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ARTICLE

ExPRSweb: An online repository with polygenic risk
scores for common health-related exposures

Ying Ma,!2 Snehal Patil, .2 Xiang Zhou,!.2.3 Bhramar Mukherjee,!.2:3:4.5,6.8 and Lars G. Fritsche!.2.3,5.7.8,*

Summary

Complex traits are influenced by genetic risk factors, lifestyle, and environmental variables, so-called exposures. Some exposures, e.g.,
smoking or lipid levels, have common genetic modifiers identified in genome-wide association studies. Because measurements are often
unfeasible, exposure polygenic risk scores (ExPRSs) offer an alternative to study the influence of exposures on various phenotypes. Here,
we collected publicly available summary statistics for 28 exposures and applied four common PRS methods to generate ExPRSs in two
large biobanks: the Michigan Genomics Initiative and the UK Biobank. We established ExPRSs for 27 exposures and demonstrated their
applicability in phenome-wide association studies and as predictors for common chronic conditions. Especially the addition of multiple
ExPRSs showed, for several chronic conditions, an improvement compared to prediction models that only included traditional, disease-
focused PRSs. To facilitate follow-up studies, we share all ExPRS constructs and generated results via an online repository called Ex-

PRSweb.
Introduction

A central challenge in genetics is to understand inherited
factors underlying complex traits and disorders. Substan-
tial efforts in the past decade, especially genome-wide asso-
ciation studies (GWASs), have successfully uncovered ge-
netic variants associated with a plethora of traits.’
However, translating these to disease etiology or to predict
outcomes is not straightforward. Most genetic risk variants
have weak and sparse marginal effects, accounting for only
a small fraction of the phenotypic variation, even for high-
ly heritable traits.”* Consequently, incorporating infor-
mation across genetic variants is necessary for assessing
the predisposition of complex traits.

The construction of a polygenic risk score (PRS) is among
the widely used approaches to translate genetic informa-
tion into a disease risk.”® A PRS is formed as a summation
of an individual’s risk alleles, weighted by the effect sizes
obtained from an external GWAS. PRS methods rely on
the polygenicity of complex traits and vary in data input,
model assumptions, validation procedures, and whether
functional annotations or pleiotropic information are
incorporated.”

In addition to genetic risk factors, a wide range of health-
related biomarkers, intermediate traits, lifestyle, and envi-
ronmental variables—in this study broadly summarized
as “exposures”—can impact disease risks. For example,
high body mass index, smoking, blood lipid levels, and

pre-existing type 2 diabetes (T2D) were recognized as
prominent risk factors for cardiovascular disease,® respira-
tory diseases,” and cancers.'”'" Given the relevance for
these often modifiable risk factors for morbidity and mor-
tality, exposure information is pivotal for precision preven-
tion.'? However, data on even common exposures are not
always available, especially when using electronic health
records (EHRs). Furthermore, data can be prone to mea-
surement error, bias, and non-random missingness.'*"?
Yet, some exposures have a heritable component identifi-
able through GWASs'*'® and thus offer the opportunity
to construct exposure PRSs (ExPRSs).

As genetic proxies at the individual level, ExPRSs have
been used in many applications, e.g., risk prediction and
stratification,'®'® predicting exposures,'? instruments for
Mendelian randomization analyses, or phenome-wide as-
sociation studies (PheWASs).?°%? Including ExPRSs to pre-
diction models could improve disease diagnosis, screening,
therapeutic interventions, and precision medicine ap-
proaches. PheWASs with ExPRSs may identify clinical phe-
notypes associated with a modifiable exposure and thereby
highlight diseases whose onset might be influenced by
early intervention or behavioral/lifestyle modification.*’
In contrast, ExPRSs for unmodifiable exposures, e.g.,
height or age at menarche, will not be amenable to individ-
ualized interventions. Of note, ExPRSs capture the genetic
predisposition of an exposure assigned at birth but not the
environmental influence, thus leaving a large proportion
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of the exposure’s variance unexplained. Still, the identifi-
cation of associations between diseases and ExPRSs may
help to tease apart the interplay of genetic and environ-
mental pathways through which they influence disease
risk.

The emerging utility of PRSs is evidenced via the accu-
mulation of more than 1,000 PRS-related articles indexed
in PubMed since 2009°* and spurred by significant ad-
vances in PRS methods.” Despite the rise in popularity,
their transition into clinical settings is often limited by
lack of transparency, compatibility, and reproducibility
across cohorts. Therefore, an ExPRS resource that inte-
grates adequate information for constructing, evaluating,
and utilizing ExPRSs to accelerate ExPRS-related research
is desirable and necessary. Recently, we established “Can-
cer PRSweb,” an interactive, online repository with cancer
PRSs for 35 common cancer traits.”’ Building upon our
previous work, we present ExPRSweb, a uniform analytic
framework and an extension of PRSweb that specifically fo-
cusses on ExPRSs for 28 common exposures.

By using available exposure GWAS summary statistics
and two large biobanks, the Michigan Genomics Initiative
(MGI) and the UK Biobank (UKB), we generated ExPRSs
with four methods varying in complexity and modeling
(i.e., linkage disequilibrium clumping and p value thresh-
olding [C + T], Lassosum, deterministic Bayesian sparse
linear mixed model [DBSLMM], and PRS-CS, a Bayesian
method with continuous shrinkage priors).”~*° We also
highlight ExPRS applications including PheWAS, risk strat-
ification, and prediction of common chronic conditions.
For the latter, we evaluated the predictive performance of
single and multiple ExPRSs when combined with disease-
specific PRSs and could show substantial improvement
for several traits. We also contrasted these predictors with
“poly-exposure risk scores” (PXSs), which integrate multi-
ple measured exposures. In absence of high-quality expo-
sure data on many individuals, ExXPRSs can serve as surro-
gates if one has genotype data on a larger and more
representative sample. Our repository ExPRSweb unlocks
access to over 300 ExPRSs for 27 different exposures and fa-
cilitates scientific collaboration to strengthen their future
application.

Subjects and methods

Michigan Genomics Initiative (MGI)

MGl cohort

Adult participants aged between 18 and 101 years at enrollment
were recruited through the Michigan Medicine health system be-
tween 2012 and 2020. Participants have consented to allow
research on both their biospecimens and EHR data as well as link-
ing their EHR data to national data sources such as medical and
pharmaceutical claims data. Participants were primarily recruited
through the MGI - Anesthesiology Collection Effort (n = 51,160)
while awaiting a diagnostic or interventional procedure either at
a preoperative appointment or on the day of their operative pro-
cedure at Michigan Medicine. Additional participants were re-

cruited through the Michigan Predictive Activity and Clinical Tra-
jectories (MIPACT, n = 2,685) Study, the Mental Health Biobank
(MHB2, n = 617), and the Michigan Genomics Initiative-
Metabolism, Endocrinology, and Diabetes (MGI-MEND, n =
2,522) Study. The data used in this study included diagnoses coded
with the Ninth and Tenth Revision of the International Statistical
Classification of Diseases (ICD9 and ICD10) with clinical modifi-
cations (ICD9-CM and ICD10-CM), laboratory measurements, an-
thropometrics (height, thinness, and body mass index [BMI]), vi-
tals (systolic and diastolic blood pressure [SBP and DBP,
respectively]), health behavior (alcohol amount, smoker, and
drinker), sex, precomputed principal components (PCs), genotyp-
ing batch, recruitment study, and age. Data were collected accord-
ing to the Declaration of Helsinki principles. MGI study partici-
pants’ consent forms and protocols were reviewed and approved
by the University of Michigan Medical School Institutional Review
Board (IRB ID HUM00099605 and HUM00155849). Opt-in writ-
ten informed consent was obtained. Additional details about
MGI can be found online (see web resources).

MGI genotype data

DNA from 56,984 blood samples was genotyped on customized I1-
lumina Infinium CoreExome-24 bead arrays and subjected to
various quality control filters, resulting in a set of 502,255 poly-
morphic variants. PCs and European/non-European ancestry
were estimated by projecting all genotyped samples into the space
of the PCs of the Human Genome Diversity Project reference panel
with PLINK (938 individuals).?'~** To further characterize inferred
non-European ancestry individuals, we used 938 unrelated indi-
viduals of the Human Genome Diversity Panel (HGDP) as refer-
ence panel for ADMIXTURE (v1.3.0) to estimate for each non-Eu-
ropean MGI individual their ancestry fraction of African (AFR),
Central/South Asian (CSA), East Asian (EAS), European (EUR),
Native American (AMR), Oceanian (OCE), or West Asian (WAS)
ancestral HGDP continental populations.®? We used majority
global ancestry, the largest ancestry fraction, to define additional
non-EUR ancestry groups (AFR, AMR, CSA, EAS, and WAS); no in-
dividual with majority OCE ancestry was found (details can be
found elsewhere®*). We assessed pairwise kinship with the soft-
ware KING,*® and we used the software FastIndep to reduce each
ancestry group to a maximal subset that contained no pairs of in-
dividuals with third-or-closer degree relationship.*® We removed
participants without diagnosis data. The main analytical sample
included 46,782 EUR individuals, while additional auxiliary sam-
ples (non-EUR samples with n > 500) included 3,012 AFR, 919
EAS, and 606 CSA individuals. The remaining non-EUR samples
AMR and WAS had fewer than 500 individuals and were not
included in any analyses. Additional genotypes were obtained
with the Haplotype Reference Consortium reference panel of the
Michigan Imputation Server’’ and included over 24 million
imputed variants with R*> > 0.3 and minor allele frequency
(MAF) > 0.01%.

