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Abstract

Mediation hypothesis testing for a large number of mediators is challenging

due to the composite structure of the null hypothesis, H αβ: = 00 (α: effect of

the exposure on the mediator after adjusting for confounders; β: effect of the

mediator on the outcome after adjusting for exposure and confounders). In

this paper, we reviewed three classes of methods for large‐scale one at a time

mediation hypothesis testing. These methods are commonly used for

continuous outcomes and continuous mediators assuming there is no

exposure‐mediator interaction so that the product αβ has a causal interpreta-

tion as the indirect effect. The first class of methods ignores the impact

of different structures under the composite null hypothesis, namely,

(1) α β= 0, 0≠ ; (2) α β0, = 0≠ ; and (3) α β= = 0. The second class of

methods weights the reference distribution under each case of the null to form

a mixture reference distribution. The third class constructs a composite test

statistic using the three p values obtained under each case of the null so that

the reference distribution of the composite statistic is approximately U (0, 1).

In addition to these existing methods, we developed the Sobel‐comp method

belonging to the second class, which uses a corrected mixture reference

distribution for Sobel's test statistic. We performed extensive simulation

studies to compare all six methods belonging to these three classes in terms of

the false positive rates (FPRs) under the null hypothesis and the true positive

rates under the alternative hypothesis. We found that the second class of

methods which uses a mixture reference distribution could best maintain the

FPRs at the nominal level under the null hypothesis and had the greatest true

positive rates under the alternative hypothesis. We applied all methods to

study the mediation mechanism of DNA methylation sites in the pathway

from adult socioeconomic status to glycated hemoglobin level using data from

the Multi‐Ethnic Study of Atherosclerosis (MESA). We provide guidelines for

choosing the optimal mediation hypothesis testing method in practice and
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develop an R package medScan available on the CRAN for implementing all

the six methods.

KEYWORD S

agnostic mediation analysis, composite null hypothesis, indirect effect, mediation effect,
multiple hypothesis testing

1 | INTRODUCTION

Mediation analysis is often used to identify potential
mechanistic pathways of the effect of an exposure on an
outcome through a mediator or sets of mediators. It has
become increasingly popular in epidemiology (Chen
et al., 2020; Huang et al., 2015; Pierce et al., 2014;
VanderWeele, 2015; Yang et al., 2017). With the advances
in high‐throughput technologies, mediation analysis
often requires analyzing a large number of potential
mediators (Zeng et al., 2021; Zhang et al., 2016). These
agnostic explorations of high‐dimensional mediators
allow researchers to investigate molecular traits associ-
ated with complex diseases that may be a result of
socioeconomic inequalities, environmental pollution, or
other exogenous factors. In particular, molecular epide-
miological research has frequently considered the
mediating role of DNA methylation (DNAm), and
mounting studies have identified methylation differences
at CpG sites as important mediators for diseases such as
cancer (Kulis & Esteller, 2010; VanderWeele et al., 2012;
Wu et al., 2018), cardiovascular disease (Richardson
et al., 2017) and diabetes (Grant et al., 2017).

Suppose there is a total number of J candidate
mediators potentially mediating the effect of an exposure
X on the outcome Y . LetMj denote the jth mediator where
j J{1, 2, …, }∈ . To identify which Mj's are truly in the
mediating pathways, one can jointly model M M M, , …, J1 2

(Chén et al., 2018; Huang, 2019b; Song, Zhou, Zhang,
et al., 2020). However, the computational burden may be
too great and the solution may not be robust for large J but
with modest sample sizes. Therefore, practitioners may use
a scan with the simpler single‐mediator analysis, which
examines one mediator at a time. Such agnostic searches
for active mediators are often based on the parametric
models in traditional mediation analysis (Baron &
Kenny, 1986). The two regression models typically involved
in mediation analysis with the continuous outcome and the
continuous mediators are

β CY β β X β M= + + + + ϵ ;j X j j j C j Y j0, , , ,
⊤ (1)

α CM α α X= + + + ϵ ,j j j C j M j0, , ,
⊤ (2)

for j J{1, 2, …, }∈ , where C is the set of potential

confounders and ( )N σϵ ~ 0,Y j Y j, ,
2 and ( )N σϵ ~ 0,M j M j, ,

2

are independent. In the traditional mediation analysis,
α βj j is the mediation effect (also called the indirect effect)

from X to Y through Mj (MacKinnon et al., 2002, 2020).

An important development in mediation analysis in the
last decade is causal mediation analysis using the
counterfactual framework (Rubin, 1978; Vander
Weele, 2015). Conditional on C, the counterfactual
framework considers Mj as a function of X , and Y as a
function of X andMj. That is,M x( )j indicates the potential
mediator that would be observed had X been set as x ; and
Y x m( , ) indicates the potential outcome that would be
observed had X and Mj been set as x and m, respectively.
The following four no‐unmeasured‐confounding assump-
tions are needed to establish the causal interpretation of
the indirect effect (Pearl, 2001; VanderWeele &
Vansteelandt, 2009): A.1(1) Y x m X C( , ) ⊥⊥ , no
unmeasured confounders for the exposure‐outcome rela-
tionship conditional on C; A.1(2) Y x m M X C( , ) ,j⊥⊥ , no
unmeasured confounders for the mediator‐outcome rela-
tionship conditional on C; A.1(3) M x X C( )j ⊥⊥ , no
unmeasured confounders for the exposure‐mediator rela-
tionship conditional onC; A.1(4) Y x m M x C( , ) ( *)j⊥⊥ , no
unmeasured confounders for the mediator‐outcome rela-
tionship that is affected by the exposure conditional on C.
In addition, we assume that (A.2) there is no exposure‐
mediator interaction affecting the outcome.

A causal diagram for illustrating the role of the jth
mediator is presented in Figure 1. Under assumptions
A.1 and A.2, the causal mediation effect is expressed as

 E Y x M x C E Y x M x C α

β x x

[ ( *, ( *)) ] − [ ( *, ( )) ] =

( * − ).

j j j

j

In terms of hypothesis testing for the mediation effect,
the traditional approach is equivalent to the modern
causal approach for continuous outcomes and continu-
ous mediators if assumptions A.1 and A.2 hold
(MacKinnon et al., 2020). However, the causal frame-
work offers more flexibility in deriving causally
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interpretable mediation effects for different types of
outcomes and mediators with accompanying software
(Y. Li et al., 2022; Shi et al., 2021; Steen et al., 2020;
Tingley et al., 2014). MacKinnon et al. (2020) compare
the traditional and causal approaches for continuous
outcomes and mediators in terms of bias, type I error,
power, and coverage of the indirect effect. A detailed
discussion and review of the connection between
traditional and counterfactual methods are presented in
Supporting Information: Section S1.

