependencies
of two sets of data. Existing methods for differential graph
estimation are based on single-attribute (SA) models where one
associates a scalar random variable with each node. In multi-
attribute (MA) graphical models, each node represents a random
vector. In this paper, we analyze a group lasso penalized D-
trace loss function approach for differential graph learning
from multi-attribute data. An alternating direction method of
multipliers (ADMM) algorithm is presented to optimize the
objective function. Theoretical analysis establishing consistency
in support recovery and estimation in high-dimensional settings
is provided. Numerical results based on synthetic as well as real
data are presented.

Index Terms—Sparse graph learning; differential graph esti-
mation; undirected graph; multi-attribute graphs.

I. INTRODUCTION

G
RAPHICAL models provide a powerful tool for analyz-

ing multivariate data [1], [2]. In a statistical graphical

model, the conditional statistical dependency structure among

p random variables x1, x1, · · · , xp, is represented using an

undirected graph G = (V, E), where V = {1, 2, · · · , p} = [p]
is the set of p nodes corresponding to the p random variables

xis, and E ⊆ V × V is the set of undirected edges describing

conditional dependencies among the components of x. The

graph G then is a conditional independence graph (CIG) where

there is no edge between nodes i and j (i.e., {i, j} 6∈ E) iff

xi and xj are conditionally independent given the remaining

p-2 variables xℓ, ℓ ∈ [p], ℓ 6= i, ℓ 6= j. In particular, Gaussian

graphical models (GGMs) are CIGs where x is multivariate

Gaussian. Suppose x has positive-definite covariance matrix

Σ with inverse covariance matrix Ω = Σ
−1. Then Ωij , the

(i, j)-th element of Ω, is zero iff xi and xj are conditionally

independent. Such models for x have been extensively studied.

Given n samples of x, in high-dimensional settings where

p ≫ 1 and/or n is of the order of p, one estimates Ω under

some sparsity constraints; see [3]–[6].

More recently there has been increasing interest in differ-

ential network analysis where one is interested in estimating

the difference in two inverse covariance matrices [7]–[9].

Given observations x and y from two groups of subjects,

J.K. Tugnait is with the Department of Electrical & Computer Engineer-
ing, 200 Broun Hall, Auburn University, Auburn, AL 36849, USA. Email:
tugnajk@auburn.edu .

This work was supported by the National Science Foundation Grants ECCS-
2040536 and CCF-2308473.

one is interested in the difference ∆ = Ωy − Ωx, where

Ωx = (E{xx⊤})−1 and Ωy = (E{yy⊤})−1. The associated

differential graph is G∆ = (V, E∆) where {i, j} ∈ E∆ iff

∆ij 6= 0. It characterizes differences between the GGMs of

the two sets of data. We use the term differential graph as

in [10], [11] ( [7]–[9] use the term differential network). As

noted in [9], in biostatistics, the differential network/graph

describes the changes in conditional dependencies between

components under different environmental or genetic condi-

tions. For instance, one may be interested in the differences

in the graphical models of healthy and impaired subjects, or

models under different disease states, given gene expression

data or functional MRI signals [3], [12], [13].

In the preceding graphs, each node represents a scalar

random variable. In many applications, there may be more

than one random variable associated with a node. This class

of graphical models has been called multi-attribute (MA)

graphical models in [14]–[17] and vector graphs or networks

in [18]–[21]. In a gene regulatory network, one may have

different molecular profiles available for a single gene, such

as protein, DNA and RNA. Since these molecular profiles are

on the same set of biological samples, they constitute multi-

attribute data for gene regulatory graphical models in [14],

[16]. Consider p jointly Gaussian vectors zi ∈ R
m, i ∈ [p].

We associate zi with the ith node of graph G = (V, E),
V = [p], E ⊆ V ×V . We now have m attributes per node. Now

{i, j} ∈ E iff vectors zi and zj are conditionally independent

given the remaining p-2 vectors {zℓ , ℓ ∈ V \{i,j}}. Let

x = [z⊤
1 z⊤

2 · · · z⊤
p ]⊤ ∈ R

mp. Let Ω = (E{xx⊤})−1

assuming E{xx⊤} ≻ 0. Define the m×m subblock Ω
(ij) of

Ω as [Ω(ij)]rs = [Ω](i−1)m+r,(j−1)m+s , r, s = 1, 2, · · · ,m.

Then we have the following equivalence [16, Sec. 2.1]

{i, j} 6∈ E ⇔ Ω
(ij) = 0 . (1)

This paper is concerned with estimation of differential

graphs from multi-attribute data. Given independent and iden-

tically distributed (i.i.d.) samples x(t), t = 1, 2, · · · , nx,

of x = [z⊤
1 z⊤

2 · · · z⊤
p ]⊤ ∈ R

mp where zi ∈ R
m,

i ∈ [p], are jointly Gaussian, and similarly given samples y(t),
t = 1, 2, · · · , ny , of y ∈ R

mp, our objective is to estimate the

difference ∆ = Ωy−Ωx, and determine the differential graph

G∆ = (V, E∆) with edgeset E∆ = {{k, ℓ} : ‖∆(kℓ)‖F 6= 0}.

A. Related Work

All prior work on high-dimensional differential graph es-

timation from i.i.d. samples addresses single-attribute (SA)

models where each node represents a scalar random variable.

One naive approach would be to estimate the two precision
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matrices separately by any existing estimator (see [4], [5]

and references therein) and then calculate their difference

to estimate the differential graph. (This approach is also

applicable to MA graphs.) This approach estimates twice the

number of parameters, hence needs larger sample sizes for

same accuracy, and also imposes sparsity constraints on each

precision matrix for the methods to work. The same comment

applies to methods such as [3], [6], where the two precision

matrices and their differences are jointly estimated. A recent

survey is in [22]. In these approaches, given K ≥ 2 related

groups of data, each p-variate and sharing the same set of

nodes V , but possibly differing in connected edgesets, the

objective is to jointly estimate the K precision matrices and

their pairwise differences, with sparsity constraints on each

of the K precision matrices and their pairwise differences.

These approaches require each of the K precision matrices

to be sparse. If only the differences in the precision matrices

is of interest, alternative approaches exist where no sparsity

constraints are imposed on individual precision matrices. For

instance, direct estimation of the difference in the two pre-

cision matrices has been considered for SA graphs in [7]–

[9], [12], [23]–[28], where only the difference is required to

be sparse, not the two individual precision matrices. In [7]–

[9], [23], [24], [28] precision difference matrix estimators

are based on a D-trace loss [29], while [12] discusses a

Dantzig selector type estimator. In [25]–[27] differential graph

is estimated by directly modeling the ratio of the probability

densities of the random vectors under the two graphs.

Estimation of MA differential graphs has not been in-

vestigated before. The work of [10], [11] is similar to an

MA formulation except that in [10], [11], x(t) and y(t)
are non-stationary (“functional” modeling), and instead of a

single record (sample) of x(t), t = 1, 2, · · · , nx and y(t),
t = 1, 2, · · · , ny , as in this paper, they assume multiple

independent observations of x(t), t ∈ T (a closed subset of

real line), and y(t), t ∈ T . The objective function in [11,

Eqns. (10)-(11)] is the same as our objective function (3)-(4),

but consequent estimation of edges and theoretical analysis are

vastly different. We estimate edges as in (6), i.e., our threshold

is set at zero and this is the method analyzed in our Theorem

1(iv) for graph recovery with high probability. In [10], [11],

this threshold is set at a parameter ǫn > 0 (see [11, Eqn.

(13)]) which is a function of sample size n, number of nonzero

entries in true ∆, smallest eigenvalues of true covariances Ω−1
y

and Ω
−1
x (in our notation), and several other factors. That is,

ǫn is unknowable for practical implementation and it is used

as a theoretical construct to establish graph support recovery

in [11, Theorem 10]. In simulations, [10], [11] set ǫn = 0.

That is, [10], [11] do not analyze what they implement (the

proof does not hold for ǫn = 0), and they do not implement

what they analyze (ǫn is unknowable). There is no counterpart

to our Theorem 1 in [10], [11], and the methodology of our

Theorem 1 allows us to set the edge detection threshold to

zero. Our Theorem 2 follows the general framework of [30]

to bound the Frobenius norm of the error in estimating ∆,

and [10], [11] also follow the general framework of [30] for

the same purpose. But their extension of this result to graph

recovery does not permit zero threshold for edge detection.

We attempt no such extension.

B. Our Contributions

In this paper, we analyze a group lasso penalized D-

trace loss function approach for differential graph learning

from MA data, extending the SA approach of [8], [28]. A

two-block ADMM algorithm is presented to optimize the

objective function. The two-block ADMM is guaranteed to

be convergent unlike the three-block ADMM method used in

[8]. Two different approaches to theoretical analysis of the

proposed approach in high-dimensional settings are presented.

Theorem 1 follows the approach(es) of [8], [16], [28], [29],

[31] while Theorem 2 follows the general framework of [30],

not used in [8], [28]. The general method of [31] requires an

irrepresentability condition (see (20)) which is also required

in [8], [28] for SA graphs, but is not needed by the method

of [30], hence in our Theorem 2. Numerical results based on

synthetic as well as real data are presented.

Preliminary version of parts of this paper appear in a

conference paper [32]. Theorem 2, proof of Theorem 1 and

real data example do not appear in [32].

C. Outline and Notation

The rest of the paper is organized as follows. A group lasso

penalized D-trace loss function is presented in Sec. II for

estimation of multi-attribute differential graph. An ADMM

algorithm is presented in Sec. III to optimize the convex

objective function. In Sec. IV we analyze the properties of

the estimator of the difference ∆ = Ωy − Ωx. Theorem 1

follows the approach(es) of [8], [16], [28], [29], [31] while

Theorem 2 follows the general framework of [30]. The general

method of [31] requires an irrepresentability condition (see

(20)) which is not needed by the method of [30]. On the other

hand, our Theorem 2 does not have a result like Theorem 1(ii),

the oracle property, nor does it have a result as in Theorem

1(iv), support recovery. Numerical results based on synthetic

as well as real data are presented in Sec. V to illustrate the

proposed approach. Proofs of Theorems 1 and 2 are given in

Appendices A and B, respectively.

For a set V , |V | or card(V ) denotes its cardinality. Given

A ∈ R
p×p, we use φmin(A), φmax(A), |A| and tr(A)

to denote the minimum eigenvalue, maximum eigenvalue,

determinant and trace of A, respectively. For B ∈ R
p×q ,

we define ‖B‖ =
√

φmax(B⊤B), ‖B‖F =
√

tr(B⊤B),
‖B‖1 =

∑

i,j |Bij |, where Bij is the (i, j)-th element of

B (also denoted by [B]ij), ‖B‖∞ = maxi,j |Bij | and

‖B‖1,∞ = maxi
∑

j |Bij |. The symbols ⊗ and ⊠ denote

Kronecker product and Tracy-Singh product [33], respectively.

In particular, given block partitioned matrices A = [Aij ]
and B = [Bkℓ] with submatrices Aij and Bkℓ, Tracy-Singh

product yields another block partitioned matrix A ⊠ B =
[Aij ⊠ B]ij = [[Aij ⊗ Bkℓ]kℓ]ij [34]. Given A = [Aij ] ∈
R

mp×mp with Aij ∈ R
m×m, vec(A) ∈ R

m2p2

denotes the

vectorization of A which stacks the columns of the matrix A,

and

bvec(A) = [(vec(A11))
⊤ (vec(A21))

⊤ · · · (vec(Ap1))
⊤

(vec(A12))
⊤ · · · (vec(Ap2))

⊤ · · · (vec(App))
⊤]⊤.
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Let S = E∆ = {{k, ℓ} : ‖∆(kℓ)‖F 6= 0} where ∆ =
[∆(kℓ)] ∈ R

mp×mp with ∆
(kℓ) ∈ R

m×m denoting the (k, l)th
m ×m submatrix of ∆. Then ∆S denotes the submatrix of

∆ with block rows and columns indexed by S, i.e., ∆S =
[∆(kℓ)](k,ℓ)∈S . Suppose Γ = A ⊠B given block partitioned

matrices A = [Aij ] and B = [Bkℓ]. For any two subsets T1

and T2 of V × V , ΓT1,T2
denotes the submatrix of Γ with

block rows and columns indexed by T1 and T2, i.e., ΓT1,T2 =
[Ajℓ ⊗Bkq](j,k)∈T1,(ℓ,q)∈T2

. Following [16], an operator C(·)
is used in Sec. IV. Consider A ∈ R

mp×mp with (k, l)th m×m
submatrix A(kℓ). Then C(·) operates on A as






A(11) · · · A(1p)

...
. . .

