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Low socioeconomic status (SES) and living in a disadvantaged neighborhood are

associated with poor cardiovascular health. Multiple lines of evidence have linked DNA

methylation to both cardiovascular risk factors and social disadvantage indicators.

However, limited research has investigated the role of DNA methylation in mediating

the associations of individual- and neighborhood-level disadvantage with multiple

cardiovascular risk factors in large, multi-ethnic, population-based cohorts. We

examined whether disadvantage at the individual level (childhood and adult SES)

and neighborhood level (summary neighborhood SES as assessed by Census data

and social environment as assessed by perceptions of aesthetic quality, safety,

and social cohesion) were associated with 11 cardiovascular risk factors including

measures of obesity, diabetes, lipids, and hypertension in 1,154 participants from

the Multi-Ethnic Study of Atherosclerosis (MESA). For significant associations, we

conducted epigenome-wide mediation analysis to identify methylation sites mediating

the relationship between individual/neighborhood disadvantage and cardiovascular risk

factors using the JT-Comp method that assesses sparse mediation effects under a

composite null hypothesis. In models adjusting for age, sex, race/ethnicity, smoking,

medication use, and genetic principal components of ancestry, epigenetic mediation

was detected for the associations of adult SES with body mass index (BMI), insulin,

and high-density lipoprotein cholesterol (HDL-C), as well as for the association between

neighborhood socioeconomic disadvantage and HDL-C at FDR q < 0.05. The 410 CpG

mediators identified for the SES-BMI association were enriched for CpGs associated

with gene expression (expression quantitative trait methylation loci, or eQTMs), and

corresponding genes were enriched in antigen processing and presentation pathways.
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For cardiovascular risk factors other than BMI, most of the epigenetic mediators lost

significance after controlling for BMI. However, 43 methylation sites showed evidence of

mediating the neighborhood socioeconomic disadvantage and HDL-C association after

BMI adjustment. The identified mediators were enriched for eQTMs, and corresponding

genes were enriched in inflammatory and apoptotic pathways. Our findings support

the hypothesis that DNA methylation acts as a mediator between individual- and

neighborhood-level disadvantage and cardiovascular risk factors, and shed light on the

potential underlying epigenetic pathways. Future studies are needed to fully elucidate the

biological mechanisms that link social disadvantage to poor cardiovascular health.

Keywords: social epigenomics, socioeconomic status, adversity, epigenome-wide association study, obesity,

diabetes, hypertension

INTRODUCTION

Associations of individual-level socioeconomic adversity with
increased risk of cardiovascular disease (CVD) are well
established. The effects of socioeconomic adversity are thought
to accumulate throughout a person’s lifespan, as both childhood
and adulthood socioeconomic status (SES) can influence CVD
and its risk factors, including obesity (1–3), hypertension (4–
6), diabetes (7, 8), and dyslipidemia (9–12) at a later stage (13).
There is also increasing evidence suggesting that neighborhood-
level social features are associated with CVD outcomes and
risk factors, independent of individual-level SES (14–18). For
example, in the Multi-Ethnic Study of Atherosclerosis (MESA),
better neighborhood physical environment was associated with
decreased body mass index (BMI) (19), higher availability of
healthy food was associated with lower rates of hypertension (20),
and neighborhoods with more healthy food and physical activity
resources were associated with lower incidence of type 2 diabetes
(21). Finally, ongoing exposure to a range of neighborhood
characteristics including favorable food stores, more physical
activity resources, better walking/physical activity environment,
and higher neighborhood socioeconomic status was associated
with higher odds of having an ideal cardiovascular health score
in MESA (22).

Previous studies have proposed that epigenetic changes, which
are important regulators of gene expression (23) that do not alter
the underlying DNA sequence, might be a potential mechanism
linking individual- and neighborhood-level social exposures
to disease risk (24–27). Epigenetic mechanisms such as DNA
methylation can change throughout the life course under the
influence of environmental stimuli. In fact, epigenetic variation
has been linked to several indicators of social disadvantage such
as low childhood SES (28–32), low adult SES (29, 32), and
living in disadvantaged neighborhoods (26, 33, 34). In MESA,
three measures of SES (childhood SES, adult SES, and SES
trajectories from childhood to adulthood) were associated with
DNA methylation levels in genes related to stress reactivity and
inflammation (29). Similarly, after adjusting for individual SES,
neighborhood socioeconomic disadvantage and neighborhood
social environment were also associated with DNA methylation
in stress- and inflammation-related genes (33).

DNA methylation has also been shown to play a critical
role in shaping CVD risk. Both global DNA methylation (35–
37) and specific DNA methylation changes within certain
candidate genes (38–40) have been associated with CVD or
CVD-related biomarkers. More recently, large-scale epigenome-
wide association studies have shown that methylation levels at
individual CpG sites are associated with CVD (41–44) and its risk
factors including measures of adiposity (45), diabetes (46–48),
blood pressure (49), and lipid traits (50).

On these grounds, we hypothesized that DNA methylation
acts as a mediator of at least some of the relationship between
individual- and neighborhood-level social disadvantage and
CVD risk factors. To date, only a few studies have formally
examinedwhether epigeneticmarkers across the genomemediate
the effects of social disadvantage on CVD risk factors. For
instance, in adipose tissue from participants in the New England
Family Study, epigenetic markers were found to mediate the
association between two measures of individual-level social
disadvantage (childhood SES and a broader construct of early
life social disadvantage) and BMI in adulthood (51, 52).
However, the sample size in these analyses was relatively
small (N < 150 participants). To our knowledge, no studies
have conducted mediation analysis for the association between
neighborhood characteristics and CVD risk factors. Therefore,
epigenome-wide studies with larger sample sizes are critically
needed to comprehensively examine biological pathways linking
individual- and neighborhood-level social disadvantage to CVD
risk factors.

To fill this gap, we conducted formal mediation analysis
to further examine the relationship between individual- and
neighborhood-level social disadvantage, DNA methylation,
and 11 CVD risk factors in a large, multi-ethnic, population-
based sample of US adults using epigenome-wide methylation
data measured from purified monocytes. We examined
methylation in monocytes because they and their derived
cells (i.e., macrophages and foam cells) play a crucial role in
inflammation and contribute significantly to atherosclerosis, a
primary cause of CVD. We then characterized the functional
elements near the mediating methylation sites, examined their
overlap with previously identified expression quantitative
trait methylation (eQTM) sites, and tested for enrichment of
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biological pathways to investigate the functional role of the
identified loci.

MATERIALS AND METHODS

Study Population
The Multi-Ethnic Study of Atherosclerosis (MESA) is a
population-based longitudinal study designed to identify risk
factors for the progression of subclinical CVD (53). Between
July 2000 and August 2002, a total of 6,814 non-Hispanic white,
African American, Hispanic, and Chinese-American participants
between the ages of 45 and 84 years were recruited from six
study sites in the US, including Forsyth County, NC; Northern
Manhattan and the Bronx, NY; Baltimore City and Baltimore
Country, MD; St. Paul, MN; Chicago, IL; and Los Angeles
County, CA. Each field center recruited participants from locally
available sources, including lists of residents, lists of dwellings,
and telephone exchanges. Between April 2010 and February
2012 (during MESA Exam 5), DNA methylation was measured
in a random subsample of 1,264 non-Hispanic White, African
American, and Hispanic MESA participants aged 55–94 years
from four of the six study centers (Baltimore, MD; Forsyth
County, NC; New York, NY; and St. Paul, MN). After excluding
respondents with missing data on one or more variables, we
focused on a subset of 1,154 individuals that had exposure,
covariate and DNA methylation data for our final analyses. This
study was approved by the Institutional Review Boards of all
MESA field centers, the MESA Coordinating Center, and the
University of Michigan.