The three classes of methods we will review for
mediation hypothesis testing are designed under assump-
tions A.1 and A.2 for continuous outcomes and continu-
ous mediators. It is inappropriate to use them in a causal
framework if the product αβ does not correspond to a
causally interpretable indirect effect. Examples of this
include common situations like if the outcome or
mediator is binary (VanderWeele, 2015), or if there is
exposure‐mediator interaction affecting the outcome
(MacKinnon et al., 2020). Under assumptions A.1 and
A.2 with continuous outcomes and continuous media-
tors, to test whether Mj is mediating the effect of X on Y ,
the underlying null and alternative hypotheses can be
stated as

H α β H α β

j J

: = 0 vs. : 0, for

= 1, 2, …, .

j j j j j j0, 1, ≠

Since H H, …, J0,1 0, are tested in a similar manner, we
drop the subscript j for now. The first class of hypothesis
testing methods contains Sobel's test (Sobel, 1982) and the

MaxP test (MacKinnon et al., 2002). The null hypothesis
involving the product of parameters is composite (Barfield
et al., 2017) and consists of three cases, namely,
(1) H α β: = 0, 001 ≠ ; (2) H α β: 0, = 010 ≠ ; and
(3) H α β: = = 000 . Since the commonly used reference
distributions (N(0, 1)) for Sobel's test statistic and MaxP
test statistic (U(0, 1)) are incorrect under H00, they are
often conservative (Barfield et al., 2017; Liu et al., 2022) in
high‐dimensional settings where the majority of mediators
are likely to have no mediation effect, namely, a sparse
situation.

Many recent studies have developed single‐mediator
hypothesis testing methods to produce calibrated p
values that specifically consider the composite null
structure. Huang (2019a) proposed the joint significance
test under the composite null hypothesis (JT‐comp) that
uses the product of two normally distributed variables as
the test statistic. Dai et al. (2022) developed a procedure
for high‐dimensional mediation hypotheses testing
(HDMT) which considered the correct reference distri-
bution for the MaxP statistic. A common feature of these
two methods is to weight the reference distribution
under H H H, ,01 10 00 to form a mixture null distribution
corresponding to the test statistic. We group these two
methods into the second class.

The third class contains the Divide‐Aggregate
Composite‐null Test (DACT) method proposed by Liu
et al. (2022). In contrast to the second class which forms
a mixture reference distribution, this method constructs
a composite test statistic using the three p values
obtained under H H,01 10, and H00.

However, no study has numerically compared the
performance of the above‐mentioned methods. It
remains unclear how these methods would be affected
by various factors with high‐dimensional mediators, in
particular, by the sample size, the proportion of
H H H H, , ,01 10 00 1 being true, the variation of non‐zero α
and β across J tests, and the R2 in the data generating
models, that is, models (1) and (2). Our contribution in
this paper is twofold. First, in addition to the existing
methods, we develop a new method, called Sobel‐comp,
which is a variant of HDMT. Sobel‐comp uses a corrected
mixture reference distribution for Sobel's test statistic
utilizing the composite structure of the null. Second, we
perform extensive simulation studies to compare all six
methods in terms of FPRs under the null hypothesis and
true positive rates under the alternative hypothesis.

This paper is organized as follows: In Section 2.1, we
first describe the five existing mediation hypothesis
testing methods, including Sobel's test, MaxP, JT‐comp,
HDMT, and DACT. We then propose our new method,
Sobel‐comp. In Section 2.2, we describe the simulation
setup to compare the testing performance of the six

FIGURE 1 A causal diagram for mediation analysis. For
j J X= 1, 2, …, , is the exposure, Mj is the jth mediator, Y is the
outcome,C is the set of confounders. αj is the effect of X onMj after
adjusting for C . βj is the effect of Mj on Y after adjusting for (X C, ).
βX j, is the direct effect of X on Y after adjusting for Mj and C .
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methods. In Section 2.3, we describe the analysis steps for
studying the mediation mechanism of DNAm in the
pathway from adult socioeconomic status (SES) to
glycated hemoglobin (HbA1c) level using data from the
Multi‐Ethnic Study of Atherosclerosis (MESA). Numeri-
cal results of both simulation and data example are
presented in Section 3. We summarize the key strengths
and limitations of each method and provide recommen-
dations for applying these methods in practical settings
in Section 4.

2 | METHODS AND MATERIALS

2.1 | Methods for mediation hypothesis
testing

Mediation hypothesis testing methods are often based on
the Wald test statistics obtained from models (1) and (2).
Denote Zβ as the test statistic for testing H β: = 00 in
model (1) and Zα as the test statistic for testing H α: = 00

in model (2), respectively. Under the respective null
hypotheses, we have

Z
β β

σ
N Z

α α

σ
N=

−
~ (0, 1); =

−
~ (0, 1),β

β
α

α 


where β and α are the maximum likelihood estimates for
β and α, respectively. σ̂β and σ̂α are the estimated

standard error of β and α, respectively. Let the two‐sided
pvalue for Zβ be pβ and for Zα be pα.

2.1.1 | Sobel's test

Sobel's test statistic (Sobel, 1982) uses the first‐order
multivariate delta method to find the standard error of

α βˆ ˆ, which is β σ α σ+α β
2 2 2 2 . Since α and β derived from

models (1) and (2) are independent (MacKinnon
et al., 1995; Sobel, 1982), Sobel's test statistic is defined
as

T
β α

β σ α σ

Z

Z Z
=

ˆ ˆ

+

=
1 + ( )

.sobel

α β

α

α β2 2 2 2 2  ∕
(3)

TSobel is typically compared with N (0, 1) to determine the
p value. However, the N (0, 1) reference distribution is
incorrect because the product of two normally distrib-
uted random variables α̂ and β̂ is not always well

approximated by a normal distribution (MacKinnon
et al., 2004). This result can be also explained from the
composite null perspective. The reference distribution is
correct asymptotically under H01 and H10, but is incorrect
under H00. Under H T, sobel01 is asymptotically equivalent
to Zα because Zβ

−1 converges to zero and Zα is bounded in
probability so that Z Zα β∕ in the denominator converges
to zero in probability (Liu et al., 2022). Thus,
T N~ (0, 1)sobel under H01. Likewise, T N~ (0, 1)sobel

under H10. However, under H00, the multivariate delta
method for calculating the standard error of α βˆ ˆ fails
when α β= = 0. Tsobel does not follow N (0, 1) asymptot-
ically since Z Zα β∕ (or Z Zβ α∕ ) does not converge to 0 in
probability. Liu et al. (2022) show that Tsobel follows
N (0, 1 4)∕ under H00. Therefore, using N (0, 1) as the
reference distribution for every null case for Sobel's test is
incorrect.