...

A(p1) · · · A(pp)







C(·)

−−→







‖A(11)‖F · · · ‖A(1p)‖F
...

. . .
...

‖A(p1)‖F · · · ‖A(pp)‖F







with C(A(kℓ)) = ‖A(kℓ)‖F and C(A) ∈ R
p×p. Now con-

sider A1,A2 ∈ R
mp×mp with (k, l)th m × m submatri-

ces A
(kℓ)
1 and A

(kℓ)
2 , respectively, and Tracy-Singh product

A1 ⊠ A2 ∈ R
(mp)2×(mp)2 . Then C(·) operates on A1 ⊠ A2

as C(A1 ⊠ A2) ∈ R
p2×p2

with C(A
(k1ℓ1)
1 ⊗ A

(k2ℓ2)
2 ) =

‖A(k1ℓ1)
1 ⊗ A

(k2ℓ2)
2 ‖F (=‖A(k1ℓ1)

1 ‖F ‖A(k2ℓ2)
2 ‖F ). That is,

each m2 × m2 submatrix A
(k1ℓ1)
1 ⊗ A

(k2ℓ2)
2 of A1 ⊠ A2 is

mapped into its Frobenius norm.

II. GROUP LASSO PENALIZED D-TRACE LOSS

Let x = [z⊤
1x z⊤

2x · · · z⊤
px]

⊤ ∈ R
mp where zix ∈ R

m,

i ∈ [p], are zero-mean, jointly Gaussian. Similarly, let y =
[z⊤

1y z⊤
2y · · · z⊤

py]
⊤ ∈ R

mp where ziy ∈ R
m, i ∈ [p],

are zero-mean, jointly Gaussian. Given i.i.d. samples x(t),
t = 1, 2, · · · , nx, of x, and similarly given i.i.d. samples y(t),
t = 1, 2, · · · , ny , of y ∈ R

mp, form the sample covariance

estimates

Σ̂x =
1

nx

nx
∑

t=1

x(t)x⊤(t) , Σ̂y =
1

ny

ny
∑

t=1

y(t)y⊤(t) . (2)

and denote their true values as Σ
∗
x = Ω

−∗
x (= (Ω∗

x)
−1) and

Σ
∗
y = Ω

−∗
y . Assume that {x(t)} and {y(t)} are mutually

independent sequences. Assume Σ
∗
x and Σ

∗
y are positive

definite. We wish to estimate ∆ = Ω
∗
y − Ω

∗
x and graph

G∆ = (V, E∆), based on Σ̂x and Σ̂y . Following the SA

formulation of [8] (see also [28, Sec. 2.1]), we will use a

convex D-trace loss function given by

L(∆, Σ̂x, Σ̂y) =
1

2
tr(Σ̂x∆Σ̂y∆

⊤)− tr(∆(Σ̂x − Σ̂y)) (3)

where D-trace refers to difference-in-trace loss function, a term

coined in [29] in the context of graphical model estimation.

The function L(∆,Σ∗
x,Σ

∗
y) is strictly convex in ∆ (its

Hessian w.r.t. vec(∆) is Σ∗
y⊗Σ

∗
x), and has a unique minimum

at ∆∗ = Ω
∗
y−Ω

∗
x [8], [28]. When we use sample covariances,

we propose to estimate ∆ by minimizing the group-lasso

penalized loss function

Lλ(∆, Σ̂x, Σ̂y) = L(∆, Σ̂x, Σ̂y) + λ

p
∑

k,ℓ=1

‖∆(kℓ)‖F (4)

where λ > 0 is a tuning parameter and ‖∆(kℓ)‖F promotes

blockwise sparsity in ∆ [35]–[37] where, if we partition ∆

into m×m submatrices, ∆(kℓ) denotes its (k, ℓ)th submatrix,

associated with edge {k, ℓ} of the differential graph G∆ =
(V, E∆).

For SA models (m = 1), [28] has used the lasso-penalized

loss function LJ(∆) = L(∆, Σ̂x, Σ̂y) + λ
∑p

k,ℓ=1

∣

∣∆kℓ

∣

∣.

The cost LJ(∆) is optimized in [28] using a two-block

ADMM approach which is known to be convergent. The

resulting estimator ∆̂ that minimizes the above cost is not

necessarily symmetric. To obtain a symmetric estimator for

SA models, [8] proposes the lasso-penalized loss function

LY (∆) = 1
4 tr(Σ̂x∆Σ̂y∆

⊤ + Σ̂y∆Σ̂x∆
⊤) − tr(∆(Σ̂x −

Σ̂y)) + λ
∑p

k,ℓ=1

∣

∣∆kℓ

∣

∣. In [8], cost LY (∆) is optimized

using a three-block ADMM method which is not necessarily

convergent.

Suppose

∆̂ = argmin
∆

Lλ(∆, Σ̂x, Σ̂y) . (5)

Even though ∆ is symmetric, ∆̂ is not. We can symmetrize

it by setting ∆̂sym = 1
2 (∆̂ + ∆̂

⊤), after obtaining ∆̂. Then

the differential graph edges are estimated as

Ê∆ =
{

{k, ℓ} : ‖∆̂(kℓ)
sym‖F > 0

}

. (6)

III. OPTIMIZATION

The objective function Lλ(∆, Σ̂x, Σ̂y), given by (4), is

strictly convex. Several existing approaches such as an al-

ternating direction method of multipliers (ADMM) [38] or

proximal gradient descent (PGD) methods [39], can be fol-

lowed to minimize (4). Note that [8], [28] use ADMM while

[9] uses a proximal gradient method, all for SA graphs. It is

stated in [8, Sec. 2.2] that in their simulation example, ADMM

approach yielded a slightly smaller value of the objective

function compared to the PGD approach. In [10], [11], similar

to [9], a proximal gradient method is used for an objective

function similar to our (4). In this paper, motivated by [8],

we will develop an ADMM method. In a simulation example

(Sec. V-A) we compare our ADMM approach with ADMM

and PGD approaches of [28] and [9], [11], respectively.

A. ADMM Approach

Similar to [28] (also [8]), we use an ADMM approach [38]

with variable splitting. Using variable splitting, consider

min
∆,W

{

L(∆, Σ̂x, Σ̂y) + λ

p
∑

k,ℓ=1

‖W (kℓ)‖F
}

(7)

subject to ∆ = W .

The scaled augmented Lagrangian for this problem is [38]

Lρ =L(∆, Σ̂x, Σ̂y) + λ

p
∑

k,ℓ=1

‖W (kℓ)‖F

+
ρ

2
‖∆−W +U‖2F (8)

where U is the dual variable, and ρ > 0 is the penalty param-

eter. Given the results ∆
(i),W (i),U (i) of the ith iteration,

in the (i + 1)st iteration, an ADMM algorithm executes the

following three updates:
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(a) ∆
(i+1) ← argmin∆ La(∆), La(∆) :=

L(∆, Σ̂x, Σ̂y) +
ρ
2‖∆−W (i) +U (i)‖2F .

(b) W (i+1) ← argminW Lb(W ), Lb(W ) :=
λ
∑p

k,ℓ=1 ‖W (kℓ)‖F + ρ
2‖∆(i+1) −W +U (i)‖2F .

(c) U (i+1) ← U (i) +
(

∆
(i+1) −W (i+1)

)

.

Update (a): Differentiate La(∆) w.r.t. ∆ to obtain

0 =
∂La(∆)

∂∆
= Σ̂x∆Σ̂y − (Σ̂x − Σ̂y) + ρ(∆−W +U)

(9)

⇒(Σ̂y ⊗ Σ̂x + ρI)vec(∆) = vec(Σ̂x − Σ̂y + ρ(W −U))
(10)

Direct matrix inversion solution of (10) requires inversion of

a (mp)2 × (mp)2 matrix. A computationally cheaper solution

is given in [8], [28], as follows. Carry out eigendecomposition

of Σ̂x and Σ̂y as Σ̂x = QxDxQ
⊤
x , QxQ

⊤
x = I and

Σ̂y = QyDyQ
⊤
y , QyQ

⊤
y = I , where Dx and Dy are

diagonal matrices of the respective eigenvalues. Then ∆̂ that

minimizes La(∆) is given by

∆̂ =Qx

[

B ◦ [Q⊤
x

(

Σ̂x − Σ̂y + ρ(W −U)
)

Qy]
]

Q⊤
y (11)

where the symbol ◦ denotes the Hadamard product and B ∈
R

mp×mp organizes the diagonal of (Dy ⊗ Dx + ρI)−1 in

a matrix with Bjk = 1/([Dx]jj [Dy]kk + ρ). Note that the

eigendecomposition of Σ̂x and Σ̂y has to be done only once.

Thus

∆
(i+1) =Qx

[

B ◦ [Q⊤
x

(

Σ̂x − Σ̂y + ρ(W (i) −U (i))
)

Qy]
]

Q⊤
y

(12)

Update (b): Here we have the group lasso solution [35]–[37]

(W (kℓ))(i+1)

=
(

1− (λ/ρ)

‖(∆(i+1) +U (i))(kℓ)‖F

)

+
(∆(i+1) +U (i))(kℓ)

(13)

where (a)+ = max(0, a).
A pseudocode for the ADMM algorithm, MA-ADMM, used

in this paper is given in Algorithm 1 where we use the

stopping (convergence) criterion following [38, Sec. 3.3.1] and

varying penalty parameter ρ following [38, Sec. 3.4.1]. The

stopping criterion is based on primal and dual residuals being

small where, in our case, at (i + 1)st iteration, the primal

residual is given by ∆
(i+1)−W (i+1) and the dual residual by

ρ(i)(W (i+1) −W (i)). Convergence criterion is met when the

norms of these residuals are below primary and dual tolerances

τpri and τdual, respectively; see line 10 of Algorithm 1. In

turn, τpri and τdual are chosen using an absolute and relative

criterion as in line 10 of Algorithm 1 where τabs and τrel
are user chosen absolute and relative tolerances, respectively.

Line 10 of Algorithm 1 follows typical choices given in [38,

Sec. 3.4.1]. For all numerical results presented later, we used

ρ0 = 2, µ = 10, and τabs = τrel = 10−4.

We will compare our approach with three other approaches

in Sec. V-A. One of them is the single attribute (SA) based

ADMM approach (see [8], [28]. A pseudocode of our imple-

mentation of this approach, SA-ADMM, is in Algorithm 2

which differs from in Algorithm 1 only in line 8 where we

replace group lasso with elementwise lasso.

Algorithm 1 ADMM Algorithm MA-ADMM

Input: Data {x(t)}nx

t=1, x ∈ R
mp, and {y(t)}ny

t=1, y ∈ R
mp,

regularization and penalty parameters λ and ρ0, tolerances

τabs and τrel, variable penalty factor µ, maximum number

of iterations imax.

Output: estimated ∆̂sym and Ê∆.

1: Calculate sample covariances Σ̂x = 1
nx

∑nx

t=1 x(t)x
⊤(t)

and Σ̂y = 1
ny

∑ny

t=1 y(t)y
⊤(t).

2: Initialize: ∆(0) = U (0) = W (0) = 0, where ∆,U ,W ∈
R

(mp)×(mp), ρ(0) = ρ0.

3: Eigendecompose Σ̂x and Σ̂y as Σ̂x = QxDxQ
⊤
x and

Σ̂y = QyDyQ
⊤
y .

4: converged = FALSE, i = 0
5: while converged = FALSE AND i ≤ imax, do

6: Construct B ∈ R
mp×mp with Bjk =

1/([Dx]jj [Dy]kk + ρ(i).

7: Set ∆
(i+1) = Qx

[

B ◦ [Q⊤
x

(

Σ̂x − Σ̂y + ρ(W (i) −
U (i))

)

Qy]
]

Q⊤
y .