Measures
DNA Methylation
Detailed description of DNA methylation profiling and data
processing procedures can be found in Liu et al. (54). Briefly,
blood was drawn in the morning after a 12 h fast. Monocytes
were purified using Auto-MACs automated magnetic separation
units (Miltenyi Biotec, Bergisch Gladbach, Germany). A random
assignment technique was used to plate the samples in order to
mitigate bias due to batch, chip, and position effects. Methylation
profile was measured using the Illumina HumanMethylation450
Beadchip. Bead-level methylation data were summarized using
Illumina GenomeStudio. The lumi package for R with default
settings was used for quantile normalization (55). Checks for
sex and race/ethnicity mismatches and outlier identification
were performed using multidimensional scaling plots. Criteria
for probe elimination included: “detected” methylation levels
in <90% of MESA samples (detection p-value cut-off = 0.05),
existence of a SNP within 10 base pairs of the target CpG site,
and overlap with a non-unique region as suggested by DMRcate
(56). In addition, 65 probes that measured single nucleotide
polymorphisms (SNPs) rather than methylation were excluded.
After these eliminations, we had a total of 403,648 autosomal
probes for subsequent analyses. The raw methylation level for
each site was normalized and computed as an M-value, the log
ratio ofmethylated to unmethylated signal intensity. Even though
the target cell type was monocytes, there were still some residual
components from other cell types in the samples. Thus, prior

to analysis, each methylation site was adjusted by regressing
the methylation M-value on the estimated cell proportions
of residual non-monocytes (neutrophils, B cells, T cells, and
natural killer cells) and adding methylation chip and position
as random effects to account for any sample contamination and
batch effects. Information on the nearest gene and associated
genomic features of the CpG sites were from Illumina-provided
annotation files (57).

Socioeconomic Status
Maternal educational attainment was used as an indicator of
childhood SES (58). At Exam 2, respondents reported the
highest level of education that their mother had completed.
Available response options were no school, high school degree,
some college but no degree, college degree, and graduate or
professional school. We created a binary variable for maternal
education (less than high school = 1; high school degree or
more= 0).

Adult SES was indicated by the highest level of educational
attainment of the respondent, which was reported at Exam 1.
Available response options were no school, grades 1–8, grades 9–
11, completed high school or GED, some college but no degree,
technical school certificate, associated degree, bachelor’s degree,
and graduate or professional school. We created a dummy
variable for respondent educational attainment (less than college
= 1; college degree or more= 0).

Neighborhood Characteristics
Respondents’ current home addresses were collected at each
MESA examination, as well as during midpoint follow-up
calls between exams. Based on the information collected, an
address history between Exams 1 and 5 was created for each
respondent and used to construct two summary scores for
neighborhood exposures (see Section Supplementary Methods

in Supplementary Material for additional details).
Briefly, a neighborhood socioeconomic disadvantage score

was created based on the first principal component (PC) from
a principal components analysis (PCA) of 16 census-tract level
variables reflecting dimensions of education, occupation, income
and wealth, poverty, employment, and housing from the 2000 US
Census, American Community Survey 2005–2009, andAmerican
Community Survey 2007–2011. Weighted scales were created
by multiplying the PC weights by the standardized variables.
The first PC was highly weighted for education, occupation, and
income and wealth.

For neighborhood social environment, we assessed three
neighborhood dimensions collected in 2003–2005 and 2010–
2012: aesthetic quality, safety, and social cohesion. Information
was obtained from questionnaires administered to MESA
participants and to a random auxiliary sample of other
neighborhood residents in the New York, Baltimore, and Forsyth
county study sites in 2003–2005 (N = 12,034) and all study sites
in 2010–2012 (N = 8,553) (59). Responses of residents within the
same Census tract were aggregated to create neighborhood-level
measures for each of the neighborhood dimensions investigated.
Conditional empirical Bayes (CEB) estimates for the three scales
were constructed as a summary index, controlling for study site,
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respondent age and sex, and survey type (MESA or auxiliary
sample). A summary social environment scale was calculated by
summing the standardized CEB estimates for the three scales.

In order to assess the effects of long-term exposure to
neighborhood characteristics, we used the weighted cumulative
average of each of the neighborhood measures across all available
MESA examinations (maximum of 5 exams, spanning 10 years
from baseline to Exam 5), with the weights proportional
to the number of months the respondents resided in each
neighborhood. Neighborhood variables were coded so that
higher values indicate greater disadvantage or less desirable
social environment.

CVD Risk Factors and Medications
We examined a total of 11 CVD risk factors measured at
Exam 5 including BMI, waist circumference (WC), systolic blood
pressure (SBP), diastolic blood pressure (DBP), triglycerides
(TG), high-density lipoprotein cholesterol (HDL-C), low-density
lipoprotein cholesterol (LDL-C), total cholesterol (TC), serum
glucose, serum insulin, and hemoglobin A1c (HbA1c). In MESA,
blood samples were drawn after a 12-h fast. Measurement
methods for the CVD risk factors have been described previously
(60, 61). In our study, log-transformation was applied to TG,
HDL-C, glucose, insulin, and HbA1c. Extreme outliers in the
CVD risk factors, defined as values >3 times the interquartile
range below the first quartile or above the third quartile, were
removed from the analyses.

Information on current medications was collected using the
medication inventory method in MESA (62, 63). Participants
were asked to bring their medications to the clinic. The
interviewers then transcribed the names, strengths, and dosage of
the medications. Specifically, we collected information on lipid-
lowering drugs, antihypertensives, and diabetes medications.

Statistical Analysis
Associations Between Individual SES/Neighborhood

Characteristics and CVD Risk Factors
Before formally testing for mediation, we first tested whether
there was a significant association (total effect) between
individual and neighborhood-level disadvantage (exposures)
and CVD risk factors (outcomes). The associations between
each exposure and outcome were examined separately. Model
1a tested associations of individual-level exposures (childhood
SES and adult SES) with CVD risk factors, and included
adjustment for age, gender, race/ethnicity, current smoking
status, medication use (as appropriate), and the first 5 genetic
principal components (PCs) of ancestry. Smoking was adjusted
because previous studies show that many of the CpG sites
associated with measures of SES are also highly associated
with smoking (64). Here, we sought to identify effects of
social disadvantage that were not confounded by or mediated
by smoking. Genetic PCs were included because they were
necessary to control for population stratification and admixture
in subsequent analytic steps (i.e., when testing for mediation
of the total effect by epigenetic markers, described below). We
included lipid-lowering drug use as a covariate for associations
with lipid traits (TC, TG, LDL-C, and HDL-C), antihypertensive

use for associations with blood pressure measurements (SBP
and DBP), and use of diabetes medications for associations
with glycemic traits (serum glucose, insulin, and HbA1c).
Model 1b tested associations of neighborhood-level exposures
(neighborhood socioeconomic disadvantage and neighborhood
social environment) with CVD outcomes and included all
covariates in Model 1a as well as childhood SES and adult SES.
P-values were controlled for multiple testing using Bonferroni
correction (Bonferroni-corrected p < 0.0011, accounting for 44
tests from 11 CVD risk factors and 4 exposures).