MGI phenome

The MGI phenome was based on ICD9-CM and ICD10-CM code
data for 46,782 unrelated, genotyped individuals of recent Euro-
pean ancestry. Longitudinal time-stamped diagnoses were recoded
to indicators for whether a patient ever had given a diagnosis code
recorded by Michigan Medicine. These ICD9-CM and ICD10-CM
codes were aggregated to form up to 1,814 PheCodes with the
PheWAS R package. In short, ICD codes that map to a phenotype
concept (PheCode) were used as inclusion criteria for cases, while
individuals whose ICD codes map to a set of related PheCodes
were excluded as controls. Gender-specific exclusions were applied
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if necessary. All remaining individuals were considered as controls
(further details are described elsewhere?””*%). To minimize differ-
ences in age and sex distributions, avoid extreme case-control ra-
tios, and reduce the computational burden, we matched up to
ten controls to each case by using the R package “MatchlIt.”*® Near-
est neighbor matching was applied for age and the first four PCs of
the genotype data (PC1-4) via Mahalanobis distance with a
caliper/width of 0.25 standard deviations. Exact matching was
applied for sex and genotyping array. A total of 1,685 case-control
studies with >50 cases were used for our analyses of the MGI
phenome.

MGI common chronic conditions

We used the CCW Condition Algorithms (rev. 02/2021) from the
CMS Chronic Condition Warehouse (CCW; see web resources) to
define 27 common chronic conditions in MGI. In short, like the
PheCode system, the CCW algorithms are based on ICD-9-CM-
and ICD-10-CM-based inclusion and exclusion criteria. Here, we
were interested in any observation of such conditions and disre-
garded the algorithms’ stated reference period or the required
numbers/types of qualifying claims for Medicare or Medicaid.
The resulting 27 case-control studies were labeled CCWO01-
CCW27 and are listed in Table S12.

UK Biobank (UKB) cohort

UKB cohort

UKB is a population-based cohort collected from multiple sites
across the United Kingdom and includes over 500,000 participants
aged between 40 and 69 years when recruited in 2006-2010.%° The
open-access UK Biobank data used in this study included geno-
types, ICD9 and ICD10 codes, biomarker data, anthropometrics,
vitals, women’s health, health behavior, inferred sex, inferred
White British ancestry, kinship estimates down to third degree,
birth year, genotype array, and precomputed PCs of the genotypes.
UK Biobank received ethical approval from the NHS National
Research Ethics Service North West (11/NW/0382).

UKB genotype data

We used the UK Biobank imputed dataset (v3) and limited analyses
to the documented 408,595 White British®*® individuals and
47,836,001 variants with imputation information score > 0.3 and
MAF > 0.01%, of which 22,933,317 overlapped with the imputed
MGI data (see above). Two random subsets of 5,000 and 10,000 un-
related White British individuals were used for linkage disequilib-
rium (LD) analyses of UKB-based summary statistics. Genotyping,
quality control, and imputation are described in detail elsewhere.*!
UKB phenome

The UK Biobank phenome was based on ICD9 and ICD10 code
data of 408,595 White British,*’ genotyped individuals that were
similarly aggregated to PheCodes as MGI (see above, also described
elsewhere*®). In contrast to MGI, there were many pairwise rela-
tionships reported for UKB participants.

To retain a larger effective sample size for each phenotype, we
first selected a maximal set of unrelated cases for each phenotype
(defined as no pairwise relationship of third degree or closer’®**)
before selecting a maximal set of unrelated controls unrelated to
these cases. Similar to MGI, we matched up to ten controls to
each case by using the R package “MatchlIt.”*® Nearest neighbor
matching was applied for birth year (as proxy for age because
age at diagnosis was not available to us) and PC1-4 (Mahalano-
bis-metric matching; matching window caliper/width of 0.25
standard deviations), and exact matching was applied for sex
and genotyping array. A total of 1,419 matched case-control

studies with >50 cases each were used for our analyses of the UK
Biobank phenome.

Exposure data

For a set of 21 continuous and seven binary exposures for which
we could find freely available and complete GWAS summary statis-
tics (see exposure GWAS summary statistics below), we extracted
the corresponding EHR data as described in Table S1. For the bi-
nary exposures that are common disorders (type 2 diabetes, hyper-
tension, insomnia, and sleep apnea), we use the PheWAS code-
based definitions (see MGI phenome and UKB phenome above;
Table S7). Survey-based measures with multiple responses per per-
son (never/past/current alcohol use and smoking status) were re-
coded to never/ever responses. For continuous exposures, we
removed outliers by using the 1.5x interquartile range (IQR)
rule, i.e., we removed measurements outside 1.5 times the IQR
above the upper quartile and below the lower quartile of the expo-
sure’s distribution in the cohort. After removing outliers, we used
the mean of any remaining multiple measurements per person.
We found that only using the median without outlier removal
was insufficient to reduce the impact of potential outliers. For
the UKB cohort, we calculated the estimated glomerular filtration
rate (eGFR) on the natural scale by using the harmonized serum
creatinine values (data field 30700), race and sex information,
and the Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) equation.**

Exposure GWAS summary statistics

For each of the 28 exposures, we collected complete GWAS summary
statistics from up to four different sources: (1) catalogued GWASs of
the NHGRI EBI GWAS Catalog,' (2) GWASs from the FinnGen Con-
sortium, (3) published GWAS meta-analyses, and (4) publicly avail-
able GWAS summary statistics of phenome X genome screening ef-
forts of the UK Biobank data (Lee and Neale Lab, see Table S2 and web
resources). We only included GWAS summary statistics of studies
that analyzed broad European ancestry to match the ancestry of dis-
covery GWASs and target cohorts (MGI and UKB).

If needed, we lifted over coordinates of GWAS summary statistics
to human genome assembly GRCh37 (LiftOver, UCSC Genome
Browser Store, see web resources). Entries with missing effect alleles
or effect sizes were excluded. If effect allele frequency (EAF) was re-
ported in the summary statistics, we also compared EAF between
the discovery GWAS and the target dataset (MGI and/or UKB). If
the proportion of likely flipped alleles (whose EAF deviated more
than 15% between the datasets) was above 40%, we excluded the
GWAS as source for PRS construction. These chosen thresholds
were subjective and based on clear differentiation between correct
and likely flipped alleles on the two diagonals, as noted frequently
in GWAS meta-analyses quality control procedures.

Statistical methods

Heritability estimation

For each set of GWAS summary statistics from both UK Biobank
and non-UK Biobank sources (e.g., FinnGen, GWAS catalog, large
meta-analyses), we first estimated the SNP heritability to estimate
the proportion of phenotypic variance explained by all measured
SNPs based on summary statistics. The estimated SNP heritability
represents the upper limit for the prediction performance of PRS
methods and serves as an initial filtering criterion to validate the
quality of the downloaded summary statistics. To do so, we
applied the method MQS (MinQue for summary statistics), which
was implemented in Gemma, to calculate the SNP heritability
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estimate (see web resources).*>*® MQS estimates the SNP heritabil-
ity based on the minimal norm quadratic unbiased estimation
(MINQUE)**® criterion. Specifically, we first converted the p
values into marginal Z scores, and then we used the Z scores as
well as 5,000 randomly selected, unrelated samples (reference
panel) as input to run Gemma. Finally, we obtained the propor-
tion of variance in phenotypes explained (PVE) estimates from
Gemma, which corresponds to the SNP heritability estimate. We
further filtered out the summary statistics that had negative heri-
tability estimates.

For binary traits with potentially ascertained case-control data,
we converted the heritability estimates from the observed scale
to the liability scale by using the R package “PDRohde/ugnome”
and reported population prevalence estimates (Table $3).*’

ExPRS construction

We constructed the PRS for an individual j in the form PRS; =
>i8iG; where i indexes the included variants for that trait, weight
B; is the log odds ratios retrieved from the external GWAS sum-
mary statistics for variant i, and Gj is a continuous version of
the measured dosage data for the risk allele of variant i in subject
j. To construct a PRS, one must determine which genetic loci to
include in the PRS and their relative weights. We have obtained
GWAS summary statistics from several external sources, resulting
in several sets of weights for each trait of interest. For each set of
weights obtained from GWAS summary statistics from the
above-mentioned sources and each trait, we generated for each
exposure GWAS up to five different PRSs reflecting the five imple-
mentations of four different PRS methods: the C + T (both, best
guess genotype [GT] and dosage [DS] version),”>*’ lassosum,>®
DBSLMM,?’ and PRS-CS*" (Figure 1).