8: With (a)+ := max(0, a), A = (∆(i+1)+U (i))(kℓ) and

k, ℓ ∈ [p], update m×m subblocks of W as

(W (i+1))(kℓ) =
(

1− (λ/ρ)

‖A‖F

)

+
A(kℓ) .

9: Dual update U (i+1) = U (i) +
(

∆
(i+1) −W (i+1)

)

.

10: Check convergence. Set tolerances

τpri =mpτabs + τrel max(‖∆(i+1)‖F , ‖W (i+1)‖F )
τdual =mpτabs + τrel ‖U (i+1)‖F /ρ(i) .

Define ep = ‖∆(i+1) − W (i+1)‖F and ed =
ρ(i)‖W (i+1) − W (i)‖F . If (ep ≤ τpri) AND (ed ≤
τdual), set converged = TRUE .

11: Update penalty parameter ρ : If ep > µed, set ρ(i+1) =
2ρ(i), else if ed > µep, set ρ(i+1) = ρ(i)/2, otherwise

ρ(i+1) = ρ(i). We also need to set U (i+1) = U (i+1)/2
for ep > µed and U (i+1) = 2U (i+1) for ed > µep.

12: i ← i+ 1
13: end while

14: Set ∆̂sym = 1
2 (W+W⊤). If ‖∆̂(jk)

sym‖F > 0, assign edge

{j, k} ∈ Ê∆, else {j, k} 6∈ Ê∆.

Algorithm 2 ADMM Algorithm SA-ADMM

Input: As in Algorithm 1.

Output: Estimated ∆̂sym and Ê∆.

1: Follow lines 1-7 of Algorithm 1

2: With (a)+ := max(0, a), A = (∆(i+1) + U (i))(kℓ) and

k, ℓ ∈ [mp], update [W ]kℓ ∈ R as

[W (i+1)]kℓ =
(

1− (λ/ρ)
∣

∣[A]kℓ
∣

∣

)

+
[A]kℓ .

3: Follow lines 9-14 of Algorithm 1
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B. Proximal Gradient Descent Approach

It is a first-order method that is based on objective function

values and gradient evaluations. A pseudocode of the PGD

method of [11], MA-proximal, is in Algorithm 3, and that of

[9], SA-proximal, is in Algorithm 4. Algorithm 4 differs from

in Algorithm 3 only in line 8 where we replace group lasso

with element-wise lasso. For all numerical results presented

later, we used ǫ = 10−3 in line 7.

Algorithm 3 PGD Algorithm MA-PGD

Input: Data {x(t)}nx

t=1, x ∈ R
mp, and {y(t)}ny

t=1, y ∈ R
mp,

tolerance ǫ, maximum number of iterations imax

Output: Estimated ∆̂sym and Ê∆.

1: Calculate sample covariances Σ̂x = 1
nx

∑nx

t=1 x(t)x
⊤(t)

and Σ̂y = 1
ny

∑ny

t=1 y(t)y
⊤(t).

2: Set η = 1/
(

φmax(Σ̂x)φmax(Σ̂x)
)

. Initialize: ∆(0) = 0.

3: converged = FALSE, i = 0
4: while converged = FALSE AND i ≤ imax, do

5: Set A = ∆
(i) − η

(

Σ̂x∆
(i)
Σ̂y − (Σ̂x − Σ̂y)

)

.

6: For k, ℓ ∈ [p], update m×m subblocks as

(∆(i+1))(kℓ) =
(

1− λη

‖A‖F

)

+
A(kℓ) .

7: If
Lλ(∆

(i+1),Σ̂x,Σ̂y)−Lλ(∆
(i),Σ̂x,Σ̂y)

Lλ(∆(i),Σ̂x,Σ̂y)
≤ ǫ, set converged

= TRUE .

8: i ← i+ 1
9: end while

10: Set ∆̂sym = 1
2 (∆+∆

⊤). If ‖∆̂(jk)
sym‖F > 0, assign edge

{j, k} ∈ Ê∆, else {j, k} 6∈ Ê∆.

Algorithm 4 PGD Algorithm SA-PGD

Input: As in Algorithm 3

Output: Estimated ∆̂ and Ê∆
1: Follow lines 1-5 of Algorithm 3

2: For k, ℓ ∈ [mp], update

[∆(i+1)]kℓ =
(

1− λη
∣

∣[A]kℓ
∣

∣

)

+
[A]kℓ .

3: Follow lines 7-10 of Algorithm 3

C. Computational Complexity

The computational complexity of ADMM and PGD meth-

ods has been discussed in [9] for SA differential graphs, and

it is of the same order for MA graphs, because the difference

lies only in lasso versus group lasso, i.e., element-wise soft-

thresholding versus group-wise soft-thresholding. Noting that

we have mp×mp precision matrices, by [9], the computational

complexity of the ADMM approaches (our proposed and that

of [8], [28]) is O((mp)3) while that of the PGD methods

of [9], [11] is either O((mp)3) when as implemented in

Algorithms 3 and 4, or O((nx+ny)(mp)2) when an alternative

implementation of the cost gradient in line 5 of Algorithms 3

and 4 is used (see [9, Sec. 2.2]). For nx + ny ≥ mp, there is

no advantage to this alternative approach.

D. Convergence of ADMM

The objective function (4), is strictly convex. It is also

closed, proper and lower semi-continuous. Hence, for any fixed

ρ > 0, the (two-block) ADMM algorithm is guaranteed to

converge [38, Sec. 3.2], in the sense that we have primal

residual convergence to 0, dual residual convergence to 0,

and objective function convergence to the optimal value. For

varying ρ, the convergence of ADMM has not been proven,

but if we additionally impose ρ(i) = ρ(i0) > 0 for i ≥ i0 for

some i0, we have convergence [38, Sec. 3.4.1].

E. Model Selection

Following the lasso penalty work of [8] (who invokes [12]),

we use the following criterion for selection of group lasso

penalty:

BIC(λ) =(nx + ny) ‖Σ̂x∆̂Σ̂y − (Σ̂x − Σ̂y)‖F
+ ln(nx + ny) |∆̂|0 (14)

where |A|0 denotes number of nonzero elements in A and

∆̂ obeys (5). Choose λ to minimize BIC(λ). Following [8]

we term it BIC (Bayesian information criterion) even though

the cost function used is not negative log-likelihood although

ln(nx +ny) |∆̂|0 penalizes over-parametrization as in BIC. It

is based on the fact that true ∆
∗ satisfies Σ

∗
x∆

∗
Σ

∗
y − (Σ∗

x −
Σ

∗
y) = 0. Since (14) is not scale invariant, we scale both

Σ̂x and Σ̂y (and ∆̂ commensurately) by Σ̄
−1 where Σ̄ =

diag{Σ̂x} is a diagonal matrix of diagonal elements of Σ̂x.

In our simulations we search over λ ∈ [λℓ, λu], where λℓ

and λu are selected via a heuristic as in [17]. Find the smallest

λ, labeled λsm for which we get a no-edge model; then we

set λu = λsm/2 and λℓ = λu/10.

IV. THEORETICAL ANALYSIS

Here we analyze the properties of ∆̂. Theorem 1 follows

the approach(es) of [8], [16], [28], [29], [31] while Theorem 2

follows the general framework of [30]. The general method of

[31] used in [8], [16], [28], [29] requires an irrepresentability

condition (see (20)) which is not needed by the method of

[30]. On the other hand, our Theorem 2 does not have a result

like Theorem 1(ii), the oracle property, or support recovery

Theorem 1(iv).

First some notation. Define the true differential edgeset

S =E∆∗ = {{k, ℓ} : ‖∆∗(kℓ)‖F 6= 0} , s = |S| . (15)

Define

Γ
∗ = Σ

∗
y ⊠Σ

∗
x , Γ̂ = Σ̂y ⊠ Σ̂x . (16)

Also, recall the operator C(·) defined in Sec. I-C. In the rest of

this section, we allow p, s and λ to be a functions of sample

size n, denoted as pn, sn and λn, respectively. Define

M = max{‖C(Σ∗
x)‖∞ , ‖C(Σ∗

y)‖∞} , (17)

MΣ = max{‖C(Σ∗
x)‖1,∞ , ‖C(Σ∗

y)‖1,∞} , (18)

κΓ = ‖C(Γ∗
S,S)

−1‖1,∞ , (19)

α = 1−max
e∈Sc

‖C(Γ∗
e,S(Γ

∗
S,S)

−1)‖1 , (20)

σ̄xy = max{max
i

[Σ∗
x]ii, max

i
[Σ∗

y]ii} (21)

C0 = 40mσ̄xy

√

2
(

τ + ln(4m2)/ ln(pn)
)

(22)

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3343553

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Auburn University. Downloaded on December 15,2023 at 22:51:20 UTC from IEEE Xplore.  Restrictions apply. 



6

where S and Γ
∗ have been defined in (15) and (16). In (20),

we require 0 < α < 1, and the expression

max
e∈Sc

‖C(Γ∗
e,S(Γ

∗
S,S)

−1)‖1 ≤ 1− α

for some α ∈ (0, 1) is called the irrepresentability condition.

Similar conditions are also used in [8], [16], [28], [29], [31].

Let ∆̂ be as in (5).

Theorem 1. For the system model of Sec. II, under (15) and

the irrepresentability condition (20) for some α ∈ (0, 1), if

λn = max
{ 8

α
,

3

αC̄α
snκΓMCMκ

}

C0

√

ln(pn)

n
(23)

n = min(nx, ny) > max
{ 1

min{M2, 1} , 81M2s2nκ
2
Γ,

9s2n
(αC̄α)2

(κΓMCMκ)
2
}

C2
0 ln(pn) (24)

where C̄α = 1−α
2(2M+1)−2αM and CMκ = 1.5

(

1 +

κΓ min{snM2,M2
Σ}

)

, then with probability > 1 − 2/pτ−2
n ,

for any τ > 2, we have

(i) ‖C(∆̂−∆
∗)‖∞ ≤ (Cb1 + Cb2)C0

√

ln(pn)
n

where Cb1 =3κΓ max
{ 8

α
,

3

αC̄α
snκΓMCMκ

}

Cb2 =9snκ
2
ΓM

2 .

(ii) ∆̂Sc = 0.

(iii) ‖C(∆̂−∆
∗)‖F ≤ √

sn ‖C(∆̂−∆
∗)‖∞ .

(iv) Additionally, if min(k,ℓ)∈S ‖(∆∗)(kℓ)‖F ≥
2(Cb1 + Cb2)C0

√

ln(pn)
n , then P (G∆̂ = G∆∗) > 1 −

2/pτ−2
n (support recovery) •

The proof of Theorem 1 is given in Appendix A.

Now we present Theorem 2 that follows the general frame-

work of [30]. Let ∆̂ be as in (5).

Theorem 2. For the system model of Sec. II, under (15), if

λn ≥ (4 + 6MsnC1)C0

√

ln(pn)

n
(25)

n = min(nx, ny) > max
{ 1

M2
,
(96Msn

φ∗
min

)2
}

C2
0 ln(pn)

(26)

where C1 = max{k,ℓ}∈V×V ‖(∆∗)(kℓ)‖F and φ∗
min =

φmin(Σ
∗
x)φmin(Σ

∗
y), then with probability > 1−2/pτ−2

n , for

any τ > 2, we have

‖∆̂−∆
∗‖F ≤ 12

√
sn

φ∗
min

(4 + 6MsnC1)C0

√

ln(pn)

n
• (27)

The proof of Theorem 2 is given in Appendix B. Note that

‖C(∆̂ − ∆
∗)‖F = ‖∆̂ − ∆

∗‖F when comparing Theorems

1 and 2.

Remark 1: Convergence Rate. If M , MΣ and κΓ stay bounded

with increasing sample size n, we have ‖C(∆̂ − ∆
∗)‖F =

OP (s
1.5
n

√

ln(pn)/n). Therefore, for ‖C(∆̂ − ∆
∗)‖F → 0

as n → ∞, we must have s1.5n

√

ln(pn)/n → 0. The SA

results in [8] need s3.5n

√

ln(pn)/n → 0 when we take into

account the dependence of various constants on sn in [8].