For the significant associations in Models 1a/1b where BMI
was not the dependent variable, we further adjusted for BMI
(Models 2a/2b). BMI is often included in adjustment models
or sensitivity analyses when studying the effect of methylation
on CVD risk factors (46–50), because it may causally influence
methylation at multiple loci (65). BMI may also be on the
mediating pathway between social disadvantage and CVD risk
factors. Thus, we wanted to explore associations between social
disadvantage and CVD risk factors both before and after
controlling for this potential source of confounding. Significant
associations with BMI in Models 1a/1b (Bonferroni-corrected
p < 0.0011), and significant associations with other CVD risk
factors in Models 1a/1b (p < 0.0011) that remained associated
at p < 0.05 after adjusting for BMI (Models 2a/2b) were selected
for mediation analysis.

Mediation Analysis
If a significant association (total effect) was identified between
an individual SES/neighborhood measure (exposure) and a CVD
risk factor (outcome), we conducted epigenome-wide mediation
analysis to identify specific CpG sites whose methylation may
mediate at least some of the effect of the exposure on the
corresponding outcome, using a cross product-based mediation
approach where the mediation effect can be defined as the
product of the exposure-mediator effect and the mediator-
outcome effect. To obtain these two parameters for a given
outcome and exposure, we used linear regression models
to separately estimate the association of individual- and
neighborhood-level social disadvantage with DNA methylation
(the mediator) while adjusting for covariates (Equation 1), and
the association of DNA methylation with the CVD risk factor
while controlling for the corresponding exposure (i.e., individual
or neighborhood social measure) and the same set of covariates
(Equation 2). The covariates included in the regression models
were the same as the covariates used in Models 1a/1b or 2a/2b
to test the total effect of the exposure on the outcome. Model
specification for a given outcome and exposure is provided below:

E (Mi)= αaAi+ αcCi (1)

E (Yi)= βmMi+ βaAi+βcCi (2)

Mi: DNA methylation (M-value) for individual i.
Ai: exposure (individual SES or neighborhood characteristic)

for individual i.
Ci: adjustment covariates for individual i.
Yi : CVD risk factor for individual i.
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Using the models described above, the epigenetic mediation
effect can be quantified by testing:

H0: αaβm= 0 (3)

HA: αaβm 6= 0 (4)

The null hypothesis is therefore comprised of three sub-null
hypotheses: (1) αa= 0, βm 6= 0; (2) αa 6= 0, βm = 0; (3)
αa = 0 , βm = 0. To test the mediation effect, we used the JT-
Comp method (66) implemented in R, which takes into account
the composite nature of the null hypothesis and provides well-
calibrated p-values under the null. False discovery rate (FDR) was
calculated from the mediation p-values to control for multiple
testing. We considered a CpG site to be a significant mediator
of the association between the exposure and outcome pair if it
had FDR q < 0.05. The proportion of the total effect that was
mediated by each CpG site (indirect effect) was then computed
by dividing the mediation effect by the total effect.

In addition, since methylation levels may be correlated at CpG
sites that are spatially close or within in the same biological
pathway, we conducted PCA analysis on the identified CpG
mediators to reduce their dimensionality. We extracted the first
10 PCs, capturing major axes of variability, so that we could
investigate the overall effects of mediation across the identified
CpG mediators. Next, the first 10 PCs for each set of CpG
mediators were examined in mediation models. Specifically,
for each association where significant epigenetic mediation was
identified by the epigenome-wide mediation analysis, we further
tested the meditation effect of each methylation PC separately
using the mediate() function of the mediation R package (67).
The averagemediation effect and the proportion of the total effect
explained by each methylation PC, as well as their corresponding
confidence intervals (CIs), were obtained using non-parametric
bootstrapping with 10,000 iterations.

Furthermore, to identify CpG sites that remain significant
after adjusting for the other mediating CpG sites, we conducted
a penalization-based multivariate high-dimensional mediation
analysis on the identified CpG mediators using the HIMA
package in R (68, 69). Specifically, for each association where
significant epigeneticmediation was identified by the epigenome-
wide mediation analysis, we fit a multivariate mediator-
outcome model with all of the potential CpG mediators
identified by the epigenome-wide mediation analysis and
used a LASSO-based regression to estimate the effect of
each CpG site on the outcome while controlling for the
other CpG sites. We then obtained FDR q-values from
the exposure-mediator model and the multivariate mediator-
outcome model separately and applied the joint significance
test (i.e., the maximum value among the two FDR q-values)
to determine the significance of the mediation effect. We
considered a CpG site to be a significant mediator when FDR q
< 0.05.

As a secondary analysis, we conducted sex-stratified analysis
for the association between adult SES and BMI using Model
1a and the corresponding mediation models described above.
Sex-stratified analysis was warranted since effects of social

factors (1, 2, 70–73) and epigenetic markers (51, 52) on
BMI have been found to differ between sexes in at least
some studies.

It is important to note that this mediation analysis
does not necessarily establish causal pathways between social
disadvantage and CVD risk factors, but rather demonstrates
statistical mediation by DNA methylation using statistical
criteria. Since our study has a cross-sectional design with
concurrent measurement of DNA methylation and CVD risk
factors, we are unable to establish temporality between the
mediator and the outcome. Any CpG sites identified in
the mediation analysis are therefore correlational in nature
and do not necessarily infer causal mediation. Caution
should be exercised in interpreting the results from the
mediation analysis.

Genomic Feature Enrichment Analysis
Genomic feature enrichment analysis was performed on the set
of significant CpG mediators for each exposure/outcome pair
separately. We examined whether the genomic locations of each
set of CpGs were enriched for features including gene promoters,
enhancers, DNAse I hypersensitivity sites (DHS), CpG islands,
and CpG island flanking shores/shelves. The genomic features
and the target gene(s) from the UCSC database associated with
each CpG site were obtained from the annotation files provided
by Illumina (57). Specifically, we considered a CpG site to
be in the promoter region if it was 0–1,500 bases upstream
of a transcriptional start site. A CpG site was assigned to
CpG island flanking shore/shelf if it was located within 4 kb
of a CpG island. To test for enrichment, we used Fisher’s
exact test to compare the proportion of CpG sites that reside
within a certain genomic feature among CpG mediators to the
proportion of non-mediating CpG sites that reside within the
same feature. For any contingency table that has a zero cell count,
we added 1 to each of the cells to avoid having an odds ratio
of zero.