We summarized the statistical aspects of these construction
methods in Table S22. The goal of this approach was to compare
multiple PRS methods and find the method that works best for
the various types of GWAS summary statistics.

LD clumping and p value thresholding (C + T). We performed
linkage disequilibrium (LD) clumping/pruning of variants with p
values below 0.1 by using the imputed allele dosages of 10,000
randomly selected samples and a pairwise correlation cut-off at
1? < 0.1 within a 1 Mb window. We constructed many different
PRSs across a fine grid of p value thresholds. We used the p value
threshold with the highest pseudo-R? (binary trait) or highest R*
(continuous traits) (see PRS evaluation below) to define the opti-
mized “Clumping and Thresholding (C and S)” PRS. We applied
two approaches for LD clumping: C + T (GT) and C + T (DS). Spe-
cifically, the “C + T (GT)” is implemented by plink-1.9 with the
best-guess genotypes (GT, imputed genotype dosages are rounded
to the next integer) for LD calculations, while “C + T (DS)” is im-
plemented in R and considers the uncertainty of imputed geno-
types by using the dosage data (DS).

Lassosum. Lassosum obtains PRS weights by applying elastic
net penalization to GWAS summary statistics and incorporating
LD information from a reference panel. Here, we used 5,000
randomly selected, unrelated samples as the LD reference panel.
We applied an MAF filter of 1% and, in contrast to the previous
two approaches, only included autosomal variants that overlap be-
tween summary statistics, LD reference panel, and target panel.
Each “Lassosum” run resulted in up to 76 combinations of the
elastic net tuning parameters s and A, and consequently, in 76
SNP sets with corresponding weights used to construct. We then
selected the PRS with the pseudo-R? (binary trait) or highest R?
(continuous traits) to define the “Lassosum” PRS (see PRS evalua-
tion below).

Deterministic Bayesian sparse linear mixed model (DBSLMM).
DBSLMM assumes that the true SNP effect sizes derive from a
mixture of normal distributions and relies on an efficient deter-
ministic search algorithm for statistical inference. DBSLMM re-
quires both GWAS summary statistics and LD information from
a reference panel. Specifically, DBSLMM first selects SNPs with
large effect in a deterministic fashion through the C + T procedure
and then directly obtains both large SNP effect sizes and small SNP
effect sizes through analytic forms. Here, we used 5,000 randomly
selected unrelated samples as the LD reference panel. We applied
an MAF filter of 1% and only included autosomal variants that
overlap between summary statistics, LD reference panel, and
target panel. Heritability estimates obtained from Gemma (see
above-mentioned procedure) were used as the input of
DBSLMM. All other parameters we used are the default parameters
in the “DBSLMM” software. For example, we set the cutoff of SNPs
clumping and pruning to be r* < 0.1 within a 1 Mb window and p
value < 1 X 107°, respectively. Each DBSLMM run resulted in one
SNP set with corresponding weights to construct the PRS. We used
the default version of DBSLMM, which does not require cross-vali-
dation and refer to the obtained PRS as “DBSLMM” PRS.

PRS-CS. PRS-CS utilizes a Bayesian regression framework and
assumes a continuous shrinkage (CS) prior on the effect sizes. Spe-
cifically, we applied the default “auto” version of PRS-CS that
obtain weights through the Gibbs sampling algorithm. Here,
PRS-CS-auto uses a precomputed LD reference panel based on
external European samples of the 1000 Genomes Project (“EUR
reference”) to construct a PRS. We applied an MAF filter of 1%
and only included autosomal variants that overlap between sum-
mary statistics, LD reference panel, and target panel. The obtained
PRS is referred to as “PRS-CS” PRS.

For each trait and set of GWAS summary statistics, these ap-
proaches usually resulted in up to five PRSs. However, approaches
that resulted in less than five weights/variants were excluded. Using
the R package “Rprs” (see web resources), the value of each PRS was
then calculated for each MGI participant and, if the GWAS source to
the best of our knowledge did not include UKB samples, also for
each UKB participant. For comparability of association effect sizes
corresponding to the continuous PRS across exposures and PRS
construction methods, we centered PRS values in MGI and UKB
to a mean of 0 and scaled them to have a standard deviation of 1.
ExPRS evaluation
To assess the predictive performance of these generated PRSs, each
PRS was assessed through cross-validation in either the MGI
cohort or the UKB cohort: we split the data corresponding to
each trait in training (50% of the samples with gender ratio un-
changed) and test set (50% of the samples with gender ratio un-
changed). We used the training set to determine the PRS-tuning
parameter(s) and used the testing set to obtain performance metric
for that PRS.

For the PRS evaluations, except for when computing the
pseudo-R? for binary exposures (which is a measure of marginal as-
sociation of the ExPRS with the exposure),’” we fit the following
model for each PRS and exposure adjusting for covariates:

8(E(Exposure|PRS, Age, Sex, Array, PCs)) = 8 + BprsPRS + 84, Age
+ ﬁSexseX + 6ArmyArray + 5PCSPCS7
(Equation 1)

where g(-) is the link function (e.g., identity link function for
continuous traits and logit link function for binary traits). PCs
were the first four principal components obtained from the
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Independent Evaluation

/ \

Random split

UK Biobank
GWAS

Figure 1.

principal-component analysis of the genotyped GWAS markers,
where “Age” was the age at last observed diagnosis in MGI and
birth year in UKB and where “Array” represents the genotyping
array.

Binary traits. 'We used Nagelkerke’s pseudo-R? to select the tun-
ing parameters within the “C + T” and Lassosum construction
methods (p value for “C + T” SNP sets; s and A for Lassosum)
and kept the PRS with the highest pseudo-R? for further analyses.
For each PRS derived for each GWAS source/method combination,
we assessed the following performance measures relative to
observed disease status in MGI and UKB: (1) overall performance
with Nagelkerke’s pseudo-R? by using R package “rcompanion,”
(2) accuracy with Brier score by using R package “DescTools,”
and (3) ability to discriminate between cases and controls as
measured by the area under the covariate-adjusted receiver oper-
ating characteristic (AROC; semiparametric frequentist inference)
curve (denoted AAUC) by using R package “ROCnReg.” Covariate-
adjusted AUC (AAUC) is a weighted average of the areas under co-
variate-adjusted receiver operating characteristic (ROC) curves
over the distribution of covariates in the study sample. In contrast
to conventional AUC, the AAUC considers the covariates informa-
tion to measure the classification accuracy. In addition, AAUC is
context dependent because the calculation of the weights relies
on the covariates’ distributions. For example, even if the AUC
(x) is the same in MGI and UKB cohorts, the AAUCs will be
different because the distribution of x will be different as a result
of data cohorts’ particular covariate constitutions. We used Firth'’s
bias reduction method to resolve the problem of separation in lo-
gistic regression (R package “brglm2”).

Continuous traits. For the PRS evaluations of continuous traits,
we used R? to select the tuning parameters within the “C + T” and
Lassosum construction methods (p value for “C + T” SNP sets; s
and A for Lassosum) and kept the PRS with the highest R? for
further analyses. For each PRS derived for each GWAS source/
method combination, we assessed the prediction performance in
terms of R? in MGI and UKB.

ExPRS primary association with the underlying exposure

Next, we assessed the strength of the relationship between these
PRSs and the traits they were designed for. To do this, we fit the
same model as Equation 1. Our primary interest is Sprs, While
the other factors (age, sex, and PCs) were included to address po-
tential residual confounding. We used Firth’s bias reduction

GeneratelPRS l

Evaluation

Flow chart of ExPRS construction, evaluation, and selection

method to resolve the problem of separation in logistic regression
(Logistf in R package “EHR”). As an initial filtering step, we
removed PRSs that were not significantly associated with their cor-
responding exposure in MGI or UKB cohorts (p > 0.05) for down-
stream analysis. The majority of these filtered PRSs were either
based on discovery GWASs with small sample sizes that often
did not identify any genome-wide significant hits or were evalu-
ated for exposure with small sample sizes or both, indicating a po-
tential lack of power in our analysis.

lllustrative examples showcasing the use of ExPRSs

Once we select the ExPRSs that were mostly and positively associ-
ated with the specific exposure, referred to as the best performing
PRSs, we use these selected PRSs for various analyses to illustrate
how a user may gainfully use these constructs in understanding
disease etiology and mechanisms.