Notice that MΣ constraints covariances Σ
∗
x and Σ

∗
y which

can be dense even if Ω
∗
x and Ω

∗
y are sparse (they need not

be sparse for differential estimation), making them possibly

unbounded with increasing sample size n. In this case we

use min{snM2,M2
Σ} = snM

2 in CMκ and Cb1, with M
bounded, leading to ‖C(∆̂−∆

∗)‖F = OP (s
2.5
n

√

ln(pn)/n).

On the other hand, in Theorem 2, we always have ‖C(∆̂ −
∆

∗)‖F = OP (s
1.5
n

√

ln(pn)/n). �

Remark 2: Our results assume Gaussian data. Theorems

1 and 2 continue to hold for more general sub-Gaussian

distributions (Gaussian distribution is a sub-Gaussian distri-

bution) except that the zeros in the precision matrix (see

(1)), or in the difference of two precision matrices, no longer

signify conditional independence (or change in conditional

independence) of the random vectors associated with the

respective nodes; they only imply zero partial correlation. We

state Lemma 1 in Appendix A for sub-Gaussian distributions,

following [31, Lemma 1]. Lemma 2 is then specialized to

Gaussian distributions by setting the sub-Gaussian parameter

σsg = 1. If σsg 6= 1, then the only changes required in

Theorems 1 and 2 is a scaling of C0 in (22) where one needs

to replace the factor of 40 with 8(1 + 4σ2
sg). �

Remark 3: Theorems 1 and 2 assume a constant number

of attributes m, with only p, s and λ allowed to be functions

of sample size n, and our Remark 1 reflects this fact. In terms

of m, the bounds in Theorem 1(i) and Theorem 2 are O(m3),
which follows from M = O(m) and CMκ = O(m2) in

Theorem 1, and M = O(m), C1 = O(m) and C0 = O(m) in

Theorem 2. Therefore, for large m, one would need much

higher number of samples n, and it is not clear how to

circumvent this bottleneck. A different class of models based

on matrix-valued graphical modeling [40]–[42] is a potential

solution. In a matrix graph set-up, one has matrix-valued

observations Z, which in our context would require attributes

(components of zi) to be arranged along rows and nodes

i along columns, with the covariance of vec(Z) having a

Kronecker-product structure. This structure drastically reduces

the number of unknowns from O((mp)2) to O(m2+p2). Prior

reported work ( [40]–[42]) is on matrix graph estimation, with

no reported work on differential matrix graphs. �

V. NUMERICAL EXAMPLES

We now present numerical results for both synthetic and

real data to illustrate the proposed approach. In synthetic

data examples the ground truth is known and this allows

for assessment of the efficacy of various approaches. In real

data examples where the ground truth is unknown, our goal

is visualization and exploration of the differential conditional

dependency structures underlying the data.

A. Synthetic Data: Erdös-Rènyi and Barabási-Albert Graphs

We consider two types of graphs: Erdös-Rènyi (ER) graph

and Barabási-Albert (BA) graph [43], [44]. The BA graphs

are an example of scale-free graphs with power law degree

distribution [43]. In the ER graph, p = 100 nodes are

connected to each other with probability per = 0.5 and

there are m = 3 attributes per node whereas in the BA

graph, we used p = 100 and mean degree of 2 to generate

a BA graph using the procedure given in [44] (MATLAB
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function BAmodel.m from https://github.com/ShanLu1984/

Scale-Free-Network-Generation-and-Comparison). In the up-

per triangular Ωx, we set [Ω
(jk)
x ]st = 0.5|s−t| for j = k =

1, · · · , p, s, t = 1, · · · ,m. For j 6= k, if the two nodes are not

connected in the graph (ER or BA), we have Ω
(jk) = 0, and

if nodes j and k are connected, then [Ω(jk)]st is uniformly

distributed over [−0.4,−0.1] ∪ [0.1, 0.4]. Then add lower tri-

angular elements to make Ωx a symmetric matrix. To generate

Ωy , we follow [8] and first generate a differential graph with

∆ ∈ R
(mp)×(mp) as an ER graph (regardless of whether Ωx

is based on ER or BA model), with connection probability

per = 0.05 (sparse): if nodes j and k are connected in the Ωx

model, then each of m2 elements of ∆
(jk) is independently

set to ±0.9 with equal probabilities. Then Ωy = Ωx + ∆.

Finally add γI to Ωy and to Ωx and pick γ so that Ωy

and Ωx are both positive definite. With ΦxΦ
⊤
x = Ω

−1
x , we

generate x = Φw with w ∈ R
mp as zero-mean Gaussian,

with identity covariance, and similarly for y. We generate

n = nx = ny i.i.d. observations for x and y, with m = 3,

p = 100, n ∈ {100, 200, 300, 400, 800, 1200, 1600}.
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Fig. 1: ROC curves for ER graph based on ADMM ap-

proaches. TPR=true positive rate, TNR=true negative rate
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Fig. 2: ROC curves for BA graph based on ADMM ap-

proaches. TPR=true positive rate, TNR=true negative rate

Simulation results based on 100 runs are shown in Figs.

1-4. By changing the penalty parameter λ and determining

the resulting edges, we calculated the true positive rate (TPR)

and false positive rate 1-TNR (where TNR is the true negative

rate) over 100 runs. The receiver operating characteristic

(ROC) for ER graphs is shown in Fig. 1 for our MA-ADMM

approach (labeled “MA”) as well as for a SA-ADMM approach

(labeled “SA”), based on [28], where we first estimate an

mp-node differential graph, and then use ‖∆̂(kℓ)‖F 6= 0 ⇔
{{k, ℓ} ∈ E∆. It is seen from Fig. 1 that our MA-ADMM

approach outperforms the SA-ADMM approach (that uses the

same cost but element-wise lasso penalty instead of group-

lasso penalty). Fig. 2 is the counterpart of Fig. 1 for BA

graphs., and comments made regarding Fig. 1 apply here too.
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n=300:SA-proximal

n=800:MA-ADMM

n=800:MA-proximal

n=800:SA-proximal

Fig. 3: ROC curves for ER graph based on ADMM as well

as proximal approaches.

In Fig. 3 we compare ROC curves of our MA-ADMM

approach with that for the MA-proximal and SA-proximal

approaches of [11] and [9], respectively, for n = 300 and

800. It is seen that the MA-proximal approach outperforms our

MA-ADMM approach, while both significantly outperform the

SA-proximal approach (and the SA-ADMM approach whose

ROC curves are in Fig. 1). In Table I, for the ER graph

(n = 300, 800, p = 100, m = 3) we compare the four

approaches (MA-ADMM, SA-ADMM, MA-proximal, SA-

proximal) in terms of the F1 score, execution time (based

on tic-toc functions in MATLAB), TPR and 1-TNR, for

fixed penalty parameter λ selected from a grid of values (the

same as for computing the ROC curves) to maximize the F1

score averaged over 100 runs. All algorithms were run on

a Window 10 Pro operating system with processor Intel(R)

Core(TM) i7-10700 CPU @2.90 GHz with 32 GB RAM,

using MATLAB R2023a. Notice that while the MA-proximal

approach outperforms our MA-ADMM approach, it also takes

more than twice the computation time for the MA-ADMM

approach. Similarly, the SA-proximal approach takes more

than twice the computation time for the SA-ADMM approach.

The latter observation is consistent with the findings of [9].

In Table I, we also show results for n = 3000 and 6000 for

MA-ADMM and MA-proximal approaches in order to provide

further empirical validation of the theoretical results stated

in Theorem 1. Theorem 1 states that for sufficiently large

sample size n, one can recover the differential graph structure

exactly w.h.p. It is seen that the F1 score approaches one with

increasing n, implying graph support recovery, as claimed in

Theorem 1(iv). Note that Theorem 1(iv) holds w.h.p., not with

probability one, implying a nonzero probability of possibly

inexact graph recovery, yielding an F1-score less than 1 for

n = 3000, 6000. The sample sizes of n = 300, 800 are not

large enough to yield an F1-score close to 1. There is a lower

bound (24) on n for Theorem 1(iv) to hold w.h.p. The sample

sizes of n = 300, 800 are apparently less than bound (which

is not easily computable since it needs α and κΓ).
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Approach F1 score (±σ) timing (s) (±σ) TPR (±σ) 1-TNR (±σ)

n = 300

MA-ADMM 0.6152 ±0.0705 2.5044 ±0.2939 0.6067 ±0.1230 0.0184 ±0.0080
MA-proximal 0.6686 ±0.0639 6.6931 ±0.3743 0.6845 ±0.1253 0.0184 ±0.0085

SA-ADMM 0.4549 ±0.0332 0.1739 ±0.0173 0.5795 ±0.1132 0.0506 ±0.0186
SA-proximal 0.4772 ±0.0328 0.3517 ±0.0195 0.6263 ±0.1157 0.0524 ±0.0193

n = 800

MA-ADMM 0.8537 ±0.0491 2.1911 ±0.0639 0.9037 ±0.0703 0.0111 ±0.0041
MA-proximal 0.8898 ±0.0408 4.8277 ±0.2647 0.9526 ±0.0537 0.0009 ±0.0041

SA-ADMM 0.6336 ±0.0055 0.1510 ±0.0081 0.7468 ±0.1017 0.0316 ±0.0090
SA-proximal 0.6612 ±0.0401 0.2533 ±0.0143 0.7917 ±0.0931 0.0314 ±0.0090

n = 3000

MA-ADMM 0.9795 ±0.0152 2.1436 ±0.0624 0.9928 ±0.0018 0.0012 ±0.0041
MA-proximal 0.9914 ±0.0106 3.8312 ±0.3948 0.9964 ±0.0121 0.0007 ±0.0007

n = 6000

MA-ADMM 0.9914 ±0.0087 1.9459 ±0.0544 0.9997 ±0.0013 0.0008 ±0.0009
MA-proximal 0.9979 ±0.0037 3.517 ±0.1829 0.9998 ±0.0011 0.0002 ±0.0004

TABLE I: Comparisons among various approaches: Erdös-Rènyi graph, n = 300, 800, 3000, 6000, p = 100, m = 3. Tuning

parameter λ picked to yield the highest F1 score. Results based on 100 runs.

In Fig. 4 we show the results based on 100 runs for our

approach when BIC parameter selection method (Sec. III-E)

is applied in conjunction with the MA-ADMM approach. Here

we show the TPR, 1-TNR and F1 score values along with the

±σ error bars. The proposed approach works well both in

terms of F1 score and TPR vs 1-TNR.
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Fig. 4: BIC based results for ER graph: F1-scores, TPR and

1-TNR

B. Real Data: Beijing air-quality dataset [45]

Here we consider Beijing air-quality dataset [45],

[46], downloaded from https://archive.ics.uci.edu/ml/datasets/

Beijing+Multi-Site+Air-Quality+Data. This data set includes

hourly air pollutants data from 12 nationally-controlled air-

quality monitoring sites in the Beijing area from the Beijing

Municipal Environmental Monitoring Center, and meteorolog-

ical data in each air-quality site are matched with the nearest

weather station from the China Meteorological Administration.

The time period is from March 1st, 2013 to February 28th,

2017.The six air pollutants are PM2.5, PM10, SO2, NO2, CO,

and O3, and the meteorological data is comprised of five

features: temperature, atmospheric pressure, dew point, wind

speed, and rain; we did not use wind direction. Thus we have

eleven features. We used data from 8 sites: 4 suburban/rural

sites – Changping, Huairou, Shunyi, Dingling, and 4 urban

area stations – Aotizhongxin, Dongsi, Guanyuan, Gucheng

[46, Fig. 1]. The data are averaged over 24 hour period to

yield daily averages. We used one year of daily data resulting

in nx = ny = 365 days. The stations are used as attributes,

with m = 8 for comparison between years 2013-14 and 2014-

15, and m = 4 for comparison between suburban/rural sites

and urban sites using 2013-14 year data.

We pre-process the data as follows. Given ith feature data

zi(t) ∈ R
m, we transform it to z̄i(t) = ln(zi(t)/zi(t − 1))

and then detrend it (i.e., remove the best straight-line fit

using the MATLAB function detrend). Finally, we scale the

detrended scalar sequence to have a mean-square value of

one over nx or ny samples. The logarithmic transformation

and detrending of each feature sequence makes the sequence

closer to (univariate) stationary and Gaussian, while scaling

“balances” the possible wide variations in the scale of various

feature measurements. All temperatures were converted from

Celsius to Kelvin to avoid negative numbers, and if a value of

a feature is zero (e.g., wind speed), we added a small positive

number to it, so that the logarithmic transformation is well-

defined.