Previously in MESA, Liu et al. identified 11,203 potential
cis-acting regulatory CpG sites whose methylation level was
associated with the expression level of any autosomal gene
within 1Mb at q < 0.001 (eQTMs) (54). In our study, we
examined the overlap between the identified CpG mediators to
these previously reported eQTMs. We also investigated whether
CpG mediators were more likely to be eQTMs than non-
mediating CpGs. Specifically, we performed Fisher’s exact test
to compare the proportion of eQTMs among our identified
CpG mediators to the proportion of eQTMs among non-
mediating CpG sites in our sample. Furthermore, Huan et al.
identified 92 putatively causal CpG sites for cardiovascular risk
factors including coronary heart disease, myocardial infarction,
type 2 diabetes, SBP, DBP, HDL-C, LDL-C, TC, TG, and
BMI by conducting Mendelian randomization analysis using
cis-mQTLs and GWASs of the CVD risk factors (74). Since
the CpG sites identified in the MR analysis using mQTLs as
instrumental variables are potentially causal for cardiovascular
risk factors, we examined the overlap between the identified
mediating CpG sites and the 92 CpG sites reported in
Huan et al. (74).
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Gene-Set Analysis
We employed two methods to identify GO categories and
KEGG pathways that may be over-represented in the identified
CpG mediators. First we used the gometh() function from the
missMethyl R package, which can eliminate multiple sources of
bias by taking into account the number of CpG sites within
a given gene and can correct for probe density bias (75). A
potential limitation of this method, however, is that it maps
the CpG sites to their proximal genes using chromosomal
position. Yet, it is known that methylation sites do not always
act on the nearest genes and might have distant regulatory
effects as well. In light of this, we also conducted enrichment
analysis using the enrichGO() and enrichKEGG() functions in
the clusterProfiler R package (76) so that we could define the
CpGs associated with gene expression using empirical data.
Genes known to be associated with the CpG mediators were
extracted using the methylation-gene expression pairs (eQTMs)
identified previously in MESA (54), and were used as the signal
gene list. All genes associated with methylation sites included
in both the previous investigation and the present study were
selected as the background gene list. Additionally, to ensure that
any significant enrichment was not merely due to methylation
sites that tend to be active in white blood cells, each CpG site was
mapped to a chromatin state based on its chromosomal location
using the 15-core chromatin state predicted by ChromHMM
in primary mononuclear cells from peripheral blood in the
Roadmap Epigenomics Project (77). Each methylation site was
then classified as being in an active or inactive region depending
on the predicted chromatin state. Using this information, we
further restricted both the signal and background lists to only
genes associated with CpG sites in an active chromatin region as
a secondary analysis. GO terms and KEGG pathways with FDR q
< 0.05 were considered significant for all gene-set analyses.

RESULTS

Sample Characteristics
At Exam 5, the mean age was 69.6 years and 50.8% of
the participants were female (Table 1). The sample consisted
of 49.1% Non-Hispanic White, 19.4% African American, and
31.5% Hispanic participants. A total of 8.4% were current
smokers, 53.4% had low childhood SES, and 66.0% had
low adult SES. Neighborhood socioeconomic disadvantage
ranged between −4.53 and 1.87 [mean = −0.31, standard
deviation (SD) = 1.10], with a higher score indicating
greater disadvantage. Neighborhood social environment ranged
between −6.32 and 7.94 (mean = 0.40, SD = 2.67), with
a higher score indicating a worse environment. The Pearson
correlation between neighborhood socioeconomic disadvantage
and neighborhood social environment was 0.26.

Association Between Individual
SES/Neighborhood Conditions and CVD
Risk Factors
In Model 1a, low childhood SES was associated with higher
SBP after Bonferroni correction (Table 2). Low adult SES

TABLE 1 | Descriptive statistics (N = 1,154).

Characteristics Mean (SD) or N (%)

Age (years) 69.55 (9.31)

Female 586 (50.8)

Race/ethnicity

Non-Hispanic White 567 (49.1)

African-American 224 (19.4)

Hispanic 363 (31.5)

Current smoking status

Non-smoker

1,057 (91.6)

Smoker 97 (8.4)

Medication use

Antihypertensive medication

650 (56.3)

Diabetes medication (n = 1,142) 186 (16.3)

Lipid-lowering medication 481 (41.7)

Low childhood SES (maternal education < high

school)

617 (53.4)

Low adult SES (respondent education <

college)

762 (66.0)

Neighborhood socioeconomic disadvantage −0.31 (1.10)

Neighborhood social environment 0.40 (2.67)

Body mass index (kg/m2, n = 1,152) 29.48 (5.49)

Waist circumference (cm, n = 1,151) 101.37 (14.02)

Systolic blood pressure (mmHg, n = 1,150) 123.48 (19.68)

Diastolic blood pressure (mmHg, n = 1,152) 68.29 (9.63)

Triglycerides (mg/dL) 110.52 (56.59)

High density lipoprotein cholesterol (HDL-C,

mg/dL, n = 1,153)

53.95 (16.03)

Low density lipoprotein cholesterol (LDL-C,

mg/dL, n = 1,148)

104.63 (32.45)

Total cholesterol (mg/dL) 180.43 (37.2)

Glucose (mg/dL) 103.24 (28.74)

Hemoglobin A1c (HbA1c, %, n = 1,148) 5.98 (0.92)

Insulin (mU/L, n = 1,044) 62.81 (42.12)

SES, socioeconomic status.

was associated with higher BMI, WC, and insulin, and with
lower HDL-C. In Model 1b, neighborhood socioeconomic
disadvantage was associated with higher TG and with lower
HDL-C. Less desirable neighborhood social environment was not
associated with any CVD risk factors after correcting for multiple
testing. All of the significant results fromModels 1a/1b remained
significant at p < 0.05 in Models 2a/2b (after BMI adjustment),
except for the association between adult SES and WC (Table 2).

Mediation Analysis
Based on the above results, we investigated epigenetic mediation
of the association of childhood SES with SBP, of adult SES with
BMI, HDL-C, and insulin, and of neighborhood socioeconomic
disadvantage with TG and HDL-C. In Model 1a, a total of 410, 5,
and 7 mediating CpG sites were identified for the associations
of adult SES with BMI, HDL-C, and insulin, respectively. For
the significant associations where BMI was not the dependent
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TABLE 2 | Associations between individual SES/neighborhood characteristics and cardiovascular risk factors (N = 1,154).

Cardiovascular risk factor Childhood SES Adult SES Neighborhood socioeconomic disadvantage Neighborhood social environment

Model 1a Model 2a Model 1a Model 2a Model 1b Model 2b Model 1b Model 2b

β1 P-value β1 P-value β1 P-value β1 P-value β1 P-value β1 P-value β1 P-value β1 P-value

BMI −0.408 0.240 n/a n/a 1.462 4.11E-05 n/a n/a 0.355 0.018 n/a n/a −0.071 0.289 n/a n/a

WC −0.546 0.545 3.010 0.001 −0.007 0.988 1.091 0.005 −0.129 0.463

SBP 4.345 4.26E-04 4.476 2.86E-04 2.459 0.053 −0.301 0.575 0.141 0.555

DBP 1.300 0.030 −0.040 0.948 −0.097 0.710 0.193 0.097

Log (TG) 0.041 0.150 0.084 0.004 0.048 1.04E-04 0.041 5.95E-04 −0.003 0.539

Log (HDL-C) −0.017 0.291 –0.055 0.001 –0.039 0.015 –0.043 9.95E-10 –0.038 1.37E-08 0.004 0.257

LDL-C −1.428 0.451 2.641 0.177 0.137 0.868 0.382 0.304

TC −1.712 0.423 0.852 0.699 −1.563 0.094 0.513 0.221

Log (Glucose) −0.018 0.059 0.010 0.319 0.004 0.361 0.001 0.748

Log (HbA1c) −0.002 0.660 0.011 0.052 0.004 0.066 −0.001 0.325

Log (Insulin) −0.027 0.523 0.178 3.24E-05 0.090 0.017 0.026 0.152 −0.011 0.162

SES, socioeconomic status; BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein

cholesterol; TC, total cholesterol; HbA1c, hemoglobin A1c.

Model 1a: CVD risk factor ∼ β0 + β1SES+ β2Age+ β3Female+ β4Black + β5Hispanic + β6Smoking+ β7Medication + β8PC1+ β9PC2 + β10PC3 + β11PC4 + β12PC5.

Model 1b: CVD risk factor ∼ β0 + β1Neighborhood + β2Age+ β3Female+ β4Black + β5Hispanic + β6Smoking+ β7Medication + β8PC1+ β9PC2 + β10PC3 + β11PC4 + β12PC5+ β13Childhood SES+ β14Adult SES.