2.1.2 | MaxP test

The MaxP test, also called the joint significance test
(MacKinnon et al., 2002), has been developed based on
the idea that if we want to reject H0 at level t , we should
reject two separate hypothesis tests of α = 0 and β = 0 at
level t simultaneously. The MaxP test statistic is defined
as

p p p= max( , ).max α β (4)

pmax is compared with U (0, 1) to determine the p value.
Equivalently, pmax is determined by the smaller  Zα or
 Zβ . Since      Z Z Tmin( , ) >α β Sobel in a finite sample, the
MaxP p value is always smaller than that from Sobel's
test and thus is more powerful. However, the reference
distribution of U (0, 1) is incorrect under H00. Since
P p t P p t P p t t( < ) = ( < ) ( < ) =max α β

2⋅ , the correct ref-

erence distribution for pmax under H00 is Beta (2, 1) (Dai
et al., 2022; Liu et al., 2022). Since the p value under H00

determined by U (0, 1) will be larger than that by
Beta (2, 1), the MaxP test is conservative.

2.1.3 | Joint significance test under the
composite null hypothesis (JT‐comp)

We now resume to use the subscript j corresponding to
the jth hypothesis test for j J= 1, 2, …, . The test statistic
for JT‐comp is the product of two normally distributed
random variables, Z Zα j β j, , (Huang, 2019a). Unlike Sobel's
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test and the MaxP test, JT‐comp distinguishes the null
distributions for its test statistic under H H,j j01, 10, and
H j00, to obtain case‐specific p values. Specifically, let
w w w, ,j j j01, 10, 00, be the probability of H H,j j01, 10, and H j00,

being true, respectively. Denote F t( ) as the two‐sided tail
probability of the standard normal product distribution
evaluated at t . Under H j00, , since Z N~ (0, 1)α j, and
Z N~ (0, 1)β j, , the case‐specific p value is F Z Z( )α j β j, , .
Under H Z N, ~ (0, 1)j α j01, , and Z N μ~ ( , 1)β j β j, , , where

μ β σ= 0β j j β j, ,∕ ≠ . Huang (2019a) further assumes that

μβ j, follows a symmetric distribution with mean 0 and

variance δβ j,
2 , for example, ( )μ N δ~ 0,β j β j, ,

2 . By integrating

out μβ j, , the p value under H j01, is obtained by using the

same F ( )⋅ function as if under H j00, , but only differs by a

scaling factor of δ1 1 + β j,
2∕ . That is, the p value under

H j01, is ( )F Z Z δ1 +α j β j β j, , ,
2∕ . Similarly, the p value

under H j10, is ( )F Z Z δ1 +α j β j α j, , ,
2∕ , where δα j,

2 is the

assumed variance of the mean of Zα j, under H j10, . The
final composite p value is aggregated as






















p w F
Z Z

δ

w F
Z Z

δ
w

F Z Z

=
1 +

+
1 +

+

( ).

JT comp j j
α j β j

β j

j
α j β j

α j

j

α j β j

− , 01,
, ,

,
2

10,
, ,

,
2

00,

, ,

pJT comp j− , is then approximated by the Taylor series:



















p F

Z Z

Var Z
F

Z Z

Var Z

F Z Z

ˆ =
( )

+
( )

− ( ),

JT comp j

α j β j

β j

α j β j

α j

α j β j

− ,

, ,

,

, ,

,

, ,

(5)

where Var Z w δ( ) = 1 +β j j β j, 01, ,
2 and Var Z( ) = 1 +α j,

w δj α j10, ,
2 . Sample variances of Zα j, and Zβ j, across all tests

are used to estimate Var Z( )α j, and Var Z( )β j, . The
advantage of using the approximated p value is to avoid
estimating w w w, ,j j j01, 10, 00, . Since the reference distribu-
tion of Z Zα j β j, , is correct under H H,j j01, 10, and H j00, ,
JT‐comp is more powerful than Sobel's and MaxP tests.

However, the accuracy of pJT comp j− , approximated by

p̂JT comp j− , depends on the residual error from Taylor

series expansion in (5). The error relative to the p value
becomes larger when the p value becomes smaller,
suggesting that JT‐comp cannot maintain the family‐
wise‐error‐rate at small significance thresholds. A good
approximation requires that δα j,

2 and δβ j,
2 are close to 0.

Namely, the approximation works well when μα j, is

concentrated near zero (similar for μβ j, ). Since

μ α σ=α j j α j, ,∕ , this condition is violated if αj is large or

if the sample size is large so that σα j, is small. A practical
suggestion given by Huang (2019a) is to check whether
the sample variance of Zα j, and Zβ j, are less than 1.5.
Since JT‐comp only works well for small δα j,

2 and δβ j,
2 , its

applicability is limited to the settings with small samples
and small αj's and βj's.

2.1.4 | High dimensional mediation
testing (HDMT)

Another method which uses the correct reference
distribution is HDMT (Dai et al., 2022). Let π π π, ,01 10 00

be the proportion of α β α β( = 0, 0), ( 0, = 0)j j j j≠ ≠ and

α β( = = 0)j j among all J tests. The test statistic for the

HDMT method is the MaxP statistic. Under H j01, and
H p U, ~ (0, 1)j max j10, , asymptotically. Under H p, ~j j00, max,

Beta (2, 1). The reference distribution for pmax,j is

π π U π Beta( ˆ + ˆ ) (0, 1) + ˆ (2, 1),01 10 00

where π πˆ , ˆ01 10 and π̂00 are obtained by non‐parametric
methods for estimating the proportion of nulls
(Storey, 2002). HDMT further proposes improving the
power under finite samples. Under H j01, , the p value
determined by U (0, 1) is accurate asymptotically when
the power of rejecting β = 0j goes to 1. Namely,

P p t H( < ) 1β j j

n

, 01, ⟶
→∞

for any t > 0. However, this
condition is difficult to hold when t is extremely small
in a finite sample, resulting in a noticeably larger
p value than the truth. In such cases, HDMT uses
the Grenander estimator to estimate P p t H( < )β j j, 01,

and P p t H( < )α j j, 10, .