Phenome-wide exploration of ExPRS associations

We conducted PheWASs in MGI and UKB (if the GWAS source was
not based on UKB) to identify phenotypes associated with the
ExPRS. To evaluate ExPRS-phenotype associations, we conducted
Firth bias-corrected logistic regression by fitting the following
model for each ExPRS and each phenotype of the corresponding
phenome.

logit(P(Phecode is present|ExPRS, Age, Sex, Array, PCs)) = 8,
+ BexprsEXPRS + Byg.Age + BsexS€X + BarrayArray + BpcsPCs.
(Equation 2)

To adjust for multiple testing, we applied the conservative phe-
nome-wide Bonferroni correction according to the total number of
analyzed PheCodes (MGI: 1,685 phenotypes; UKB: 1,419 pheno-
types, as described in Table S7). In Manhattan plots, we present
-log10 (p value) corresponding to tests for association of the un-
derlying phenotype with the ExPRS. Directional triangles on the
PheWAS plot indicate whether a trait was positively (pointing
up) or negatively (pointing down) associated with the ExPRS.

To investigate the possibility that the secondary trait associa-
tions with ExPRSs were completely driven by the exposure or ex-
tremes of the trait distribution, we performed a second set of Phe-
WASs: for binary exposures, we excluded individuals with the
binary exposures for which the ExPRS was constructed; for contin-
uous exposures, we excluded individuals with measurements
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outside of the normal range (Table S1). We referred to these
PheWASs as “exclusion-PRS-PheWASs,” as described previously.*!
To evaluate whether the constructed ExPRS is a good proxy for
the corresponding exposure, we also repeated the PheWAS by us-
ing the exposure or normal range exposure as the predictor
instead. We referred to these PheWASs as “trait-PheWASs” and
“exclusion-trait-PheWASs,” respectively.
Utilities of ExPRSs on common chronic conditions
To investigate the utility of our constructed ExPRSs in predicting
common chronic conditions in the MGI cohort (see MGI common
chronic conditions above, Table S12), we first split the common
chronic conditions into training (50% of the samples with gender
ratio unchanged) and test set (50% of the samples with gender ra-
tio unchanged). We conducted Firth bias-corrected logistic regres-
sion by fitting the following model for each of the best performing
ExPRSs and each common chronic condition:

logit(P(a common chronic condition is present|ExPRS, Age,
Sex, Array, PCs)) = Bo + Br.prsEXPRS + 84,.Age + BsexSeX

+BamayArray + Bpc,PCs.  (Equation 3)

Prediction performance was measured by Nagelkerke’s pseudo-
R?, Brier score, and AAUC. Then we repeated the analysis by using
the actual exposure as predictor to be trained and evaluated in the
MGI cohort.

Next, we selected for each chronic condition the ExPRSs that
reached nominal significance in the univariate model and per-
formed clumping (r < 0.5). For each chronic condition, we com-
bined the resulting sets of their associated ExPRSs by fitting a logis-
tic regression in the training set to obtain the linear predictors that
we defined as “multiExPRS” in the testing data.

To investigate whether such a multiExPRS can be helpful in pre-
dicting a common chronic condition “Y” beyond the condition-
specific PRS “YPRS” (e.g., breast cancer PRS), we collected the YPRSs
from public resources, except for type 2 diabetes and hypertension,
for which we generated ExPRSs. More specifically, for type 2 dia-
betes (T2D) the T2D-PRS was used as the YPRS but never as the
ExPRS, while for other conditions it was considered as the ExPRS.
The same approach was applied for hypertension and the hyperten-
sion PRS. We downloaded PRS constructs/weights for lung cancer,
prostate cancer, colorectal cancer, and breast cancer PRSs from Can-
cer PRSweb®! and downloaded the following PRS weight from the
PGS Catalog™* (see web resources): stroke/transient ischemic attack,
heart failure, glaucoma, chronic kidney disease, atrial fibrillation,
and asthma PRSs. We harmonized the downloaded PRS weights
to GRCh37/hg19 and determined overlap with the MGI genotype
data. Non-ambiguous SNP alleles were flipped to the genomic
plus strand. We fit three logistic models for each common chronic
condition “Y” by using the following predictors adjusting for the set
of covariates from above: (1) condition-specific PRS, “YPRS”; (2) the
combined ExPRS, “multiExPRS”; and (3) “multiExPRS + YPRS.” As
before, we combined multiple predictors fitting a logistic regression
in the training set to obtain the linear predictors that we used as
combined score in the testing data. Our main interest is the com-
parison is between (2) and (3) because it tries to evaluate whether
amultipleExPRS can improve prediction models beyond the condi-
tion-specific YPRS.

To study the ability of these three predictors to enrich patients
for these chronic conditions, we binned the predictors according
to their distribution in controls and compared the enrichment

of cases in the three top bins “<5%”", “5%-10%", “10%-25%"
(each coded as 1) versus the “40%-60%" (coded as 0) by using
the multi-variate logistic model.

Poly-exposure score construction and comparison

To contrast the predictive power of a poly-exposure score (PXS) with
combined ExPRSs (multiExPRSs, see above), we extracted the
collected/measured exposure data from MGI. We removed three ex-
posures (cystatin C, fasting plasma glucose, and estradiol levels) that
because of their high missingness would have led to very small sam-
ple sizes in a complete case analysis across multiple exposures.

We retained the training/testing data split from the “ExPRS eval-
uation” (see above) and ran the following model for each of the re-
maining exposures and each of the selected common chronic con-
ditions in the training data:

logit(P(a common chronic condition is present|Exposure, Age,
Sex, Array, PCS)) = 50 + ﬂExposureEXposure + 18AgeAge + 6Sexsex

+BamayArray + Bpc;PCs. (Equation 4)

As with the multiExPRSs, we selected the significantly associated
exposures and performed clumping to only retain the significantly
associated exposures with a correlation < 0.5 with each other. We
used the remaining set of exposures to create a complete case
training dataset that we used to obtain effect sizes for each expo-
sure that we used as weights to create weighted exposures in the
complete case testing data. The weighted exposures were then
combined into a single predictor that we refer to as poly-exposure
score (PXS). Finally, we compared the AAUC of following four pre-
dictors adjusting for the set of covariates from above: the condi-
tion-specific PRS (“YPRS”), the combined ExPRS (“multiExPRS”),
the “multiExPRS + YPRS,” and the PXS.

Online visual catalog: ExXPRSweb

The online open access visual catalog ExPRSweb (see web re-

sources) was implemented with Grails as previously described.””
Unless otherwise stated, analyses were performed with R 4.1.1.

Results

Descriptive characteristics of study cohorts

For the generation and analysis of ExPRSs, we used two
analytical datasets that were restricted to unrelated partici-
pants of broad European ancestry encompassing 46,782 in-
dividuals in MGI and 408,595 individuals in UKB (Table 1;
subjects and methods).>**%*! The different prevalences of
binary exposures and common chronic conditions in MGI
and UKB most likely reflect the characteristics of a hospital-
based study (MGI) and a healthier, population-based study
(UKB), respectively (Table 1, Table S1). For example, there
are marked differences between MGI and UKB regarding hy-
pertension (49.8% versus 27.0%), diabetes (21.4% versus
7.2%), and lung cancer (2.2% versus 1.0%). Also, overweight
individuals (74.7% versus 66.8%) and smokers (49.2% versus
39.4%) were more frequent in MGI (Figure S1).

Heritability estimates
In total, we identified 82 sets of GWAS summary statistics
for 28 different exposures (21 quantitative, seven binary)
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Table 1. Demographics and clinical characteristics of the analytic datasets

Characteristic MGl UKB
Demographics

Study type hospital-based population-based
N 46,782 408,595

Females, n (%)

24,454 (52.3%)

220,896 (54.1%)

Mean age, years (SD) 56.7 (16.4) 56.9 (8.0)
Neighborhood deprivation index (SD) 0.9 (0.6) not available
Townsend deprivation index (TDI) not available -1.3(3.1)
Visits/measurements

Median number of visits per participant 45 3¢

Median time (years) between first and last visit 5.5 7.8%

Median lab orders per participant 59 34

Body mass index (BMI) 29.9 (7.1) 27.4 (4.8)

Underweight (BMI < 18.5), n (%)
Normal (BMI 18.5-24.9), n (%)

Overweight (BMI > 25.0), n (%)

498 (1.1%)
11,349 (24.3%)
34,916 (74.7%)

2,045 (0.5%)
132,264 (32.4%)
272,943 (66.8%)

Smoking status

Yes

No

22,919 (49.2%)

23,744 (50.8%)

160,954 (39.4%)

247,641 (60.6%)

Selected common chronic conditions

Hypertension, n (%)
Diabetes

Lung cancer

23,314 (49.8%)
10,012 (21.4%)
1,036 (2.2%)

110,134 (27.0%)
29,389 (7.2%)
3,885 (1.0%)

Based on all available dates of first in-patient diagnoses.

that had matching exposure data in MGI and/or UKB; 52
solely based on UKB data and 30 on large GWASs (Table 2,
Table S2). For each set, we estimated the narrow sense her-
itability>* as PRSs are closely connected to it and because
one PRS method (DBSLMM) relies on these estimates. After
excluding three GWAS sets with negative h? estimates, we
observed heritability estimates between 0.003 (sleep ap-
nea) and 0.518 (height) that were in line with previous
studies (Table $3).#°357 Still, estimates from GWASs on
the same exposure often varied (e.g., h’[height]: 0.012-
0.518 or h[vitamin D]: 0.009-0.100), implying different
underlying frameworks (Figure S2).