Model 2a: CVD risk factor ∼ β0 + β1SES+ β2Age+ β3Female+ β4Black + β5Hispanic + β6Smoking+ β7Medication + β8PC1+ β9PC2 + β10PC3 + β11PC4 + β12PC5+ β13BMI.

Model 2b: CVD risk factor ∼ β0 +β1Neighborhood+β2Age+β3Female+β4Black+β5Hispanic +β6Smoking+ β7Medication + β8PC1+ β9PC2 + β10PC3 + β11PC4 + β12PC5+ β13Childhood SES+ β14Adult SES+β15BMI.

Antihypertensive medication use was adjusted in models with SBP and DBP as the outcome; Lipid-lowering medication use was adjusted in models with TG, HDL-C, LDL-C, and TC as the outcome; Diabetes medication use was

adjusted in models with glucose, HbA1c, and insulin as the outcome.

Bold text in Models 1a/1b indicates p < 0.0011 (i.e., P < 0.05 after Bonferroni correction for 44 tests). Bold text in Models 2a/2b indicates p < 0.05.
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variable, all mediating methylation sites lost significance in
Model 2a after further adjustment for BMI.

Beyond the covariates in Model 1a (age, sex, race/ethnicity,
current smoking status, and the first 5 genetic PCs of ancestry),
adult SES explained 1.4% of the total variability in BMI. Of
this relatively small total effect of adult SES on BMI, between
7.0 and 22.0% was mediated by the 410 identified CpG loci.
The complete list of summary statistics and annotations of the
410 CpG sites mediating the association between adult SES
and BMI in Model 1a is provided in Supplementary Table 1,
and a Manhattan plot of the mediating loci is shown in
Supplementary Figure 1. PCA analysis of the 410 mediating
CpGs shows that the first 10 PCs cumulatively accounted for
49.5% of the variability in the methylation levels across the
410 sites (Supplementary Figure 2). After adjusting for age,
sex, race/ethnicity, smoking, and the first 5 genetic PCs of
ancestry, 4 of the 10 methylation PCs (PC1, PC5, PC6, and
PC8) showed significant evidence of mediation at p < 0.05,
accounting for 26.6, 4.5, 11.7, and 9.8% of the total effect of
adult SES on BMI, respectively (Supplementary Table 2). The
cumulative proportion of the SES-BMI association mediated by
these 4 independent methylation PCs was 52.6%, suggesting that
the overall mediation effect across the 410 identified CpG sites
explained at least 52.6% of the association between adult SES
and BMI.

When modeled jointly with a LASSO-based penalty, 5 of the
410 identified CpG sites showed significant mediation effects
at FDR q < 0.05, explaining 0.3, 3.4, 1.2, 1.9, and 1.2%
of the association between adult SES and BMI, respectively
(Supplementary Table 3). In other words, 5 CpG sites showed
evidence of mediating the association between adult SES and
BMI even after adjusting for the other potential mediators
identified in the epigenome-wide mediation analysis. Two of the
identified CpG sites (cg23983783 and cg25392060) have been
previously reported as eQTMs (i.e., they are associated with
the expression of nearby genes). In particular, the methylation
level of cg23983783 was associated with the gene expression of
N4BP2L1, which has been associated with BMI and is involved
in adipocyte homeostasis (78). Another identified CpGmediator,
cg06192883 in the body of myosin 5C (MYO5C), encodes a
protein involved in actin-based membrane trafficking. This CpG
was also identified in a recent EWAS of BMI (45) and has been
associated with longitudinal changes in BMI (79).

After adjusting for age, race/ethnicity, current smoking status
and the first 5 genetic PCs of ancestry, adult SES explained
0.49 and 3.5% of the variability in BMI among females and
males, respectively. In sex-stratified mediation analyses for BMI,
we identified 12 CpG sites mediating the association between
adult SES and BMI in females and males, respectively, with FDR
q < 0.05 (Supplementary Tables 4, 5). Of the CpG mediators
identified in females, all sites were also identified in the pooled
analysis. In contrast, two CpG mediators (cg08448711 and
cg16580391) identified in males were not statistically significant
in the pooled analysis. Only one CpG site, cg15633603, was
common to both sexes, which was also the site with the strongest
evidence for mediation in the pooled analysis. Interestingly,
CpG mediators found in females explained between 29.4 and

40.0% of the effect of adult SES on BMI, whereas those
identified in males explained only 11.5–15.5%, suggesting that
the epigenetic mediating pathway might be more pronounced
for women.

We identified 66 mediating CpG sites for the association
between neighborhood socioeconomic disadvantage and
HDL-C in Model 1b. Of these, 43 methylation sites showed
significant evidence of mediation even after adjusting for BMI.
In Model 2b (i.e., after adjusting for age, sex, race/ethnicity,
smoking, lipid-lowering drug use, the first 5 genetic PCs
of ancestry, childhood SES, adult SES, and BMI), the total
variability in HDL-C explained by neighborhood socioeconomic
disadvantage was 2.1%, of which between 5.9 and 8.7% could
be attributed to each of the 43 CpG mediators. A complete
list of summary statistics and annotations of the 43 CpG
sites mediating the effects of neighborhood socioeconomic
disadvantage on HDL-C is shown in Supplementary Table 6,
and a Manhattan plot of the mediating loci is shown in
Supplementary Figure 3. As previously described, we conducted
PCA on these CpG mediators to characterize the overall
mediation effect across the loci. Supplementary Table 7

presents the independent mediation effects of the first 10
methylation PCs, which cumulatively accounted for 66.0% of
the variability in the 43 CpG sites mediating the association
between neighborhood socioeconomic disadvantage and
HDL-C (Supplementary Figure 2). After controlling for the
same Model 2b covariates as above, methylation PC1 and
PC9 showed significant evidence of mediation (p < 0.05),
accounting for 17.8 and 5.5% of the relationship between
neighborhood socioeconomic disadvantage and HDL-C,
respectively. The cumulative proportion mediated by these
two uncorrelated methylation PCs was 23.3%, suggesting that
the overall mediation effect across the 43 identified CpG sites
explained at least 23.3% of the association between neighborhood
socioeconomic disadvantage and HDL-C.

When modeled jointly with a LASSO-based penalty, 3 of
the 43 identified CpG sites showed significant mediation effects
at FDR q < 0.05 (Supplementary Table 8). The 3 identified
CpG mediators each explained 1.3, 0.7, and 1.1% of the
association between neighborhood socioeconomic disadvantage
andHDL-C, respectively (Supplementary Table 8). In particular,
cg18680181 is located in the body of KIAA0391, which forms
an evolutionarily conserved cluster with PSMA6 and has
been reported to predispose individuals to coronary artery
disease (80). In addition, haplotypes in the chromosomal
region encompassing KIAA0391 and PSMA6 have been linked
to coronary artery disease and myocardial infarction (81).
Another CpG mediator, cg2475272, resides near SETD7, a
lysine methyltransferase that methylates a wide range of
targets and may play an important role in several biological
processes includingmetabolism and immunity (82). For example,
SETD7 might be involved in lipid, cholesterol, and glucose
metabolism through its methylation of Farnesoid X receptor
(FXR) (82).