Overall, since the mixture null distribution of pmax j,

statistic is asymptotically correct, HDMT is robust to any
choices of π π π, ,01 10 00. However, since the rejection rule
of HDMT is determined by empirically estimating the
significance thresholds and false discovery rates (FDRs),
it is difficult to compare it with other methods in terms of
p values. We make the following modifications to obtain
p values from HDMT using the asymptotic mixture
reference distribution:

p π π p π p= ( ˆ + ˆ ) + ˆ .HDMT j max j max j, 01 10 , 00 ,
2

With finite samples, we estimate P p p H( < )α j max j j, , 10,

and P p p H( < )β j max j j, , 01, by the Grenander estimator
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as described in Dai et al. (2022). The adjusted
p value is




p π p P p p H

π p P p p H

π p

̃ = ˆ ˆ ( < )

+ ˆ ˆ ( < )

+ ˆ .

HDMT j max j β j max j j

max j α j max j j

max j

, 01 , , , 01,

10 , , , 10,

00 ,
2

2.1.5 | Divide‐Aggregate‐Composite‐
null Test

The test statistic for DACT is a composite p value
obtained by averaging the three case‐specific p values
weighted by π π π, ,01 10 00, respectively (Liu et al., 2022).
Under H j01, , the p value is pα j, since βj is known to be

non‐zero. Similarly, the p value under H j10, is pβ j, . Under

H j00, , the p value is pmax j,
2 using the MaxP statistic, which

follows Beta (2, 1). The DACT test statistic is defined as

DACT π p π p π p= ˆ + ˆ + ˆ ,j α j β j max j01 , 10 , 00 ,
2 (6)

where π πˆ , ˆ01 10 and π̂00 are obtained based on the
empirical characteristic function and Fourier analysis
(Jin & Cai, 2007). If any of π π πˆ , ˆ , ˆ00 10 01 is close to 1, DACT
then follows U (0, 1) approximately. Otherwise, the
DACT statistic deviates from U (0, 1). Under this
scenario, the DACT method adapts Efron's empirical
null framework (Efron et al., 2001) to estimate the null
distribution of the transformed DACT statistic. The final
p value is calibrated using the empirical null distribution.

The reference distribution for the DACT test statistic can
only be approximated or empirically estimated while the
exact reference distribution has not been established. When
none of π π π, ,00 10 01 is close to 1, it remains unclear how
close the empirical estimation using Efron's method is to the
truth. In fact, the cumulative distribution function for the
DACT statistic is complicated, because the third term pmax j,

2

in (6) depends on the larger of the first two terms such that
the three terms are dependent. Therefore, DACT should be
used cautiously when π π π, ,00 01 10 are all far from 1.

2.1.6 | A new variant of HDMT: Sobel‐comp

We propose a variant of HDMT using Sobel's test
statistic, called Sobel‐comp. Under H j01, and
H T N, ~ (0, 1)j sobel j10, , . Under H T N, ~ (0, 1 4)j sobel j00, , ∕ .
The reference distribution for Tsobel j, is

π π N π N( ˆ + ˆ ) (0, 1) + ˆ (0, 1 4),01 10 00 ∕

where π π π, ,01 10 00   are obtained from the HDMT method.
When    Z Z>β j α j, , , the p value for HDMT under H j00, is
identical no matter how large  Zβ j, is. Therefore, the
HDMT method loses power since a stronger effect of the
mediator on the outcome does not increase the power to
detect the mediation effect if the exposure has a relatively
weak effect on the mediator. In contrast, the p value for
Sobel‐comp under H j00, decreases as  Zβ j, increases. In
particular,

Proposition 1. Suppose    Z Z> 0β j α j, , ≥ . The case‐
specific p value under H j00, from Sobel‐comp is
smaller than that from HDMT if  Z >β j,

   Z Z Zmax( , {4(Φ (2Φ( ) )) − } )α j α j α j,
−1

,
2 −2

,
−2 −1 2∕ , where Φ( )⋅

is the cumulative distribution function of a standard
normal random variable.

Proposition 1 is also true when we interchange  Zβ j,
and  Zα j, . The proof of Proposition 1 is provided in the
Supporting Information: Section S2. However, in addi-
tion to the conditions in Proposition 1, Sobel‐comp
requires π00 close to 1 to be more powerful than HDMT.
On the other hand, unlike HDMT which can estimate

P p p H( < )α j max j j, , 10, and P p p H( < )β j max j j, , 01, to further

increase power with finite samples, it is difficult to
extend Sobel‐comp using similar technique because Zα j,

and Zβ j, in the Sobel's statistic are not separable.

2.2 | Simulation setup

We evaluate the performance of Sobel's test, MaxP,
JT‐comp, HDMT, Sobel‐comp and DACT in terms of FPR
under the null hypothesis and true positive rate (TPR)
under the alternative hypothesis in simulation scenarios
by varying (1) the proportion of the null and the
alternative components, denoted as π π π π, , ,00 01 10 11;
(2) the sample size n; (3) the variation of the non‐zero
parameters α β, across mediators; and (4) R2 in the
outcome and mediator models. Here, R2 is the proportion
of variation explained by the regression model. We assess
the mediation effect of J = 100, 000 mediators (denoted
as Mj where j J{1, 2, …, }∈ ) from the exposure X( ) to the
outcome Y( ). For the jth pair of models, we first generate
the covariate C N~ (0, 1) and the exposure X N~ (0, 1).
We then generate Mj and Y from:

M α X α C= + + ϵ ,j j C Mj (7)

Y β M β X β C= + + + ϵ ,j j X C Y (8)
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where N σ N σϵ ~ (0, ), ϵ ~ (0, )M M Y Y
2 2

j j
and α β= =C C

β = 1X . For J pairs of models, with probability π ,00

α β= = 0j j ; with probability π α β N τ, = 0, ~ (0, )j j01
2 ;

with probability π α N τ β, ~ (0, 5 ), = 0j j10
2 ; and with prob-

ability π α N τ β N τ, ~ (0, 5 ), ~ (0, )j j11
2 2 . The parameter

τ controls the dispersion of the non‐zero coefficients.
To evaluate the FPR for the six methods under the

composite null hypothesis, π11 is set as 0. We construct six
classes of scenarios (Table 1). In Null 1 scenarios,
σ σ= = 1M Y

2 2
j

. In contrast to Null 1 scenarios where R2

varies across mediators, Null 2 scenarios control R2 at the
same level. In model (7), R α α= ( + )j A