ExPRS evaluation

Following the scheme in Figure 1, we generated 514
ExPRSs (379 for 25 exposures in MGI and 135 for 17
exposures in UKB; Table S4) and assessed association,
overall performance, accuracy, and discrimination. A
total of 336 ExPRSs for 27 exposures were nominally sig-
nificant and positively associated with their correspond-
ing exposures in MGI (262 ExPRSs; 24 exposures) and in
UKB (74 ExPRSs; 14 exposures) and analyzed further
(Table S4).

Performance comparison across methods

For the method comparison, we focus on MGI because it
had a more comprehensive set of exposures covered by
ExPRSs. PRS-CS produced the best performing ExPRSs for
18 of the 24 exposures, consistent with previous bench-
marking (Table 3, Figure 2, and Figure $3).°%°° Lassosum
excelled for the alcohol and smoker exposure, DBSLMM
for lipid levels, and both C + T implementations for expo-
sures with low heritability, e.g., vitamins B12 and D
(Figure 2). Further, we found that the C + T implementa-
tion that uses dosages for LD clumping had a slight edge
over the one using best-guess genotypes, confirming previ-
ous findings.”’ Overall, these results suggested the
methods’ performances differed by trait, showcasing the
benefit of screening multiple methods.

Performance across exposures

Again, focusing on MGI, we selected for each exposure the
ExPRS with the lowest association p value among its
method/exposure GWAS combinations (Table S4). For quan-
titative exposures, the Pearson'’s correlation r with their cor-
responding ExPRS ranged from 0.049 (vitamin B12) t0 0.373
(height). For binary exposures, the area under the covariate-
adjusted area under the ROC curve (AAUC) ranged from
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Table 2. Overview of the 28 included exposures traits

Discovery GWAS Heritability” Evaluation cohort s le sizes (cases/controls or total)
Exposure Category Meta-analysis UKB h!,2 SE MGI UKB
Continuous traits
HDL cholesterol cardiovascular n/a 2 0.228 0.021 18,639 n/a
LDL cholesterol cardiovascular n/a 2 0.113 0.016 18,576 n/a
Triglycerides cardiovascular n/a 2 0.200 0.022 19,184 n/a
Total cholesterol cardiovascular n/a 2 0.131 0.017 18,231 n/a
PUFAs cardiovascular 1 n/a 0.148 0.081 n/a 174,277
CRP cardiovascular 1 2 0.198 0.106 10,292 389,826
eGFR renal biomarker 1 n/a 0.051 0.004 43,039 390,449
Creatinine renal biomarker 3 4 0.260 0.038 40,792 390,449
Cystatin C renal biomarker 3 2 0.230 0.025 213 390,609
Vitamin D vitamin levels 1 4 0.100 0.017 13,854 373,768
Vitamin B12 vitamin levels 1 2 0.023 0.293 8,626 174,277
Fasting glucose plasma blood sugar levels 2 n/a 0.071 0.011 570 n/a
Glucose blood sugar levels 2 2 0.077 0.008 40,801 346,477
Estradiol women’s health 2 2 0.033 0.007 1,875 61,982
Age at menopause women’s health 1 n/a 0.109 0.010 n/a 139,773
Age at menarche women’s health 1 n/a 0.109 0.007 n/a 220,885
BMI anthropometric n/a 4 0.239 0.009 46,763 n/a
Height anthropometric 2 2 0.518 0.034 46,699 407,750
DBP Vitals n/a 4 0.140 0.008 46,148 n/a
SBP Vitals n/a 4 0.148 0.008 46,144 n/a
Alcohol amount health behavior 1 1 0.055 0.006 26,666 121,424
Binary traits
Thinness anthropometric 1 n/a 0.133 0.034 753/41,938 3,547/396,201
Drinker health behavior n/a 1 0.100 0.006 30,900/13,952 n/a
Smoker health behavior 1 3 0.156 0.007 22,919/23,744 246,067/160,791
Type 2 diabetes preexisting condition 3 1 0.307 0.027 9,843/32,794 19,780/386,988
Hypertension preexisting condition 2 3 0.413 0.165 23,158 /23,465 77,740 / 329,912
Insomnia preexisting condition n/a 2 N/A®  N/A 5,524/31,654 n/a
Apnoea preexisting condition 1 1 0.284 0.057 10,909/31,654 4,460/403,370

Details can be found in Tables S1-S3. Number of included discovery GWASs, estimated heritability (liability scale), and sample size of PRS evaluation cohorts are

shown.

HDL, high-density lipoprotein; LDL, low-density lipoprotein; PUFAs, polyunsaturated fatty acids; CRP, C-reactive protein; eGFR, estimated glomerular filtration
rate; BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure; n/a, not available; N/A, not applicable.
Maximally observed heritability estimate if multiple discovery GWASs were available.

PDiscovery GWAS on ordinal scale.

0.524 (insomnia) to 0.637 (T2D), confirming only modest
discrimination by PRSs for complex traits.’” The EXPRSs’ per-
formance generally agreed with the ranking of their herita-
bility estimates (Figures S4 and S5).

Performance comparison across cohorts

As with MGI, we selected in UKB for each of the 14 expo-
sures the ExPRS that reached the strongest association

(Table S5): six were based on Lassosum, four on PRS-CS,
three on C + T (DS), and one on C + T (GT). In contrast
to MGI, Lassosum outperformed the other methods in
UKB (Figures S6 and S7). The inconsistencies across cohorts
might be the result of different underlying GWAS sets, i.e.,
for UKB ExPRSs, we only relied on non-UKB studies to
avoid overfitting. Also, the methods’ varying tuning
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Table 3.

Top ranked ExPRSs in MGI

Exposure Discovery GWAS Method # SNPs in ExXPRS  Association p  Brier score Pearson’sr Adjusted AUC (95% CI)
Continuous traits

HDL UK Biobank PRS-CS 1,113,830 1.3E-294 N/A 0.311 N/A

LDL UK Biobank DBSLMM 8,918,470 4.1E-174 N/A 0.274 N/A

TG UK Biobank DBSLMM 8,924,773 6.9E-304 N/A 0.348 N/A

TC UK Biobank PRS-CS 1,113,831 3.2E—-168 N/A 0.265 N/A

CRP UK Biobank PRS-CS 1,113,831 6.2E-30 N/A 0.155 N/A

eGFR Meta-analysis PRS-CS 1,113,831 3.8E-150 N/A 0.13 N/A

Creatinine UK Biobank PRS-CS 1,113,831 4.6E—189 N/A 0.174 N/A

Vitamin D UK Biobank C + T(GT) 500 9.0E—46 N/A 0.166 N/A

Vitamin B;, UK Biobank C+T(DS) 9 0.0011 N/A 0.049 N/A

FPG Meta-analysis C+ T(GT) 273 0.0095 N/A 0.099 N/A

Glucose UK Biobank PRS-CS 1,113,830 8.4E-112 N/A 0.156 N/A

Estradiol UK Biobank PRS-CS 1,113,823 0.046 N/A 0.0664 N/A

BMI UK Biobank PRS-CS 1,113,832 5.3E-607 N/A 0.319 N/A

Height UK Biobank PRS-CS 1,113,832 2.2E—1988 N/A 0.373 N/A

DBP UK Biobank PRS-CS 1,113,831 4.8E-170 N/A 0.166 N/A

SBP UK Biobank PRS-CS 1,113,831 1.7E-189 N/A 0.172 N/A

Alcohol amount  Meta-analysis PRS-CS 1,116,497 1.4E-18 N/A 0.0746 N/A

Binary traits

Thinness Meta-analysis C+T(@DS) 256 0.044 0.018 N/A 0.532 (0.503, 0.561)
Drinker UK Biobank PRS-CS 1,113,832 5.1E-29 0.212 N/A 0.547 (0.539, 0.536)
Smoker Meta-analysis PRS-CS 1,109,786 1.10E-170 0.232 N/A 0.605 (0.598, 0.612)
T2D Meta-analysis PRS-CS 945,820 1.10E-159 0.139 N/A 0.637 (0.621, 0.653)
Hypertension UK Biobank PRS-CS 1,113,832 6.4E-213 0.182 N/A 0.630 (0.622, 0.639)
Insomnia UK Biobank PRS-CS 1,065,129 5.0E-06 0.126 N/A 0.524 (0.513, 0.536)
Sleep apnea UK Biobank PRS-CS 1,111,194 5.8E-10 0.182 N/A 0.527 (0.517, 0.536)