No methylation sites showed evidence of mediation at FDR q
< 0.05 for the associations between childhood SES and SBP, and
between neighborhood socioeconomic disadvantage and TG.
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Genomic Feature Enrichment Analysis
We performed bioinformatic analysis for the 410 CpG mediators
of the association between adult SES and BMI and the
43 CpG mediators of the association between neighborhood
socioeconomic disadvantage and HDL-C identified using JT-
Comp. The genomic feature enrichment results are shown in
Table 3. Bonferroni correction accounted for testing 5 genomic
features and eQTMs, described below (Bonferroni-corrected p
< 0.0083). Compared to non-mediating methylation sites, CpG
loci mediating the association between adult SES and BMI were
more likely to reside within enhancer elements and CpG island
flanking shores/shelves and less likely to be in CpG islands and
promoter regions. Similarly, CpG loci mediating the association
between neighborhood socioeconomic disadvantage and HDL-C
were more likely to reside within enhancer elements and DHS,
and less likely to be found in CpG islands.

Overlap With Expression Quantitative Trait
Methylation and Putatively Causal CpG
Sites Associated With Methylation
Quantitative Trait Loci
Among the 410 CpG mediators of the association between
adult SES and BMI, 93 were also previously reported
eQTMs whose methylation level was associated with gene
expression in a previous MESA study (54). These 93 CpG
mediators were associated with the expression of 152 cis-
genes (Supplementary Table 1). Similarly, 10 of the 43
CpG mediators of the association between neighborhood
socioeconomic disadvantage and HDL-C were previously
reported eQTMs associated with the expression of 14 cis-
genes (Supplementary Table 6). Furthermore, as shown in
Table 3, CpG mediators of both the associations between
adult SES and BMI and between neighborhood socioeconomic
disadvantage and HDL-C were highly enriched for eQTMs
(Bonferroni-corrected p = 1.72E-59 and 8.17E-08, respectively).
In other words, the identified CpG mediators were enriched for
association with cis-gene expression, indicating that they were
more likely to influence proximal gene expression compared
to non-mediating CpG sites. None of the identified CpG
mediators overlapped with the 92 putatively causal CpG sites
for cardiovascular risk factors previously identified from MR
analysis using cis-mQTLs as instrumental variables (74).

Gene-Set Analysis
Mediating methylation sites were distributed across the genome
(Supplementary Figures 1, 3). The 410 CpG mediators of the
association between adult SES and BMI mapped to 286 unique
genes. The 43 CpG mediators of the association between
neighborhood socioeconomic disadvantage and HDL-C mapped
to 31 unique genes. Using the Illumina annotation genemapping,
neither of the two sets of CpG mediators was enriched for any
GO terms or KEGG pathways when controlling for the differing
numbers of probes per gene after FDR correction. However,
using the eQTM annotation from the previous MESA study
(54) to map gene expression to CpG sites, the mediating CpG
sites of adult SES and BMI were associated with expression

of genes enriched in four GO biological process terms related
to antigen processing and presentation at FDR q < 0.05
(Supplementary Figure 4). Similarly, mediating CpG sites of
neighborhood socioeconomic disadvantage and HDL-C were
associated with expression of genes enriched in nine GO terms
related to biological processes such as the apoptotic process,
cell death, and establishment or maintenance of cell polarity
(Supplementary Figure 5). Significant GO terms for both sets of
CpG mediators remained largely consistent even after excluding
CpG sites located in regions of inactive chromatin in primary
mononuclear cells (Supplementary Figures 6, 7). No significant
over-representation in KEGG pathways was observed.

DISCUSSION

In this study, we assessed whether differences in DNA
methylationmediate the effects of individual- and neighborhood-
level social disadvantage on CVD risk factors. Epigenetic
mediation was identified for associations between adult SES
and/or neighborhood socioeconomic disadvantage and several
CVD risk factors. The majority of these mediators lost
significance after further adjustment for BMI, which indicates
that BMI might also be part of the epigenetic mediation pathway
for the majority of CVD risk factors. Alternatively, BMI may
confound the association between social disadvantage and CVD
risk factors. Our results suggest that a small fraction (1.4%) of
the total variability in BMI was explained by adult SES, and that
this association was partially mediated by 410 CpG sites. After
reducing the CpG mediators to 10 uncorrelated PCs, we found
that the set of identified CpG mediators accounted for at least
52.6% of the relationship between adult SES and BMI. Similarly,
our findings show that 2.1% of the total variability in HDL-C was
explained by neighborhood socioeconomic disadvantage, and
this association was mediated by 43 CpG sites, independent of
BMI. After reducing these 43 CpG mediators to 10 uncorrelated
PCs, the overall mediation effect across the loci explained at
least 23.3% of the total effect of neighborhood socioeconomic
disadvantage on HDL-C. Although there was no overlap with
the putatively causal CpG sites previously identified from MR
analysis using cis-mQTLs as instrumental variables, the CpG
mediators identified in this study could still be true statistical
mediators since CpG sites influenced by social factors may be
different than those influenced by genetic variants.

Many of the CpG sites reported in our study have been
previously linked to CVD outcomes and risk factors. Among
the 410 CpG mediators of adult SES and BMI, the top-ranking
CpG sites included cg15633603 and cg10508317 in the body

and 5
′
UTR of cytokine signaling-3 (SOCS3), which encodes a

protein that suppresses signaling by inflammatory cytokines such
as leptin and interleukin-6 signaling that are upregulated in
obesity (83). Of note, one of the SOCS3 CpGs identified in this
study, cg18181703, was also identified in a recent large-scale
EWAS of BMI (45), and methylation at this CpG was shown
to interact with cumulative adverse life stress to influence BMI
and obesity (84). Other highly ranked CpGs in our study are in
the gene bodies of solute carrier 25A10 (SLC25A10), encoding
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TABLE 3 | Genomic feature enrichment using two-sided Fisher’s exact test.

Genomic feature Adult SES and BMI Neighborhood socioeconomic disadvantage and HDL-C

Odds ratio P-value Odds ratio P-value

DHS 0.95 0.768 4.91 2.03E-06

Enhancer 2.01 4.76E-11 4.79 4.84E-07

Promoter 0.52 5.55E-08 0.71 0.407

Shore/shelf 1.37 0.002 0.62 0.197

CpG island 0.11 1.77E-41 0.05* 1.07E-06

eQTM 11.60 1.72E-59 11.89 8.17E-08

SES, socioeconomic status; BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; DHS, DNase hypersensitive site; eQTM, expression quantitative trait methylation site.

An odds ratio smaller than 1 indicates depletion, and an odds ratio larger than 1 indicates enrichment.

Bold text indicates p < 0.05 after Bonferroni correction (p < 0.0083).

*No mediating CpGs for neighborhood socioeconomic disadvantage and HDL-C were present in CpG islands. In order to conduct the enrichment analysis, we added 1 to each cell of

the contingency table to avoid having an odds ratio of zero.

a protein that increases lipid accumulation in adipose tissues
(85), and phosphofurin acidic cluster sorting protein 2 (PACS2),
which encodes a mitochondrial-associated membrane protein
important for cellular homeostasis and implicated in obesity
and other metabolic disorders including diabetes and metabolic
syndrome (86).

In total, among the 410 CpG mediators of the association
between adult SES and BMI, 16 sites were identified in the recent
large-scale EWAS of BMI (45) (see Supplementary Table 1). Of
these, two were identified as eQTMs in MESA, with cg13274938
corresponding to the C-C chemokine receptor 7 (CCR7), and
cg10922280 corresponding to dipeptidase 2 (DPEP2) among
other genes. The protein encoded by CCR7 has been shown in
mice to play a causal role in maintaining innate and adaptive
immunity contributing to adipose tissue inflammation in obesity
(87). The protein encoded by DPEP2 has been shown to
modulate macrophage inflammation (88), and is upregulated
in subcutaneous white adipose tissue in obese women with
type 2 diabetes (89). The most highly ranked MESA eQTM
was cg19103704, which is associated with expression of the
proteasome 26S subunit, ATPase 4 (PSMC4), a subunit of
perilipin-2 which regulates intracellular lipid metabolism in
macrophages, and the fc fragment of IgG binding protein
(FCGBP), both of which have been associated with obesity
(90, 91).