2 2 2 ∕ α α σ( + + )j A M
2 2 2

j

and in model (8), R β α α σ β β= ( ( + + ) + + )j j A M X A
2 2 2 2 2 2 2

j
∕

β α α σ β β σ( ( + + ) + + + )j j A M X A Y
2 2 2 2 2 2 2

j
. After generating

data, we fit linear regression models adjusted for the
confounder to obtain zα j, for αj in model (7) and zβ j, for βj
in model (8) for all j. We then apply the six mediation
methods to obtain p values for testing the mediation effect.
We calculate the FPR at the nominal significance levels of
10 , 10 , 10 , 10−3 −4 −5 −6, and 5 × 10−7, where 5 × 10−7 corre-
sponds to controlling the overall family‐wise‐error‐rate
(FWER) at 0.05. Under the null hypothesis, the FPR given
a significance level is calculated as the proportion of p values
among 100,000 tests below this level. We repeat this process
2000 times (R=2000) and average FPRs over 2000 replicates.
More specifically, the empirical FPR is calculated as

 




 





(

)

FPR R J I H H H= reject , …,

are true .

r

R

j

J

j
r r

J
r−1

=1

−1

=1
0,
( )

0,1
( )

0,
( )

For power comparison, we follow the same data
generation process described above except that we also
simulate data under the alternative hypothesis. We have

six classes of scenarios in Table 2. Under the control of
the true FDR at 0.05, we evaluate the TPR for each
method by calculating the number of observed rejections
under which the alternative hypothesis is true to the total
number of true non‐null signals. Calculating the true
FDR is possible in simulation studies since the under-
lying truth is known. We repeat the process 200 (R= 200)
times, and the TPR is averaged over all 200 replicates.
More specifically, the TPR is calculated as

 




 





(

)

TPR R J I H H= reject

is not true .

r

R

j

J

j
r

j
r−1

=1

−1

=1
0,
( )

0,
( )

We use existing R software and packages to imple-
ment JT‐comp (Huang, 2019a), DACT (Liu et al., 2022),
and HDMT (Dai et al., 2022).

2.3 | Data example using MESA: Study
design and methods

We apply all six methods (Sobel's test, the MaxP test,
JT‐comp, HDMT, Sobel‐comp, and DACT) to study the
mediation mechanism of DNA methylation levels at CpG
sites in the pathway from adult SES to HbA1c using data
from MESA (Bild et al., 2002). Our exposure, adult SES,
defined by educational attainment, is a risk factor for
cardiovascular disease and diabetes (Telfair & Shelton, 2012;
Whitaker et al., 2014). Our outcome, HbA1c, which reflects
the 3‐month average blood sugar level, is a critical
measurement in the diagnosis of diabetes and is a known
risk factor for cardiovascular disease (Sakurai et al., 2013;
Singer et al., 1992; Yeung et al., 2018). We assume that the

TABLE 1 Simulation scenarios for comparing false positive rates. In total, we simulate 100, 000 mediators

Case π π π π, , ,11 01 10 00 Sample size τ R R R= =Y M
2 2 2

Null 1(a) 0, 0.001, 0.001, 0.998 (200, 500, 1000) (0.1, 0.3, 0.7) Not controlled

Null 1(b) 0, 0.33, 0.33, 0.34 (200, 500, 1000) (0.1, 0.3, 0.7) Not controlled

Null 1(c) 0, 0.5, 0.5, 0 (200, 500, 1000) (0.1, 0.3, 0.7) Not controlled

Null 2(a) 0, 0.001, 0.001, 0.998 (200, 500, 1000) (0.3) (0.1, 0.15, 0.2)

Null 2(b) 0, 0.33, 0.33, 0.34 (200, 500, 1000) (0.3) (0.1, 0.15, 0.2)

Null 2(c) 0, 0.5, 0.5, 0 (200, 500, 1000) (0.3) (0.1, 0.15, 0.2)

Note: For the jth mediator, with probability π01, αj= 0 and βj ~N(0, τ2); with probability π10, αj ~N(0, 5τ2) and βj= 0; with probability π00, αj= βj= 0, where αj is
the effect of the exposure on the outcome conditional on C and βj is the effect of the mediator on the outcome conditional on C and X. The last column refers to
the R2 in the outcome model R( )Y

2 and in the mediator model (RM
2 ), where R2 is the ratio of variation explained by the regression model to the total variation.
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effect direction is from educational attainment to HbA1c
level since the exposure has remained unchanged during
the study and was collected before measuring HbA1c.
Previous research has reported potential causality between
educational attainment and type 2 diabetes (Liang
et al., 2021). Since educational attainment is associated
with DNAm (van Dongen et al., 2018), and DNAm is
associated with HbA1c (Chen et al., 2020), it is thus of
interest to study the mediating role of DNAm from
educational attainment to HbA1c.

Since correlated mediators may lead to inflated Type I
error rates and spurious signals, we selected a subset of
228,088 potentially mediating CpG sites that were, at
most, only weakly correlated with one another. We
provide details for processing MESA data in Supporting
Information: Section S3. For each CpG site, we obtained
zα j, and zβ j, from linear models for testing α = 0j (effect
of the exposure on the jth mediator) and β = 0j (effect of

the jth mediator on the outcome). In both models, we
adjusted for age, sex, and race as potential confounders
and adjusted for the estimated proportions of residual
non‐monocytes (neutrophils, B cells, T cells, and natural
killer cells) to account for potential contamination by
non‐monocyte cell proportions. In addition, we adjusted
for the exposure in the outcome model. We applied the
six mediation methods to the selected 228,088 CpG sites,
and obtained p values for testing the mediation effect.
CpG sites with significant mediation effects are deter-
mined by the p value threshold of 2.19 × 10−7, which
corresponds to controlling FWER at 0.05.

2.3.1 | Sensitivity analysis methods

To evaluate the robustness of our findings toward the
assumptions defined above, we performed three sensitiv-
ity analyses focusing on the top CpG sites in our global

scan. (a) Presence of exposure‐mediator interaction:
Since the no‐exposure‐mediator interaction assumption
is critical to using the six hypothesis testing methods, in
addition to the traditional methods, we estimated the
causal mediation effects with and without including the
exposure‐mediator interaction term in the outcome
model. The causal mediation analysis was performed
using R package mediate (Tingley et al., 2014) with 1000
bootstrap draws. (b) Choice of measured confounders
and unmeasured confounding: For the measured con-
founders, we evaluated the mediation effect with the
agnostic combination of all covariates. In total, we had
128 (27) combinations for seven measured confounders,
including age, sex, race, and residual white blood cell
proportions (neutrophils, B cells, T cells, and natural
killer cells). For unmeasured confounders, we calculated
the mediation E‐value (VanderWeele & Ding, 2017),
which quantifies the minimum strength of associations
that an unmeasured confounder would need to have with
both the exposure and the outcome to fully explain away
the mediation effect. The E‐value for continuous out-
comes is based on the risk ratio transformation of the
standardized mediation effect. To calculate this parame-
ter, we used R package EValue (Mathur et al., 2021).
(c) Fitting a multivariate model with all mediators: Since
the correlation among mediators may distort the single‐
mediator results, we performed a multivariate mediation
analysis method, HIMA (Zhang et al., 2016). In the
screening step, we include the top n nlog∕ CpG sites in
the exposure‐mediator path to increase the possibility of
finding significant mediating signals, where n = 963 is
the sample size. The threshold n nlog∕ is chosen for
reducing the data dimension while maintaining the
accuracy of the sure independence screening (Fan &
Lv, 2008; Zhang et al., 2016). In addition, since it is
difficult to determine the causal direction between DNA
methylation and HbA1c which were measured concur-
rently in MESA, we performed bidirectional causal