HDL, high-density lipoprotein; LDL, low-density lipoprotein; PUFAs, polyunsaturated fatty acids; CRP, C-reactive protein; eGFR, estimated glomerular filtration
rate; BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure; N/A: not applicable. Details about the underlying discovery GWAS

can be found in Table S2.

procedures, especially for Lassosum and C + T, might be
affected by the larger sample sizes in UKB. For ExPRSs of
quantitative exposures, the correlation with their corre-
sponding exposures ranged from 0.015 (alcohol consump-
tion) to 0.326 (height) (Table S5). For binary exposures, the
AAUC ranged from 0.505 (hypertension) to 0.825 (T2D).
When comparing ExPRSs on exposures that were present
in both cohorts, we found generally consistent perfor-
mances for quantitative traits such as C-reactive protein,
creatine, vitamin D, and height, while for some binary
traits such as T2D (AAUCyqgr: 0.64, AAUCygg: 0.83) and
smoking (AAUCyr: 0.61, AAUCyxg: 0.77), AAUC differed
substantially (Table S6). Of note, the estimates in UKB
might be heightened as a result of undetected, overlapping
samples between their discovery GWAS and the UKB
cohort'*%? or caused by to the cohort’s larger effective sam-
ple sizes.

Correlations of ExPRSs across exposures

Next, we assessed the relationships between ExPRSs and ex-
posures in MGI. Figure 3 displays the pairwise correlation be-
tween 15 quantitative exposures, between their 15 corre-
sponding ExPRSs, and between the ExPRSs and the
quantitative exposures in MGI. The correlations between
the quantitative exposures indicated positive and negative
relationships (rbetween —0.1 and 0.92; Figure 3A), the stron-
gest between closely related exposures: 1[TC, LDL] = 0.92, r
[eGFR, creatine] = —0.84, and r[SBP, DBP] = 0.53. The former
two can be attributed to their underlying equations and
related measurements, while the linear relationship between
SBP and DBP is well established.®*®> Several of the other
observed correlations are also well documented, often re-
flecting related disease etiologies.®°® Similar but more
attenuated patterns were seen for the ExPRSs whose correla-
tions ranged from —0.78 to 0.72 (Figure 3B). The often lower
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Figure 2. Prediction performance of the five applied PRS methods in MGl across continuous (left) and binary (right) traits

Here, the heatmap shows the relative prediction performance for each method across traits (values were scaled to 0-1 range) for better
comparison. Specifically, the prediction performance is quantified with R? for continuous traits and covariate-adjusted AUC for binary
traits. For a fair comparison, we selected the same summary statistic for each method (GWAS with the highest heritability estimate).

pairwise correlations (e.g., r[PRStc, PRS pr] = 0.72 and r
[PRSeGrr, PRScreatine]l = —0.78) were expected because
ExPRSs capture only a fraction of the exposure’s variance
(see diagonal of Figure 3C). The consistent patterns suggested
that several ExPRSs can replicate correlations of measured ex-
posures relatively well and thus might be suitable surrogates
for exposures, especially for studies where measurements
might not be feasible or likely be biased.®®**””

ExPRS applications
Phenome-wide association analyses
One application of ExPRSs is their use as predictors for phe-
nome-wide association studies (PheWASs) to uncover phe-
notypes with a shared genetic component and thus disorders
that might benefit from an early intervention. We showcase
such ExPRS PheWASs by analyzing all 24 selected ExPRSs
across up to 1,685 EHR-derived phenotypes (PheCodes) in
MGI (Table S7). In total, we observed phenome-wide signifi-
cant associations between 22 ExPRSs and 440 phenotypes
(Bonferroni-corrected threshold at p < 0.05/1,685;
Table S8). Overall, the number and the strength of observed
associations seem to depend on the exposures’ impact and
heritability. For example, the PheWAS with the BMI ExPRS
uncovered 329 associated phenotypes while the vitamin
B, ExXPRS PheWAS only revealed two associations with
closely related phenotypes. Besides the expected associations
between BMI PRS and obesity-related phenotypes
(1.66 < odds ratio [OR] < 2.14, e.g., obesity, morbid obesity,
and overweight), we also observed significant phenome-
wide associations with hypertension (OR: 1.33 [1.30,
1.36]), T2D (OR: 1.41 [1.37, 1.45]), osteoarthrosis (OR: 1.15
[1.12, 1.17]), and sleep apnea (OR: 1.28 [1.25, 1.31]); all
were previously reported for BMI”'~7* (Figure 4A; Table S8).
The PheWAS with measured BMI revealed consistent associ-
ations (Figure 4C; Table S9), although with larger effects: hy-
pertension (OR: 1.88 [1.84, 1.93]), T2D (OR: 2.00 [1.95,
2.06]), osteoarthrosis (OR: 1.29 [1.27, 1.32]), and sleep apnea
(OR: 2.24 [2.18, 2.30]).

To assess whether these associations were driven by
exposed individuals, i.e., individuals affected by a binary
exposure or by low or high exposure values, we also per-

formed “exclusion-PRS-PheWAS” analyses where we
excluded such exposed individuals to remove direct and in-
direct associations of the exposure and potential treatment
effects (see subjects and methods). While this exclusion of
individuals markedly decreased sample sizes and thus power,
we identified 198 phenotypes that remained significantly
associated with 17 ExPRSs in the exclusion-PRS-PheWAS
(p < 0.05/1,685; Table S8). For example, in the exclusion
PheWAS with the BMI ExPRS, the associations with hyper-
tension (OR: 1.17 [1.12, 1.23]) and T2D (OR: 1.18 [1.09,
1.27]) remained statistically significant (Figure 4B,
Table S8). However, while the analysis of individuals with
healthy BMIremoved most of the obesity or overweight phe-
notypes, a strong association remained between BMI ExPRS
and bariatric surgery (OR: 2.66 [2.08, 3.41]). A closer inspec-
tion revealed that 73 of 1,509 MGI participants who under-
went bariatric surgery had recorded median BMI values that
fell in the healthy BMI range (18.5 < BMI < 25), indicating
the BMI ExPRS’s ability to capture pre-treatment exposures.
Most interestingly, the corresponding exclusion PheWAS
with measured BMI as predictor revealed many association
signals that were reversed compared to the exclusion-PRS-
PheWAS (Figures 4C and 4D, Tables S8 and S9). This finding
might reflect biased measurements, e.g., due to treatment or
interventions that result in normal BMI values, or the
measured BMI’s inability to capture central obesity.”*

We performed similar sets of PheWASs in UKB. While
based on a separate ExPRS generation restricted to UKB-in-
dependent GWAS summary statistics, most of the strong as-
sociations seen in the MGI were also seen in the UKB ExPRS
PheWASs, e.g., obesity associated with T2D PRS (ORyqr:
1.71 [1.15, 1.20] and ORys: 1.63 [1.60, 1.66]; Figures S8
and S9). Because of the larger sample sizes in the UKB
compared to MGI (Table 2), we often observed more and
stronger secondary trait associations (Tables S10 and S11).

In general, we found that agnostic EXPRS PheWASs can
provide valuable insights into exposure-phenotype rela-
tionships, many of which were previously reported for
measured exposures. However, thorough investigations
are needed to distinguish between spurious and genuine
signals.
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Comparison of the pairwise correlation of 15 ExPRSs and their corresponding continuous traits in MGl

Heatmap displays the pairwise correlation between (A) 15 continuous exposures in MGI; (B) ExPRSs; and (C) exposures (y axis) and
ExPRSs (x axis). Here, pairwise Spearman correlation with nominally significant association p values (<0.05) are shown. Fasting plasma
glucose (exposure and ExPRS) was excluded because of the exposures low sample size in MGI.

Improving prediction models for common chronic conditions
As many exposures are important risk factors for common
chronic conditions,””®”” we performed analyses with a
specific emphasis on 27 chronic conditions whose algo-
rithms are used for Medicaid and Medicare claims and
available from the Chronic Condition Data Warehouse
(CCW, Table S12).”® Because these were developed for the
US health system and lack transferability to the UK, we
limited our analysis to MGI. Related chronic conditions
were already covered in the phenome-wide PheCode-based
association analyses, therefore this targeted analysis of
“real-world” phenotype algorithms aims to evaluate the
ExPRSs’ abilities to improve predictions. Basically, we are
interested to see whether a prediction model that solely re-
lies on a GWAS-based PRS for a chronic condition “Y”
(YPRS) can be augmented with additional ExPRSs.