Fig. 5 shows the estimated differential graphs when com-

paring daily-averaged data from 2013-14 (x-data) to that from

2014-15 (y-data), with air-quality and meteorological variables

as p = 11 features measured at 8 monitoring sites (m=8). The

objective is to visualize and explore differential conditional

dependency relationships among the 11 variables, comparing

one year to another, to investigate if pollution reduction

measures have had any impact. Our intuition is that one does

not expect such rapid changes within a short period of one

year (see also [45]), therefore, our method should confirm our

intuition. Figs. 5(a)-(b) show estimated ‖∆̂(kℓ)‖F for various

edges {k, ℓ}, where it is unscaled in Fig. 5(a) but scaled in

Fig. 5(b) so that the largest ‖∆̂(kℓ)‖F (including k = ℓ) is

normalized to one. It is seen that differential graph weights are

essentially zero (very sparse), implying that there are no year-

to-year changes in the conditional dependency relationships

among the 11 variables. This observation conforms to the

findings of [45], [46]: no significant year-to-year changes.

We also estimated the MA graphs for each year separately

as ‖Ω̂(kℓ)
x ‖F and ‖Ω̂(kℓ)

y ‖F (shown in Figs. 5(c)-(d)), using

the approach of [17], and based on the individual estimates,

we computed the differential graph ‖Ω̂(kℓ)
y − Ω̂

(kℓ)
x ‖F (shown

in Figs. 5(e)-(f)). It is seen the separate-estimation approach
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(a) Proposed approach: ‖∆̂(kℓ)‖F ,
k, ℓ = 1, 2, · · · , 11

(b) Proposed approach: edges
{

{k, ℓ} : ‖∆̂(kℓ)‖F > 0
}

(c) ‖Ω̂
(kℓ)
x ‖F , k, ℓ = 1, 2, · · · , 11 [17]

(d) ‖Ω̂
(kℓ)
y ‖F , k, ℓ = 1, 2, · · · , 11 [17] (e) ‖Ω̂

(kℓ)
y − Ω̂

(kℓ)
x ‖F ( [17]) (f) Estimated edges

{

{k, ℓ} : ‖Ω̂
(kℓ)
y − Ω̂

(kℓ)
x ‖F > 0

}

Fig. 5: Differential graphs comparing Beijing air-quality datasets [45] for years 2013-14 and 2014-15: 8 monitoring stations

and 11 features (m = 8, p = 11, nx = ny = 365). The features are numbered 1-11 beginning PM2.5 (PM2.5) and moving

counter-clockwise in Fig. 5(b).

(a) Proposed approach: ‖∆̂(kℓ)‖F ,
k, ℓ = 1, 2, · · · , 11

(b) Proposed approach: edges
{

{k, ℓ} : ‖∆̂(kℓ)‖F > 0
}

(c) Estimated edges
{

{k, ℓ} : ‖Ω̂
(kℓ)
x ‖F > 0

}

[17]

(d) Estimated edges
{

{k, ℓ} : ‖Ω̂
(kℓ)
y ‖F > 0

}

[17]
(e) ‖Ω̂

(kℓ)
y − Ω̂

(kℓ)
x ‖F ( [17]) (f) Estimated edges

{

{k, ℓ} : ‖Ω̂
(kℓ)
y − Ω̂

(kℓ)
x ‖F > 0

}

Fig. 6: Differential graphs comparing Beijing air-quality datasets [45] acquired from two sets of monitoring stations, 4 stations

per set, year 2013-14: 4 monitoring stations and 11 features (m = 4, p = 11, nx = ny = 365).

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TSP.2023.3343553

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Auburn University. Downloaded on December 15,2023 at 22:51:20 UTC from IEEE Xplore.  Restrictions apply. 



10

does not yield a sparse differential graph, even though the two

individual graphs in Figs. 5(c)-(d) are not all that different.

Fig. 6 shows the estimated differential graphs when com-

paring daily-averaged data over the period 2013-14, from four

suburban/rural sites (x-data) to that from four urban sites (y-

data), with air-quality and meteorological variables as p = 11
features measured at two sets of 4 monitoring sites (m=4).

The objective again is to visualize and explore differential

conditional dependency relationships among the 11 variables,

but in this case comparing one subregion to another. There

are significant differences in meteorological conditions and

pollutant sources, levels and mutual interactions, among sub-

urban and urban areas [45], [46]. The suburban areas (located

toward north) are less polluted than the urban areas (located

toward south) [45], [46]. Automobile exhaust is the main cause

of NO2 which is likely to undergo a chemical reaction with

Ozone O3, thereby, lowering its concentration [46]. Cold, dry

air from the north reduces both dew point and PM2.5 particle

concentration in suburban areas while southerly wind brings

warmer and more humid air from the more polluted south

that elevates the PM2.5 concentration [45]. The urban stations

neighbor the south of Beijing which is heavily installed with

iron, steel and cement industries in Hebei province [45]. Figs.

6(a)-(b) show estimated ‖∆̂(kℓ)‖F for various edges {k, ℓ},

where it is unscaled in Fig. 6(a) but scaled in Fig. 6(b) so that

the largest ‖∆̂(kℓ)‖F (including k = ℓ) is normalized to one.

It is seen that quite a few of the differential graph weights

are significantly non-zero in Fig. 6(a), unlike that in Fig. 5(a),

implying significant differences in the conditional dependency

relationships among the 11 variables for suburban and urban

areas. This observation conforms to the findings of [45], [46].

The comments made regarding Figs. 5(c)-(f) apply as well to

Figs. 6(c)-(f).

VI. CONCLUSIONS

A group lasso penalized D-trace loss function approach

for differential graph learning from multi-attribute data was

presented. An ADMM algorithm was presented to optimize

the convex objective function. Theoretical analysis establishing

consistency of the estimator in high-dimensional settings was

performed. We tested the proposed approach on synthetic as

well as real data. In the synthetic data example, the multi-

attribute approach is shown to outperform a single-attribute

approach in correctly detecting the differential graph edges

with ROC as the performance metric.

APPENDIX A

TECHNICAL LEMMAS AND PROOF OF THEOREM 1

In this Appendix, we provide a proof of Theorem 1. A

necessary and sufficient condition for minimization of convex

Lλ(∆, Σ̂x, Σ̂y) given by (4) w.r.t. ∆ ∈ R
mp×mp is that ∆̂

minimizes (4) iff the zero matrix belongs to the sub-differential

of Lλ(∆, Σ̂x, Σ̂y). That is,

0 =
∂L(∆, Σ̂x, Σ̂y)

∂∆
+ λZ(∆)

∣

∣

∣

∆=∆̂

=Σ̂x∆̂Σ̂y − (Σ̂x − Σ̂y) + λZ(∆̂) (28)

where Z(∆) ∈ ∂
∑p

k,ℓ=1 ‖∆(kℓ)‖F ∈ R
mp×mp, the sub-

differential of group lasso penalty term, is given by [36], [37]

(Z(∆))(kℓ)

=

{

∆
(kℓ)

‖∆(kℓ)‖F
if ‖∆(kℓ)‖F 6= 0

V ∈ R
m×m, ‖V ‖F ≤ 1, if ‖∆(kℓ)‖F = 0

. (29)

In terms of m × m submatrices of ∆, Σ̂x, Σ̂y and Z(∆)
corresponding to various graph edges, using bvec(ADB) =
(B⊤

⊠A)bvec(D) [33, Lemma 1], we may rewrite (28) as

(Σ̂y ⊠ Σ̂x)bvec(∆̂)− bvec(Σ̂x − Σ̂y) + λ bvec(Z(∆̂)) = 0

(30)

Then (30) can be rewritten as
[

Γ̂S,S Γ̂S,Sc

Γ̂Sc,S Γ̂Sc,Sc

] [

bvec(∆̂S)

bvec(∆̂Sc)

]

−
[

bvec((Σ̂x − Σ̂y)S)

bvec((Σ̂x − Σ̂y)Sc)

]

+ λ

[

bvec(Z(∆̂S))

bvec(Z(∆̂Sc))

]

=

[

0

0

]

. (31)

The general approach of [31] (followed in [8], [16], [28],

[29]) is to first solve the hypothetical constrained optimization

problem with known edgeset S

∆̃ = arg min
∆:∆Sc=0

Lλ(∆, Σ̂x, Σ̂y) (32)

where Sc is the complement of S. Since, by construction,

∆̃Sc = 0, in this case (31) reduces to

Γ̂S,Sbvec(∆̃S)− bvec((Σ̂x − Σ̂y)S) + λ bvec(Z(∆̃S)) = 0 .
(33)

In the approach of [31], one investigates conditions under

which the solution ∆̂ to (4) is the same as the solution ∆̃

to (32). This is done by showing that ∆̂ satisfies (31). The

choice ∆̂ = ∆̃ implies that ∆̂Sc = 0 and (33) is true with ∆̃

replaced with ∆̂. In order to satisfy (31), it remains to show

that for any edge e ∈ Sc, we have strict feasibility

‖Γ̂e,Sbvec(∆̃S)− bvec((Σ̂x − Σ̂y)e)‖2 < λ , (34)

where for a ∈ R
q , ‖a‖2 =

√
a⊤a. This requires a set of

sufficient conditions stated in Theorem 1.

Lemma 1 follows from [31, Lemma 1]. It is stated for more

general sub-Gaussian distributions as in [31, Lemma 1], but

will be used later for Gaussian distributions, a subset of sub-

Gaussian distributions.

Lemma 1. Suppose Σ̂ = (1/n)
∑n

t=1 x(t)x
⊤(t), given n

i.i.d. samples {x(t)}nt=1 of zero-mean sub-Gaussian x ∈ R
mp

with covariance Σ
∗ such that each component xi/

√

Σ∗
ii

is sub-Gaussian with parameter σsg . Define σmax =
max1≤i≤mpn

Σ∗
ii and

C̃0 = 8(1 + 4σ2
sg)mσmax

√

2
(

τ + ln(4m2)/ ln(pn)
)

. (35)

Then

P
(

‖C(Σ̂−Σ
∗)‖∞ > C̃0

√

ln(pn)/n
)

≤ 1/pτ−2
n (36)

for any τ > 2 and n > 2m2(ln(4m2) + τ ln(pn)). •
Proof. By [31, Lemma 1], with b = 8(1 + 4σ2

sg), we have

P
(

|[Σ̂−Σ
∗]ij | > δ

)

≤ 4 exp(−c∗nδ
2) (37)
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for any δ ∈ (0, b σmax) where c−1
∗ = 2b2σ2

max. For any

edge {k, ℓ} of the MA graph, with m2 edges {i, j} of the

corresponding SA graph associated with {k, ℓ}, using the

union bound, we have

P
(

|[C(Σ̂−Σ
∗)]kl| > δ

)

≤ P
(

max
{i,j}∈{k,ℓ}

([Σ̂−Σ
∗]ij)

2 >
δ2

m2

)

≤ m2P
(

|[Σ̂−Σ
∗]ij | >

δ

m

)

= 4m2 exp
(

− c∗n
δ2

m2

)

.

(38)

Applying the union bound once more over all p2n entries

P
(

‖C(Σ̂−Σ
∗)‖∞ > δ

)

≤ 4(mpn)
2 exp

(

− c∗n
δ2

m2

)

=: Ptb .

(39)

Choose δ = C̃0

√

ln(pn)/n = bmσmax

√

2 ln(4pτnm
2)/n .

Then we have

Ptb =4(mpn)
2 exp

(

ln(4pτnm
2)−1

)

= 1/pτ−2
n (40)

provided δ ∈ (0, bσmax). Therefore, we need to have

C̃0

√

ln(pn)/n < bσmax requiring n > 2m2(ln(4m2) +
τ ln(pn)). This completes the proof. �

Using the union bound, Lemma 1 and Gaussian assumption,

we have Lemma 2.