As a whole, we found that mediating CpG eQTMs were
associated with expression of genes enriched in antigen
processing and presentation, which is consistent with the
well-established finding that chronic inflammation contributes
to obesity and other related metabolic conditions. These
inflammatory pathways remained significantly enriched even
after removing CpG sites known to be in an inactive chromatin
state in primary mononuclear cells from peripheral blood. The
innate immune system has long been known to be implicated
in the development of obesity and its associated diseases, and
recent studies have also demonstrated the critical roles for cells of
the adaptive immune system (92, 93). Specifically, antigen-driven
responses have been linked to obesity. In prior studies, increased
expression of genes involved in MHC class II antigen processing
and presentation was found in adipocytes of obese women (94,

95). In mice, MHC class I antigen presentation was altered after
lipid overload with dietary saturated fatty acid (96). Our results
support and add to these previous studies by indicating that
methylation of inflammation genes, particularly those involved
in antigen processing and presentation, may mediate the effect of
adult SES on BMI.

A growing body of evidence suggests that sex may influence
the strength of the association between SES and obesity in
developed countries (1, 2, 70–73). According to the National
Health and Nutrition Examination Survey, 2005–2008, there was
no significant association between education, a marker of adult
SES, and prevalent obesity among men in the United States, but
there was a negative relationship among women (70). In the
present study, all of the CpG mediators that reached significance
in sex-specific mediation analysis were exclusive to either males
or females, except one. This is also consistent with findings
from the New England Family Study that examined sex-specific
methylation mediators between early life social disadvantage and
adult BMI, where distinct CpG sites were identified for males
and females (51, 52). Only two mediating CpGs identified in
our combined sex analysis overlapped with those identified in
the New England Family Study (cg05832823 and cg22679740),
which were both identified in females only using adipose tissue.
In this sample, a larger proportion of the association between SES
and BMI was mediated by the CpG sites in females than males.
However, in our study, females had a smaller total effect of adult
SES on BMI (0.49%) than males (3.5%), which is in contrast to
other studies that found stronger associations between SES and
BMI in females (70). Our findings provide additional insight into
the sex-specific nature of the epigenetic mechanisms linking SES
to obesity and suggest that the epigenetic mediation pathways
may operate more strongly for women.

A top-ranked mediator of neighborhood socioeconomic
disadvantage and HDL-C, cg03128029, is located in the gene
body of NOP58, a component of a small nucleolar ribonuclear
protein (snoRNP). This CpGwas previously associated withHDL
in the REGICOR study (97). Interestingly, this CpG site and
another top-ranking mediator of neighborhood socioeconomic
disadvantage and HDL-C, cg20995564 in the zinc finger e-
box binding homeobox-2 gene (ZEB2), were associated with
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serum CRP, an inflammatory biomarker of CVD, in both
Europeans and African Americans (98). The two most significant
eQTM mediators of neighborhood socioeconomic disadvantage
on HDL-C were cg03254336, corresponding to expression of
transcription factor 7-like 2 (TCF7L2), a major genetic risk
factor for type 2 diabetes, and cg10699171, corresponding to
expression of RHO family interacting cell polarization regulator 2
(FAM65B). Recently, it was found that dietary fat intake wasmore
strongly associated with HDL-C in participants with a certain
TCF7L2 genetic variant (99). Genetic variants in the FAM65B
gene region were also associated with early onset dyslipidemia,
specifically hyper-LDL-cholesterolemia (100). None of the CpGs
identified in our study were among the significant CpGs in the
most recent EWAS of HDL-C (50).

Mediating CpG eQTMs for the association between
neighborhood socioeconomic disadvantage and HDL-C
were enriched for genes involved in the apoptotic process,
cell death, the establishment/maintenance of cell polarity, and
regulation of leukocyte chemotaxis. Lipid homeostasis is known
to play a key role in regulated cell death processes including
apoptosis, necroptosis, and ferroptosis (101). There is also
evidence that genes playing a key role in metabolic induction of
apoptosis may function through regulation of lipid metabolism,
including HDL-C levels (102). Macrophage polarity, the cellular
differentiation into pro-inflammatory or anti-inflammatory
cells, appears to be influenced by HDL in mice but not humans
(103). HDL-C is known to inhibit leukocyte chemotaxis, leading
to lower levels of inflammation (104). However, more work
needs to be done to fully characterize the potential pathways
between genes that play a role in these cellular processes and
HDL-C levels.

The methylation changes that we identified as potential
mediators of the associations between social factors and CVD
risk factors were in monocytes. During the development of
atherosclerosis, monocytes are recruited to the endothelial
cells from the bloodstream and become activated by LDL or
other stimulating factors. Activated monocytes then release
additional inflammatory factors such as IL-6, MCP-1, and TNF-
α, and differentiate into macrophages. Finally, macrophages
engulf excess lipoproteins including LDL to form foam cells,
which are a key characteristic of early-stage atherosclerosis
(105). Therefore, monocyte and macrophage differentiation
and activation are critical processes in the development of
atherosclerosis. Prior research suggests that DNA methylation
plays an important role in regulating these processes. A
comparison of epigenome-wide methylation among human
monocytes, naive macrophages, activated macrophages with pro-
inflammatory or anti-inflammatory phenotypes, and foam cells
activated with oxidized or acetylated LDL found that 5,870
CpG sites were differentially methylated across the 6 cell types
(106). Of these, 5,780 (98%) were attributed to monocyte-to-
macrophage differentiation. In our study, 96 of the 410 (23.4%)
mediating CpG sites of the association between adult SES and
BMI and 23 of the 43 (53.5%) mediating CpG sites of the
association between neighborhood socioeconomic disadvantage
and HDL-C were also involved in monocyte-to-macrophage
differentiation (Supplementary Tables 1, 6) (106). In addition,

several of themediating CpG sites were located near genes known
to be implicated in the process of monocyte-to-macrophage
differentiation. For example, a top-ranking mediating CpG site
of the association between adult SES and BMI, cg09100014,
is located in the gene body of IRF8, a transcription factor
well-established in monocyte differentiation (107). Furthermore,
as shown in Supplementary Figures 6, 7, pathway analysis
using genes whose expression levels were associated with the
identified CpGmediators in an active chromatin state in primary
mononuclear cells showed strong enrichment for biological
processes involved in monocyte-to-macrophage differentiation
such as regulation of immune response, regulation of leukocyte
migration, regulation of leukocyte chemotaxis.

To our knowledge, this was the first study to examine
the role of DNA methylation in mediating the relationships
between individual SES and neighborhood characteristics and
several CVD risk factors in a large, multi-ethnic, population-
based cohort. In this study, the use of composite measures
for neighborhood conditions that encompass census-based and
survey-based metrics allowed us to examine multiple dimensions
of neighborhood. Moreover, we adopted a high-dimensional
mediation method, JT-Comp, to formally test the mediation
effects of hundreds of thousands CpG sites. This method takes
into account the composite nature of the null hypothesis of
mediation analysis, which is often ignored by other traditionally
used methods such as Sobel’s normality test and thus provides
better calibrated p-values under the null (108). Other high-
dimensional mediation methods including DACT (109) have
been proposed more recently, but in our experience JT-Comp
remains the most stable method when the mediation effects are
small and sparse. Nevertheless, additional exploration with other
high-dimensional mediation methods may be warranted.