TABLE 2 Simulation scenarios for comparing true positive rates. In total, we simulate 100, 000 mediators

Case π π π π, , ,11 01 10 00 Sample size τ R R R= =Y M
2 2 2

Alternative 1(a) 0.001, 0.001, 0.001, 0.997 (200, 500, 1000) (0.1, 0.3, 0.7) Not controlled

Alternative 1(b) 0.2, 0.2, 0.2, 0.4 (200, 500, 1000) (0.1, 0.3, 0.7) Not controlled

Alternative 1(c) 0.2, 0.4, 0.4, 0 (200, 500, 1000) (0.1, 0.3, 0.7) Not controlled

Alternative 2(a) 0.001, 0.001, 0.001, 0.997 (200, 500, 1000) (0.3) (0.1, 0.15, 0.2)

Alternative 2(b) 0.2, 0.2, 0.2, 0.4 (200, 500, 1000) (0.3) (0.1, 0.15, 0.2)

Alternative 2(c) 0.2, 0.4, 0.4, 0 (200, 500, 1000) (0.3) (0.1, 0.15, 0.2)

Note: For the jth mediator, with probability π11, αj ~N(0, 5τ2) and βj ~N(0, τ2); with probability π01, αj= 0 and βj ~N(0, τ2); with probability π10, αj ~N(0, 5τ2)
and βj= 0; with probability π00, αj= βj= 0, where αj is the effect of the exposure on the outcome conditional on C and βj is the effect of the mediator on the
outcome conditional on C and X. The last column refers to the R2 in the outcome model (RY

2) and in the mediator model (RM
2 ), where R2 is the ratio of variation

explained by the regression model to the total variation.
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mediation analysis to compare the SES→DNAm→
HbA1c and SES→HbA1c→DNAm pathways.

3 | RESULTS

3.1 | Simulation results

3.1.1 | FPRs under the composite null
hypothesis

In Supporting Information: Table S1, we present FPR
from six methods under the Null 1(a) scenario, where
π π π( , , ) = (0.001, 0.001, 0.998)01 10 00 , the sample size
n (200, 500, 1000)∈ and τ (0.1, 0.3, 0.7)∈ . To better
illustrate the distributions of p values, we provide QQ
plots from one replication in Figure 2. For all nine cases,
Sobel's test is the most conservative test, followed by the
MaxP test. p Values from both tests are uniformly larger
than the expected ones due to large π00. R package DACT
fails in certain cases, for example, when τ = 0.7 or when
n = 1000. When n = 200 and τ = 0.1, the FPRs from
HDMT and Sobel‐comp are close to expected values at
the cut‐off higher than 10−6, but are inflated at lower cut‐
offs. In comparison, FPRs from JT‐comp and DACT are
greatly inflated, especially when the cut‐off is lower than
10−6. At the 5 × 10−7 level, the ratio of the FPR to the
corresponding level for JT‐comp, DACT, Sobel‐comp,
and HDMT is 15.2, 1.8, 2.3, and 22.7, respectively. When
increasing n from 200 to 1000 with τ = 0.1, the FPR for
JT‐comp dramatically increases. In comparison, Sobel‐
comp is less inflated and HDMT almost keeps the same
level of FPR. Similar trends are observed with an
increasing τ .

When the non‐zero coefficients are dense in the Null
1(b) scenario (Figure 3 and Supporting Information:
Table S2), HDMT is the only method that maintains the
FPR at the nominal level in all scenarios, and is robust to
the change of n or τ . HDMT also works well when π = 000

in the Null 1(c) scenario (Supporting Information:
Table S3). As expected, the MaxP method performs
similar to the HDMT method in this case with moderate
or large τ , since N (0, 1) is the correct reference
distribution for the p value under H01 and H10.

In Supporting Information: Tables S4–S6, we present
the FPR for Null 2 scenarios, where R (0.1, 0.15, 0.2)2 ∈

is controlled across J tests. Overall, the FPRs are inflated
for DACT in all three classes of scenarios. When the non‐
zero coefficients are sparse (Null 2(a)), the impact of R2 is
similar to τ in the Null 1(a) scenario for JT‐comp, HDMT
and Sobel‐comp. In Null 2(b) and Null 2(c) scenarios,
where π00 is much smaller than 1, HDMT is the only
method that maintains the FPR at the nominal level. In

the Null 2(c) scenario where π = 000 , the FPR for MaxP is
smaller than the nominal level due to the small R2.

3.1.2 | True positive rates under the
alternative hypothesis

Results of the TPRs for the Alternative 1(a) and Alternative
1(b) scenarios are shown in Figure 4 and for the Alternative
1(c) are shown in Supporting Information: Figure S1. R
package DACT fails when τ > 0.1. Under the Alternative
1(a) scenario, where π π π π, , ,11 10 01 00 are 0.001, 0.001,

0.001, 0.997, respectively, JT‐comp has lower TPR than
the four other methods in general, except when τ is small
(e.g., τ = 0.1) and the sample size is small (e.g., n = 200).
Sobel's test and Sobel‐comp have the highest TPRs, closely
followed by HDMT and MaxP. The TPR increases for all
methods when the sample size increases. Sobel's test and
Sobel‐comp perform the same because the rank of the
weighted composite p values is unchanged and so are the
MaxP test and HDMT. Under the Alternative 1(b) scenario,
where π π π π, , ,11 10 01 00 are 0.2, 0.2, 0.2, 0.4, respectively,
the TPR of Sobel's test, MaxP, HDMT and Sobel‐comp is
the same under the control of FDR. JT‐comp has the lowest
TPR among all methods. Results for the average TPR in
Alternative 2 scenarios are shown in Supporting Informa-
tion: Figures S2 and S3. The impact of an increasing R2 on
the power of each method is similar to τ and the main
observations are similar to Alternative 1 scenarios.