Lemma 2. Let Σ̂x and Σ̂y be as in (2), σ̄xy as in (21), C0 as in

(22) and assume data are Gaussian. Define n = min(nx, ny)
and

A =max
{

‖C(Σ̂x −Σ
∗
x)‖∞ , ‖C(Σ̂y −Σ

∗
y)‖∞

}

. (41)

Then for any τ > 2 and n > 2m2 ln(4m2pτn),

P
(

A > C0

√

ln(pn)/n
)

≤ 2/pτ−2
n • (42)

Proof. For Gaussian distribution, the sub-Gaussian parame-

ter σsg of Lemma 1 equals 1. Then 8(1 + 4σ2
sg) = 40.

Let C0x = 40m(maxi Σ
∗
x,ii)

√

2
(

τ + ln(4m2)/ ln(pn)
)

and

C0y = 40m(maxi Σ
∗
y,ii)

√

2
(

τ + ln(4m2)/ ln(pn)
)

(where

Σ∗
x,ii = [Σ∗

x)]ii, etc.). Then using Lemma 1 and union bound,

P
(

A > C0

√

ln(pn)/n
)

≤P
(

‖C(Σ̂x −Σ
∗
x)‖∞ > C0

√

ln(pn)/n
)

+ P
(

‖C(Σ̂y −Σ
∗
y)‖∞ > C0

√

ln(pn)/n
)

≤2/pτ−2
n (43)

since C0 ≥ C0x and C0 ≥ C0y . �

Recall (16)-(20) and define

∆x =Σ̂x −Σ
∗
x , ∆y = Σ̂y −Σ

∗
y , ∆Γ = Γ̂− Γ

∗ , (44)

∆Σ =∆x −∆y , ǫx = ‖C(∆x)‖∞ , (45)

ǫy =‖C(∆y)‖∞ , ǫ > max{ǫx, ǫy} . (46)

Lemma 3. Assume that

κΓ <
1

3sn(ǫ2 + 2Mǫ)
. (47)

Let (Γ−∗
S,S denotes (Γ∗

S,S)
−1)

R(∆Γ) =Γ̂
−1
S,S − Γ

−∗
S,S + Γ

−∗
S,S(∆Γ)S,SΓ

−∗
S,S . (48)

Then we have

‖C(R(∆Γ))‖∞ ≤ 3

2
κ3
Γsn(ǫ

2 + 2Mǫ)2 , (49)

‖C(R(∆Γ))‖1,∞ ≤ 3

2
κ3
Γs

2
n(ǫ

2 + 2Mǫ)2 , (50)

‖C(Γ̂−1
S,S − Γ

−∗
S,S)‖∞

≤ κ2
Γ(ǫ

2 + 2Mǫ)
(

1 + 1.5snκΓ(ǫ
2 + 2Mǫ)

)

, (51)

‖C(Γ̂−1
S,S − Γ

−∗
S,S)‖1,∞ ≤ sn‖C(Γ̂−1

S,S − Γ
−∗
S,S)‖∞ • (52)

Proof. We have

∆Γ =Σ̂y ⊠ Σ̂x −Σ
∗
y ⊠Σ

∗
x

=∆y ⊠∆x +Σ
∗
y ⊠∆x +∆y ⊠Σ

∗
x. (53)

By [16, Lemma 14],

‖C(AB)‖1,∞ ≤ ‖C(A)‖1,∞‖C(B)‖1,∞ (54)

and by [16, Lemma 15],

‖C(AB)‖∞ ≤ ‖C(A)‖∞‖C(B⊤)‖1,∞ . (55)

Since ‖A⊗B‖F = ‖A‖F ‖B‖F and A⊠B = [Aij⊠B]ij =
[[Aij ⊗Bkℓ]kℓ]ij , we have

‖C(A⊠B)‖∞ ≤ ‖C(A)‖∞‖C(B)‖∞ . (56)

From (17), (46), (53) and (56),

‖C(∆Γ)‖∞ ≤ ǫxǫy +Mǫx +Mǫy < ǫ2 + 2Mǫ (57)

and since |S| = sn,

‖C((∆Γ)S,S)‖1,∞ ≤ sn‖C((∆Γ)S,S)‖∞ ≤ sn‖C(∆Γ)‖∞
< sn(ǫ

2 + 2Mǫ) . (58)

By assumption (47),

κΓ‖C((∆Γ)S,S)‖1,∞ = ‖C((Γ∗
S,S)

−1)‖1,∞‖C((∆Γ)S,S)‖1,∞
<

1

3
. (59)

By (59) we can invoke [31, Lemma 5] to have

R(∆Γ) =Γ
−∗
S,S(∆Γ)S,SΓ

−∗
S,S(∆Γ)S,SJΓ

−∗
S,S (60)

where J =
∑∞

k=0(−1)k
(

Γ
−∗
S,S(∆Γ)S,S

)k
. Using (54), (55)

and (60), we have

‖C(R(∆Γ))‖∞ ≤ ‖C(Γ−∗
S,S(∆Γ)S,S)‖∞

× ‖C(Γ−∗
S,S(∆Γ)S,SJΓ

−∗
S,S)

⊤‖1,∞
≤ ‖C(Γ−∗

S,S)‖31,∞‖C((∆Γ)S,S)‖∞‖C((∆Γ)S,S)‖1,∞
× ‖C(J⊤)‖1,∞ . (61)

Now using (59),

‖C(J⊤)‖1,∞ ≤
∞
∑

k=0

‖C(Γ−∗
S,S)‖k1,∞‖C((∆Γ)S,S)‖k1,∞

=
1

1− ‖C(Γ−∗
S,S)‖1,∞‖C((∆Γ)S,S)‖1,∞

=
1

1− κΓ‖C((∆Γ)S,S)‖1,∞
(59)
<

1

1− (1/3)
=

3

2
. (62)
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Using (57), (59), (61) and (62), we have

‖C(R(∆Γ))‖∞ ≤ 3

2
κ3
Γsn‖C((∆Γ)S,S)‖2∞

<
3

2
κ3
Γsn(ǫ

2 + 2Mǫ)2 . (63)

This proves (49), from which (50) immediately follows.

Using (19), (48), (54), (55) and (57) we have

‖C(Γ̂−1
S,S − Γ

−∗
S,S)‖∞ ≤ ‖C(R(∆Γ))‖∞

+ ‖C(Γ−∗
S,S(∆Γ)S,SΓ

−∗
S,S)‖∞

≤ ‖C(R(∆Γ))‖∞ + ‖C(Γ−∗
S,S)‖21,∞‖C((∆Γ)S,S)‖∞

< κ2
Γ(ǫ

2 + 2Mǫ)
(

1 + 1.5snκΓ(ǫ
2 + 2Mǫ)

)

. (64)

This proves (51). The claim (52) follows by noting that |S| =
sn. This completes the proof. �

Lemma 4. Assume (47) and the following conditions:

0 < α < 1 where α is as in (20) , (65)

ǫ < min

{

M,
αλn

2(2− α)

}

, (66)

αCα min{λn, 1} ≥ 3snǫMκΓBs (67)

where

Cα =
αλn + 2ǫα− 4ǫ

2Mαλn + αλn + 2ǫα
, (68)

Bs =
[

1 + κΓ

(

3snǫM +min{snM2,M2
Σ}

)

×
(

4.5snǫMκΓ + 1
)

]

. (69)

Then we have

(i) bvec(∆̂Sc) = 0.

(ii) ‖C(∆̂ − ∆
∗)‖∞ ≤ 2λnκΓ + 3snǫMκ2

Γ

(

4.5snǫMκΓ +
1
)(

2M + 2λn

)

•
Proof. To establish part (i), we need to show that (34) is true.

Let d denote the left-side of (34). It follow from (33) that

bvec(∆̃S) =Γ̂
−1
S,S

(

bvec((Σ̂x − Σ̂y)S)− λ bvec(Z(∆̃S))
)

.

(70)

Substitute (70) in the left-side of (34) to yield

d =‖Γ̂e,S

[

Γ̂
−1
S,S

(

bvec((Σ̂x − Σ̂y)S)− λ bvec(Z(∆̃S))
)]

− bvec((Σ̂x − Σ̂y)e)‖2 . (71)

At the true values we have

0 =
∂Lλ(∆,Σ∗

x,Σ
∗
y)

∂∆

∣

∣

∣

∆=∆∗

= Σ
∗
x∆

∗
Σ

∗
y − (Σ∗

x −Σ
∗
y)

implying

Γ
∗bvec(∆∗)− bvec(Σ∗

x −Σ
∗
y) = 0 , (72)

which, noting that (∆∗)Sc = 0, can be rewritten as (cf. (31))

Γ
∗
S,Sbvec(∆∗

S) =bvec(Σ∗
x)S − bvec(Σ∗

y)S , (73)

Γ
∗
e,Sbvec(∆∗

S) =bvec(Σ∗
x)e − bvec(Σ∗

y)e . (74)

Therefore, (A−∗ = (A∗)−1),

Γ
∗
e,SΓ

−∗
S,S

(

bvec(Σ∗
x)S − bvec(Σ∗

y)S
)

− bvec(Σ∗
x)e + bvec(Σ∗

y)e = 0 . (75)

Recalling (44) and using (75) in (71),

d =‖Γ̂e,SΓ̂
−1
S,Sbvec((∆Σ)S)

+
(

Γ̂e,SΓ̂
−1
S,S − Γ

∗
e,SΓ

−∗
S,S

)(

bvec(Σ∗
x)S − bvec(Σ∗

y)S
)

− λ Γ̂e,SΓ̂
−1
S,Sbvec(Z(∆̃S))− bvec((∆Σ)e)‖2 . (76)

We now bound various terms in (76). Note that Γ̂e,S ∈
R

m2×(m2sn), Γ̂
−1
S,S ∈ R

(m2sn)×(m2sn), and bvec((∆Σ)S) ∈
R

m2sn where ∆Σ ∈ R
(mpn)×(mpn). Consider Ae,S ∈

R
m2×(m2sn). Then

‖Ae,Sbvec((∆Σ)S)‖2 = ‖
∑

f∈S

Ae,fvec((∆Σ)f )‖2 (77)

where edge f ∈ S, Ae,f ∈ R
m2×m2

and (∆Σ)f ∈ R
m×m.

By the triangle inequality

‖Ae,Sbvec((∆Σ)S)‖2 ≤
∑

f∈S

‖Ae,fvec((∆Σ)f )‖2 . (78)

With Bi. denoting the ith row of matrix B and using Cauchy-

Schwartz inequality, we have

‖Ae,fvec((∆Σ)f )‖2 =
(

m2
∑

i=1

(

[Ae,f ]i.vec((∆Σ)f )
)2
)1/2

≤
(

m2
∑

i=1

‖[Ae,f ]i.‖22 ‖vec((∆Σ)f )‖22
)1/2

= ‖vec((∆Σ)f )‖2
(

m2
∑

i=1

‖[Ae,f ]i.‖22
)1/2

= ‖vec((∆Σ)f )‖2 ‖Ae,f‖F . (79)

Therefore, using (78) and (79),

‖Ae,Sbvec((∆Σ)S)‖2 ≤
(

∑

f∈S

‖Ae,f‖F
)

max
g∈S

‖vec((∆Σ)g)‖2

= ‖C(Ae,S)‖1 ‖C(∆Σ)‖∞ . (80)

Using (80), we have

‖Γ̂e,SΓ̂
−1
S,Sbvec((∆Σ)S)‖2

≤ ‖C(Γ̂e,SΓ̂
−1
S,S)‖1 ‖C(∆Σ)‖∞ , (81)

‖
(

Γ̂e,SΓ̂
−1
S,S − Γ

∗
e,SΓ

−∗
S,S

)(

bvec(Σ∗
x)S − bvec(Σ∗

y)S
)

‖2
≤ ‖C(Γ̂e,SΓ̂

−1
S,S − Γ

∗
e,SΓ

−∗
S,S)‖1 ‖C(Σ∗

x −Σ
∗
y)‖∞ , (82)

‖Γ̂e,SΓ̂
−1
S,Sbvec(Z(∆̃S))‖2

≤ ‖C(Γ̂e,SΓ̂
−1
S,S)‖1 ‖C(Z(∆̃S))‖∞ , (83)

‖bvec((∆Σ)e)‖2 ≤ ‖C(∆Σ)‖∞ . (84)

By (29), (44) and (46)