As a first step, we explored the association between the 27
conditions and the 24 ExPRSs. We found that even after
excluding the directly related condition/exposure pairs
(e.g., hypertension/SBP ExPRS, hyperlipidemia/TC ExPRS,
etc.) all included 24 ExPRSs showed a nominally significant
association with at least one condition at p < 0.05
(Table S13). Conversely, 26 of the 27 conditions were nomi-
nally significantly associated with at least one ExPRS sub-
stantiating the exposures’ relevance. However, none of
the ExPRSs were associated with Alzheimer disease,
although many of the included exposures were reported
risk factors.”” The strongest risk-increasing effect was seen
for BMI ExPRS and diabetes (OR: 1.393 [1.357, 1.430]),
while the strongest protective effect was seen for HDL
ExPRS and diabetes (OR: 0.823 [0.803, 0.844]) (Table S13).

Considering the relatively poor predictive performance
of single ExPRSs for chronic conditions and that some of
the chronic conditions were associated with several
ExPRSs (Table S13), we next assessed whether the combina-
tion of ExPRSs (“multiExPRSs” see subjects and methods)

can improve risk prediction of models that only include
YPRSs (Table S14).

Because of the required cross-validation, limited sample
sizes, and limited availability of YPRSs (Table S15), we
restricted our comparisons to 12 conditions (Tables S12
and S15). We found that adding multiple ExPRSs enhanced
models for several conditions (e.g., stroke/transient
ischemic attack, heart failure, lung cancer, hypertension,
chronic kidney disease, asthma; Table S16, Figure 5). For
example, the AAUC for predicting hypertension increased
from 0.627 to 0.637 when adding multiple ExPRSs (BMI,
C-reactive protein, drinking status, fast plasma glucose,
HDL, height, smoking status, T2D, triglycerides, apnea,
and insomnia). In contrast, the addition of ExPRSs did
not improve prediction accuracy for other conditions
(e.g., glaucoma, prostate cancer, colorectal cancer, and
atrial fibrillation). Nevertheless, the ability of specific
ExPRSs to improve predictions indicates that some of the
YPRSs often do not capture the entirety of an individual’s
genetic predisposition, most likely reflecting the lack of po-
wer of the condition’s discovery GWAS compared to expo-
sure GWASs, which as a result of larger sample sizes and
continuous measurements, are often better powered.

Because these predictions yielded only moderate to poor
discrimination (AAUC < 0.66), we also evaluated the
ExPRSs’ ability to augment risk stratification with YPRSs,
i.e., to define subsets of individuals at high risk for the 12
conditions (Figure S10, Tables S17 and S18). Except for
the heart failure PRS and the lung cancer PRS, ten of the
12 YPRSs were by themselves able to significantly enrich
cases in at least one of the top bins (=>5%, 5%-10%, or
10%-25%) compared to the center bin (40%-60%) of their
distributions. For example, ten YPRSs could significantly
enrich cases in the top <5% bin at p < 0.05 with OR
ranging from 1.26 (95% CI: 1.02, 1.54; chronic kidney dis-
ease) to 3.60 (95% CI: 2.83, 4.56; prostate cancer).
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Figure 4.
(A) ExPRS PheWAS plot for BMI ExPRS.

e Genitourinary * Symptoms

e Pregnancy Complications e Injuries & Poisonings

¢ Dermatologic

* Musculoskeletal
Congenital Anomalies

A Positively associated
Vv Negatively associated

ExPRS PheWAS and exclusion-ExPRS-PheWAS as an example for continuous traits in MGI

(B) Exclusion-ExPRS-PheWAS plot is shown for using BMI ExPRS as predictor among the individuals with normal BMI value (18.5-

24.9 kg/m?).
(C) Trait PheWAS plot is shown for BMI trait.

(D) Exclusion-trait-PheWAS plot is shown for using BMI trait as predictor among the individuals with normal BMI value. The axis breaks
were chosen so that the ten strongest signals fall in the top scale (y axis breaks for the four panels at —log,(p) are 84, 13, 540, and 12,
respectively). The red dashed line indicates genome-wide significance (p < 0.05/1,685), and the orange line indicates nominal signifi-

cance (p < 0.05).

Adding the combined ExPRSs (multiExPRSs) to the
“YPRS-only model” improved the enrichment of cases for
nine of the 12 conditions when considering the top “<
5%" bin. The largest improvements were seen for the
enrichment of cases in the top <5% with heart failure
(YPRS: OR: 1.16 [0.94, 1.44] versus YPRS + multiExPRS:
OR: 1.52 [1.23, 1.87]) and with T2D (YPRS: OR: 2.55
[2.19, 2.98] versus YPRS + multiExPRS: OR: 3.13 [2.69,
3.65]). However, adding multiple ExPRSs negatively
affected the enrichment of cases with atrial fibrillation
(YPRS: OR: 3.34 [2.80, 3.99] versus YPRS + multiExPRS:
OR: 3.09 [2.60, 3.68]). Similar but less pronounced enrich-
ments of cases were seen for the top 5%-10%%, and the
top 10%-25% bins (Figure S10, Table S18).

Our explorations confirmed that individuals in the tails
of PRS distributions are most informative for risks of
chronic conditions.®” Further, the consistent gain in risk
stratification by adding multiple ExPRSs highlights their
potential use.

Finally, we compared the application of the PRSs (YPRSs
and/or the multiExPRSs) with poly-exposure scores (PXSs)
that are based on measured/collected exposure data as pre-
viously described for type 2 diabetes.®' Again, focusing on
the 12 conditions (Table S12), we created a PXS for each
condition in the MGI cohort by using up to 24 of 27 avail-
able exposures (subjects and methods). The number of
incorporated exposures ranged from seven (glaucoma) to
19 (chronic kidney disease) (Tables S19 and S20). Although
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the evaluation cohorts were different in size, we observed
that the PXSs mostly showed better discrimination than
the models that only relied on PRSs (YPRS, multiExPRS,
or YPRS + multiExPRS), except for colorectal, prostate,
and female breast cancer, which underperformed
(Figure S11, Table S18). Because PXSs were only obtainable
for people who had complete data for each included expo-
sure, they were only available for a small fraction of the
genotyped MGI individuals for which YPRSs and ExPRSs
were obtainable (2.5%-18.4%; glaucoma: 56.0%). Further-
more, the proportion of genotyped individuals with com-
plete exposure data for their PXSs was significantly
different between cases and controls for nine of the 12
analyzed conditions, indicating non-random missingness
of exposures in the MGI EHR that most likely biased the
analysis. The most extreme example was chronic kidney
disease: cases were about four times more likely than con-
trols to have complete exposure data for their PXS (OR 3.9
[3.5, 4.4], p = 3.1 x 107197, Table S21).

Online visual catalog: ExPRSweb

In our current study, we generated and evaluated hundreds
of ExPRSs in which predictive properties differed between
GWAS source, exposure, method, and/or evaluation cohort
(Table S4). To enable an exploration of the ExPRSs for 27
different exposures, we created a new PRSweb”’ instance
called ExPRSweb (see web resources) that includes detailed
metrics (association, performance, discrimination, and ac-
curacy) and allows the selection of ExPRSs on the basis of
properties for specific applications. The tables, such as Ta-
ble 3 and Table S5, can be sorted, filtered, or downloaded.
ExPRSweb also offers detailed information about each

YPRS + multiExPRS

Figure 5. Comparisons of the prediction
performance of different predictors for
common chronic conditions in MGl cohort
AAUC paired with 95% confidence interval
for condition specific PRS (YPRS, red), com-
bined ExPRSs (multiExPRS, blue), and YPRS
+ multiExPRS (orange) were shown as forest
plot. Each bar represents the 95% interval
for the AAUC with the dot represents the
AAUC estimate.

——— ExPRS, including GWAS source(s), LD

¢ reference panels and the included risk
-~ variants, effect/non-effect alleles, and
weights. ExPRSweb also links to inter-

. active EXPRS-PheWAS results for their
evaluation cohort.

o Discussion

In this study, we have constructed and
0.65 evaluated a large set of ExPRSs by using
79 sets of GWAS summary statistics,
applied various PRS methods, and
while doing so, created over 514
ExPRSs, 336 of which showed promising performance for
27 different exposures in MGI and/or UKB.

We explored the performance of ExPRSs across methods,
GWAS sources, and two cohorts and observed two key
points that might be helpful to strategize future ExPRS gen-
eration projects. First, large exposure GWASs with higher
SNP heritability estimates usually also resulted in the
most predictive ExPRSs. Second, our results indicated
that there might not be a one-size-fits-all approach for
generating the most predictive ExPRSs but rather an array
of choices one must make among many methods and
available GWAS summary statistics. By comprehensively
presenting our PRSs’ underlying GWAS sources, the evalu-
ations of an array of PRSs per trait in the same cohort, and
some of their applications, we aimed to inform this choice.