3.2 | Results from MESA

In Figure 5, we present the QQ plot for p values of all
228,088 CpG sites from six methods, including Sobel's
test, the MaxP test, JT‐comp, HDMT, Sobel‐comp, and
DACT. As expected, p values from Sobel's test and the
MaxP test were deflated, potentially due to a large
number of zero αj and βj. JT‐comp identified two
significant CpG sites and HDMT identified three
significant CpG sites (Supporting Information:
Table S7). Two CpG sites, cg10508317 and
cg01288337, were significant from both methods
(Table 3). In contrast, Sobel‐comp detected no signifi-
cant mediation effects probably because π̂00 is bounded
away from 1 (π π πˆ = 0.884, ˆ = 0.029, ˆ = 0.04000 01 10 ).

The CpG site cg10508317 in the SOCS3 gene on
chromosome 17 encodes a protein that is involved in the
signaling pathways of key hormones such as insulin
(Pedroso et al., 2019). It has been found that increased
SOCS3 expression is associated with insulin resistance
(Pedroso et al., 2019), which is directly related to HbA1c.
The CpG site cg01288337 is in the RIN3 gene on
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chromosome 14. The RIN3 gene encodes a member of
the RIN family of Ras interaction‐interference proteins
and is next to the SLC24A4 gene. Recent studies showed
that SLC24A4/RIN3 is significantly associated with brain
glucose metabolism in humans (Stage et al., 2016) and
SLC24A4 knockout mice revealed brain glucose hypo-
metabolism (X.‐F. Li & Lytton, 2014).

3.2.1 | Results of the sensitivity analysis

For (a) presence of exposure‐mediator interaction: there
was no evidence of exposure‐mediator interaction affect-
ing the outcome (Supporting Information: Table S8). For
(b) choice of measured confounders and unmeasured
confounding: the mediation effects through cg10508317

FIGURE 2 QQ plots for p values from Sobel's test, the MaxP test, JT‐comp, HDMT, Sobel‐comp, and DACT under the Null 1(a)

scenario. n is the sample size. The total number of mediators is 100,000. For j = 1, 2, …, 100, 000, with probability π α= 0.001, = 0j01 and

β N τ~ (0, )j
2 ; with probability π α N τ= 0.001, ~ (0, 5 )j10

2 and β = 0j ; with probability π α β= 0.998, = = 0j j00 . Parts (a)–(i) display results
for different values of n and τ. DACT, Divide‐Aggregate Composite‐null Test; HDMT, high‐dimensional mediation hypotheses testing;
JT‐comp, joint significance test under the composite null hypothesis

176 | DU ET AL.

 10982272, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gepi.22510, W

iley O
nline Library on [19/12/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



and cg01288337 were significant in all combinations of
covariates, indicating that the mediating role of the two
CpG sites is robust to the measured confounders
(Figure 6). For unmeasured confounders, the E‐value
for cg10508317 was 1.33 (lower bound: 1.15) and for
cg01288337 was 1.32 (lower bound 1.15). In other words,
to completely explain away the mediation effect, an

unmeasured confounder beyond the variables adjusted
for in our model would need to have a risk ratio of 1.33
for cg10508317, and 1.32 for cg01288337, in association
with adult SES and HbA1c. For (c) fitting a multivariate
model with all mediators: the two CpG sites, which were
significant from the single‐mediator hypothesis testing
methods (HDMT and JT‐comp), were also significant

FIGURE 3 QQ plots for p values from Sobel's test, the MaxP test, JT‐comp, HDMT, Sobel‐comp and DACT under the Null 1(b) scenario.
n is the sample size. The total number of mediators is 100,000. For j = 1, 2, …, 100, 000, with probability π α= 0.33, = 0j01 and
β N τ~ (0, )j

2 ; with probability π α N τ= 0.33, ~ (0, 5 )j10
2 and β = 0j ; with probability π α β= 0.34, = = 0j j00 . DACT, Parts (a)–(i) display

results for different values of n and τ. Divide‐Aggregate Composite‐null Test; HDMT, high‐dimensional mediation hypotheses testing;
JT‐comp, joint significance test under the composite null hypothesis.
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from the multivariate mediation analysis method, HIMA
(Supporting Information: Table S9).

4 | DISCUSSION

We reviewed and compared the testing performance of six
mediation methods (Sobel's test, MaxP, JT‐comp, HDMT,
DACT and Sobel‐comp). Our study indicates that the
methods which use the mixture reference distribution
(HDMT, Sobel‐comp) can better control FPRs and yield
larger true positive rates (TPRs). However, there is no
uniform dominance of one method over the others across
all simulation scenarios. Their performances differ accord-
ing to π π π π, , ,00 01 10 11, the sample size, and the strength of
independent variables explaining the variation of the
dependent variable, as captured by the variance of non‐
zero α β, or R2 in the outcome and mediator models.

Under the null hypothesis, the distribution of
p values is strongly affected by the three proportions,
π π π, ,00 01 10, for all methods except HDMT. Sobel's test
and the MaxP test overly control the FPR, especially
when π00 is large. The fundamental problem with Sobel's
test and the MaxP test is that the reference distribution
when α β= = 0 is incorrect. However, if a screening step
is performed to select mediators associated with either
the outcome or the exposure so that after screening
π 000 ≈ , the reference distributions for Sobel's test
(N(0, 1)) and for the MaxP test (U(0, 1)) under the null
are asymptotically correct. In this case, the MaxP test
maintains the FPR at the nominal level.

Under the null when non‐zero α and β coefficients
are sparse, that is, π10 and π01 are small, Sobel‐comp and
HDMT maintain the FPR at the nominal level for any n
or τ . JT‐comp maintains the nominal level of FPR only
when n and τ (or R2) are small and thus, the application

FIGURE 4 The average true positive rate over 200 replicates when controlling the true false discovery rate (FDR) at 0.05 for Sobel's test,
MaxP, JT‐comp, HDMT, Sobel‐comp and DACT under the Alternative 1(a) and Alternative 1(b) scenarios. The total number of mediators is
100,000. n is the sample size. For j = 1, 2, …, 100, 000, with probability π α N τ β N τ, ~ (0, 5 ), ~ (0, )j j11

2 2 ; with probability π α, = 0j01 and
β N τ~ (0, )j

2 ; with probability π α N τ, ~ (0, 5 )j10
2 and β = 0j ; with probability π α β, = = 0j j00 . Under the Alternative 1(a) scenario,

π π π π, , ,11 10 01 00 are set as 0.001, 0.001, 0.001, 0.997 and under the Alternative 1(b) scenario, π π π π, , ,11 10 01 00 are set as 0.2, 0.2, 0.2, 0.4. DACT,
Divide‐Aggregate Composite‐null Test; HDMT, high‐dimensional mediation hypotheses; JT‐comp, joint significance test under the
composite null hypothesis.
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of JT‐comp is valid only in sparse settings with small
samples and small non‐zero coefficients. But under the
null with dense coefficients, that is, π01 and π10 are large,
HDMT is the only method that maintains the nominal
level of FPR.