‖C(Σ∗
x −Σ

∗
y)‖∞ ≤ ‖C(Σ∗

x)‖∞ + ‖C(Σ∗
y)‖∞ ≤ 2M , (85)

‖C(Z(∆̃S))‖∞ ≤ 1 , (86)

‖C(∆Σ)‖∞ ≤ ‖C(∆x)‖∞ + ‖C(∆y)‖∞ < 2ǫ . (87)

Using (76) and (81)-87),

d < 2ǫ‖C(Γ̂e,SΓ̂
−1
S,S)‖1 + 2M‖C(Γ̂e,SΓ̂

−1
S,S − Γ

∗
e,SΓ

−∗
S,S)‖1

+ λ ‖C(Γ̂e,SΓ̂
−1
S,S)‖1 + 2ǫ . (88)
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Therefore, d < λ for any edge e ∈ Sc if

Ub1 := max
e∈Sc

2M‖C(Γ̂e,SΓ̂
−1
S,S − Γ

∗
e,SΓ

−∗
S,S)‖1

+ 2ǫ(1 + ‖C(Γ̂e,SΓ̂
−1
S,S)‖1) ≤ αλn(1− Cα) , (89)

Ub2 := max
e∈Sc

‖C(Γ̂e,SΓ̂
−1
S,S)‖1 ≤ 1− (1− Cα)α . (90)

It remains to show that (89) and (90) are true under the

assumptions of Lemma 4. Since

Γ̂e,SΓ̂
−1
S,S − Γ

∗
e,SΓ

−∗
S,S = (Γ̂e,S − Γ

∗
e,S)Γ

−∗
S,S

+ Γ
∗
e,S(Γ̂

−1
S,S − Γ

−∗
S,S) + (Γ̂e,S − Γ

∗
e,S)(Γ̂

−1
S,S − Γ

−∗
S,S) , (91)

we have

‖C(Γ̂e,SΓ̂
−1
S,S − Γ

∗
e,SΓ

−∗
S,S)‖∞

≤ ‖C(Γ̂e,S − Γ
∗
e,S)‖∞‖C(Γ−∗

S,S)‖1,∞
+ ‖C(Γ∗

e,S)‖∞‖C(Γ̂−1
S,S − Γ

−∗
S,S)‖1,∞

+ ‖C(Γ̂e,S − Γ
∗
e,S)‖∞‖C(Γ̂−1

S,S − Γ
−∗
S,S)‖1,∞ . (92)

With edge e = {i, k} ∈ Sc and edge f = {j, ℓ} ∈ S, consider

Γ̂e,f − Γ
∗
e,f = Γ̂ik,jℓ − Γ

∗
ik,jℓ

= Σ̂
(ij)
y ⊗ Σ̂

(kℓ)
x −Σ

∗(ij)
y ⊗Σ

∗(kℓ)
x

= ∆
(ij)
y ⊗∆

(kℓ)
x +Σ

∗(ij)
y ⊗∆

(kℓ)
x +∆

(ij)
y ⊗Σ

∗(kℓ)
x . (93)

It then follows that

|C(Γ̂e,f − Γ
∗
e,f )| ≤ ‖∆(ij)

y ‖F ‖∆(kℓ)
x ‖F

+ ‖Σ∗(ij)
y ‖F ‖∆(kℓ)

x ‖F + ‖∆(ij)
y ‖F ‖Σ∗(kℓ)

x ‖F
≤ ǫyǫx +Mǫx +Mǫy < ǫ2 + 2Mǫ. (94)

Hence

‖C(Γ̂e,S − Γ
∗
e,S)‖∞ < ǫ2 + 2Mǫ , (95)

‖C(Γ̂e,S − Γ
∗
e,S)‖1 < sn(ǫ

2 + 2Mǫ). (96)

Since Γ
∗
e,f = Σ

∗(ij)
y ⊗Σ

∗(kℓ)
x , we have |Γ∗

e,f | ≤ M2 and

‖C(Γ∗
e,S)‖∞ ≤ M2, ‖C(Γ∗

e,S)‖1 ≤ snM
2 . (97)

Alternatively, with e = {i, k} ∈ Sc and f = {j, ℓ} ∈ S,

‖C(Γ∗
e,S)‖1 =

∑

f∈S

|C(Σ∗(ij)
y ⊗Σ

∗(kℓ)
x )|

≤
∑

{j,ℓ}∈S

‖Σ∗(ij)
y ‖F ‖Σ∗(kℓ)

x ‖F

≤ (

p
∑

j=1

‖Σ∗(ij)
y ‖F )(

p
∑

ℓ=1

‖Σ∗(kℓ)
x ‖F )

≤ ‖C(Σ∗
y)‖1,∞ ‖C(Σ∗

x)‖1,∞ ≤ M2
Σ . (98)

From (91)-(98) and Lemma 3, we have

‖C(Γ̂e,SΓ̂
−1
S,S − Γ

∗
e,SΓ

−∗
S,S)‖1

≤ ‖C(Γ̂e,S − Γ
∗
e,S)‖1‖C(Γ−∗

S,S)‖1,∞
+ ‖C(Γ∗

e,S)‖1‖C(Γ̂−1
S,S − Γ

−∗
S,S)‖1,∞

+ ‖C(Γ̂e,S − Γ
∗
e,S)‖1‖C(Γ̂−1

S,S − Γ
−∗
S,S)‖1,∞

≤ sn(ǫ
2 + 2Mǫ)κΓ +

[

min{snM2,M2
Σ}+ sn(ǫ

2 + 2Mǫ)
]

×
[

sn(ǫ
2 + 2Mǫ)κ2

Γ

](

1 + 1.5sn(ǫ
2 + 2Mǫ)κΓ

)

ǫ<M
≤ 3snǫMκΓBs ≤ αCα min{λn, 1} , (99)

where Bs is as in (69) and we used ǫ < M to infer ǫ2+2Mǫ <
3Mǫ. Using the triangle inequality |a| − |b| ≤ |a− b| ≤ |a|+
|b|, we have ‖C(Γ̂e,SΓ̂

−1
S,S −Γ

∗
e,SΓ

−∗
S,S)‖1 ≥ ‖C(Γ̂e,SΓ̂

−1
S,S)‖1

−‖C(Γ∗
e,SΓ

−∗
S,S)‖1 , which, using (65) and (99), leads to

‖C(Γ̂e,SΓ̂
−1
S,S)‖1 ≤ ‖C(Γ∗

e,SΓ
−∗
S,S)‖1 + αCα min{λn, 1}

≤ 1− α+ αCα min{λn, 1} ≤ 1− (1− Cα)α . (100)

This establishes (90). To show (89), using (99)-(100),

Ub1 ≤ 2MαCα min{λn, 1}+ 2ǫ(1 + 1− (1− Cα)α)

≤ 2MαCαλn + 2ǫ(2− (1− Cα)α)
(68)
= αλn(1− Cα) .

(101)

This proves (89), and thus, part (i) of Lemma 4.

We now turn to the proof of Lemma 4(ii). Since ∆̂ = ∆̃,

for any edge {k, ℓ} ∈ S, we have

‖(∆̂−∆
∗)(kℓ)‖F = ‖(∆̃−∆

∗)(kℓ)‖F
= ‖vec(∆̃(kℓ))− vec((∆∗)(kℓ))‖2 . (102)

Using (33) and (73)

bvec((∆̃−∆
∗)S) = Γ̂

−1
S,Sbvec((∆Σ)S) + (Γ̂−1

S,S − Γ
−∗
S,S)

× bvec((Σ∗
x −Σ

∗
y)S)− λnΓ̂

−1
S,S bvec(Z(∆̃S)) . (103)

Since Γ̂
−1
S,S = Γ̂

−1
S,S − Γ

−∗
S,S + Γ

−∗
S,S ,

‖C(Γ̂−1
S,S)‖1,∞ ≤ ‖C(Γ̂−1

S,S − Γ
−∗
S,S)‖1,∞ + ‖C(Γ−∗

S,S)‖1,∞ .

(104)

By (103), for any edge f = {k, ℓ} ∈ S, we have

‖vec((∆̃−∆
∗)(kℓ))‖2 ≤ ‖(Γ̂−1

S,S − Γ
−∗
S,S)f,S

× bvec
(

(∆Σ)S + (Σ∗
x −Σ

∗
y)S − λnZ(∆̃S)

)

‖2
+ ‖(Γ−∗

S,S)f,S bvec
(

(∆Σ)S − λnZ(∆̃S)
)

‖2

≤ ‖C(Γ̂−1
S,S − Γ

−∗
S,S)‖1,∞

(

‖C(∆Σ)‖∞ + ‖C(Σ∗
x −Σ

∗
y)‖∞

+ λn

)

+ ‖C(Γ−∗
S,S)‖1,∞

(

‖C(∆Σ)‖∞ + λn

)

≤ snκ
2
Γ(ǫ

2 + 2Mǫ)
(

1 + 1.5sn(ǫ
2 + 2Mǫ)κΓ

)

× (2ǫ+ 2M + λn) + κΓ(2ǫ+ λn) =: Ub3 . (105)

By (66), for 0 < α < 1, we have 2ǫ < αλn/(2−α) < αλn <
λn. Therefore, κΓ(2ǫ + λn) < 2κΓλn and 2ǫ + 2M + λn <
2M + 2λn. Since ǫ < M by (66), we also have ǫ2 + 2Mǫ <
3Mǫ. Using these relations and (105), it follows that

Ub3 ≤ 3snǫMκ2
Γ

(

1 + 4.5snǫMκΓ

)(

2M + 2λn

)

+ 2λnκΓ .

Finally,

‖C(∆̂−∆
∗)‖∞ = max

f={k,ℓ}∈S
‖vec((∆̃−∆

∗)(kℓ))‖2 ,

proving the desired result. �

Proof of Theorem 1. Here we first show that under the suffi-

cient conditions of Theorem 1, the assumptions of Lemmas 2-4

holds true. We pick ǫ = C0

√

ln(pn)/n, implying, by Lemma

2, that ‖C(Σ̂x −Σ
∗
x)‖∞ ≤ ǫ and ‖C(Σ̂y −Σ

∗
y)‖∞ ≤ ǫ. with

probability ≥ 1− 2/pτ−2
n , τ > 2. We first show that with this

choice of ǫ, condition (66) of Lemma 4 holds true. By the
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choice of λn, we have λn ≥ 8ǫ/α. Clearly, for 0 < α < 1,

(α/8) < α/(4(2− α)). Therefore

ǫ ≤ αλn

8
<

αλn

4(2− α)
<

αλn

2(2− α)
. (106)

By a choice of n in (24), we have n > C2
0 ln(pn)/M

2. Hence,

ǫ = C0

√

ln(pn)/n < M . Thus, (66) of Lemma 4 holds true.

Next we show that condition (47) of Lemma 3 holds. By

a choice of n in (24), we have n > 81C2
0 ln(pn)M

2s2nκ
2
Γ.

Therefore,

κΓ <
1

C0

√

n

ln(pn)
× 1

9snM
=

1

9snMǫ
<

1

3sn(ǫ2 + 2Mǫ)
(107)

since ǫ < M . This proves (47) of Lemma 3 holds.

Now we show that (67) of Lemma 4 holds. Since ǫ <
αλn/(4(2− α)), by (68), we have

Cα =
αλn + 2ǫα− 4ǫ

2Mαλn + αλn + 2ǫα
>

αλn − 4ǫ

2Mαλn + αλn + 2ǫα

>
αλn − αλn/(2− α)

αλn(2M + 1) + 2ǫα
=

1− α

(2− α)
[

2M + 1 + 2ǫα
λnα

]

>
1− α

(2− α)(2M + 1) + α
= C̄α (108)

where in the last inequality above, we used ǫ < αλn/(2(2−
α)) from (106). Consider the right-side 3snǫMκΓBs of (67).