What sets our work apart from other recent papers that
systematically generated a broad set of polygenic scores,
some of which for traits that overlap with our expo-
sures,®>®% is the comprehensive exploration of several
methods across freely available GWAS summary statistics,
the interactive presentation of their evaluation metrics in
the same cohort, and their phenome-wide exploration.

While there is a wide range of health-related expo-
sures,®* ¢ we focused on 28 exposures for which we could
find GWASs from external full summary statistics and for
which we had sufficiently measured samples in MGI and/
or UKB. The exposures can roughly be categorized into car-
diovascular, renal biomarkers, vitamin levels, blood sugar
levels, women'’s health, anthropometric measurements, vi-
tals, health behaviors, and preexisting conditions. Howev-
er, other relevant exposures were not explored in this
study, e.g., dietary exposures (e.g., milk consumption,
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coffee consumption®’*®), telomere length,® and other

biomarkers (e.g., transforming growth factor beta [TGF-
beta],”””! circulating microRNA miR-34b’?). While some
exposures also have GWAS summary statistics available
(e.g., coffee consumption, milk consumption summary
statistics from UKB GWAS efforts), the exposures were
not measured in MGI and thus could not be evaluated at
this time.

We generated ExPRSs by using four methods (C + T, Las-
sosum, DBSLMM, and PRS-CS), all of which are computa-
tionally efficient, but skipped other new methods that
have been proposed (SBayesR, LDPred, NPS, and SCT)”*%°
but often require massive computational resources, espe-
cially for large cohorts such as UKB and MGI. Additionally,
several alternative methods were reported to improve pre-
dictive power by incorporating external information (e.g.,
functional annotations, pleiotropy across multiple traits),
e.g., LDpred-funct,”” AnnoPred,’® and MTGBLUP.” Future
implementations and systematic evaluations of these alter-
native choices are needed to further the availability of well-
powered ExPRSs and their applications.

We focused our ExPRS generation and evaluation on
samples of broadly European ancestry because of the
limited diversity in MGI and UKB. However, the lacking
transferability across ancestry groups increases the need
to also construct ExPRSs for non-European ancestry
groups.”??%100-192 When applying our top ranked
ExPRSs to AFR, EAS, and CSA ancestry groups, we observed
overall drop in predictive power in these non-EUR groups,
i.e., weaker correlations for continuous or lower AAUC
values for binary exposures, confirming previous studies
that reported a transferability problem for EUR-based poly-
genic scores to other ancestries (Note S1, Figures S12 and
S13, Tables S23-525).8%103:104 Nevertheless, our results
indicated that some of the EUR-based ExPRSs can poten-
tially be useful also for non-EUR individuals, although
this only represents a compromise solution.'*” While ef-
forts are underway to develop cross-ancestry PRS methods
to increase transferability, ultimately an increased diversity
in datasets is needed to counteract the European ancestry
bias in GWASs that is passed on to PRS research.'?*'"°

Our explorations of ExPRSs, mainly in the MGI cohort,
revealed that some of the ExPRSs could be good surrogates
for exposures and enable meaningful association analyses
across medical phenomes or a collection of chronic condi-
tions. Also, the combination of ExPRSs could to some de-
gree improve predictions and risk stratification beyond
the YPRSs, e.g., for asthma, heart failure, or hypertension.
Yet, for some of the studied conditions, the additional of
multiple ExPRSs did not improve models that already
included YPRSs. This suggests that YPRSs, if based on
very large sample sizes, might already have captured
most of the genetic risk profiles reflecting direct and indi-
rect (exposure-mediated) risk effects. Furthermore, it is
important to bear in mind that the observed improvement
in risk prediction by combining YPRSs with multiExPRSs
was not validated outside the MGI cohort. Additional

external studies are needed to explore the generalizability
of the presented approach.

There are other applications of ExPRSs that gained atten-
tion in the recent years, e.g., mediation analyses to study
polygenic pleiotropy'?® or their use as instrumental vari-
ables in Mendelian randomization analysis to uncover
novel mechanisms that contribute toward disease suscepti-
bility.''?”~'%? In our example applications, we showcased
the use of EXPRSs for phenome-wide explorations to iden-
tify clinical phenotypes potentially associated with an
exposure. In addition, we applied “exclusion-ExPRS-Phe-
WAS” to assess whether the observed associations were
mediated by the extremes of a quantitative exposure (outer
quarters or non-normal range) and by “exposed” individ-
uals of a binary exposure, respectively. Some of the observed
associations may represent true causal relationships; how-
ever, additional follow-up analyses of such PRS PheWASs
were recommended to substantiate any potential causal re-
lationships, e.g., by determining the heterogeneity of the
association across all variants of an EXPRS and to perform
sensitivity analyses to uncover potential biases and pleio-
tropic effects.''” The latter might be especially crucial for
ExPRSs, which are based on thousands of variants and
thus more likely to be affected by pleiotropy, biases, and
context-dependent effects.'" Of note, while an association
between an ExPRS and disease may indicate an intermedi-
ate on the causal pathway to disease or simply a shared bio-
logical mechanism between the exposure and the disease, it
does not necessarily mean that interventions targeting
modifiable exposures will impact disease risk or onset.

A main application for ExPRSs might be their use as
proxies for unmeasured exposures. Exposures relevant for
many conditions are often only sparsely measured in the
EHR datasets and their missingness can substantially
reduce sample size when considering only complete case
datasets (as seen here for PXSs). Furthermore, contrary to
genotype data, the missingness can be non-random
because testing generally is selective, diagnosis and symp-
tom specific, as seen here for nine of the 12 analyzed con-
ditions, and thus most likely would bias prediction models.
Nevertheless, an ExPRS can even in the best scenario only
capture the heritable fraction of the exposure’s variance
coming from variants assigned at birth but not the early,
current, or lifelong exposure to environmental or conse-
quences of behavioral factors."'? Also, for a lowly heritable
exposure, a derived ExPRS will only be weakly correlated
with the exposure and consequently represent a poor
proxy. Using ExPRSs for the imputation of incomplete
exposure data could be worth further explorations but
was not within the scope of the current study.

Being dependent on large GWASs and evaluation co-
horts, we expect that future studies will provide more
powerful YPRSs and ExPRSs. But even then, the interplay
of genetic and non-genetic factors needs to be considered
when assessing complex traits. Current large biobank ef-
forts link genotype data with EHRs and often complement
patient information on environmental, lifestyle, and
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demographic variables via self-report.''* The integration of
these resources will most likely improve our models with
the goal to prevent or treat conditions earlier.

Finally, we created an online repository called “Ex-
PRSweb” that, like our cancer-specific PRS repository “Can-
cer PRSweb,”?" provides an interactive platform to browse
performance metrics of all generated ExPRSs in two inde-
pendent biobanks. We also deposited all promising
ExPRSs to the PGS catalog and linked it to ExXPRSweb and
our evaluations. We anticipate that ExPRSweb can serve
as an example and a standardized platform to expedite
ExPRS research and to facilitate easier access.

Data and code availability

Data cannot be shared publicly as a result of patient confidentiality.
The data underlying the results presented in the study are available
from the UK Biobank at http://www.ukbiobank.ac.uk/register-apply/
and from the MGI Study at https://precisionhealth.umich.edu/
ourresearch/michigangenomics/ for researchers who meet the criteria
for access to confidential data. The software and R packages supporting
the current study are available online (see web resources). All gener-
ated ExPRS constructs, their evaluations, and PheWAS summary statis-
tics are available online at https://exprsweb.sph.umich.edu:8443.

Supplemental information

Supplemental information can be found online at https://doi.org/
10.1016/j.ajhg.2022.09.001.
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Web resources

Cancer PRSweb, https://prsweb.sph.umich.edu

CMS Chronic Condition Warehouse, https://www2.ccwdata.org/
web/guest/home/

ExPRSweb, https://exprsweb.sph.umich.edu

FinnGen consortium, https://www.finngen.fi/en/access_results

Gemma and DBSLMM, https://xzlab.org/software.html

Lassosum, https://github.com/tshmak/lassosum

Locuszoom, https://github.com/statgen/locuszoom

NHGRI-EBI GWAS Catalog, https://www.ebi.ac.uk/gwas/summary
-statistics

PGS Catalog, https://www.pgscatalog.org

PLINK, https://www.cog-genomics.org/plink2

PRS-CS, https://github.com/getian107/PRScs

Rprs, https://github.com/statgen/Rprs

The Comprehensive R Archive Network, https://cran.r-project.org

The Michigan Genomics Initiative (MGI), https://precisionhealth.
umich.edu/our-research/michigangenomics/

UCSC Genome Browser Store, https://genome-store.ucsc.edu

UKB GWAS (Lee Lab), https://www.leelabsg.org/resources

UKB GWAS (Neale Lab), https://github.com/Nealelab/UK_Bio
bank_ GWAS
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