Under the alternative hypothesis with sparse signals,
all methods perform similarly with small n and τ . As n
and τ increase, Sobel‐comp is the most powerful method
with the greatest TPR, followed by HDMT. However,
Sobel‐comp requires π00 close to 1 to have such optimal
properties, the choice of Sobel‐comp depends on the
screening strategy before the mediation analysis. Pre-
sented with a large number of mediators, if one
separately uses large  Zα and/or  Zβ as screening steps,
π00 may be bounded away from 1. However, if one only

restricts the analyses to exposures associated with the
outcome, π00 could still be near 1 since a significant total
effect can lead to nearly all indirect effects being zero,
with most of the exposure effect coming through direct
effects. In practice, we recommend to choose the method
based on π π πˆ , ˆ , ˆ01 10 00 obtained from R package HDMT(Dai
et al., 2022). Sobel‐comp is preferred when π00 is close to
1. Although we do not provide strict guidelines, our
simulation studies show that when π = 0.99700 and
π π π= = = 0.00101 10 11 , Sobel‐comp is the most powerful
method in almost all scenarios. Under the alternative
hypothesis with dense signals, HDMT and Sobel‐comp
have the same TPR under the control of the FDR.

We summarize key features, advantages, and limita-
tions for all the six methods based on our simulation

FIGURE 5 QQ plot for the six mediation
hypothesis testing methods, including Sobel's
test, MaxP, JT‐comp, HDMT, Sobel‐comp
and DACT with 963 observations. The
outcome is the continuous HbA1c level, the
exposure is the binary adult SES, and the
mediators are 228,088 CpG sites. In the
mediator and outcome models, we adjust for
age, sex, race and residual white blood cell
proportions (neutrophils, B cells, T cells, and
natural killer cells). In addition, we adjust for
the exposure in the outcome model. DACT,
Divide‐Aggregate Composite‐null Test;
HDMT, high‐dimensional mediation
hypotheses testing; JT‐comp, joint
significance test under the composite null
hypothesis.

TABLE 3 Two mediation pathways identified by JT‐comp and HDMT after controlling the family‐wise‐error‐rate at 0.05

CpG Chr Gene

UCSC RefGene

α̂

Mediation effect
(proportion) 95% CI pJT comp− pHDMTGroup β̂ (proportion)

cg10508317 17 SOCS3 Body −0.28 −0.12 0.035 (0.18) (0.013, 0.064) 1.19E−07 6.49E−08

cg01288337 14 RIN3 Body 0.23 0.15 0.034 (0.17) (0.013, 0.061) 1.85E−07 6.47E−08

Note: The exposure is adult SES and the outcome is HbA1c. The total number of mediators is 228,088. In both models, we adjust for age, sex, race, and residual
white blood cell proportions (neutrophils, B cells, T cells, and natural killer cells). In addition, we adjust for the exposure in the outcome model. α is the
estimated effect of the exposure on the mediator and β is the estimated effect of the mediator on the outcome, conditional on other covariates. The estimated
mediation effect is α β  and the proportion of mediation effect is provided in the parenthesis. The 95% confidence interval (CI) for the mediation effect is
calculated based on 1000 bootstrap samples.
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studies in Table 4 and provide a decision tree for
choosing an appropriate method in Figure 7. Since MaxP
is always more powerful than the Sobel test and DACT
fails in many simulation scenarios, these two methods do
not appear as preferred methods in Figure 7. We develop
an R package medScan available on the CRAN for
implementing.

There are two common limitations of all the six
methods. First, it is inappropriate to use any of the six
methods if the outcome or mediator is binary
(VanderWeele, 2015), or if there is exposure‐mediator
interaction affecting the outcome (assumption A.2
mentioned in Section 1 is violated) (MacKinnon
et al., 2020) so that αβ does not correspond to the
indirect effect. In this case, the causal mediation analysis
offers a flexible framework and provides valid quantifi-
cation of the causally interpretable mediation effect.
However, since causal mediation analysis methods with
accompanying software largely focus on point and
interval estimation, hypothesis testing at a small alpha
level relevant to large‐scale association testing has not
been well studied. Due to the unknown null distribution,
most of the existing R packages, for example, mediation
(Tingley et al., 2014), medflex (Steen et al., 2020),
CMAverse (Shi et al., 2021), regmedint (Li et al., 2022),
recommend using the bootstrap technique to determine
the p value of the indirect effect. In epigenetic studies,
bootstrapped samples need to be large enough for a good

approximation to the tail probability of the null distribu-
tion, which, in turn, could be computationally expensive
for a large number of mediators. It is of future interest to
investigate the composite null hypothesis in large‐scale
mediator testing from the counterfactual framework.
Secondly, none of the six methods has desirable
properties of FPR and TPR when mediators are
correlated. Presented with correlated mediators, single‐
mediator analysis does not adjust for all the mediator‐
outcome confounders affected by the exposure, resulting
in a violation of assumption A.1(4). In this case, it is
necessary to extend the mediation analysis models to
jointly account for multiple correlated mediators (Song,
Zhou, Kang, et al., 2020; Song, Zhou, Zhang, et al., 2020;
Zhang et al., 2016). For computational reasons, we only
explore a range of parameters. Parameter values beyond
this range combined with correlated mediators are of
interest for future analysis.

The two significant CpG sites we identified in the
SOCS3 and RIN3 genes from MESA add to a growing
body of literature on the mediating role of DNA
methylation between socioeconomic status and disease
risk factors associated with HbA1c (Giurgescu et al., 2019;
Song, Zhou, Zhang, et al., 2020). However, a limitation of
our analysis is that our mediator (methylation) and
outcome (HbA1c) were measured concurrently. There-
fore, we identify statistical mediation, but are unable to
formally determine the causal direction (Supporting

FIGURE 6 Estimates of the indirect effects through cg10508317 (upper panel) and cg01288337 (lower panel) with 95% confidence
interval for all possible combinations of seven covariates: age, sex, race, and residual white blood cell proportions (neutrophils, B cells,
T cells, and natural killer cells). E‐value estimation is based on the approximation of risk ratio transformation of the standardized mediation
effect estimate.
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Information: Table S10). More studies are needed to fully
understand the underlying biological mechanisms that
link socioeconomic disadvantage to HbA1c‐associated
diseases.
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