Our study is not without limitations. First, DNA methylation
and gene expression were measured in peripheral purified
monocytes. Although blood may not be the most relevant tissue
type for many of the traits we studied, it has been widely and
successfully used as a surrogate for targeted tissues that are not
readily accessible. For example, in a large EWAS of BMI (45),
methylation at 187 CpG sites associated with BMI in blood
showed amoderate to strong correlation with other metabolically
relevant tissues including subcutaneous and omental fat, liver,
muscle, spleen, and pancreas. Furthermore, among the 187 CpG
sites associated with BMI in blood, 120 also showed directional
consistency and 91 were significantly associated with BMI in
adipose tissue. While these findings are consistent with the idea
that methylation in blood correlates with methylation in other
tissues, in another study comparing DNA methylation profile in
matched samples of blood and adipose tissue, only 5.2% of the
CpG sites had a >0.5 correlation between blood and adipose
tissue (110). Therefore, although there is some rationale for using
DNA methylation measured in blood as a proxy, association
analysis in more directly relevant tissues (e.g., adipose, heart, and
liver) would be the next important step to validate our results and
identify additional non-blood related CpG mediators.

Second, we used education as the only indicator of individual
SES. There are many other aspects of SES, such as income,
occupation, and wealth, which were not examined in this study.
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However, education is a robust indicator of SES that correlates
well with many other SES measures (111, 112). In this study, we
usedmaternal education as ameasure of childhood SES because it
has been suggested as a more critical determinant of child health
than paternal education (58, 113, 114). In addition to better
employment and higher household income, higher maternal
education might improve child health through a wide range
of health-promoting behaviors and health knowledge (58). We
also dichotomized both adult and parental education which may
have limited our ability to detect associations with the CVD risk
factors (and mediation effects). The analytical strategy we used
required us to simplify analyses of individual and neighborhood
social determinants to isolate their independent effects. Future
work should examine joint and interaction effects and further
consider the many interrelated pathways through which social
determinants may impact methylation and CVD risk factors.
Moreover, because analyses were adjusted for race/ethnicity,
we did not investigate important ways in which structural
racism may impact CVD risks and the role of methylation in
these relationships. Finally, although we controlled for current
smoking status as a potential confounder, residual confounding
might be present because we did not take other dimensions of
smoking such as intensity, duration, and pack-years into account.

In this study, we used summary neighborhood scores
that were constructed as weighted averages across multiple
neighborhoods in order to examine the cumulative effects of
neighborhood over time. By using weights proportional to the
length of time the respondents resided in each neighborhood,
we assumed that neighborhoods where the respondents lived
for a longer period of time would have a greater impact on
the proposed mediator and outcome. However, it is possible
that neighborhoods lived in more recently may have a larger
influence on methylation and cardiovascular risk factors than
previous neighborhoods, which was not accounted for in our
analysis. Future studies should consider examining how the
timing of neighborhood exposures might influence the effects
of neighborhood-level social disadvantage on DNA methylation
and cardiovascular risk factors. In addition, we did not have
the complete address history for every respondent. Between
Exams 1 and 5, 1.2 and 11.6% of respondents had at least one
missing value for neighborhood SES and neighborhood social
environment, respectively. This may have led to misclassification
of the cumulative average neighborhood exposures for the small
number of respondents affected.

Another limitation is that although we performed statistical
mediation analysis, our data were cross-sectional and thus we
were unable to assess the temporal relationships between changes
in methylation and CVD risk factors. Thus, we cannot be fully
confident of the causal direction of effect between methylation
and CVD risk factors. There is some support for a causal effect
of changes in methylation on BMI (79), for example. However,
other studies have shown that BMI tends to be more of a driver of
changes in methylation than a downstream consequence (45, 65).
Furthermore, in this study, we assumed that the effect of social
disadvantage on cardiovascular risk factors remains the same as
the level of DNA methylation changes. Thus, we did not include
exposure-mediator interaction terms in the mediation analysis.

However, it is worth noting that violation of this assumption may
result in invalid causal conclusions (115). Further longitudinal
studies that explore exposure-mediator interaction are needed to
more fully delineate the causal pathways proposed here.

Moreover, we employed an analytical strategy to first test
the total effect of the exposure on the outcome, and only
explored potential mediation effects when the total effect was
significant. In the literature on mediation analysis, whether
or not total effect should be required before testing indirect
effect has been subject to considerable debate. Researchers in
favor of suspending the total-effect test argue that requiring
a significant total effect of the exposure on the outcome may
limit the power of mediation analysis, since there are several
scenarios in which the total effect may not be significant
even in the presence of mediation. For example, the test of
the total effect may be underpowered. Alternatively, indirect
effects mediated through multiple mediators could cancel each
other out, resulting in a non-significant total effect. Thus, we
acknowledge that by requiring a significant total effect, our
findings are conservative and may miss some true indirect
effects. However, this does not invalidate our mediation analysis
as we intended to assess the mediation effect, rather than
the indirect effect, of DNA methylation in the relationship
between social disadvantage and cardiovascular risk factors.
Although the terms “mediator variables” and “indirect effects”
are often used interchangeably, there is an important distinction
between them (116). In particular, mediation is a special,
more restrictive type of intervening relationship that implies
the total effect of the exposure on the outcome was present
initially and sheds light on the nature of the relationship
between the exposure and the outcome [see (116) for a detailed
discussion]. Therefore, given that the goal of our study was
to better characterize the role of methylation in linking the
effects of social disadvantage on cardiovascular diseases, we
limited our search space to mediation settings with a detectable
total effect.

Finally, methylation levels of CpG sites that are close to
each other in the same biological pathways may be correlated.
In light of this, a limitation of JT-Comp and other high-
dimensional univariate mediation methods is that the correlation
among potential mediators is not explicitly modeled. Recently,
high-dimensional mediation methods that can jointly model
potential mediators, such as the Bayesian high-dimensional
mediation method (BAMA) (117) and its extensions (118, 119),
have been proposed. Although these joint analysis methods
can reduce the multiple testing burden, increase power, and
better estimate independent effects, they are computationally
heavy and can only simultaneously evaluate a few thousand
mediators simultaneously. Since the goal of the current study
was to conduct epigenome-wide meditation analysis with
nearly half a million potential mediators, such methods were
impractical, and we instead carried out ad hoc PCA analyses
to better characterize the overall mediation effect across
the identified loci and penalization-based high-dimensional
mediation analysis on the potential CpG mediators identified in
the epigenome-wide mediation analysis to further fine map the
identified loci.
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In summary, our findings support the hypothesis that
DNA methylation acts as a mediator between individual- and
neighborhood-level social disadvantage and CVD risk factors,
and provide insight into the underlying epigenetic mechanisms
that link social disadvantage to poor cardiovascular health. Since
many of the identified CpGmediators are involved in the process
of monocyte-to-macrophage differentiation and macrophage
polarity, our findings suggest that epigenetic regulation of
monocyte differentiation and subsequent activation might be a
promising avenue for further investigation. Future research is
needed to replicate our findings in other independent cohorts
and confirm the role of DNA methylation in mediating the
association between individual- and neighborhood-level social
disadvantage and cardiovascular risk factors.
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