From (107), κΓ < 1/(9snMǫ). Therefore,

Bs <1 + κΓ

(

min{snM2,M2
Σ}+

1

3κΓ

)(1

2
+ 1

)

=1.5 + 1.5κΓ min{snM2,M2
Σ} = CMκ . (109)

By (23), λn ≥ 4.5ǫ(αC̄α)
−1snMκΓ(1 +

κΓ min{snM2,M2
Σ}). Hence, using (108), we have

3snǫMκΓBs <αC̄αλn < αCαλn , (110)

proving part of (67) for our choice of λn. To show that we

also have 3snǫMκΓBs < αC̄α, consider the choice of n in

(24) given by

n > C2
0 ln(pn)

9s2n
(αC̄α)2

(κΓMCMκ)
2 . (111)

Then

ǫ = C0

√

ln(pn)

n
<

αC̄α

3snMκΓCMκ
, (112)

and from (110),

3snǫMκΓBs < αC̄α < αCα . (113)

Thus, all assumptions of Lemma 4 hold true.

Therefore, Lemma 4(i) applies, proving Theorem 1(ii). By

(107), 9snǫMκΓ < 1. Using this fact in Lemma 4(ii),

‖C(∆̂−∆
∗)‖∞ ≤ 2λnκΓ + 9snǫMκ2

Γ

(

M + λn

)

≤ 3λnκΓ + 9snǫM
2κ2

Γ . (114)

Since, by (23), 3λnκΓ = C0

√

ln(pn)/nCb1 and we picked

ǫ = C0

√

ln(pn)/n, we have

‖C(∆̂−∆
∗)‖∞ ≤ (Cb1 + Cb2)C0

√

ln(pn)/n ,

proving Theorem 1(i). To prove part (iii), since ∆̂Sc = ∆̃Sc =
∆

∗
Sc = 0, we have

‖C(∆̂−∆
∗)‖F =

(

∑

{k,ℓ}∈S

‖∆̂(kℓ) − (∆∗)(kℓ)‖2F
)1/2

≤ ‖C(∆̂−∆
∗)‖∞

√
sn . (115)

Finally, to establish part (iv), note that parts (i)-(iii) hold with

probability > 1 − 2/pτ−2
n (with high probability (w.h.p.)).

Recall that G∆ = (V, E∆) denotes the MA differential

graph with edgeset E∆ = {{k, ℓ} : ‖∆(kℓ)‖F > 0}.

Let G∆∗ and G∆̂ denoted true and estimated graphs based

on ∆
∗ and ∆̂, respectively. If min(k,ℓ)∈S ‖(∆∗)(kℓ)‖F ≥

2‖C(∆̂ − ∆
∗)‖∞, then C(∆̂ − ∆

∗)‖∞ = C((∆̂ −
∆

∗)S)‖∞ ≤ (1/2)min(k,ℓ)∈S ‖(∆∗)(kℓ)‖F , therefore,

min(k,ℓ)∈S ‖(∆̂S)
(kℓ)‖F ≥ (1/2)min(k,ℓ)∈S ‖(∆∗)(kℓ)‖F >

0, while ∆̂Sc = 0 w.h.p. �

APPENDIX B

TECHNICAL LEMMAS AND PROOF OF THEOREM 2

In order to invoke [30], we first vectorize (3), using θ =
bvec(∆) ∈ R

m2p2

, as (cf. (30))

L(θ) = 1

2
θ⊤(Σ̂y ⊠ Σ̂x)θ − θ⊤bvec(Σ̂x − Σ̂y) (116)

where previous L(∆, Σ̂x, Σ̂y) is now L(θ). To include sparse-

group penalty, recall that the submatrix ∆
(kℓ) of ∆ cor-

responds to the edge {k, ℓ} of the MA graph. We denote

its vectorized version as θGt ∈ R
m2

(subscript G for

grouped variables [30]) with index t = 1, 2, · · · , p2. Then

θGt = vec(∆(kℓ)) where t = (k − 1)p + ℓ, ℓ = t
mod p, and k = ⌊t/p⌋ + 1. Using this notation, the penalty

λ
∑p

k,ℓ=1 ‖∆(kℓ)‖F = λ
∑p2

t=1 ‖θGt‖2. In the notation of

[30], the regularization penalty

R(θ) = ‖θ‖Ḡ,2 :=

p2

∑

t=1

‖θGt‖2 (117)

where the index set {1, 2, · · · , (mp)2} is partitioned into a

set of NG = p2 disjoint groups Ḡ = {G1, G2, · · · , Gp2}. As

shown in [30, Sec. 2.2], R(θ) is a norm. The counterpart to

penalized Lλ(∆, Σ̂x, Σ̂y) of (4) is (we denote λ by λn, as in

Appendix A)

Lλ(θ) =L(θ) + λnR(θ) . (118)

As discussed in [30, Sec. 2.2], w.r.t. the usual Euclidean

inner product 〈u,v〉 = u⊤v for u,v ∈ R
m2p2

and given

any subset SḠ ⊆ {1, 2, · · · , NG} of group indices, define the

subspace

M = {θ ∈ R
m2p2 |θGt = 0 for all t 6∈ SḠ} (119)

and its orthogonal complement

M⊥ = {θ ∈ R
m2p2 |θGt = 0 for all t ∈ SḠ} . (120)

The chosen R(θ) is decomposable w.r.t. (M,M⊥) since

R(θ(1) + θ(2)) = R(θ(1)) +R(θ(2)) for any θ(1) ∈ M and

θ(2) ∈ M⊥ [30, Sec. 2.2, Example 2].
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In order to invoke [30], we need the dual norm R∗ of

regularizer R w.r.t. the inner product 〈u,v〉 = u⊤v. It is

given by [30, Eqns. (14)-(15)]

R∗(v) = sup
R(u)≤1

〈u,v〉 = max
t=1,2,···p2

‖uGt‖2 . (121)

We also need the subspace compatibility index [30], defined

as

Ψ(M) = sup
u∈M\{0}

R(u)

‖u‖2
. (122)

For group lasso penalty, Ψ(M) =
√
sn [30, Sec. 9.2 (Sup-

plementary)], where sn = |SḠ | = number of edges in the

true MA differential graph. We need to establish a restricted

strong convexity condition [30] on L(θ). With θ∗ = bvec(∆∗)
denoting the true value, and θ = θ∗ + θ̃, define

δL(θ̃,θ∗) =L(θ∗ + θ̃)− L(θ∗)− 〈∇L(θ∗), θ̃〉 (123)

where the gradient ∇L(θ∗) at θ = θ∗ is

∇L(θ∗) =(Σ̂y ⊠ Σ̂x)θ
∗ − bvec(Σ̂x − Σ̂y) . (124)

Hence (123) simplifies to

δL(θ̃,θ∗) =θ̃⊤(Σ̂y ⊠ Σ̂x)θ̃ = θ̃⊤
Γ̂θ̃ , (125)

which may be rewritten as

δL(θ̃,θ∗) =θ̃⊤
Γ
∗θ̃ + θ̃⊤(Γ̂− Γ

∗)θ̃ . (126)

By the sparsity assumption, θ∗ = θ∗
M, hence, θ∗

M⊥ = 0,

where θM and θM⊥ denote projection of θ on subspaces M
and M⊥, respectively.

Similar to (5), suppose

θ̂ = argmin
θ

{

L(θ) + λnR(θ)
}

, (127)

and we consider (123) and (125) with θ̂ = θ∗ + θ̃. Then

θ̂ − θ∗ = θ̂M − θ∗ + θ̂M⊥ = θ̃M + θ̃M⊥ . (128)

By [30, Lemma 1],

R(θ̃M⊥) ≤ 3R(θ̃M) + 4R(θ∗
M⊥) , (129)

if

λn ≥2R∗(∇L(θ∗)) . (130)

Since in our case θ∗
M⊥ = 0, we have R(θ∗

M⊥) = 0.

Lemma 5. Under (15) and using the notation of Appendix A,

R∗(∇L(θ∗)) ≤ (ǫ2 + 2Mǫ)sn max
t=1,··· ,p2

‖θ∗
Gt‖2 + 2ǫ •

Proof. Using (44), (72) and (124), we have

∇L(θ∗) =∆Γθ
∗ + bvec(∆y)− bvec(∆x) . (131)

Expressing it group-wise, with groups t and t1 corresponding

to edges {j, k} and {ℓ, q}, respectively,

(∇L(θ∗))Gt1 =

p2

∑

t=1

(∆Γ)Gt1,Gtθ
∗
Gt + bvec(∆y)Gt1

− bvec(∆x)Gt1 . (132)

Therefore, by the Cauchy-Schwartz inequality, and using (45),

(46) and (57), we have

‖(∇L(θ∗))Gt1‖2 ≤
p2

∑

t=1

‖(∆Γ)Gt1,Gt‖F ‖θ∗
Gt‖2

+ ‖bvec(∆y)Gt1‖2 + ‖bvec(∆x)Gt1‖2

≤ ‖C(∆Γ)‖∞
p2

∑

t=1

‖θ∗
Gt‖2 + ‖∆(ℓq)

y ‖∞ + ‖∆(ℓq)
y ‖∞

≤ (ǫ2 + 2Mǫ)sn max
t=1,··· ,p2

‖θ∗
Gt‖2 + ǫ+ ǫ . (133)

By (121) and (133) we have the desired result. �

Lemma 6. Under (15) and the notation of Appendix A,

δL(θ̃,θ∗) ≥ κL ‖θ̃‖22 (134)

where κL = 1
2φ

∗
min − 8sn(ǫ

2 + 2Mǫ). •
Proof. We have

θ̃⊤(Γ̂− Γ
∗)θ̃ =

p2

∑

t1=1

p2

∑

t2=1

θ̃⊤
Gt1(∆Γ)Gt1,Gt2 θ̃Gt2 . (135)

Therefore,

|θ̃⊤(Γ̂− Γ
∗)θ̃| ≤

p2

∑

t1=1

p2

∑

t2=1

|θ̃⊤
Gt1(∆Γ)Gt1,Gt2 θ̃Gt2 |

≤
p2

∑

t1=1

p2

∑

t2=1

‖θ̃Gt1‖2 ‖(∆Γ)Gt1,Gt2‖F ‖θ̃Gt2‖2

≤ ‖C(∆Γ)‖∞
p2

∑

t1=1

p2

∑

t2=1

‖θ̃Gt1‖2 ‖θ̃Gt2‖2

≤ (ǫ2 + 2Mǫ) ‖θ̃‖2Ḡ,2 , (136)

where we used (117). We have

‖θ̃‖2Ḡ,2 = ‖θ̃M + θ̃M⊥‖2Ḡ,2 = (‖θ̃M‖Ḡ,2 + ‖θ̃M⊥‖Ḡ,2)2
(129)

≤ 16 ‖θ̃M‖2Ḡ,2
(122)

≤ 16sn‖θ̃M‖22 ≤ 16sn‖θ̃‖22 . (137)

Noting that θ̃⊤
Γ
∗)θ̃ ≥ φ∗

min ‖θ̃‖22 and using (126), (136) and

(137), we have

δL(θ̃,θ∗) ≥
(1

2
φ∗
min − 8sn(ǫ

2 + 2Mǫ)
)

‖θ̃‖22 = κL ‖θ̃‖22 ,

proving the desired result. �

Proof of Theorem 2. First choose ǫ to make κL > 0 in

Lemma 6. For instance, suppose we take 8sn(ǫ
2 + 2Mǫ) ≤

φ∗
min/4. Then κL > φ∗

min/4. Now pick

ǫ =C0

√

ln(pn)/n ≤ min
{

M,
φ∗
min

96snM

}

, (138)

leading to 8sn(ǫ
2+2Mǫ) ≤ 24snMǫ ≤ φ∗

min/4. These upper

bounds can be ensured by picking appropriate lower bounds

to sample size n and invoking Lemma 2. The choice of n
specified in (26) satisfies (138) with probability > 1−2/pτ−2

n .

Using ǫ = C0

√

ln(pn)/n ≤ M , the lower bound on λn given
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in (25) satisfies (130) with R∗(∇L(θ∗)) as in Lemma 5. By

[30, Theorem 1], θ̂ given by (127) satisfies

‖θ̂ − θ∗‖2 ≤ 3λn

κL
Ψ(M) . (139)

The left-side of (139) equals ‖∆̂ − ∆
∗‖F while the right-

side of (139) equals right-side of (27) using Ψ(M) =
√
sn,

κL > φ∗
min/4, and noting that maxt=1,··· ,p2 ‖θ∗

Gt‖2 =
max{k,ℓ}∈V×V ‖(∆∗)(kℓ)‖F . This proves Theorem 2. �
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